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A B S T R A C T 

Counts of galaxy clusters offer a high-precision probe of cosmology, but control of systematic errors will determine the accuracy of 
this measurement. Using Buzzard simulations, we quantify one such systematic, the triaxiality distribution of clusters identified 

with the redMaPPer optical cluster finding algorithm, which was used in the Dark Energy Surv e y Year-1 (DES Y1) cluster 
cosmology analysis. We test whether redMaPPer selection biases the clusters’ shape and orientation and find that it only biases 
orientation, preferentially selecting clusters with their major axes oriented along the line of sight. Modelling the richness–mass 
relation as log-linear, we find that the log-richness amplitude ln ( A ) is boosted from the lowest to highest orientation bin with a 
significance of 14 σ , while the orientation dependence of the richness-mass slope and intrinsic scatter is minimal. We also find that 
the weak lensing shear-profile ratios of cluster-associated dark haloes in different orientation bins resemble a ‘bottleneck’ shape 
that can be quantified with a Cauchy function. We test the correlation of orientation with two other leading systematics in cluster 
cosmology – miscentering and projection – and find a null correlation. The resulting mass bias predicted from our templates 
confirms the DES Y1 finding that triaxiality is a leading source of bias in cluster cosmology. Ho we ver, the richness-dependence 
of the bias confirms that triaxiality does not fully resolve the tension at low-richness between DES Y1 cluster cosmology and 

other probes. Our model can be used for quantifying the impact of triaxiality bias on cosmological constraints for upcoming 

weak lensing surv e ys of galaxy clusters. 

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmological parameters – cosmology: theory. 

1  I N T RO D U C T I O N  

The growth of the most massive structures in the universe is a sen- 
sitive probe of the Lambda cold dark matter ( � CDM) cosmological 
model. Within this model, the number of dark matter haloes of a given 
mass, or the halo mass function, depends sensitively upon the current 
matter density, �m 

, and on the linear density fluctuation amplitude at 
the 8 h −1 Mpc scale, σ 8 . Beyond � CDM, the halo mass function is
also sensitive to the dark energy equation of state parameter, w (see 
e.g. Frieman, Turner & Huterer 2008 ; Weinberg et al. 2013 ; Huterer
et al. 2015 , for re vie ws).

� E-mail: zzhang13@uchicago.edu (ZZ); hywu@boisestate.edu (HW); 
jfrieman@uchicago.edu (JF) 

Comprising a few to hundreds of g alaxies, g alaxy clusters are 
tracers of and proxies for dark haloes in the approximate mass 
range 10 13 −3 × 10 15 h −1 M �. Since the mass of a galaxy 
cluster is difficult to directly observe, it is typically inferred 
from another cluster observable through a mass-observable relation 
(MOR). Examples of such observables are the number counts of 
galaxies per cluster, often referred to as the ‘richness’ (Koester 
et al. 2007 ; Rykoff et al. 2014 ); X-ray emission luminosity or 
temperature from the intracluster medium (ICM; Piffaretti et al. 
2011 ; Mehrtens et al. 2012 ); and the inverse Compton scatter 
parameter of Cosmic Microwave Background photons off of the 
ICM electrons, known as the Sun yaev–Zel’do vich effect (Bleem 

et al. 2015 ; Planck Collaboration XXVII 2016 ). The precision of 
cluster cosmology studies relies on an accurate statistical model 
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relating these observables to cluster mass (Allen, Evrard & Mantz 
2011 ). 

The Dark Energy Surv e y (DES) used the 4-m Blanco Telescope 
and the Dark Energy Camera (Flaugher et al. 2015 ) to carry out 
a multiband, 5000 de g 2 surv e y o v er 6 yr, with the primary goal 
of constraining cosmology and the nature of dark energy. Given 
its depth and wide-area co v erage, DES observ ed ∼100 000 galaxy 
clusters up to redshift ∼1 (Melchior et al. 2017 ). Initial cluster 
cosmology results, based on the first year of data (DES Y1), were 
published in Abbott et al. ( 2020 ). The cluster observable that DES 

Y1 employed as a mass proxy is a probabilistic cluster galaxy count 
called richness, computed with the redMaPPer algorithm (Rykoff 
et al. 2012 ). 

Gravitational lensing, the shearing of galaxy images by foreground 
mass concentrations, is one of the most powerful methods for 
calibrating cluster mass–observable relations (Johnston et al. 2007 ; 
Gruen et al. 2014 ; Simet et al. 2017 ; McClintock et al. 2019 ). 
DES calibrates the cluster MOR through statistical weak lensing, 
in which shears from an ensemble of clusters are stacked to achieve 
high signal-to-noise ratio (Bartelmann, King & Schneider 2001 ). 
In DES, stacked shear profiles are estimated for clusters binned in 
redMaPPer richness, enabling a determination of the mean halo mass 
as a function of richness (Melchior et al. 2017 ; McClintock et al. 
2019 ). 

Systematic effects in cluster selection or in calibration of the 
cluster MOR, if uncorrected for, can lead to biased cosmological 
inference from cluster abundance measurements. One such system- 
atic arises from cluster triaxiality, the intrinsically elliptical shapes 
of galaxy clusters. N -body simulations indicate that dark haloes can 
ha ve major -to-minor axis ratios as high as 1.5 (Jing & Suto 2002 ; 
Oguri et al. 2005 ), as confirmed observationally through cluster weak 
lensing ellipticity measurements (Clampitt & Jain 2016 ; Shin et al. 
2018 ). Failing to account for cluster halo triaxiality may result in an 
o v erestimate of cluster mass by as much as 3–6 per cent for stacked
weak lensing measurements (Dietrich et al. 2014 ). Triaxiality was
identified as one of the most important sources of systematic bias
in the DES Y1 cluster lensing analysis, significant at the 2 per cent
level (McClintock et al. 2019 ). Recently Osato et al. ( 2018 ) showed
that triaxiality not only biases the cluster surface mass density in the
‘one-halo’ regime but also affects the surface density profile in the
‘two-halo’ regime.

In this paper, we use redMaPPer cluster samples and associated 
halo catalogues in the Buzzard simulations to quantify cluster 
selection bias related to halo triaxiality properties such as orientation 
and ellipticity. We e v aluate the impact of the triaxiality selection bias 
on (1) the richness–mass relation and (2) the excess surface mass 
density of individual haloes (Osato et al. 2018 ). The stacked surface 
density profiles modelled with a triaxiality selection bias deviate 
from the isotropically stacked profiles; we find results comparable to 
those previously reported in the literature. 

The paper is organized as follows. In Section 2 , we describe the 
simulation data set used in the study and the halo–cluster matching 
algorithm. In Section 3 , we examine the orientation and ellipticity 
distributions of triaxial haloes associated with redMaPPer-selected 
clusters, quantifying the preference for halo orientation along the line 
of sight. In Section 4 , we examine the boost in cluster richness for a 
given mass resulting from this orientation selection bias in the cluster 
sample. In Section 5 , we test for correlation of halo triaxiality with 
other leading systematics, finding no evidence for such. In Section 6 , 
we study halo surface mass densities as a function of orientation 
and the effect of orientation selection bias on stacked surface density 
measurements. We conclude in Section 7 . 

Throughout, we assume a flat � CDM cosmology with �m 

= 

0.283, and H 0 = 70 km s −1 Mpc −1 . Distances and masses, unless
otherwise noted, are defined in units of h −1 Mpc and h −1 M �. 

2  T H E  SI MULATI ON  DATA  SET  

2.1 Buzzard simulations 

We make use of the N -body simulation catalogues from the suite 
of Buzzard simulations (DeRose et al. 2019 ) with the � CDM 

parameters giv en abo v e. Detailed descriptions of the simulations 
can be found in MacCrann et al. ( 2018 ), DeRose et al. ( 2019 ), and 
Wechsler et al. ( 2022 ); here, we present a brief o v erview. 

Haloes are found by ROCKSTAR (Behroozi, Wechsler & Wu 
2013 ) with masses defined by M 200 b , or more commonly referred to 
as M 200 m , the mass enclosed in a radius within which the average 
matter density is 200 times the mean background matter density 
of the universe at the halo redshift. Galaxies are assigned to dark 
matter particles using ADDGALS, an empirical algorithm that places 
galaxies on dark matter particles based on a galaxy–dark matter 
relation learned from subhalo abundance matching catalogues and 
that is designed to accurately reproduce galaxy luminosities, colours, 
and spatial clustering o v er large volumes (DeRose et al. 2019 ). In 
particular, each massive halo is assigned a luminous, red galaxy at its 
centre with the central galaxy’s r -band absolute magnitude calibrated 
against the halo’s virial mass (Wechsler et al. 2022 ). 

The Buzzard flock is a set of 18 realizations of simulations that 
co v er the DES Y1 footprint, each realization co v ering ∼1800 square 
degrees of the sky (Drlica-Wagner et al. 2018 ; Abbott et al. 2020 ). 
The galaxy catalogue is complete towards a r -band magnitude of 
∼26.5 and z = 2.35. By tuning the luminosity function of galaxies
and their red fraction, the photometric redshift and errors follow
the DES Y1 GOLD catalogue, the DES science-quality photometric
catalogue produced from Y1 data to enable cosmological analyses.
To account for the masking of the DES Y1 footprint, Buzzard
randomly downsampled galaxies by FRACGOOD, the percentage
of un-masked pixels within a tile of the sky. As a second step, only
galaxies that are brighter in the z -band than the local 10 σ limiting
magnitude are included in the galaxy catalogue.

The Buzzard simulations simultaneously achieve good spatial 
resolution and large volume by dividing the light cone into three 
simulation box es co v ering the redshift ranges z ∈ [0.0, 0.34), [0.34, 
0.90), and [0.90, 2.35), with respectiv e minimally resolv ed dark 
matter particle masses of 2.7 × 10 10 h −1 M �, 1.3 × 10 11 h −1 M �, 
and 4.8 × 10 11 h −1 M �. The increased resolution at low-redshift 
captures non-linear structures at late times, while the lower resolution 
at high redshift enables the catalogs to encompass larger total 
v olume. Particles are ev olved using the L- GADGET2 code designed to 
efficiently run large-volume dark-matter only simulations (Springel 
et al. 2005 ). 

2.2 redMaPPer cluster sample 

With the advent of wide-field-imaging surveys, a plethora of optical 
cluster finding algorithms have emerged, such as those based on 
galaxy photometric redshifts (e.g. Kepner & Kim 2003 ; Soares- 
Santos et al. 2011 ; Wen, Han & Liu 2012 ; Oguri 2014 ). In this 
paper, we study the cluster sample identified with the redMaPPer 
algorithm (Rykoff et al. 2014 ), which identifies cluster candidates as 
spatial o v erdensities of red-sequence galaxies. Clusters are assumed 
to be centred on a galaxy, with the central galaxy selected based on 
its luminosity and colour (brightest central galaxy, or BCG). The 
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algorithm also produces a richness estimate, λ, for each cluster 
candidate, a probabilistic count of cluster red-sequence galaxies 
abo v e a luminosity threshold and inside a spatial aperture defined 
by R λ = 1 h −1 Mpc ( λ/100) 0.2 determined from iterative richness
estimations. 

The redMaPPer algorithm uses a sample of observed clusters with 
spectroscopic redshifts as a training set to build the initial redshift- 
dependent red-sequence model that cluster galaxies are fitted onto 
to determine the photometric redshift z λ. The DES Y1 redMaPPer 
photometric redshifts are unbiased at the | �z| ≤ 0.003 level, and 
have a median photometric redshift scatter σz/(1 + z) ≈ 0.006. 

For DES Y1 cluster cosmology, redMaPPer clusters are taken 
from the GOLD galaxy catalogue (Drlica-Wagner et al. 2018 ). The 
clusters are restricted to the redshift interval to z ∈ [0.2, 0.65] and λ > 

20, totalling 6504 clusters in the footprint. redMaPPer performance 
below redshift z = 0.2 is compromised by the lack of u -band data, 
while there are relatively few galaxy clusters in the catalogue abo v e 
redshift z = 0.65 (Abbott et al. 2020 ). 

The redMaPPer cluster finder has been applied to the Buzzard 
catalogues to identify galaxy clusters. The Buzzard simulations come 
with a caveat that their richness–mass relation is biased low relative to 
the DES Y1 data that may is likely attributed to the spatial dependence 
of galaxy colours at small scales (DeRose et al. 2019 ). None the less, 
we describe in Section 4 how we can use Buzzard to study the relative 
difference in richness-mass across orientation bins. 

In this project, for sample completeness we make use of a 
redMaPPer sample with a maximum cluster redshift of z < 0.90 
which is around the redshift detection limit of redMaPPer and the 
limit of the Buzzard light cone, and for sample purity we apply a 
richness cut of λ > 20 (Rykoff et al. 2016 ; McClintock et al. 2019 ). 
Haloes are also cut at masses below 5 × 10 13 h −1 M � that roughly 
corresponds to a richness of 20. 

2.3 Cluster halo matching algorithm 

Here, we outline how redMaPPer clusters are matched to Buzzard 
haloes. First, a cluster is labelled as centred or miscentered based 
on whether or not its redMaPPer BCG is a central galaxy in a 
Buzzard halo. Centred clusters have BCGs that share the same ID 

as that of the halo central galaxy; in this case, the cluster and halo 
central coordinates perfectly match. By this criterion, 63 per cent 
of redMaPPer clusters are centred; the remaining were matched 
using the halo-cluster algorithm described below. A more detailed 
description of the centring properties of the redMaPPer catalogues 
can be found in Section 5.1 . 

The miscentered redMaPPer clusters were matched to Buzzard 
dark matter haloes by proximity. Haloes were ranked by halo mass, 
and clusters were ranked by richness, both in descending order. 
We first search for halo-cluster pairs with redshift separation �z 

≤ 0.05 between cluster photometric redshift and true halo redshift. 
This range of redshift separation is large compared to the typical 
photometric redshift error, �z ∼ 0.005, for redMaPPer-selected 
clusters. Then, for each halo, we identify those redMaPPer clusters 
with BCGs within a projected two-dimensional (2D), comoving 
radius of 2 h −1 Mpc of the halo central galaxy. If there are multiple 
redMaPPer clusters satisfying these separation criteria, we match 
the halo to the richest such cluster that has not been previously 
matched. For each cluster, we repeat this matching process, selecting 
haloes satisfying the redshift and projected distance criteria, and then 
choosing the most massive such halo still on the list as the one to be 
associated with that cluster. Clusters and haloes that uniquely match 
with each other in both matching steps are considered valid matches. 

Figure 1. Upper panel : A 2D distribution plot of the true M 200 m and z 
of haloes before and after matching with redMaPPer clusters. The haloes 
are cut at M 200 m > 5 × 10 13 h −1 M � and a redshift cut of z < 0.90 and 
are sparsely sampled for better visualization. Lower panel : The probability 
density function of the observed richness λobs before and after matching 
with halos. Because of the high match rate of redMaPPer clusters the two 
distributions are nearly identical. 

Of the 24 243 initially identified redMaPPer cluster candidates 
in the suite of 18 catalogues, 23 658 or 97 per cent are uniquely 
matched to a halo with the abo v e prescription. We do not consider 
the non-uniquely matched clusters in this study. 

This halo–cluster matching algorithm was cross-checked with an 
independent halo–cluster matching algorithm used in Farahi et al. 
( 2016 ) that rank-orders haloes and clusters by the number of galaxies 
the y hav e in common. Using the Aardvark simulation, Farahi et al. 
( 2016 ) uniquely matched 99 per cent of redMaPPer clusters to haloes, 
showing excellent agreement with this paper’s algorithm on the 
completeness and uniqueness of cluster-to-halo matches. We cross- 
checked our matching algorithm with that of Farahi et al. ( 2016 ) in a 
different version of Buzzard with a smaller patch of sky containing 
several hundred clusters and found almost identical halo-cluster 
pairings. 

Due to the high number of particles per halo, Poisson noise plays a 
negligible role in our ellipticity measurements: at low redshift, with 
a mass resolution of 2.7 × 10 10 h −1 M �, a typical 3 × 10 14 h −1 M �- 

art/stad1404_f1.eps


Modelling galaxy cluster triaxiality 1997

MNRAS 523, 1994–2013 (2023) 

mass halo found through redMaPPer corresponding to a richness 
of ∼40 will contain ∼10 000 particles, and the same-mass halo at 
high redshift, with a poorer mass resolution of 1.3 × 10 11 h −1 M �, 
contains ∼3000 particles. Simulations conducted by Jing & Suto 
( 2002 ) demonstrated that these large numbers of particles per halo 
make Poisson noise negligible for our purposes. We do not consider 
haloes with fewer than 100 particles with poor shape convergence, 
corresponding to group size objects with richnesses well below our 
λ > 20 cut. Fig. 1 shows the mass and redshift distributions of halos 
before and after matching with redMaPPer. 

3  CLUSTER  H A L O  TRIAXIALITY  A N D  

SE LECTION  BIAS  

Previous studies have shown that optical cluster finders preferentially 
select haloes with their major axes oriented along the line of sight 
(Corless & King 2008 ; Dietrich et al. 2014 ). In this section, we 
quantify this orientation bias of selected clusters using the redMaPPer 
catalogs and the Buzzard simulations. We also explore whether a 
cluster ellipticity selection effect exists, i.e. whether redMaPPer 
preferentially selects haloes that are more or less elliptical than 
randomly selected haloes. 

3.1 Measurement of halo ellipticity and orientation 

We make use of a quadrupole moment tensor method (Bett 2012 and 
references therein) to measure the shapes and orientations of haloes. 
Many such algorithms solve for halo shapes by using particles inside 
a spherical envelope (Dietrich et al. 2014 ; Osato et al. 2018 ); this 
has the advantage of allowing easy comparison with other results, 
but it systematically underestimates the axial ratios for ellipsoidal 
profiles, an ef fect kno wn as ‘edge bias.’ As described below, we 
correct for such an effect by using an iterative method to determine 
the shape of the enclosing envelope, in the vein of earlier works 
such as Dubinski & Carlberg ( 1991 ), Katz ( 1991 ), and Warren et al. 
( 1992 ). To do so, we first measure the shape of the halo using particles 
inside a spherical envelope; once the axis ratios and the principal axes 
are found, the envelope adapts iteratively until both the axis ratios of 
the halo inside the envelope and the shape of the ellipsoidal envelope 
itself converge. 

We now describe the halo ellipticity measurement algorithm in 
detail. It involves nested iteration of both the principal axes, as 
determined from the quadrupole moment tensor, and of the envelope 
shape. In the initial iteration, l = 0, of the envelope shape, the 
envelope is set to be a sphere centred on the halo centre with a radius 
equal to the virial radius of the halo, R vir . The reduced quadrupole 
moment tensor is then calculated for the N P dark matter particles 
inside the envelope. This tensor, with its principal-axis directions 
solved at the k th iteration, is defined as 

M 

( k) 
ij = 

1 

N 

( k) 
P 

N 
( k) 
p ∑ 

p= 1

R 

( k) 
p,i R 

( k) 
p,j(

R 

( k) 
p 

)2 , (1) 

where R p , i and R p , j are the distances from the centre along Cartesian 
coordinate axes of the p th particle and R 

k 
p is the triaxial radius, 

defined below, of the p th particle solved at the k th iteration. 
We define a , b , and c as the major, intermediate, and minor axes 

lengths of a particle projected on to the unit sphere and q ≡ c 
a 

and 
s ≡ b 

a 
as the minor-major and intermediate-major axis ratios; the 

physical distances to the p th particle along the minor, intermediate 
and major axes are denoted X p , Y p , and Z p . In this notation, the triaxial 

radius at the k th iteration of the particle is expressed as 

R 

( k) 
p = 

√ (
X p 

q ( k−1) 

)2 

+ 

(
Y p 

s ( k−1) 

)2 

+ Z 

2 
p . (2) 

The axis lengths projected on to the unit sphere are the square roots of 
the eigenvalues of the reduced tensor, and the axis directions are the 
corresponding eigenvectors. After each iteration, the principle axes 
are rotated by the rotation matrix M 

( k ) , where each row in the matrix 
is a principle axis found from the reduced tensor in the previous 
iteration. The reduced tensor is computed again under the rotated 
coordinates. Starting from q ( k = 0) = 1 and s ( k = 0) = 1, the tensor is 
considered to have converged if ∣∣∣∣1 − q ( k) 

q ( k−1) 

∣∣∣∣ < 10 −6 and 

∣∣∣∣1 − s ( k) 

s ( k−1) 

∣∣∣∣ < 10 −6 , (3) 

and is deemed divergent if convergence is not reached before the 
number of iterations k exceeds 100. 

The total rotation matrix after n rotations is 

M ��� 

= M 

( n ) . . . M 

( k) . . . M 

(1) , (4) 

where each row in M tot gives the direction of the corresponding halo 
axis prior to rotation. 

If after k iterations the axis ratios derived from the tensor converge, 
then the elliptical envelope of the particles is advanced from the 
previous l − 1th to the l th (for l > 0) iteration, adapting its axis ratios 
and orientation to those of the halo as determined from the tensor 
with the previous envelope. Particles with elliptical distances of 

R 

( l) 
p ≡

√ (
X 

( l−1) 
p 

q ( l−1) 

)2 

+ 

(
Y 

( l−1) 
p 

s ( l−1) 

)2 

+ ( Z 

( l−1) 
p ) 2 < R vir (5) 

are selected. The sequence initializes at q ( l = 0) = s ( l = 0) = 1, and 
( X 

0 
p , Y 

0 
p , Z 

0 
p ) along the original ( x , y , z) axes of our coordinate system

and converges using the same criteria as for the shape of the halo 
inside the envelope (cf. equation 3). The shape of the halo is said to 
be convergent only if both the shape of the halo particles found inside 
the envelope and the shape of the envelope itself both converge. 

We applied this technique to measure the shapes of simulated 
haloes that are matched to the redMaPPer clusters; of the 23 658 
matched redMaPPer clusters, the halo shape measurements converge 
by the abo v e criteria for 22 790 of them. We use this sample in the 
following sections to explore orientation bias. 

We can gauge the impact of the edge bias on halo shape measure- 
ment by comparing results with the adaptive ellipsoidal envelope to 
those using a fixed spherical envelope. In Fig. 2 , we plot the halo 
axis ratios q and s found using spherical envelopes (ordinates) with 
those from the adaptive ellipsoidal envelopes (abscissas). We see 
clearly that the axis ratios are biased high (ellipticities biased low) 
when using spherical envelopes, with larger bias at higher ellipticities 
(lo wer v alues of the axis ratios). These results are in qualitative 
agreement with those of Shin et al. ( 2018 ), who studied 2D projected 
ellipticities of observed galaxies in redMaPPer clusters. They found 
that the inferred 2D ellipticity, e ≡ (1 + q )/(1 − q ), where q is the axis 
ratio for a 2D ellipse, deviates by as much as 0.1 when using a circular 
aperture for the redMaPPer (Rykoff et al. 2014 ) cluster finder, R λ = 

1 h −1 Mpc( λ/100) 0.2 , due to the cut-off of satellite galaxies along the 
major axis; they also found that the bias in ellipticity becomes worse 
at higher ellipticity (smaller q ). 
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Figure 2. Axis ratios, q and s , for redMaPPer-matched haloes measured 
with spherical versus adaptive ellipsoidal envelopes. Solid black lines show 

the mean ratios in each axis-ratio bin, and the blue bands indicate the 1 
− σ scatter. Dashed lines would correspond to no difference in axis ratios
between the two methods. The results demonstrate that edge bias reduces
the measured ellipticities of haloes from their true values, with larger bias at
higher ellipticities (smaller q and s ).

3.2 Distributions of cluster halo orientation and ellipticity 

Armed with measurements of halo shapes for redMaPPer clusters, 
in this subsection we study the distributions of halo ellipticity 
and orientation. To test for redMaPPer-associated selection biases, 
we compare these distributions to those for a sample of 36 445 
randomly selected haloes with convergent shape measurements from 

the Buzzard catalogue. The orientation of interest is the angle 
between the halo major axis and the line of sight, which we denote 
by i ; a non-uniform distribution of i would signal the preferential 
selection of (prolate) clusters with these vectors aligned. For this 
analysis, we adopt the orientation bins cos ( i ) ∈ [0.0, 0.2), [0.2, 0.4), 
[0.4, 0.6), [0.6, 0.8), and [0.8, 1.0). 

The distributions of axis ratios for redMaPPer-matched haloes and 
for randomly selected haloes are shown for different orientation bins 
in the upper panels of Fig. 3 . Previous N -body studies found that 
more massive haloes tend to be more elliptical (Kasun & Evrard 
2005 ) as a result of tidal forces and mergers. To account for this 

effect, we resampled the randomly selected haloes to match the 
halo mass function of the redMaPPer-matched haloes. The upper 
panels of Fig. 3 indicate that the ellipticity distributions of the 
redMaPPer-matched haloes are qualitatively very similar to those for 
the resampled random haloes, with little dependence on orientation. 

To quantify this comparison, in the bottom panels of Fig. 3 we show 

the mean axis-ratios for the redMaPPer-matched haloes in different 
orientation bins (in blue), along with the means for the random 

haloes (in grey). The errors on these measurements are estimated by 
jackknife resampling, with the simulated surv e y footprint split by the 
k-means algorithm kmeans radec 1 into 40 non-overlapping patches
– the error estimates come from the variance among the patches,
each of them 37.5 square degrees. With this kind of spatial jackknife,
the choice of the size of the jackknife patch is a compromise: for
very large patch size, the number of patches (samples) would be too
small to get a meaningful statistical sample; for very small patch
size, large-scale structure would be highly correlated across adjacent
patches, so they could not be treated as quasi-independent for error
estimation.

The mean axis ratios differ by 0.7 and 1.2 per cent for q and s , 
respectiv ely, for redMaPPer v ersus random haloes. To determine if 
these differences are significant, we conduct a null-hypothesis test on 
q and s with their standard errors modelled as Student’s t distributions. 
We find a 1.4 σ difference in the minor-to-major axis ratio q for 
redMaPPer versus randomly sampled haloes and a 1.8 σ difference 
in the intermediate-to-major axis ratio s . There are no statistically 
significant shifts in mean axis ratios for redMaPPer haloes between 
different cos ( i ) bins. Thus, we do not find strong evidence of shifts 
in the ellipticity distributions. 

Fig. 4 (top panel) shows a similar analysis to that abo v e, but now for 
the distribution of halo orientation in three different richness bins. In 
this case, there is a clear signal of orientation bias in the redMaPPer- 
matched clusters, with preferential selection of clusters with major 
axis oriented along the line of sight. The effect is more pronounced 
for clusters of higher richness: the lower panel shows an increase 
in the mean value of cos ( i ) with richness. Using the same method 
of null hypothesis testing, we find that the mean value of cos ( i ) for 
redMaPPer haloes of 0.555 ± 0.002 is boosted compared to that for 
randomly selected haloes with a 13.8 σ significance. There is also 
a statistically significant shift in the mean value of cos ( i ) between 
richness bins: the mean cos ( i ) for λ ∈ [30.0, 50.0) ( λ ∈ [50.0, 274.0)) 
exceeds that for λ ∈ [20.0, 30.0) at 3.7 σ (4.8 σ ) significance. As a null 
test, we find that the randomly selected haloes have a mean cos ( i ) 
consistent with 0.50. 

In the next subsection, we will interpret the correlation of mean 
cos ( i ) with richness seen in Fig. 4 as due to the boosting of observed 
richness for clusters (of fixed mass) oriented along the line of sight. 

4  EFFECT  O F  O R I E N TAT I O N  O N  T H E  

RICHNESS–MASS  RELATI ON  

Since we have shown that the orientation distribution of redMaPPer- 
selected clusters is biased, it is important to understand how this may 
impact the observed cluster richness–mass relation, a key ingredient 
in cluster cosmology. In this section, we explore how the cluster 
richness–mass relation varies with cluster orientation. 

Fig. 5 shows the empirical relation between Buzzard halo mass (de- 
fined by M 200m 

) and observed richness for the redMaPPer-matched 

1 Code written by Erin Sheldon. Source: https:// github.com/esheldon/ kmeans 
radec 
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Figure 3. Top panels : Axis-ratio distrib utions for redMaPPer -matched clusters binned by orientation and for randomly selected halos from the Buzzard 
simulations. Bottom panels : Mean axis ratios with 1 σ errors from jackknife resampling. Applying the 3 σ significance cut-off rule, no significant shift is found 
in the shape parameters q and s for redMaPPer-matched and randomly selected haloes. Also is the case that no statistically significant difference is found in the 
mean ellipticities across different orientation bins. 

clusters. Follo wing pre vious work (Saro et al. 2015 ; Melchior et al. 
2017 ; Simet et al. 2017 ; McClintock et al. 2019 ), we model the 
relation between cluster mean richness μ( λ) and halo mass M as a 
linear relation between ln ( λ) and ln ( M ), with a pivot point at 10 14 

M �: 

μ( ln λ) = ln ( A ) + B × (
ln ( M/ M �) − 14 ln (10) 

)
. (6) 

We do not consider the redshift evolution of the richness–mass 
relation as results from previous multiwavelength scaling relations of 
galaxy clusters have prescribed a global redshift fit to the richness–
mass relation (Simet et al. 2017 ) or those that do model the redshift 
dependence find it consistent with a null dependence (Saro et al. 
2015 ; Melchior et al. 2017 ; McClintock et al. 2019 ; Bleem et al. 
2020 ). In a recent work, To et al. ( 2021 ) used Buzzard simulations 
to quantify the large-scale bias of redMaPPer-redMaGic cross- 
correlation that has a redshift dependence at 1 − σ from null and 
that could be explained by the increase in observed richness at higher 
redshift from stronger projection effects. 

We model the scatter of richness at fixed mass as truncated 
lognormal scatter that cuts off clusters with λ < 20: 

P ( ln λ| ln M) ∝ N ( μ( ln λ) , σ ( ln λ)) H ( λ − 20) , (7) 

where H ( x ) is the Heaviside step function. The variance σ 2 is the sum 

of the intrinsic variance σ 2 
0 and a Poisson term due to finite richness,

σ 2 ( ln λ) = σ 2
0 + exp ( μ(ln λ)) − 1 

exp (2 μ(ln λ)) 
. (8) 

According to Bayes’ theorem, the posterior likelihood of the model 
parameters is given by 

P ( A, B, σ0 | λ, M) ∝ P ( λ, M| A, B, σ0 ) P ( A, B, σ0 ) , (9) 

where P ( A , B , σ 0 ) is the joint prior on the parameters which we set 
as non-informative uniform distributions. 

The maximum-likelihood estimates for the model parameters 
are found with a Markov Chain Monte-Carlo (MCMC) method 
implemented through the pymc module, assuming uniform priors 
for A , B , and σ 0 . We run chains of 10 6 steps for each run, thin them 

by selecting every 200 steps, and remove the first 3000 steps (after 
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Figure 4. Top panel : Distribution of cos ( i ) for redMaPPer-matched haloes in 
three richness bins and for randomly selected haloes. Bottom panel : The mean 
cos ( i ) for redMaPPer-selected haloes is boosted relative to that for randomly 
selected haloes (0.50, not shown). The mean value of cos ( i ) also increases 
with redMaPPer richness. Errors are estimated from jackknife resampling. 

thinning) as burn-in, yielding 2000 steps to sample the posterior 
distribution. 

The solid line labelled ‘Combined’ in Fig. 5 shows the best-fitting 
model to the richness–mass relation for the full redMaPPer sample, 
with parameters given in the bottom line of Table 1 . The posterior 
distributions for the ‘Combined’ model parameters shown in Fig. 6 
show good convergence of the parameters and minimal correlation 
among them. The same trends are produced (but not shown) in the 
posterior distributions for different orientation bins. The reduced 
chi-square statistics shown in Table 1 show that the model is a good 
fit to the data. 

Next, we assume that the richness-mass model of equations ( 6 )–( 8 ) 
applies separately in each orientation bin. The three-parameter model 
in each orientation bin is fit independently, with the results shown in 
Fig. 7 and parameter values in the middle box of Table 1 . We find 
that most of the dependence on orientation comes from the boosting 
of the amplitude parameter, ln ( A ), with cos ( i ). We therefore also 
consider a model in which only ln ( A ) varies with orientation, with 
the other two parameters fixed to their global values. The top panel 
of Fig. 7 and Table 1 shows that this one-parameter model makes 
no appreciable change in the best-fitting values of ln ( A ) in each bin. 
Moreo v er, reducing the number of parameters does not significantly 

compromise the goodness of fit of the MLE model relative to the 
number of extra parameters: as shown in Table 1 , the reduced 
Bayesian Information Criterion (BIC) for the one-parameter versus 
the one-parameter model marginally fa v ours the simpler model. 

The best-fitting one-parameter models in each orientation bin are 
indicated by the dashed lines in Fig. 5 : the effect of orientation bias 
on the richness–mass relation is a boost in the amplitude, that is, in 
observed richness, at fixed halo mass, for haloes with major axes 
aligned with the line of sight. 

While the orientation-bias model studied here captures the be- 
haviour of redMaPPer-selected haloes in the Buzzard simulations, a 
caveat is in order before applying the model to redMaPPer-selected 
clusters in the real universe. In particular, the redMaPPer richness 
at fixed halo mass in Buzzard has been found to be systematically 
lower at a 3 σ level from that for redMaPPer clusters with weak- 
lensing calibrated masses in DES Y1 data (DeRose et al. 2019 ) 
which can be traced to the underestimation of the halo occupation 
distribution (HOD) of red galaxies identified by the red sequence 
in Buzzard. If this systematic is relatively independent of richness, 
we expect our model for the difference in richness amplitude with 
orientation, � ln ( A ), to retain its v alidity, e ven if the central values 
of ln ( A ), B and σ 0 differ (note that the intrinsic scatter σ 0 is not 
constrained in the McClintock et al. ( 2019 ) weak lensing analysis of 
DES Y1 clusters). The dependence of the richness–mass relation on 
the HOD of red-sequence galaxies can be tested with studies using 
other simulations, such as the latest cosmoDC2 (Korytov et al. 2019 ), 
which populates haloes with galaxies using a different set of semi- 
analytic and empirical methods from ADDGALS. Alternatively, 
one can construct and analyse new redMaPPer catalogues from the 
Buzzard simulations after injecting red-sequence galaxies to match 
the HOD of DES Y1 data. 

5  C O R R E L AT I O N  O F  TRI AXI ALI TY  WI TH  

OTH ER  SYSTEMATICS  

Orientation bias is one significant systematic for the cluster richness–
mass relation; miscentering and projection effects are two others. In 
modelling these systematics for cluster cosmology, it is important to 
know the degree to which they may be correlated. In this section, we 
explore possible correlation of orientation bias with the other two. 

5.1 Miscentering 

As noted abo v e in Section 2.3 , in the simulated cluster catalogue 
37 per cent of the matched clusters are miscentered in the sense that 
the galaxy identified by redMapper as the BCG is not the central 
galaxy in the corresponding Buzzard halo. In both the simulation 
and the real universe, miscentering can happen for a number of 
reasons. F or e xample, a recent halo merger may result in two nearly 
central galaxies of comparable luminosity, or a recent burst of star 
formation may mo v e the central galaxy’s colour off the locus of 
the red sequence (Cooke et al. 2019 ; Ragone-Figueroa et al. 2020 ; 
Zenteno et al. 2020 ). Alternativ ely, a red fore ground galaxy along the 
line of sight to a cluster may be misidentified as the BCG, although 
Section 5.2 indicates that this is rare in the Buzzard simulations. 

The miscentering distribution for redMapper clusters in DES Y1 
data was estimated through comparison of redMaPPer BCG angular 
positions with the peaks of X-ray emission for a subsample of clusters 
with Chandra archi v al data (Zhang et al. 2019 ). A number of studies 
have indicated that X-ray peaks are accurate proxies for the centres of 
cluster potential wells, though they are subject to systematic errors 
as well (Lin & Mohr 2003 ; Song et al. 2012 ; Stott et al. 2012 ; 
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Figure 5. Left-hand panel: Solid line labelled ‘combined’ shows the best-fitting model to the full sample assuming a linear relationship between ln ( λ) and 
ln ( M ). Dashed lines show best-fitting models in each orientation bin, with the amplitude ln ( A ) allowed to vary from bin to bin. For haloes of fixed mass, those 
oriented along the line of sight have larger observed redMaPPer richness. The dashed horizontal line indicates the richness cut at λ > 20 and dashed vertical 
line the mass cut at M > 5 × 10 13 h −1 M �. Colour coded is the density of the scatter points in the parameter space, with brighter colours indicating a higher 
density. Right-hand panel: The richness distribution in mass bins for all data points o v erlaid with a truncated Gaussian fit using the best-fitting parameters in the 
‘Combined’ one-parameter model. In lower mass bins, the best fit mean log-richness μ(ln λ) is lower than the mean log-richness of the data points, as the peak 
of the truncated Gaussian fit lies below the λ > 20 cut-off. 

Table 1. Maximum Likelihood estimates and 68 per cent CL errors of richness-mass model parameters for redMaPPer clusters as a function of 
halo orientation cos ( i ) and for the full cluster sample (‘All’). The middle box shows results when all three model parameters are allowed to vary 
with cos ( i ) (three-parameter model); right-most box shows results when only ln ( A ) is allowed to vary (one-parameter model). Also shown are the 
Bayesian Information Criterion (BIC) values for each case; the slightly lower values for the one-parameter model indicate that it is marginally 
preferred. The reduced chi-square statistics χ2 / ν ∼ 1 show that the one-parameter model is a good fit to the data. 

Model parameters and BIC for richness–mass template 
One-parameter model One-parameter model 

cos i ln A B σ 0 BIC ln A B σ 0 BIC χ2 / ν

[0.0,0.2) 2 . 869 ± 0 . 004
0 . 006 0 . 747 ± 0 . 007

0 . 011 0 . 576 ± 0 . 004
0 . 003 8819 2 . 866 ± 0 . 005

0 . 003 8799 1.33 

[0.2,0.4) 2 . 890 ± 0 . 005
0 . 004 0 . 739 ± 0 . 010

0 . 007 0 . 581 ± 0 . 004
0 . 004 8088 2 . 892 ± 0 . 003

0 . 006 8064 1.26 

[0.4,0.6) 2 . 919 ± 0 . 003
0 . 006 0 . 762 ± 0 . 008

0 . 010 0 . 575 ± 0 . 004
0 . 004 8123 2 . 916 ± 0 . 004 

0 . 005 0 . 762 ± 0 . 005
0 . 003 0 . 582 ± 0 . 002

0 . 002 8104 1.20 

[0.6,0.8) 2 . 988 ± 0 . 004 
0 . 005 0 . 776 ± 0 . 005

0 . 013 0 . 581 ± 0 . 002 
0 . 005 6480 2 . 986 ± 0 . 004 

0 . 005 6463 1.02 

[0.8,1.0) 3 . 115 ± 0 . 003 
0 . 005 0 . 785 ± 0 . 012

0 . 006 0 . 597 ± 0 . 003
0 . 004 2648 3 . 114 ± 0 . 006

0 . 003 2588 0.77 

All NA 2 . 956 ± 0 . 003
0 . 001 29 807 1.09 

Mahdavi et al. 2013 ; Lauer et al. 2014 ). In Zhang et al. ( 2019 ), 
based on 144 redMaPPer clusters with X-ray data, 75 ± 8 per cent 
of the redMapper clusters were found to be centred, i.e. they have 
very small projected separation between redMaPPer BCG and X- 
ray centroid. For the remainder, the distribution of radial separation 
between redMaPPer BCGs and X-ray peaks was modelled as a sum 

of a declining exponential and a gamma function. 
Here, we study the distribution of projected separation, R sep , 

between redMaPPer BCGs and Buzzard central galaxies for 
halo-matched clusters in the simulation. Since the separation is 
expected to scale with cluster size, we use the scaled separation, 

R sep / R λ, where R λ = 1 h −1 Mpc( λ/100) 0.2 is the characteristic circular
aperture for the redMaPPer cluster finder. 

We note here the difference in definition between centres. In real 
data the centring property for a single cluster is not known. Rather 
the separation distance between optical and X-ray centre is modelled 
as a joint distribution for centred and miscentered clusters with the 
centred fraction as a model parameter with a maximum likelihood 
of 75 per cent ± 8 per cent . By contrast, Buzzard populates halo 
centres with galaxies using the ADDGALS algorithm, the centring 
of each individual cluster is a known quantity determined by whether 
the central galaxy determined by redMaPPer and the halo are one 
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Figure 6. Posterior distributions of the richness–mass parameters derived 
using all redMaPPer-matched clusters. The shaded regions in the 2D dis- 
tributions show the 68 and 95 per cent confidence regions; shaded regions 
in 1D plots indicate the 68 per cent confidence regions for the marginalized 
parameters. Posteriors for templates in different orientation bins share the 
same features. 

and the same. Among the 23 658 halo-matched clusters, 14 905 were 
correctly centred and 8753 are miscentered, the centred fraction 
being 63 per cent which is within 2 σ the centring fraction using X- 
ray follow-up (Zhang et al. 2019 ). We define the distance between the 
redMaPPer chosen BCG and the true halo centre as the miscentering 
separation distance R sep . 

The resulting separation distribution is shown in Fig. 8 ; the 
distribution is peaked at R sep = 0.1 R λ, with a tail that extends to 
R sep 	 R λ. The shape of the distribution is well fit by a 
 distribution 
of functional form 

P miscent ( x| τ ) = 

x 

τ 2 
exp 

( − x/τ
)
, (10) 

where x ≡ R sep / R λ. Using methods of least squares, the best-fitting 
characteristic scale is found to be τ = 0.16 which is well within the 
1 − σ range of the characteristic scale for Chandra to DES centre 
offset found in Zhang et al. ( 2019 ). Using the Kolmogoro v–Smirno v 
test, we find that the binned data set is consistent with the best-fitting 
Gamma distribution at a α = 0.05 significance level. 

We study differences in the properties of the centred and mis- 
centered cluster populations in the simulation in Fig. 9 . The upper 
panel shows that the probability distribution of cluster mass for the 
centred population is peaked at a slightly higher mass than for the 
miscentered population, that is, it is the lower mass clusters that tend 
to be miscentered, which suggests that this may be a mass dependent 
bias more prone to low-mass and low-richness clusters. The same 
trend was not observed with X-ray luminosity and temperature, 
v ariables sensiti ve to the cluster mass with a sample size of only 144 
redMaPPer SDSS clusters with X-ray follow-up (Zhang et al. 2019 ). 
Near-future X-ray surv e ys as eRosita (Hofmann et al. 2017 ), which 
aims to detect 10 5 clusters with a lower mass limit of ∼10 14 M �, 
will provide a much better handle on the mass distribution of centred 
and miscentered clusters. The lower panel of Fig. 9 shows that the 

Figure 7. Dependence of redMaPPer richness–mass model parameters on 
halo orientation cos ( i ). Horizontal bands show the mean and 68 per cent CL 

range for the global (full-sample) fit for each parameter. The top panel shows 
best-fitting amplitude ln ( A ) versus orientation when the other two-parameters 
are allowed to vary with orientation (one-parameter model) and when they 
are fixed (one-parameter model), indicating little difference. The Bayesian 
Information Criterion (BIC) test fa v ours the one-parameter model. 

normalized richness distribution of the centred clusters is higher 
than that of the miscentered ones at λ > 60, though the difference is 
marginal. 

The centred fraction increases with increasing richness, from 63 
per cent for the full sample ( λ > 20) to 60 per cent for λ > 40, 
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Figure 8. Probability distribution of the projected separation between 
Buzzard halo central galaxies and redMaPPer BCGs in the miscentered 
population. Scatter plots are the binned mock data points with Poisson error 
and the line is the best-fitting Gamma distribution. The two distributions 
are consistent according to the Kolmogoro v–Smirno v test at a α = 0.05 
significance level. 

67 per cent for λ > 60 and 69 per cent for λ > 80. This trend is 
qualitatively consistent with the consistency test carried out on data 
by Zhang et al. ( 2019 ): they compared redMaPPer BCG positions for 
DES and SDSS clusters where the two data sets o v erlap and found 
that for λ > 40 a large fraction of the BCG positions were within 
0.05 R λ of each other. The archi v al data from XMM and Chandra has 
a sharp richness cut-off of λ� 70 (Farahi et al. 2019 ), so any trend
of miscentering of BCGs relative to X-ray centroids with richness is 
not yet detectable with current data. 

To quantify the impact of miscentering on the redMaPPer richness 
estimate in the Buzzard simulations, we consider two approaches. 
The first method is to recalculate the observed richness by assigning 
the cluster centre on to a different galaxy. It has the advantage that 
it can also be applied to cluster data but the disadvantage that it 
involves additional assumptions that have not been fully tested. For 
each cluster, the redMaPPer algorithm initially identifies five galaxies 
as candidates for the BCG. At the end of its iterative procedure, 
it assigns a final probability of being the BCG to each of these 
five, produces richness estimates, λi , i = 1,..., 5 assuming each of 
them is the BCG, and identifies the most probable as the BCG, 
with corresponding richness estimate λi . As the probability of it 
being the true centre drops for each candidate, a comparison of 
richness for clusters targeted at different central candidates would 
yield information on the potential degree of miscentering for each 
cluster. 

In this first approach, we can quantify the bias in miscentering by 
taking the ratio of the richness centred at the second most probable 
galaxy to the first most probable cluster central galaxy among the five 
candidates identified by redMaPPer. This ratio λ2 / λ1 is an indication 
of the potential bias in observed richness that miscentering could play 
when choosing a different cluster centre. Among the many selection 
effects of redMaPPer that come into play in the measurement of 
this quantity, it is primary a function of the separation distance 
between the two central candidates – λ2 / λ1 shifts downward from 

unity with increasing separation distance R RM sep between the cluster 
candidates, and also notably so does the dispersion increase with 
R RM sep . Here, R RM sep is the separation distance between the two 
redMaPPer central candidates which in some clusters could be the 

Figure 9. Upper panel: Mass distribution of the centred and miscentered 
redMaPPer clusters in the Buzzard simulations. The centred population is 
peaked at a higher mass. Lower panel: Richness distributions of centred and 
miscentered clusters and for the entire cluster sample. The inset plot shows a 
slightly higher fraction of centred clusters at high richness. 

halo-cluster separation distance R sep but is often not the case. As 
shown in the left-hand panels of Figs 8 and 10 , R sep goes out to 
∼1 R λ, while R RM sep can be extended to ∼2.5 R λ.

The second method of quantifying the impact of miscentering
on richness gives a ‘ground-truth’ estimate of the richness bias, but 
it can only be estimated in the simulation, not from observations. 
There is a version of the redMapper catalogue for the Buzzard 
simulation, called the halorun catalogue, in which the redMaPPer 
BCG is constrained to be the halo central galaxy for each halo- 
matched cluster. By construction, correctly centred clusters in the 
fullrun redMaPPer catalogue that we have been discussing so far 
have the same richness as those in the halorun catalogue. On 
the other hand, for the miscentered fullrun clusters, there is a 
bias in the estimated richness due to miscentering characterized 
by 

�λ

λ
= 

λfullrun − λhalorun

λfullrun 
. (11) 

This fractional shift in richness is plotted as a function of the 
scaled miscentering separation in the lower left-hand panel of 
Fig. 10 . 

It is apparent from visual inspection in the left-hand panels of 
Fig. 10 that both methods of quantifying miscentering bias that 
richness bias increases in amplitude and dispersion with scaled 
separation as has been shown using DES Y1 clusters with X-ray 
follow-up data. 

Having shown that the miscentering properties of the Buzzard 
redMaPPer catalogue are consistent with those in DES Y1 data, 
we now turn to examining whether miscentering and triaxiality are 
correlated systematics. We do this by measuring the miscentering 
bias as a function of halo orientation, using both of the metrics 
described abo v e. As the right-hand panels of Fig. 10 show, we find 
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Figure 10. Left-hand panels: Richness bias versus miscentering separation for redMaPPer clusters in the Buzzard simulation. Both richness bias metrics λ2 / λ1 

and �λ/ λ show larger bias and increased dispersion at larger miscentering distance. Right-hand panels: Richness bias versus orientation. The mean values of 
the richness bias metrics show no correlation with halo orientation angle, cos ( i ). 

that the mean values and dispersion of the two metrics have no 
systematic dependence on cos ( i ). Miscentering and triaxiality can 
thus be treated as independent systematics. 

The fact that we find no correlation between these two systematics 
is useful for the modelling of systematics in future weak lensing 
studies but should not come as too unexpected in light of their 
different physical origins. Miscentering occurs when mergers intro- 
duce identical central galaxy candidates or from the star formation 
properties of the central galaxy that shifts its colour out of the red 
sequence (Cooke et al. 2019 ; Ragone-Figueroa et al. 2020 ; Zenteno 
et al. 2020 ), effects completely different from the geometric boosting 
in richness when clusters are oriented along the line of sight that 
induce triaxiality bias. 

We also test if miscentering can be attributed to line-of-sight pro- 
jections whose effect on clusters we describe in detail in Section 5.2 . 
If miscentering is due to projection effects then the BCG at the centre 
of the matched-halo would be of a different redshift and not belong as 
a member of the matched redMaPPer cluster. Within the allowed �z 

± 0.05 redshift separation between halo and cluster in our matching 
algorithm, all of the BCGs at the halo centre belong as a member of 
the matched redMaPPer cluster. Additional tests beyond the scope 
of this paper need to be conducted to in order to conclude whether 
miscentering can be attributed to projection effects and if so to what 
degree, but simulations from Buzzard suggests that this may not be 
a strong effect. 

5.2 Projection 

In this section, we test for correlations between triaxiality and pro- 
jection effects. Projections effects were modelled and quantified in 
Costanzi et al. ( 2019 ) using a different Buzzard halo catalogue popu- 
lated according to the assigned ‘true’ richness–mass relation of Simet 
et al. ( 2017 ), and adopts an empirically calibrated back/foreground 
contamination to account for projection effects on the observed 
richness. We denote this catalogue as the C19 projection catalogue . 
Below we summarize the properties of projection effects and the 
quantities used in the C19 projection mock catalogue for our analysis. 

Cluster richness suffers from projection effects when non-member 
galaxies along the line of sight to a cluster are mistakenly classified 
as cluster members. These may be randomly located galaxies along 
the line of sight, galaxies spatially correlated with the cluster due 
to large-scale (e.g. filamentary) structure, or galaxies in a lower 
richness cluster along the line of sight that ‘leak’ into a larger one, a 
process in redMaPPer known as percolation (Costanzi et al. 2019 ). 
In combination, they bias the observed richness λobs away from the 
true richness λtrue by the amount: 

λobs − λtrue = � 

bkg + � 

prj
non −cor + � 

prj 
LSS + � 

prc , (12) 

where each term on the right-hand side of the equation, respectively, 
denotes the background, non-correlated projection, large-scale struc- 
ture and percolation term. 
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Each component contributes to the observed richness in a different 
form. Background scatter, � 

bkg , is assumed to be normally distributed 
around the true richness. The sum of the projection terms due to 
non-correlated clusters, � 

prj 
non −cor , and correlated large-scale structure,

� 

prj 
LSS , are modelled as an exponential function with a cut-off at � 

prj

≥ 0, to ensure an upscatter of λobs as is physically moti v ated. The 
observed richness is painted on in the mock catalogue by summing 
the richness of clusters along the light of sight weighted by the 
redshift kernel w( �z, z): 

λobs 
i = λtrue 

i + � 

prj 
i = λtrue 

i + 

N ∑
j �= i

λtrue 
j f A ij w( �z ij , z j ) , (13) 

where f A ij is the geometric masking fraction of object j o v er i for an 
object j that’s (partially) in the line of sight of i , and w( �z ij , z j ) the 
redshift kernel which, as a function of redshift of i and the redshift 
separation between i and j is modelled as the functional form: 

w( �z| z cl ) = 

{
1 − ( �z) 2 

σz ( z cl ) 2 
, | �z| < σz ( z cl ) 

0 , otherwise , 
(14) 

which can be interpreted intuitively as the diminishing strength of 
projection effects with redshift separation | �z| up to a maximum 

separation of σ z ( z cl ). 
For each cluster, its σ cl 

z ( z) is fitted by sliding the redMaPPer 
redshift centre away from the true cluster redshift so as to remo v e 
the excess richness � 

prj due to projection as a function of the redshift 
separation between assigned and true redMaPPer redshift. To reco v er 
the ‘leakage’ function for clean line of sights, Costanzi et al. ( 2019 ) 
chooses the lower 5 per cent of clusters in a given redshift as the 
leakage function. It is fit with a piecewise log-linear model with a 
transition at z = 0.32. Data from SDSS redMaPPer clusters (Costanzi 
et al. 2019 ) show that at z � 0.3 projections are from the width of the 
red-sequence and increase monotonically with increasing redshift 
from increasing photometric errors. At z � 0.3 projection, effects
flatten out as the SDSS surv e y is no longer volume limited but 
magnitude limited, the faintest cluster galaxies residing near the 
magnitude limit of the surv e y at redshift abo v e 0.3. 

In this paper, we introduce the derived quantity 

log 
(
σ proxy 

z ( z cl ) 
) = log 

(
σ cl 

z ( z cl ) 
) − log

(
σ 5 per cent 

z ( z cl ) 
)

(15) 

as the difference between the log-scaled σ z of an individual cluster 
and the lower 5 per cent envelope of σ z for all clusters at the redshift 
bin of the cluster. This quantity σ proxy 

z ( z cl ) can be seen as the level 
of intrinsic excess projection after eliminating background noise and 
redshift-dependent observational biases. 

Percolation is added into the full model of projection when clusters 
of lower richness are ‘absorbed’ into one with higher richness. For 
each cluster j with richness smaller than that of i , the richness is taken 
from j to i by the amount 

� 

prc 
i = 

N ∑
j<i

λtrue 
j 

(
1 − f A ij w( �z ij , z j ) 

)
, (16) 

whose probability distribution P ( � 

prc | λtrue , z) is empirically deter- 
mined to well resemble a boxcar function with � 

prc ∈ [ − λtrue , 
0]. 

In the C19 projection catalogue, each cluster is assigned a true 
richness using an empirically calibrated richness–mass relation 
from Simet et al. ( 2017 ) and given an observed richness using 
the projection effect algorithm described abo v e by way of the 
redshift kernel w( �z | z cl ). Hence, the difference between the true 
and observed richness in this mock is due to projection effects alone. 

Figure 11. Correlation of projection strengths and halo orientations mea- 
sured in two mock catalogues. Top panel shows the measurement in the 
Buzzard simulations, where the σ proxy 

z (defined in equation 15 ) is used
to estimate the strength of projection effects. Bottom panel shows the 
measurement in the C19 projection mock, which is constructed using the same 
halo catalogue as the Buzzard simulations. In the C19 catalogue, the galaxies 
are populated using a richness–mass relation and the observed richness is 
generated using a semi-analytic model (described in Section 5.2 ). In this 
mock, because we know the true galaxy content in each halo, we use the 
fractional difference between the observed richness and true richness (defined 
in equation 17 ) as a proxy for projection. In both panels, we find there is no 
correlation between projection strengths and halo orientations. 

The probability distribution for P ( � | λtrue , z) for each component 
is then fit using this C19 projection mock, and upon convolution 
of the probability distributions for each individual component in 
equation ( 12 ) we arrive at the final expression for P ( λobs | λtrue , z). We 
refer the reader to Costanzi et al. ( 2019 ) for the full expression and 
best-fitting parameters. All haloes in the mock projection catalogue 
are artificially assigned an observed and true richness, whether or 
not such a halo could be detected and matched to a redMaPPer 
cluster. The observed richness is thus biased only from projection 
effects and does not suffer from all the other selection effects, 
including triaxiality and miscentering, that would exist had the 
haloes undergone redMaPPer detection and cluster matching. This 
technique ef fecti vely isolates projection ef fects from potentially 
correlated systematics in the same vein that we used the halorun 
catalogue to isolate miscentering effects. 

We find that projection effects are independent from triaxiality. 
Fig. 11 (a) shows that σ proxy , the strength of projection effects due 
to large-scale structure, is not correlated with cos ( i ). We further 
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Figure 12. Observed richness–mass relation for different orientation bins 
in the projection mock catalogue. No difference is observed in the observed 
richness–mass relation in the projection catalog with clusters of different 
orientation bins. The 1 − σ contours for the best-fitting parameters ln ( A ), B , 
and σ 0 (not shown) in all bins closely o v erlap with one another, indicating no 
correlation between the two systematics. The dashed horizontal line indicates 
the richness cut at λ > 20 and dashed vertical line the mass cut at M 200m 

> 

5 × 10 13 h −1 M �. 

inspect the full scope of projection effects by studying the fractional 
difference between the observed and true richness in the projection 
mock catalogue, 

�λprj 

λprj 
= 

λobs 
prj − λtrue

λobs 
prj 

, (17) 

which shows no correlation with cos ( i ), as shown in Fig. 11 (b). 
Finally, we run our fit to the richness–mass relation in the projection 
catalog of λobs 

prj binned in cos ( i ) and observe no difference in the
observed richness–mass relation, shown in Fig. 12 . The 1 − σ

range of the best-fitting parameters for the log-linear richness–mass 
template between different cos ( i ) bins all closely o v erlap with each 
other, with no clear trend. 

The lack of correlation between projection and orientation may be 
puzzling at first in light of a common physical origin of these effects. 
The � CDM model of hierarchical structure formation facilitates the 
preferential gravitational collapse of dark matter haloes that become 
galaxy clusters along the nodes of large-scale filaments. It is also 
widely understood that a halo’s semimajor axis is preferentially 
aligned with the direction of the associated filament for haloes 
residing in o v erdensities (e.g. Hahn et al. 2007 ; Forero-Romero, 
Contreras & Padilla 2014 ). It is thus sensible to expect a correlation 
between the strength of projection effects and halo orientation for 
haloes residing in filaments. 

The lack of correlation can be explained by the stochasticity of 
these effects along with the fact that not all haloes share the same 
physical origin for this set of systematics. The boosting in richness 
from projection is from uncorrelated background noise and correlated 
large-scale structure, the latter playing a much larger role. Adding 
the large-scale structure into the modelling of the observed richness 
for projection boost the richness perturbation � 

prj by a factor of 2 
and 4 in the λtrue range 20 −100 (Costanzi et al. 2019 ). It is also 
observed by N -body simulations from Sunayama et al. ( 2020 ) that a 
minority of clusters that reside in large-scale filaments is responsible 
for the boosting of the stacked weak lensing signal of haloes (see 
Section 6 on weak lensing) due to projection effects. This set of 
studies suggests that a small batch of clusters is responsible for the 
large degree of bias from projection effects. 

Triaxiality bias, on the other hand, can occur whether haloes reside 
in large scale filaments or in voids. That all haloes, regardless of its 
external environment, is subject to the same degree of triaxiality 
bias while not the case for projection bias would explain the lack 
of correlation among an ensemble of stacked clusters. It would 
be interesting as a follow-up study to know if the correlation 
between projection and triaxiality can be detected for the minority 
of clusters residing in large-scale structures that heavily boost the 
projection observable, but for the purposes of modelling redMaPPer 
selection effects, it is sufficient to know that for the entire sample 
of λobs > 20 clusters detectable by redMaPPer, projection and 
triaxiality can be treated as separate systematics. A further study 
using spectroscopic redshift measurements of redMaPPer member 
galaxies from Magellan telescope data (Gruen in preparation) will 
provide the shape and orientation of clusters as well as test for non- 
member galaxies projected along the line of sight misidentified by 
redMaPPer, serving as a follow-up test of the correlation of these 
systematics using real data. 

6  EFFECT  O F  H A L O  O R I E N TAT I O N  O N  W E A K  

LENSING  PROFILE  

The effects of triaxiality on cluster optical detection are twofold – one 
through the boosting of the richness-mass relation as was co v ered in 
Section 4 , the other through the boosting of radially dependent weak 
lensing signals. 

This section quantifies the latter effect. It is split into three sub- 
sections – Section 6.1 models the boosting effect of the cluster weak 
lensing signal in the Buzzard simulations for individual haloes before 
applying the redMaPPer cluster finder; Section 6.2 combines the 
result from Section 6.1 and our richness-mass model from Section 4 
to predict the observed boosting in stacked cluster lensing profiles at 
different richness bins after redMaPPer selection; Section 6.3 uses 
the result from Section 6.2 to conduct a Fisher matrix forecast on the 
mass bias of triaxiality for redMaPPer clusters stacked in different 
richness bins. 

6.1 Modelling the effects of halo orientation on excess surface 
density before redMaPPer selection 

In this section, we measure the excess surface densities of 
all haloes with convergent shape measurements in a lightcone 
of z < 0.90. The masses of haloes are binned in mass 
bins of [5 × 10 13 , 10 14 ) , [10 14 , 2 × 10 14 ) , [2 × 10 14 , 4 ×
10 14 ) , and [4 × 10 14 , ∞ ) h −1 M �, and redshift bins of [0, 0.34), 
[0 . 34 , 0 . 5) , [0 . 5 , 0 . 7) , and [0 . 7 , 0 . 9), for a total of 16 bins. 

Another common expression for the density inside a halo is the 
halo–matter correlation ξ hm ( r ), which is related to the surface density 
� through the relation 

�( R) = ρm

∫ +∞ 

−∞ 

(
1 + ξhm 

(
r = 

√ 

R 

2 + z 2 
))

d z, (18) 

where ρm 

is the mean matter density at the redshift of the cluster, 
R is the projected radius in the plane of the sky, and z is the length 
along the line of sight. 

In weak lensing, the tangential shear γ t of the galaxies relative to 
the centre of each foreground halo is related to the excess surface 
density by the relation 

� crit γt = � ( < R) − �( R) ≡ ��( R) , (19)
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where the critical surface density � crit defined as 

�� crit = 

c 2

4 πG 

D s 

D l D ls 

, (20) 

and where D s , D l , and D ls refer to the angular diameter distances to 
the source, to the lens, and between the lens and source, respectively. 

In this paper, we measure ��( R ), which has a one-to-one 
relationship with �( R ) and γ t , all of which can be determined 
from the underlying halo–matter correlation ξ hm ( r ) and a fiducial 
cosmology for determining � crit . In the following sections, in order 
to reduce the clutter in the equations for modelling excess surface 
density as a function of orientation we use μ as a shorthand for 
cos ( i ). 

When we measure ��( R ) from the simulations, we use projected 
radii R extending from 0.1 to 100 h −1 Mpc in 30 equally log-spaced 
bins, and a projected distance symmetric about the halo of � D p = 

10, 50, 100, 200 h −1 Mpc. For ease of visualization, the orientation 
dependence is plotted and fitted on to a template as the quantity 

F ( R, μ) = log 
��( R, μ) 

�� ( R) 
, (21) 

where ��( R , μ) is the average profile in an orientation bin for a given 
mass and redshift bin, and �� ( R) is the averaged profile across all 
orientation bins in the same mass and redshift bin. 

The shapes of the profiles can be roughly divided into the ‘one- 
halo’ regime ( R � R 200 m ) and the ‘two-halo’ regime ( R � R 200 m )
(Fig. 13 ). In the one-halo regime, haloes with their major axes 
oriented towards the line of sight are boosted in their surface density 
relative to the mean, a result well explained by the triaxial halo model 
(Oguri et al. 2005 ; Corless & King 2008 ). The transition between the 
one- and two-halo regimes produces a neck in the surface density, 
where the halo–matter correlation from neither regime dominates. 
In the two-halo regime, the trends of the lensing ratios in different 
orientation become inverted with respect to unity when increasing the 
projection depth from � D p = 10 h −1 Mpc to � D p = 200 h −1 Mpc.
At � D p = 10 h −1 Mpc, the ratio of excess surface densities in
the two-halo regime of high cos ( i ) haloes drop below the mean, 
which may be explained by an underdense region surrounding the 
plane perpendicular to the major axes of the haloes. As one mo v es 
towards larger projection depths, haloes with higher cos ( i ) exhibit 
boosted �� profiles in the two-halo re gime relativ e to the mean 
as a result of the alignment of haloes with their underlying large 
scale structure, i.e. the large projection depth captures much of the 
mass in the large-scale filaments for haloes with cos ( i ) ∼ 1 (Hahn 
et al. 2007 ; Forero-Romero et al. 2014 ). Because of the similarity of 
excess surface density profiles for � D p = 100 h −1 Mpc and � D p =
200 h −1 Mpc, we deem the projection length � D p = 100 h −1 Mpc
as convergent. The excess surface density profiles in the one- and 
two-halo regimes and their dependence on projection depth agree 
well with Osato et al. ( 2018 ), who built profiles for a simulation of 
similar projections depths and with comparable mass resolution. 

We model the log ratio of excess surface density, F ( R , μ), in a μ ≡
cos ( i ) bin relative to the mean with six free parameters given by the 
product of a multipole expansion over cos ( i ) and a Cauchy function: 

F ( R, μ) = A ( μ) f ( R) , 

A ( μ) = A 0 + A 1 μ + A 2 μ
2 + A 3 μ

3 , 

f ( x ≡ ln ( R)) = 1 − 1 

( x − x 0 ) 2 + γ
. (22) 

The bottleneck shape of the �� profiles binned by cos ( i ) is well 
captured by the Cauchy function in most of the mass and redshift 

Figure 13. ��( R , μ) for M ∈ [10 14 , 5 × 10 14 ) M � as a function of 
projection depth, � D p . The lensing ratios in the ‘two-halo’ regime reverses 
trends from low to high projection depth as a result of alignment of clusters 
with the large-scale structure. The profiles with � D p = 100 h −1 Mpc are 
deemed convergent due to their similarity with the � D p = 200 h −1 Mpc 
profiles. 
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bins, with best-fitting parameters and p -values listed in Table 2 and 
plotted in Fig. 14 . The parameters show no clear sign of monotonic 
evolution with mass or redshift that may hint at underlying physics, 
but they do differ in value from bin to bin, so for greater accuracy the 
templates are divided into different bins when estimating the stacked 
mass bias due to triaxiality as will be shown in Section 6.3 . The best- 
fitting parameters are determined using a Nelder–Mead minimization 
method; with 10 log-spaced bins in each cos ( i ) binned �� profile 
and 5 cos ( i ) bins, the templates are fitted with 6 free parameters, 
totalling 5 × 10 − 6 = 44 degrees of freedom; the χ2 and p -value 
are calculated for each fit. Of the 16 fits, 8 have left- or right-handed 
p -values within 0.01, and 11 within 0.001. The o v erfitted templates 
occur in high-mass or high-redshift bins, which suffer larger errors 
from the dearth of dark matter particle sampled in each bin, and the 
underfitted ones result from a mismatch in the ‘two-halo regime’ 
that exhibits more poorly constrained trends from bin to bin and the 
behaviour of which is less well understood. Qualitatively, the fits 
preserve the basic underlying shape of the excess surface density 
ratios, as shown in Fig. 14 . 

The templates provided could be used as correction terms for Stage 
III and IV weak lensing cluster surv e ys such as in the comsoSIS 

pipeline (Zuntz et al. 2015 ) for DES-Y3. 

6.2 Modelling the effects of halo orientation on richness-binned 

excess surface density after redMaPPer selection 

Stacking refers to the process of b uilding a v eraged e xcess surface 
density profiles of haloes in different richness bins. This subsection 
describes the process of stacking used by the DES surv e y to calibrate 
the richness–mass relation and presents the effect of triaxiality on 
the stacked surface density. 

The shapes of source galaxies behind a cluster along the line 
of sight will have small tangential distortions due to gravitational 
lensing. While individual distortions are small, this tangential shear 
can be measured at high signal to noise as a function of projected 
radial separation R in the stacked images of source galaxies around 
clusters binned, e.g. in richness and redshift. In the weak lensing 
regime, the tangential shear is related to the source-galaxy ellipticity 
by 

γt ≈ e T + noise , (23) 

where e T is the source ellipticity rotated to the tangential frame, 
and the noise is due to intrinsic ellipticities of the source galaxies 
(shape noise) and measurement uncertainty. The tangential shear, γ t , 
as directly measured by observations can be converted to ��( R ) 
through equation ( 19 ). This paper directly measures ��( R ) by 
computing the 2D dark-matter density along a cylinder of given 
projection depth centred around the cluster. 

The model excess surface density is obtained by integrating the 
halo–matter correlation ξ hm ( r ) along the line of sight as in equation 
( 18 ), and subtracting that from the mean surface density inside the 
projected radius as in equation ( 19 ). Typically, the halo–matter 
correlation in the ‘one-halo’ regime is modelled as a spherical 
Navarro–Frenk–White (NFW; Navarro, Frenk & White 1996 ) profile 
ρNFW 

( r | M ), 

ξ1h ( r | M ) = 

ρNFW 

( r | M ) 

ρm 0 
− 1 , (24) 

and the ‘two-halo’ term as a linear matter correlation (Hayashi & 

White 2008 ) scaled by the halo bias (e.g. Tinker et al. 2010 ): 

ξ2h ( r | M ) = b 2 ( M ) ξlin ( r ) . (25) 

At the transition between the two regimes, DES Y1 follows Zu et al. 
( 2014 ) in setting the halo–matter correlation to the maximum value 
of the two terms, i.e. 

ξhm 

( r | M) = max { ξ1h ( r| M) , ξ2h ( r| M) } (26) 

In our analysis, we reproduce the surface density templates from 

the procedures in the DES Y1 analysis using publicly available 
code – the linear power spectrum computed from CLASS (Blas, 
Lesgourgues & Tram 2011 ; Lesgourgues 2011 ) and the excess 
surface density computed from the cluster toolkit module, 2 which 
uses the spherical NFW profile for the ‘one-halo’ term and refers to 
Tinker et al. ( 2010 ) for the halo bias – to generate isotropic profiles, 
which we denote �� ( R), calculated by integrating through equation 
( 18 ) ξ hm in the form of equation ( 26 ). In the ‘one-halo’ regime, we 
parametrize the NFW profile with a nominal concentration of c 200 m = 

5. 
We investigate the difference in the stacked profile between the 

isotropic �� ( R) and �� ( R, M, μ), the stacked profile as a function 
of orientation dependence. 

The orientation dependence has two components – one is the 
scaling of individual lensing profiles by exp ( F ( R , μ)) as described 
in Section 6.1 , and the other the effect of richness-mass, P ( λ| M , 
μ), as modelled in Section 4 , on the mass distribution of redMaPPer- 
selected clusters. The second component, P ( λ| M , μ), biases the mass 
distribution of clusters in a richness bin ˜ P ( M) through the form

˜ P ( M) =
∫ 

d μ
∫ λ2

λ1

d λP ( M, λ, μ) 

= 

∫ 

d μ
∫ λ2

λ1

d λP ( λ| M, μ) P ( μ| M) P ( M) 

and safely assuming that P ( μ| M) is constant 

∝ 

∫ 

d μ
∫ λ2

λ1

d λP ( λ| M, μ) P ( M) , (27) 

where P ( M ) is the mass function of redMaPPer-selected clusters. 
The conditional probability of richness, P ( λ| M , μ), is log-normally 

distributed around a mean richness go v erned by equation ( 6 ), and the 
standard deviation is given by equation ( 8 ). The equations are fit to 
the one-parameter model in which only log ( A ), the intercept of the 
log ( λ)-log ( M ) relation, is allowed to vary with orientation. We use a 
cubic spline to interpolate log ( A ) for μ ∈ [0, 1). The halo–mass func- 
tion of redMaPPer-selected clusters, P ( M ), is constructed from a dis- 
crete histogram with 30 log-spaced mass bins in the mass range of the 
clusters. 

Taking into account the two components for orientation 
dependence, the stack ed surf ace density in a richness bin 
becomes 

�� ( R, M, μ) for λ ∈ [ λ1 , λ2 ) 

= 

∫ 

d M ��( R, M, μ) ̃  P ( M)

= 

∫ 

d μ
∫ 

d M 

∫ λ2

λ1

d λ ��( R, M, μ) P ( λ| M, μ) P ( μ| M) P ( M) 

∝ 

∫ 

d μ
∫ 

d M 

∫ λ2

λ1

d λ ��( R, M, μ) P ( λ| M, μ) P ( M) . (28) 

The excess surface densities are computed for 〈 ��( M , 
R , μ) 〉 using equation ( 28 ) and �� ( M, R) using equations 

2 Code written by Tom McClintock. Source: http://cluster-toolkit.readthedoc 
s.io/en/latest/index.html
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Table 2. Best fit parameters for equation ( 22 ) across different mass and redshift bins. 

z min z max M min (M �) M max (M �) A 0 A 1 A 2 A 3 x 0 γ χ2 Left-tail Right-tail 
p -value p -value 

0.00 0.34 5 × 10 13 1 × 10 14 −0.157 − 0 .001 0 .091 0 .485 1.346 0.378 85.204 0.9998 0.0002 
0.00 0.34 1 × 10 14 2 × 10 14 −0.168 − 0 .0107 0 .222 0 .375 1.325 0.592 25.580 0.012 0.988 
0.00 0.34 2 × 10 14 4 × 10 14 −0.197 0 .373 − 0 .818 1 .112 1.289 0.757 34.009 0.139 0.861 
0.00 0.34 4 × 10 14 1 × 10 16 −0.190 − 0 .270 1 .307 − 0 .457 1.245 1.504 18.551 0.9997 0.0003 
0.34 0.50 5 × 10 13 1 × 10 14 −0.204 0 .264 − 0 .489 0 .909 1.320 0.403 65.605 0.981 0.020 
0.34 0.50 1 × 10 14 2 × 10 14 −0.190 0 .238 − 0 .472 0 .888 1.261 0.782 23.623 0.995 0.005 
0.34 0.50 2 × 10 14 4 × 10 14 −0.281 0 .952 − 2 .056 1 .913 1.342 1.141 25.567 0.988 0.012 
0.34 0.50 4 × 10 14 1 × 10 16 −0.021 − 0 .268 − 0 .681 1 .504 1.146 1.344 28.903 0.962 0.038 
0.50 0.70 5 × 10 13 1 × 10 14 −0.212 0 .190 − 0 .174 0 .669 1.292 0.523 91.768 1.000 0.000 
0.50 0.70 1 × 10 14 2 × 10 14 −0.203 0 .103 0 .017 0 .547 1.307 0.784 66.490 0.9841 0.016 
0.50 0.70 2 × 10 14 4 × 10 14 −0.214 0 .095 0 .213 0 .350 1.228 1.126 48.257 0.305 0.695 
0.50 0.70 4 × 10 14 1 × 10 16 −0.036 − 0 .996 2 .188 − 0 .780 1.148 1.514 88.200 0.9999 0.0001 
0.70 0.90 5 × 10 13 1 × 10 14 −0.208 0 .209 − 0 .263 0 .738 1.290 0.564 99.745 1.000 0.000 
0.70 0.90 1 × 10 14 2 × 10 14 −0.213 0 .305 − 0 .612 1 .030 1.29 0.931 71.863 0.995 0.005 
0.70 0.90 2 × 10 14 4 × 10 14 −0.287 0 .655 − 0 .975 1 .105 1.243 1.226 33.589 0.873 0.127 
0.70 0.90 4 × 10 14 1 × 10 16 −0.158 − 1 .184 3 .551 − 1 .839 1.260 1.904 21.298 0.9985 0.0015 

( 24 )–26 . We define the fractional difference with the shorthand 
notation 

δ〈 ��〉 = 

�� ( R , μ) − �� ( R) 

�� ( R ) 
. (29) 

6.3 Mass bias estimation of stacked clusters 

We are interested in estimating the effect of triaxiality on the mean 
weak lensing mass in clusters stacked in richness bins. The weak 
lensing mass is an observed quantity in weak lensing surv e ys deriv ed 
by fitting the observed lensing profile to an analytic profile in a 
procedure akin to that in Section 6.2 and is used to constrain the 
mass–richness relation. We estimate the bias due to triaxiality on the 
weak lensing mass for stacked clusters by propagating the error on 
the lensing observable on to the mass model parameter using a Fisher 
matrix approximation. 

In the most generic sense, the Fisher matrix F ij in a given radial 
bin is defined as 

F ij ( R ) = 

∂ 〈 ��〉 ( R ) 

∂ p i 

Cov( 〈 ��〉 (R)) −1 ∂ 〈 ��〉 ( R ) 

∂ p j 

, (30) 

where the partial deri v ati ves are of surface density profiles with 
respect to model parameters p i of cluster mass M and concentration 
c , and the covariance matrix is that of surface density as a function 
of radius. 

The mass-bias for stacked clusters due to triaxiality is given by 
the expression 

δM binned = 

∑ 

j

( F 

−1 ) ij

[
( δ〈 �� 〉 ) Cov( 〈 �� 〉 ) −1 ∂ ��

∂ p j 

]
, (31) 

estimated by inserting the fractional difference of stacked profiles, 
δ( ��), into the bracketed expression and marginalizing over the 
concentration parameter. The total bias is then the weighted sum 

of all mass and redshift bins marginalized o v er concentration and 
radius: 

δM total = 

∑
M,z

P ( M, z| λ) 

⎡
⎣∑

j,R 

( F −1 ) ij ( R) 

(
δ〈 �� 〉 Cov( 〈 �� 〉 ) −1 ∂ �� 

∂ p j

)⎤
⎦ . 

(32) 

The 〈 ��〉 profiles are binned in richness intervals of λ ∈ 

[20 , 30) , [30 , 50) , and [50 , ∞ ), and are further divided into the 
same mass and redshift bins when computing individual ��( R ) 
templates as described in Section 6.1 . We make the simplifying 
assumption that the partial deri v ati ve of the bin-averaged surface 
density profile is well approximated by that for a numerical model 
for an individual halo, with M taken at the midpoint of the mass bin, 
and c derived from redshift and mass using the relation 

c 200 m 

= c 0 

( M

M 0 

)−β

, (33) 

with functional form and best-fitting parameters of c 0 = 4.6 at z = 

0.22 and β = 0.13 at a pivot mass of M 0 = 10 14 h −1 M � (Mandelbaum,
Seljak & Hirata 2008 ), calculated at the mid-point value of said mass 
bin. The concentration–mass relation from Mandelbaum et al. ( 2008 ) 
is derived from a red-sequence finder in the SDSS surv e y in redshifts 
and mass ranges compatible with redMaPPer on DES Y1. We find 
that the impact on different concentration–mass relations (e.g. Oguri 
et al. 2012 ; Diemer & Joyce 2019 ) has a sub 1 per cent impact on 
the mass bias when folded into equation ( 32 ). The approximation of 
〈 ��( R ) 〉 profiles is computed using cluster toolkit for the Buzzard 
cosmological parameters. 

The covariance matrix for cluster weak lensing is taken from 

Wu et al. ( 2019 ), who calculated the matrices from a combination 
of analytic calculations and high-resolution N -body simulations for 
radii between 0.1 and 100 h 

−1 Mpc, discretized at 15 equally log- 
spaced bins. The covariance comes from a combination of shape 
noise, large scale structure and intrinsic noise. Modeled on a DES- 
like simulation with a galaxy density of n s ∼ 10 arcmin −1 , the
covariance is dominated by shape noise at projected radii � 5 h −1

Mpc. The covariance matrices are binned by mass in bins of 
[10 14 , 2 × 10 14 ) , [2 × 10 14 , 4 × 10 14 ) , and [4 × 10 14 , ∞ ) h −1 M �, 
and in lens/source redshift slices of { z l = 0.3, z s = 0.75 } , { z l = 0.5, 
z s = 1.25 } , and { z l = 0.7, z s = 1.75 } , with z l denoting the lens 
redshift and z s the source redshift. 

To address the different binning schemes used in the lensing 
covariance and stacked lensing profiles, we choose to e v aluate the 
covariance at the central redshift slice of { z l = 0.5, z s = 1.25 } , 
since the redshift dependence of the lensing covariance is weak. 
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Figure 14. Stacked �� profiles in different orientations bins (solid lines) versus Cauchy function fits (dashed lines) to the profiles go v erned by equation ( 22 ) 
and with best-fitting parameters listed in Table 2 . Error bars are the 1 − σ deviations in measurements in a given orientation and radial bin. 

Because the covariance matrix is not applicable for masses below 

10 14 h −1 M �, we ignore 〈 ��( M , z) 〉 in the modelling for equation 
( 32 ) for the lowest mass bin of [5 × 10 13 , 1 × 10 14 ) h −1 M �. Making 
this mass cut remo v es 35 per cent of the redMaPPer clusters in 
total. 

Using the covariance matrix from Wu et al. ( 2019 ) and the mass–
concentration relation of Mandelbaum et al. ( 2008 ), we calculate the 
total mass bias through the propagation of bias from the lensing signal 
on to the mass model parameter through a Fisher matrix forecast. As 
shown in Fig. 15 , the mass is biased high at 1 − 5 per cent , consistent 
with findings from McClintock et al. ( 2019 ) and Dietrich et al. ( 2014 ) 
and is highest at mid-richness ranges. 

6.4 Comparison with DES Y1 

Our weak lensing mass bias estimated from this paper is on the 
lower end but within 2 σ of the bias estimated from the DES Y1 
cluster cosmology paper (Abbott et al. 2020 ), which showed that 
the total bias for both triaxiality and projection effect is around 
10 –20 per cent depending on the richness and redshift bin. 

The DES Y1 paper tested for systematics by controlling for 
variables that may introduce bias. The lensing profiles of two 
samples were compared – one selected by richness bins with its 
mass distribution left free to vary, and the second tracing the mass 
distribution of the richness-selected sample with its richness free to 
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Figure 15. Fractional difference in lensing profiles δ〈 ��〉 for redMaPPer- 
selected clusters stacked in bins of richness. The total mass bias for each 
richness bin is measured by marginalizing δ〈 ��〉 as shown in plot through 
equation ( 32 ) through propagating the errors of the lensing profile on to the 
mass model parameter using a Fisher forecast. 

vary. The ratio of these profiles is an estimate of the total systematic 
bias due to redMaPPer selection in a given richness bin and radial 
range. The effects of triaxiality and projection effects can be teased 
out by re-sampling their proxies cos ( i ) and σ ( z) in the richness- 
selected sample to match the mass-selected sample. 

One notable finding in the DES Y1 cluster cosmology result is 
that known selection effects as orientation and projection resolve the 
weak mass discrepancy with other probes at λ > 30 but fail to explain 
the discrepancy in the λ ∈ [20, 30) range. This point was shown by 
comparing the weak lensing mass from the data with the inferred 
weak lensing mass using the cluster abundance information alone, 
combined with cosmological constraints derived from DES 3 × 2 
point correlations (Abbott et al. 2018 ) (known as NC + 3 × 2). The 
comparison showed that the weak lensing mass after correcting for 
selection effects is consistent with NC + 3 × 2 at λ > 30 but the 
ratio is biased high at λ ∈ [20, 30) when correcting for triaxiality and 
projection effects will only lower the inferred weak lensing mass. 

We find in this paper that the accounting for triaxiality biases 
the weak lensing mass will be lowered across all richnesses at a 
level consistent with findings in DES Y1. At λ ∈ [20, 30), other 
unaccounted-for systematics must be at play that biases the weak 
lensing mass high compared to other probes. 

7  C O N C L U S I O N  

The main findings of this work are as follows: 

(i) We find that the 3D axis ratios of redMaPPer-selected haloes
is consistent with the distribution of haloes o v erall. 

(ii) We find that the log-richness amplitude ln ( A ) of redMaPPer
clusters for a given mass is boosted from the lowest to highest 
orientation bin with a significance of 14 σ . 

(iii) We find a null correlation between the bias in richness due
to triaxiality and those for two other leading systematics in DES 

Y1 cluster cosmology – miscentering and projection – and offer 
explanations or follow-up studies for this result. The null correlation 
with projection effects was verified using both the Buzzard and C19 
projection mock, catalogues with different galaxy–halo connection 
models. 

(iv) We confirm the bottleneck shape in the transition between
one- and two-halo regimes for halo lensing profiles first disco v ered 
by Osato et al. ( 2018 ) and fit it to redshift- and mass-dependent 
templates. 

(v) We quantify through items (ii) and (iv) the DES observable
of richness-stacked redMaPPer cluster lensing profiles to predict a 
positive mass bias of 1 –5 per cent due to triaxiality. 

(vi) We find that the mean P (cos i ) and the mass bias are both
richness dependent and largest at mid-to-high richness, in accordance 
with the DES Y1 result that triaxiality does not fully resolve the 
tension in weak lensing mass at low richness. 

Our findings are based on redMaPPer catalogues constructed 
using galaxies in the Buzzard simulations. The realistic red-sequence 
galaxy model in the Buzzard simulations allows us to run the 
redMaPPer algorithm in the same way as it was run on DES-Y1 
data and hence enables us to quantify various selection effects 
introduced by the cluster finder. While this analysis provides ev- 
idence of redMaPPer selection effects and quantifies the relations 
between different systematics, we must acknowledge that there 
is one important caveat in this approach: the performance of the 
redMaPPer cluster finder depends on how galaxies are populated in 
the simulations, which might not precisely match the real universe. 
Since this analysis is only done on one specific simulation, the result 
in this paper can serve as a guidance for constructing a flexible 
enough model used in the analysis of real data. 

These findings shed light on the impact of triaxiality on clus- 
ter selection, both their physical quantities and observed signals. 
Specifically, items (ii) and (iv) may be used as templates for current 
and near future weak lensing surv e ys as correction terms for this 
systematic. One important future work is to perform this analysis on 
different mock galaxy catalogues with different assumptions about 
the relations between galaxies and dark matter. Such an analysis 
will be essential to addressing the dependence of cluster finder 
performance on galaxy population models. 
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