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ABSTRACT 

Production of lignocellulosic biofuels is one mechanism by which we can reduce 

our dependence on fossil fuels and enhance the carbon neutrality of transportation fuels.  

Current biochemical platforms for lignocellulosic biofuel production are not 

economically viable due to the high costs of hydrolytic enzymes for the conversion of 

lignocellulose to fermentable sugars.  One solution to reducing these costs is the 

incorporation of on-site enzyme production for consolidated bioprocessing of 

lignocellulose to fermentable sugars. I have optimized and incorporated a whole-cell 

encapsulation approach into a novel two-stage fed-batch bioreactor consisting of a 

nursery reactor and hydrolysis reactor. This design spatially separates enzyme production 

and lignocellulose hydrolysis, allowing for simultaneous enzyme and sugar production 

for extended time periods while simplifying enzyme-cell separation. The integrated two-

stage design was tested at the bench (250 ml) and pilot (70 L) scales. Encapsulated 

enzyme production was similar to unencapsulated nursery reactors over four consecutive 

72-hour batch runs. Reducing sugar concentrations of hydrolysis reactors containing 

crude enzymes from encapsulated nursery reactors were similar to, or higher than, 

reactors containing unencapsulated nursery enzymes. Enzymes from encapsulated 

treatments produced nearly two times more fermentable sugars during hydrolysis than 

unencapsulated controls. Pilot scale runs yielded less enzymes in the nursery reactor 

though hydrolysis performance was only minimally affected.  We have established a 

whole-cell encapsulation approach that enables both high levels of enzyme production 
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and simplified catalyst recovery for extended periods of time.  These results serve to 

illustrate that an integrated on-site enzyme production and hydrolysis reactor system can 

be self-maintained and operate at high levels of productivity over time. These results also 

suggest that this system has the potential to be successfully scaled to an industrially 

relevant size.  
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INTRODUCTION 

In response to concerns about the anthropogenic effects on climate change, fossil 

fuel availability, and rising energy prices, the role of liquid biofuels as a viable 

transportation fuel source has been in the spotlight. Currently, these fuels are produced, 

for the most part, through microbial metabolism (i.e., the alcoholic fermentation of 

starch-based sugars). Although these alternative fuels may beneficially impact energy 

independence, rural economic development, carbon emissions, and fossil fuel demand, 

they are not without their own set of obstacles that must be overcome.  

The most abundantly produced microbial biofuel is ethanol. Currently, 

commercial-scale ethanol is derived primarily from renewable food crops such as corn 

and sugar cane but is also in direct competition with the food supply chain. Corn is the 

largest U.S. crop accounting for nearly 25% of all croplands in the US, 30 million 

hectares, which is about 1/3 larger than the state of Idaho. About 13% of the 

approximately 13 billion bushels produced annually currently is slated for ethanol 

production (EERE 2010; USDA 2011). With increasing demand for ethanol fuel, 

diverting these crops from use as a dedicated food source runs the risk of increased food 

prices while applying additional pressure to convert natural land into farmland to 

alleviate the elevated demand on the food supply.  

The Renewable Fuel Standards (RFS) legislation of 2005 requires liquid biofuel 

production to be ramped up to 15 billion gallons (BG) annually by 2015 (EPA 2010a). 
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The EPA determined this volume of biofuel could be produced from corn without 

negatively affecting the U.S. food supply. In 2007, the RFS was amended to increase the 

amount of biofuels to be produced including a change that mandates increased levels of 

lignocellulosic biofuel production (derived from inedible plant material) annually starting 

in 2010. Ideally, cellulosic biofuels would become commercialized and contribute to the 

alternative fuels pool, supplementing 30% (70 billion gallons per year) of the nation's 

gasoline by the year 2030. There are currently several dozen cellulosic plants either 

planned or under construction that could yield 364 BG/year (RFA 2011). However, due 

to the costs associated with conventional lignocellulose saccrification, none are currently 

producing lignocellulosic biofuels on a large scale (Dwivedi, Alavalapati et al. 2009).  

Lignocellulose, the structural constituent of plant cell walls, is the most abundant 

source of organic carbon on earth with 1.3 billion tons produced in the U.S. annually 

(Zhang 2008). Its availability and renewable nature make it an attractive feedstock source 

for microbial biosynthesis applications. Lignocellulose has three main components: 

cellulose, hemicelluloses, and lignin.  Cellulose and hemicelluloses make up a majority 

of the compound and are comprised of long chains of 5- and 6-carbon sugars. Cellulose is 

a large glucose polymer consisting of up to 27,000 subunits held together by β-1,4 

glycosidic bond that are packed into elementary fibrils, which are in turn attached to each 

other by hemicellulose. Hemicellulose is a complex, web-like polysaccharide of 5-carbon 

sugars, primarily xylose, and six carbon sugars. Lignin is a phenolic matrix that acts as a 

glue to hold the macro-fibrils together.  

Though the process for enzymatic hydrolysis of lignocellulose is well known, 

economically converting this inexpensive feedstock into fermentable sugars has several 



3 

 

 

challenges. The primary hurdle to overcome is reducing the cost of producing 

lignocellulose degrading enzymes. The current practice is to buy these hydrolytic 

enzymes from a third-party purveyor. However, up to 40% of total biofuel production 

costs can be attributed to enzyme purchases (Wyman 2007; Lynd, Laser et al. 2008; Yang 

and Wyman 2008). Furthermore, the high costs of enzymatic catalysts is compounded by 

the fact that these hydrolytic enzymes can have relatively low specific activity levels 

(DOE 2006; Wyman 2007), can unproductively adsorb to their substrates (e.g., 60 -70% 

of enzymes can permanently adsorb to lignin) (Singh, Kumar et al. 1991; Lu, Yang et al. 

2002; Jørgensen, Kristensen et al. 2007), and inhibited by product accumulation (Bezerra 

and Dias 2004; Andrić, Meyer et al. 2010a; Andrić, Meyer et al. 2010b).   

Approaches for improving biochemical conversion of lignocellulose to 

fermentable sugars have largely been dependent on optimization of biological catalysts 

via genetic modification of known organisms to enhance cellulase expression and 

activity, discovery of novel enzymes/organisms, or optimization of catalyst application 

via advanced packaging conditions (e.g. enzyme mixtures, concentration, shelf life, 

activity, etc.) (Wyman 2007).  In this work, we focus on whole-cell encapsulation of 

enzyme producing microorganisms to improve the lignocellulose hydrolysis productivity.  

Encapsulation of microbial catalysts, either whole cells, individual enzymes or 

enzyme cocktails, has long been used in the pharmaceutical industry as a means for 

enhancing viability, activity, and longevity of organisms and enzymatic catalysts (Jen, 

Wake et al. 1996; Park and Chang 2000; Chang and Prakash 2001).  This process 

typically involves mixing the desired catalyst or enzyme excreting organism with a liquid 

form of the encapsulation matrix and then entrapping the organism within the matrix 
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during a polymerization step.  Encapsulation matrix properties vary widely (i.e., for 

porosity, reactivity, surface area to volume ratios, solubility, durability, etc.).  Specific 

matrices are chosen typically based on desired process parameters, suitability for 

incorporation of the desired microbial catalyst, and cost.  Encapsulated organisms can be 

recycled for multiple reactor runs to produce prolonged metabolic activity and facilitate 

continuous reactor operation (Park and Chang 2000; Kar, Mandal et al. 2008).  For 

example, microbial cells encapsulated in an alginate hydro-gel matrix can be protected 

from harsh environmental conditions such as pH, temperature, organic solvent, and high 

agitation rates, thereby increasing the ease of culture handling and enhancing viability 

over long durations of use. By restricting growth to the encapsulation matrix, the excreted 

hydrolytic catalysts can be more easily removed and used in downstream processes, 

providing freedom of bioreactor design and facilitating continuous flow operation (Park 

and Chang 2000; El-Katatny, Hetta et al. 2003).  This approach can further enhance 

bioreactor systems by protecting cells from impeller damage and reduce clogging of 

plumbing and sensor maintenance inherent in high-density cell cultures.  

Sodium alginate is a widely employed encapsulation matrix that is inexpensive to 

produce, non-toxic, and amenable for use with biological samples (Park and Chang 2000; 

Chang and Prakash 2001). Alginate is made from a modified algal polysaccharide that 

can be converted from a soluble form to an insoluble one by substituting Ca
2+

 for Na
+
,
 

resulting in the formation of a hydro-gel. Variation in alginate concentration can control 

matrix pore size and therefore diffusion of substrates into and out of the matrix (Klein, 

Stock et al. 1983; Smidsrod and Skjakbrk 1990).  The alginate hydro-gel can be amended 

with a variety of compounds to alter its physical and chemical properties as a means to 
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optimize the encapsulation environment for a given organism or process.  For example, 

this approach has been used extensively for protein characterization, optimization of 

fermentation processes (Steenson, Klaenhammer et al. 1987; Park and Chang 2000; 

Talebnia, Niklasson et al. 2005), bioremediation of nitrogen during wastewater treatment 

(van Ginkel, Tramper et al. 1983; Kokufuta, Yukishige et al. 1987), and production of 

monoclonal antibodies for research and medical applications. 

Trichoderma reesei strain RUT C-30 is a well-described cellulolytic organism 

that produces large quantities of extracellular cellulases and xylanases (Mach and 

Zeilinger 2003; Stricker, Mach et al. 2008; Ahamed and Vermette 2009).  In fact, this 

fungal species is one of the major sources of cellulases used in a variety of commercial 

enzyme preparations (Nevalainen, Suominen et al. 1994; Kar, Mandal et al. 2008).  

However, the filamentous nature of this organism and the specialized cultivation and 

separation technology necessary to grow T. reesei and recover extracellular enzymes 

from the culture milieu has traditionally limited the utility of on-site T. reesei cultivation 

and enzyme production on industrial scales.  As a result, the production and 

dissemination of cellulases and xylanases has become the rate-limiting step in the overall 

scheme of biomass conversion to ethanol (DOE 2006).  One of the hurdles for using T. 

reesei in an industrial application is the affect of mixing on its fragile mycelium.  For 

example, impellers used in large bioreactors can damage hyphae thereby limiting growth 

and consequently cellulase production (Larroche and Gros 1997).  However, less 

vigorous mixing leads to inadequate oxygen availability and can decrease growth and 

enzyme production rates (Lejeune and Baron 1995; Marten, Velkovska et al. 1996; 

Domingues, Queiroz et al. 2000).  Toward a solution, immobilization of T. reesei on a 
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variety of substrates has been explored and effects on hydrolytic enzyme production 

studied (Linkoa, Haapalaa et al. 1996; El-Katatny, Hetta et al. 2003; Kar, Mandal et al. 

2008; Zhang, Lo et al. 2009; Hui, Amirul et al. 2010).  For example, encapsulation of T. 

reesei in a Ca-alginate matrix or immobilization of the fungi on polyurethane foam 

helped enhance retention of fungal biomass during separation and recovery of 

extracellular enzymes and enabled multiple reactor runs without reinoculation (Zhang, Lo 

et al. 2009).  Here I propose a novel strategy for optimizing the encapsulation matrix to 

maintain enhanced cellulase and xylanase production by T. reesei RUT C-30. My goal is 

to simplify enzyme production and integrate this process into a unified saccharification 

system. This approach has the potential to lower enzyme production costs while 

increasing saccharification productivity.  
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CHAPTER 1: DEFINING OPTIMAL CULTURE PARAMETERS OF CALCIUM 

ALGINATE ENCAPSULATED TRICHODERMA REESEI RUT C-30 FOR 

CELLULASE AND XYLANASE PRODUCTION 

Abstract 

Lignocellulosic biofuels production is a mechanism that can help reduce our 

dependence on fossil fuels and enhance the carbon neutrality of transportation fuels.  

Current biochemical platforms for lignocellulosic biofuel production are not 

economically viable due to the high costs of hydrolytic enzymes for the conversion of 

lignocellulose to fermentable sugars.  One solution to reduce these costs is incorporation 

of on-site enzyme production for consolidated bioprocessing of lignocellulose to 

fermentable sugars. I optimized whole-cell encapsulation parameters that allow for 

prolonged enzyme production, ease of catalyst separation, and enable incorporation of 

on-site catalyst production into existing biochemical lignocellulose transformation 

platforms. Trichoderma reesei RUT-C30 was encapsulated in calcium alginate hydro-gel 

beads and grown in continuously stirred 250 ml bioreactors containing purified cellulose. 

Physical and environmental parameters including agitation, reaction volume, and hydro-

gel diameter and concentration were modulated and compared with unencapsulated 

controls for cellulase and xylanase activity.  The encapsulation matrix retained 90% of 

the T. reesei biomass.  Trichoderma reesei in optimized encapsulation matrices produced 

similar filter paper units of cellulase activity as unencapsulated controls over a 144-hour 

period while producing significantly higher xylanase activity than unecapsulated T. reesei 
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over the same time period. Recycling of encapsulated organisms during successive 3-day 

batch runs yielded similar filter paper activity to the unencapsulated organism by the end 

of the second batch. When crude enzyme liquor was used to hydrolyze purified cellulose, 

encapsulated T. reesei effluent yielded nearly two times more fermentable sugars than 

unencapsulated effluent.  

Introduction 

Lowering the cost of lignocellulose saccharification processes has renewed 

importance in light of revisions made to the U.S. Renewable Fuel Standards (RFS2) in 

2007. With efforts to limit greenhouse gas emissions, reduce reliance on fossil fuels, and 

increase domestic security these EPA mandates require lignocellulose to play an 

increasingly dominant role in the liquid biofuels arena. The new RFS2 cellulosic ethanol 

production goals call for 0.5 billion gallons (BG) to be produced in 2012 and 1.0 BG in 

2013 (EPA 2010a). Although recent advances in biocatalyst synthesis have dramatically 

reduced the cost of enzymatic saccharification and thermochemical conversion of 

biomass, lignocellulosic biofuels are still not economically feasible at large scales, 

impeding achievement of the RFS2 targets (EERE 2010). Indeed, the U.S. EPA estimated 

a best case scenario for cellulosic ethanol production in 2012, which included facilities 

not yet in operation, to be a mere 15.7 million gallons and possibly as low as 3.6 million 

gallons (EPA 2010b). Advancements in biochemical conversion strategies can facilitate 

reaching the goals of the RFS2.   

Research aimed at further reduction in biocatalyst costs can be, for the most part, 

divided into two camps: increasing production rates and/or catalytic activity of 

lignocellulytic enzymes or improving hydrolysis efficiencies and enzyme recovery for 
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reuse (Banerjee, Mudliar et al. 2010; Kambam and Henson 2010; Chandel and Singh 

2011).  The dichotomy of these approaches reflects the current biofuel production model, 

which spatially and temporally separates enzyme synthesis and saccharification with the 

biofuel producer typically purchasing enzymatic catalysts from a third party.  

Enzyme purchases represent one of the major operating costs for biochemical 

cellulosic ethanol production. Typically, commercial enzyme preparations are provided 

by only a few suppliers (MacLean and Spatari 2009) and must be bought on a continuous 

basis. Though recent advancements have lowered the cost of enzymes from $2.00/gallon 

of finished product in 2007 to $0.69 - $0.50/gal 2009; such purchases are still estimated 

to comprise 30-45% of cellulosic biofuel production costs assuming $1.62/gallon of 

finished product (2007$)(EERE 2010; Kazi, Fortman et al. 2010; Humbird, Davis, et al. 

2011).  These cost estimates also fall short of the National Renewable Energy Lab’s 

(NREL) 2008 State of Technology report targeted costs of $0.12/gallon by 2012 

(Humbird and Aden 2009).  

On-site enzyme production can lower the cost of enzymatic hydrolysis by 

minimizing costs associated with third-party purchases, preservation, transportation, and 

storage. For example, a recent NREL report predicts that on-site enzyme production can 

lower catalyst cost to $0.34/gal (Humbird, Davis, et al. 2011). Moreover, Slade, Bauen, 

and Shah(2009) estimate that 50%-60% of greenhouse gas (GHG) emissions generated 

from cellulosic ethanol production can be attributed to enzyme production. They 

conclude that on-site enzyme production could reduce total GHG emissions by 5-6%, 

helping ethanol production facilities meet the 2007 Energy Independence and Security 

Act threshold of 60% lifecycle GHG reduction for cellulosic biofuels (EPA 2010a). The 
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current costly and energy intensive, off-site production model endures because several 

hurdles make on-site enzyme production impractical (e.g., capital costs associated with 

enzyme production/separation and expense/availability of enzyme inducers). Based on 

the 1999 NREL process design Kazi, Fortman et al. (2010) estimated that on-sight 

enzyme production would require an additional $434 million in capital expenses while 

increasing feedstock and energy demands, and thus, increasing ethanol costs by about 

4%. Barta, Kovacs et al. (2010) added that the economic feasibility of on-site enzyme 

production can be achieved but relies heavily on the type of feedstock used for enzyme 

production. Humbird, Davis, et al. (2011) suggested that innovative process design that 

simplify or streamline the lignocelluloses to biofuel process can significantly lower 

overall production costs. Therefore, a cultivation strategy that optimizes growth and 

extracellular enzyme production while minimizing the complexity of enzyme recovery is 

needed to make on-site enzyme production a cost-efficient option. 

Lignocellulytic enzymes from the filamentous fungus Trichoderma reesei are 

commonly found in commercially available enzyme preparations (Nevalainen, Suominen 

et al. 1994; Kar, Mandal et al. 2008). Trichoderma reesei strain RUT C-30 produces large 

quantities of extracellular cellulases and xylanases that can hydrolyze the cellulose and 

hemicellulose fractions of lignocellulosic biomass (Mach and Zeilinger 2003; Stricker, 

Mach et al. 2008; Ahamed and Vermette 2009).  The highest titer of hydrolytic enzymes 

are produced during the stationary growth phase (Pakula 2005), suggesting that 

maintenance of high-density stationary phase cultures is necessary for continuous 

cellulase and xylanase production.  However, stationary phase cultures of T. reesei also 

commonly support large amounts of hyphal biomass that complicate separation and 
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purification of extracellular hydrolytic enzymes (Weber and Agblevor 2005; Patel, Choy 

et al. 2009).  

Encapsulation of microorganisms allows for high-density populations to be 

maintained in a bioreactor for prolonged and efficient bio-synthesis (Park and Chang 

2000; Kar, Mandal et al. 2008) while simultaneously simplifying separation of biomass 

from extracellular products (Kar, Mandal et al. 2008).  Commercial scale up and effective 

use of calcium alginate whole cell encapsulation has been proven and extensively used in 

the pharmaceutical industry (Jen, Wake et al. 1996; Park and Chang 2000; Chang and 

Prakash 2001).  Therefore, encapsulation of a lignocellulosic microorganism could 

enhance on-site catalyst production by facilitating maintenance of stationary phase 

cultures and potentially simplifying catalyst-biomass separation. 

Immobilization and/or encapsulation of T. reesei can affect hydrolytic enzyme 

production (El-Katatny, Hetta et al. 2003; Kar, Mandal et al. 2008; Zhang, Lo et al. 2009; 

Hui, Amirul et al. 2010).  For example, immobilization of T. reesei on polyurethane foam 

increased relative cellulase activity by 71% (from 0.07 FPU/mg cells to 0.12  FPU/mg 

cells) while retaining a majority of the fungal biomass over four days (Zhang, Lo et al. 

2009). However, reuse of the immobilization substrate over multiple reactor runs was not 

evaluated. Xylanase activity of T. reesei in a Ca-alginate matrix has been shown to be 

similar to unencapsulated T. reesei (approximately 0.8 U/ml) (Kar, Mandal et al. 2008). 

Furthermore, significant xylanase production of encapsulated T. reesei in repeated batch 

experiments was observed for 22 days, suggesting that prolonged enzyme production is 

achievable with an encapsulated microorganism. Their study, however, did not evaluate 

cellulase production nor did it measure fungal migration out of the hydro-gel, therefore 
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enzyme activity could have arisen from hyphae that grew out of the encapsulation matrix 

during incubation. This study investigates both cellulase and xylanase activity of a Ca-

alginate encapsulated T. reesei and its ability of the hydro-gel to retain fungal cells over 

multiple reactor runs 

In an attempt to simplify and ultimately reduce costs of on-site enzyme 

production, I have optimized a whole-cell encapsulation approach that enhances bio-

catalyst synthesis and separation over current models by simplifying costly enzyme 

separation and purification steps and consequently reducing associated capitol and 

processing costs. This process utilizes a nursery reactor containing Trichoderma reesei 

RUT-C30 encapsulated in a calcium alginate hydro-gel for semi-continuous production 

of lignocellulose hydrolyzing enzymes (e.g., cellulase and xylanase) while minimizing 

the need for complicated downstream catalyst separation and purification steps.  Here I 

demonstrate that encapsulation of T. reesei produces enzymes with consistently high 

activity and requires minimal post-production purification.  Furthermore, lignocellulose 

hydrolysis reactions driven by an enzyme cocktail recovered from an encapsulated T. 

reesei bioreactor releases approximately two times as much fermentable sugar from 

purified cellulose than the enzyme cocktail recovered from the unencapsulated control 

reactors.  This new approach could provide a simple way to reduce the overall cost of 

lignocellulosic biofuel by decreasing the costs of catalyst production.  

Materials and Methods 

Strain and Media Preparation 

Trichoderma reesei RUT-C30 (NRRL 11460, ATCC 56765) was obtained with 

permission from the Department of Agriculture’s ARS Culture Collection.  The culture 
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medium (used for liquid cultures and agar plates) was as follows (amounts for each 

ingredient are indicated in per liter values): KH2PO4 (2g), MgSO4 ·2H20 (0.3g), 

CaCl2·2H20 (0.3g), FeSO4·7H2O (0.005g), MnSO4·4H2O (0.0016g), ZnSO4·7H20 

(0.0014g), CoCl·6H2O (0.002g), (NH4)2 SO4 (1.4g), Urea (0.3g), Peptone (1.0 g), Tween 

80 (2 ml).  This media was filter sterilized and added to sterile carbon substrates.  

Minimal media was supplemented with Avicel PH-101 (Sigma 11365) (10.0g l
-1

) for 2% 

agar plates and optimization experiments.   

Subculture Preparation  

Trichoderma  reesei was grown on 2% agar plates containing 1% Avicel at 30
o
C 

for 3-4 days and stored at 4
o 
C for up to 3 weeks. Subcultures were prepared by adding an 

agar plate plug to 250 ml Erlenmeyer flasks containing 200 ml Avicel and incubated at 

30° C on a 200 RPM orbital shaker for four days.  Subcultures were concentrated to 40 

ml by centrifugation at 7000 RPM for 5 min.  After centrifugation, the fungal pellet was 

rinsed in fresh basal media three times, centrifuging as described above after each rinse. 

Encapsulation Matrix Preparation  

Calcium alginate beads were produced using 1.0%, 1.5%, or 2% sodium alginate 

solutions with pH either unmodified (7.4) or adjusted to 5.7 with 1M HCl.  Bead diameter 

was varied using 16 gauge (Ga.) or 27.5 Ga. needles.  Sodium alginate solutions for 

hydro-gel encapsulation of T. reesei were prepared by adding 6 g of Na-alginate (Fisher 

Scientific NC9676930) to 286 ml of 100° C distilled water, while continuously stirring.  

The solution was allowed to cool to room temperature and stirred until the Na-alginate 

completely dissolved.  Final pH of the alginate solution was adjusted to 5.7 (using 

approximately 0.5 ml 1N HCl).  Distilled water was added to bring the total volume to 
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288 ml before autoclaving.  After adding 12 ml of subculture concentrate to cooled, 

sterile Na-alginate solution, hydro-gel beads were formed by adding the solution drop-

wise (using a peristaltic pump and needle) to a continuously stirred solution of 0.2 M 

CaCl2 at 4° C.  Hydro-gel beads were rinsed three times with an equal volume of basal 

media to remove excess CaCl2 and used immediately for experiments. 

Culture Conditions 

All encapsulation optimization experiments were carried out at 30° C in 1% 

Avicel media.  Agitation rates, reactor volume, and reaction volume were adjusted in that 

order to achieve optimal cellulase expression by T. reesei. Each new modulation 

experiment built upon the optimized parameters determined in the previous experiment. 

Both treatments were prepared in 250 ml Erlenmeyer flasks and incubated on an orbital 

shaker at 400 RPM.   

Encapsulation Matrix Reuse 

The longevity of the encapsulated organism and the encapsulation matrix 

performance were assessed in two batch culture experiments that differed in incubation 

times, specifically either 144 hour or 72 hours.  Media was removed from encapsulated 

treatments by pipette or after 5 minute 7000 RPM centrifugation of unencapsulated 

treatments and reusing the encapsulated organism in an additional round of incubation.  

Treatments were refreshed with new media and incubated under optimum culture 

conditions described previously with 1% w/v Avicel for 144-hour batches and 0.5% w/v 

Avicel for 72-hour batches.  
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Cellulase Activity Measurements 

Cellulase activity was determined using the standard colorimetric Filter Paper 

Assay adapted for micro-plate use (Xiao, Storms et al. 2004).  Briefly, an aliquot of 

enzyme preparation was added to a defined mass of known quality cellulose paper and 

incubated at 50°C in 0.2M citrate buffer at pH 4 for one hour.  After incubation, a 

dinitrosalicylic acid (DNS) reagent (Xiao, Storms et al. 2004) was added and samples 

were incubated at 95°C for 5 minutes.  Absorbance was measured at 540 nm, reducing 

sugars released were determined by comparison to a glucose standard, and enzyme 

activity reported as Filter Paper Units (FPU)/ml.  One FPU is defined as the amount of 

enzyme that will liberate 1 µmol of glucose equivalents from the filter paper in 1 minute.  

Enzyme activity is expressed as glucose equivalents because this assay detects not just 

glucose but all reducing carbohydrates. 

Xylanase Activity Measurement 

Xylanase activity measurements were determined using a colorimetric assay 

similar to the cellulase filter paper assay. As described by Bailey, Biely et al. (1992), an 

aliquot of enzyme preparation was added to a 1% xylan solution (pH 5.2) and incubated 

at 50°C for 5 minutes.  After incubation, DNS reagent was added to develop color and 

stop the reaction, After a 20 minute incubation at 100
o
 C, 50 µl of cooled reaction was 

added to a 96-well microplate containing 150 µl distilled water and absorbance was 

measured at 540 nm. Reducing sugars released were determined by comparison to a 

xylose standard, and enzyme activity reported as Xylanase Activity Units (XAU)/ml.  

One XAU is defined as the amount of enzyme that will liberate 1 µmol of Xylan 

equivalents in 1 minute.    
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Biomass Determinations 

With the exception of yeast, fungi are generally not comprised of discrete cells 

making conventional cell counting methods impractical.  Therefore, total fungal biomass 

levels were determined using a standard Bradford (coommasie blue) assay kit (Thermo-

Fisher 23200) for total soluble protein. Hyphal pellets from unencapsulated treatments 

were collected by centrifuging two milliliter aliquots at 5000 RPM for 5 minutes. After 

washing the pellet in minimal media three times, hyphae were lysed by adding a 0.1 M 

NaOH to the pellet and incubating at 4° C overnight.  One ml of pellet lysate was added 

to 0.5 g silicon beads (BioSpec Products Cat. #11079101z) and subjected to bead beating 

using a Fastprep FP 120 at a setting of 6.5 for 45 seconds.  Samples were put on ice for 5 

minutes between each round of bead beating.  Bead beating was repeated 3 times and 

followed by a 20 minute, 100
o
 C incubation.  Fungal biomass from encapsulated 

treatments was first liberated by dissolving the Ca-alginate matrix in a 0.1M Na-citrate 

buffer.  The mycelia mass was then lysed using the procedure described for 

unencapsulated treatments.  The resulting soluble proteins were measured 

colorimetrically by adding 250 µm of room temperature Bradford reagent to 5 µm of 

prepared sample.  After a 10-minute room temperature, incubation in the dark absorbance 

was measured at 540 nm.  Total protein levels were converted to estimates of Cell Dry 

Weight (CDW) as describe previously (Zhang, Lo et al. 2009). 

 [CDW] (g/ml) = [intracellular protein] (g/ml) X 8.0.   

Quantities of culture media proteins (e.g., extra-cellular proteins) were determined 

by using the initial supernatant from the CDW pellet directly with the Bradford method.  
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Results/Discussion 

To determine the feasibility of Ca-alginate as an effective encapsulation matrix 

for cellulase production, I first examined the ability of the alginate hydro-gel to 

successfully encapsulate T. reesei.  To increase hydrolytic activity of the encapsulated 

organism, different encapsulation matrix and reactor configurations were explored.  All 

experimental results from alginate encapsulated treatments were compared to 

unencapsulated controls and/or values published in the literature.  Lastly, hydro-gel 

properties including encapsulation matrix diameter, pH, and alginate concentration were 

modulated and evaluated for their effect on cellulase and xylanase activity.   

All data presented in the figures are the mean of 3 treatment replicates ± standard 

error. Statistical analysis was performed using R build 2.13.  

Effect of Culture Agitation Rate on Encapsulated Biomass Retention and Enzyme 

Activity 

Initial alginate encapsulation experiments were performed to determine viability 

and retention of T. reesei within the Ca-alginate matrix.  Viability was determined based 

on biomass production within the alginate matrix and retention was evaluated by 

comparing biomass production within the alginate matrix and culture supernatant, 

respectively.  Retention of the fungal mycelium was directly influenced by the culture 

agitation rate.  Experiments conducted at an agitation rate of 100 RPM revealed that 

fungal growth was not restricted to the encapsulation matrix.  Within 196 hours, 96% of 

the total fungal biomass was observed in the culture supernatant (Figure 1.1a). At this 

agitation rate, relative cellulase activity between encapsulated and non-encapsulated T. 
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reesei (0.035 FPU/mg CDW and 0.038 FPU/mg CDW) showed no treatment effect, 

likely due to cell outgrowth from the alginate beads. 

High agitation rates can negatively affect filamentous mycelia growth (Cui, van 

der Lans et al. 1997; Grimm, Kelly et al. 2005; Ahamed and Vermette 2010). Therefore, 

we hypothesized that at higher agitation rates the hydro-gel would afford the 

encapsulated organism protection while inhibiting growth in the supernatant. In an 

attempt to reduce outgrowth from the encapsulation matrix, we performed an experiment 

in which the agitation rate was increased to 400 RPM.  Increased agitation improved 

retention within the encapsulation matrix. Encapsulated treatments did not significantly 

increase overall biomass. However, mycelium distribution shifted appreciably; favoring 

the hydro-gel.  Fungal growth within the encapsulation matrix increased more than 10 

fold with approximately 91% of the total biomass being contained within the 

encapsulation matrix (Figure 1.1a).  Although, the total biomass of encapsulated 

treatments did not surpass unencapsulated treatments, T. reesei did grow to a higher 

density (6.54 mg/ml CDW) within the encapsulation matrix relative to that found in the 

media of unencapsulated controls (3.52 mg/ml CDW) (Figure 1.1b). Increased agitation 

also had a positive effect on enzyme activity of both treatments with cellulase activity 

increasing 171% (0.235 FPU to 0.401 FPU) and 259% (0.314 FPU to 0.814 FPU) for 

encapsulated and unencapsulated treatments, respectively (Figure 1.1c). The lower 

relative enzyme activity of the encapsulated treatments (0.12 FPU/mg CDW) compared 

to the unencapsulated (0.23 FPU/mg CDW) suggests that factors within the hydro-gel 

may have inhibited enzyme activity, enzyme synthesis, or diffusion of enzymes out of the 

encapsulation matrix possibly due to sorption to the encapsulation material.   
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To determine if enzyme adsorption to the encapsulation matrix impeded catalytic 

function, we evaluated the activity of encapsulated cellulase.  Calcium alginate beads 

loaded with a commercially available enzyme preparation (Sigma 8546-5KU) showed 

similar enzyme activity to unencapsulated enzymes (data not shown). These data suggest 

that oxygen and/or nutrient diffusion into the hydro-gel may be the cause of the lower 

cellulase activity observed, and not enzyme diffusion or sorption to the alginate matrix.  

Reactor Size and Reaction Volume  

Reactor configuration was modulated to examine how surface area to volume 

ratios between the air-media interface affect bioreactor productivity. Working volumes of 

250 ml reactors were adjusted to 125 ml and 62.5 ml. Additionally, 50 ml reactor with a 

15.6 ml volume were evaluated. The reactors had surface area to volume ratios (mm
2
:ml) 

of 19.47, 53.45, and 1.67, respectively. Reducing the reaction volume from 125 ml to 

62.5 ml increased the surface area to volume ratio almost 3-fold and resulted in a nearly 

two-fold increase of FP activity for both treatments (Figure 1.2). At a 62.5 ml reaction 

volume, both encapsulated relative filter paper (FP) activity (0.406 FPU/mg CDW) and 

specific filter paper activity (2.94 FPU/mg extracellular protein) were similar to the 

unencapsulated reactor (P=  0.52 and P=  0.64, respectively). Dissolved oxygen (DO) 

levels directly affect T. reesei cell growth (Domingues, Queiroz et al. 2000; Weber and 

Agblevor 2005; Patel, Choy et al. 2009) and cellulase production (Reczey, Szengyel et al. 

1996; Domingues, Queiroz et al. 2000).  Increasing volumetric surface area may allow 

for higher levels of DO in the media and consequently increase fungal growth and 

cellulase production within the hydro-gel. Similarly, a correlation between surface area 

and productivity can be seen in the unencapsulated treatments. 
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Since T. reesei cellulase production increases during stationary growth phase 

(Reese and Mandels 1980; Mohagheghi, Grohmann et al. 1988), the increased DO may 

have permitted rapid fungal growth, reaching stationary phase more quickly and resulting 

in increased levels of cellulase expression during the same incubation period as more 

slowly growing cultures. The 15.6 ml reactor volume resulted in lower overall 

performance activity for both treatments when compared to the 62.5 ml reaction volume.  

Reaction volumes of 62.5 ml were used for the remaining experiments. 

Effect of Bead Diameter 

The disparity between cellulase activity of encapsulated and unencapsulated 

treatments along with the presumed positive effect of increased aeration via higher 

agitation rates suggests that oxygen diffusion may play an important role in cellulase 

production.  Mass transfer and oxygen diffusion limitations within hydro-gel matrices, 

specifically those with a diameter above 1mm, are well documented (Margaritis, Bajpai 

et al. 1981; Prüsse, Bilancetti et al. 2008). Furthermore, Domingues, Queiroz, et al. 

(2000) report that under certain growth conditions, T. reesei will form tightly aggregated 

mycelia in liquid culture.  Within these tightly aggregated mycelia, the cells in the center 

of the aggregation have low levels of metabolic activity that is thought to be due to 

oxygen limitation within the aggregate. I hypothesized that similar conditions were 

occurring in the alginate beads. Dominguez, Queiroz, et al. (2000) found that at the end 

of a 144-hour incubation, cultures with mycelial aggregates produced approximately 1 

FPU while non-aggregated cultures had about 1.3 FPU activity, mirroring the difference 

in cellulase activity within our own encapsulated and unencapsulated treatments. To limit 

the potential for metabolic inhibition within our encapsulation matrix, I modulated the 
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encapsulation approach to increase the surface area:volume ratio of the alginate hydro-gel 

by reducing its diameter from approximately 3.25 mm to approximately 2.0 mm.  Our 

results indicate that high levels of biomass can be maintained within smaller diameter 

beads and that this decrease in surface area:volume ratio resulted in a significant increase 

(P=  0.05) of 17.6% in FP activity, from 0.91 FPU to 1.07 FPU (Figure 1.3). These 

results imply an inverse relationship between bead diameter and filter paper activity and 

that further size reduction may obtain higher levels of cellulase activity by the 

encapsulated cells.  

Adjusting Bead pH 

Trichoderma reesei cellulase production is directly affected by the pH of the 

medium in which it is cultured.  Cellulase production and corresponding FPU activity is 

enhanced at a pH near 5 (Juhász, Szengyel et al. 2004). However, adjusting the pH of the 

alginate solution from its natural pH of 7.3 to a pH of 5.7 (5.5 to 5.6 after autoclaving) 

during the encapsulation procedure did not significantly increase FP activity (Figure 1.4). 

Any further decrease in pH resulted in misshaped beads. Therefore, the initial pH of the 

encapsulation environment is less important than matrix diameter and surface 

area:volume ratio of the reactor for cellulase production by T. reesei. 

Alginate Concentration 

The concentration of alginate used during hydro-gel formation influences mean 

pore size and therefore diffusion of extracellular products from an encapsulated organism 

to the culture medium, as well as mechanical integrity of the encapsulation matrix 

(Smidsrod and Skjakbrk 1990). The optimum alginate concentration can vary widely as it 

is dependent upon the application and organism being encapsulated. Alginate 
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concentrations ranging between 3% and 1% are most common for the production of low 

molecular weight molecules. Higher alginate concentration reduces pore size (Park and 

Chang 2000) and consequently reduces enzyme production while lower alginate 

concentrations result in cell leakage from the hydro-gel (Kar, Mandal et al. 2008; Varma 

and Gaikwad 2009). We evaluated the encapsulation capabilities of 1%, 1.5%, and 2% 

alginate and found that 1% alginate beads effectively encapsulated the organism at high 

agitation rates. However, this concentration allowed migration of fungal growth out of 

the bead (Figure 1.5a). At the end of a 144-hour incubation period, 44% of the total 

biomass was in the culture media.  Additionally, these beads began showing signs of 

fatigue after just 48 hours of incubation.  As seen in the 100 RPM agitation experiments, 

the higher FP activity may be attributed to cell growth in the culture media (Figure 1.5b). 

The performance of the 1.5% beads were similar to the 2% concentration beads with 

respect to FP activity (P=  0.97) and encapsulation capability. It appears that there is a 

tradeoff between the integrity of the alginate encapsulation matrix and cellulase 

production by the encapsulated fungus.  While the 1.5 and 2% alginate encapsulation 

matrices resulted in decreased FPU/ml relative to the 1% alginate (P<0.05), the enhanced 

integrity of the higher alginate concentration matrices may make them more desirable for 

prolonged periods of use.    

Enzyme Activity Under Optimized Encapsulation Conditions 

Trichoderma reesei encapsulated in 2 mm diameter 2% Ca-alginate hydro-gel 

beads at optimal reactor conditions (62.5 ml reaction and 400 RPM agitation) were used 

to evaluate cellulase and xylanase activities. Encapsulated treatments had similar 

cellulase activity for the first 96 hours (Figure 1.6a). Although a Repeated Measure 
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ANOVA found no significant difference in FP activity over 144 hours (P=  0.07), 

pairwise time point comparisons detected higher cellulase activity for encapsulated 

treatments (P<0.05) at 120 and 144 hours. Conversely, Repeated Measure ANOVA 

analysis showed significantly higher xylanase activity of encapsulated T. reesei over 

control treatments (P=  0.001) (Figure 1.6b). 

Reuse of Encapsulated T. reesei for Multiple Reactor Runs 

To be advantageous, an encapsulation strategy must simplify the process of 

enzyme/organism separation while allowing for continuous or semi-continuous reactor 

operation. Biomass-enzyme separation in our experiments was achieved quickly and 

efficiently by merely stopping agitation of the reactor.  Within seconds, the alginate 

encapsulated mycelium settles to the bottom of the flask and then the enzyme-laden 

supernatant can simply be decanted from the reactor.  Moreover, we have successfully 

reused the alginate-encapsulated fungus for multiple reactor runs lasting up to three 

weeks in duration.  Three successive 144-hour incubations of encapsulated T. reesei 

produced increasingly higher levels of filter paper activity. Cellulase activity increased 

from 1.04 FPU/ml during the initial run to 1.46 FPU/ml and 1.51 FPU/ml at the end of 

two subsequent runs.  However, cell growth accumulation in the supernatant approached 

unencapsulated levels by the end of the third incubation. This gradual increase of 

unencapsulated biomass becomes less of an issue if the culture supernatant is removed 

after shorter periods of incubation (i.e., the dilution rate is increased or batch feeding 

period decreased).   

Considering that 91% of total cellulase activity of encapsulated reactors is 

achieved within 72 hours, and enzyme activity is similar to unencapsulated reactors, 
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shorter 72-hour fed-batch reactions were performed and evaluated for enzyme activity 

and supernatant cell growth. Decreasing incubation to 72 hours improved reactor 

productivity (i.e., volumetric cellulase activity and FPU/gof Avicel), while at the same 

time, limiting cell proliferation in the culture supernatant. Although initial cellulase 

activity of the encapsulated 72 hour fed-batch treatment was approximately 20% - 40% 

lower than the highest activity observed in the unencapsulated control, by the third batch 

similar cellulase activity (1.61 FPU/ml) was being observed in both reactors (P=  0.97) 

(Figure 1.7a). This level of cellulase activity was the same as the unencapsulated fed-

batch counterpart and also similar to activity seen in the second and third runs of the 144-

hour batch reactions (P=  0.79 and P=  0.45, respectively).  

Shorter batches also limited fungal accumulation outside the encapsulation 

matrix.  Over the course of four 72-hour batch experiments, free biomass in the 

encapsulated reactor did not exceed 2.4 mg CDW/ml. This concentration of biomass is 

65% less than an unencapsulated reactor (Figure 1.7b) and 23% less than an encapsulated 

144-hour batch reactor during the same time period. 

Reducing the batch run time yielded over two times more FPU/liter∙hour while 

receiving less Avicel than the longer batches (Table 1.1). As with the longer fed-batch 

treatments, the first 72-hour run received 1% w/v Avicel. However, Avicel was reduced 

to 0.5% w/v for each subsequent batch. This resulted in a total of 55% more FPU/g 

Avicel for the shorter runs. 

Our data also suggest that the low levels of fungal cells in the reactor supernatant 

may positively affect hydrolysis reactor performance. We believe that low-levels of 
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fungal biomass migration to the culture supernatant during crude enzyme transfer may be 

beneficial in a two-stage reactor design.  To assess the influence of biomass production in 

the culture supernatant after prolonged periods of encapsulation, we fed crude nursery 

reactor effluent to a cellulose hydrolysis reactor. Cellulose is hydrolyzed into cellobiose 

(i.e., a glucose dimer) by the action of endo- and exo-gluconases (i.e., cellulases) 

(Jørgensen, Kristensen et al. 2007). Cellobiose is then converted to glucose monomers by 

the hydrolytic activity of ß-glycosidase (Jørgensen, Kristensen et al. 2007). In the 

absence of ß-glycosidase, cellobiose can accumulate and act as an inhibitor of cellulose 

activity (Bezerra and Dias 2004; Bezerra and Dias 2005; Andrić, Meyer et al. 2010b). In 

T. reesei, ß-glycosidase is for the most part, an intracellular enzyme and its activity is 

considered to be the rate-limiting step of cellulose hydrolysis (Slade, Bauen et al. 2009). I 

hypothesized that the increased temperature from 30°C in the nursery reactor to the 

optimal saccharification temperature of 50° C in the hydrolysis reactor would facilitate 

autolysis and ß-glycosidase release from the incidental mycelia transfer. This would, in 

turn, result in more conversion of cellobiose to monosaccharides, which can be fermented 

to liquid biofuels. A twelve-hour hydrolysis with nursery reactor liquor from 

encapsulated T. reesei yielded nearly two times more fermentable sugars than 

unencapsulated effluent with 3.25 g/L, 0.30 g/L, and 0.70 g/L of glucose, galactose, and 

cellobiose, respectively. In contrast, unencapsulated nursery effluent produced 1.49 g/L, 

0.175 g/L, and 1.14 g/L of the same sugars, respectively (Table 1.2). CDW analysis of 

the hydrolysis reactor cell pellets revealed lower biomass density at the end of 72 hours, 

suggesting a loss of soluble proteins through cell lysis, thus supporting this hypothesis.  
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Conclusion 

Reducing enzyme cost is imperative for biochemical conversion of lignocellulose 

to cellulosic biofuels to become economically viable. On-site enzyme production is one 

possible strategy to achieve this goal. We have established a whole-cell encapsulation 

approach that enables both high levels of enzyme production and simplified catalyst 

recovery for extended periods of time.  Effluent from encapsulated treatments produced 

nearly 2 times more fermentable sugars from Avicel despite having lower filter paper 

activity in the nursery reactor. Extended enzyme production, ease of separation, and 

enhanced hydrolysis activity may facilitate on-site catalyst production for biochemical 

hydrolysis of lignocellulosic biomass for biofuel production.   
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Figure 1.1. The Effect of Agitation Rate on: A) Biomass Distribution, B) Total 

Biomass Accumulation, and C) Cellulase Production/Activity. 
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Figure 1.2. Measure of Absolute and Relative Cellulase Activity as a Function of 

Reaction Volume.  Absolute Cellulase Activity (FPU/ml) Is Indicated by Columns. 

and ○ Represent Relative Cellulase Activity (FPU/CDW). 
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Figure 1.3. The Effect of Decreasing the Encapsulation Matrix Bead Diameter on 

Cellulase Activity. 
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Figure 1.4. The Effect of Lowering the pH of the Sodium Alginate Solution on 

Cellulase Activity. 
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Figure 1.5. The Effect of Alginate Concentration: A) Biomass Retention of the 

Calcium Alginate Hydro-Gel, and B) Filter Paper Activity. The Increased FP 

Activity of the 1% Alginate Encapsulation Matrix Is a Result of Increased Mycelia 

Growth Outside the Encapsulation Matrix. Asterisk Indicates a Significant 

Difference (Alpha = 0.05).   
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Figure 1.6. Time Course Measurement: A) Cellulase Activity, and B) Xylanase 

Activity for T. reesei Growing on Avicel Under Optimized Reactor Conditions. 

Repeated-Measures ANOVA Indicated That There Was No Significant Difference 

in Cellulase Activity Over 144 hours (n=18, P=  0.07), but Reveal Significantly 

Higher Xylanase Activity from the Encapsulated Treatments (n= 12, P=   0.001). 

Asterisks Denote Significant Changes During Pairwise Comparisons (alpha = 0.05).   
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Table 1.1. A Comparison of Bioreactor Productivity Parameters for 144- and 72-

Hour Reactors. 
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Figure 1.7. The Effect of Varying Encapsulated Fed-Batch Reactor Cycle Length. 

Fed-Batch Runs (144 hour and 72 hour) Were Evaluated: A) FP Activity and B) 

CDW Accumulation in the Media. Measurements Are Expressed as a Percentage of 

the Most Productive Unencapsulated 72-Hour Batch Run (Batch 3).  Asterisks 

Indicate a Significant Difference from the 72Hour Batch Unencapsulated 

Comparison. 
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Table 1.2. HPLC Analysis of Sugars Released After Using a Crude Enzyme Cocktail 

Taken at the Twelfth Hour of the Third Consecutive 72-Hour Fed-Batch Reactor 

Run. 
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CHAPTER 2: OPTIMIZATION OF A NOVEL TWO-STAGE FED-BATCH 

LIGNOCELLULOSE HYDROLYSIS REACTOR 

Abstract 

Whole-cell encapsulation allows for efficient enzyme production while 

simplifying enzyme-cell separation. We have optimized operational parameters at both 

bench and pilot scales for a novel two-stage fed-batch lingocellulose hydrolyisis 

bioreactor consisting of a nursery reactor and hydrolysis reactor. This design spatially 

separates enzyme production and lignocellulose hydrolysis, allowing for simultaneous 

process optimization and operation for extended time periods. Nursery bioreactors were 

inoculated with either calcium alginate encapsulated or unencapsulated Trichoderma 

reesei RUT-C30 and monitored for enzyme production using purified cellulose (Avicel) 

as the growth and enzyme induction substrate. Encapsulated T. reesei facilitated biomass-

enzyme separation. Nursery reactor fed-batch intervals and volumes were varied to 

optimize hydrolytic enzyme production. Enzymes from the nursery reactor were used to 

optimize hydrolysis reactors containing Avicel or ball-mill pretreated sawdust as the 

hydrolysis substrate. The integrated two-stage design was tested at the bench (250 ml) 

and pilot (70 L) scales. Lastly, hydrolysis reactor products (e.g., soluble sugars) were 

tested as enzyme inducers for continual operation of the nursery reactor.  Encapsulated 

enzyme production was significantly higher by 25% over unencapsulated nursery reactors 

during the 4
th

 batch of consecutive 72-hour batch runs. Reducing sugar concentrations of 

Avicel hydrolysis reactors containing crude enzymes from encapsulated nursery reactors 
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were similar to or higher than reactors containing unencapsulated nursery enzymes.  

Sawdust hydrolysis activity was similar for encapsulated and unencapsulated treatments. 

Encapsulated hydrolysis reactors contained half the cellobiose and approximately twice 

the glucose of unencapsulated treatments. Xylanase production of encapsulated nursery 

reactors was two times greater than their unencapsulated counterparts. Enzyme activity of 

the pilot scale nursery reactor was lower than bench-top reactors, however sugar 

production was only slightly lower (5.5%) than that observed in bench scale reactors (P=   

0.018). Effluent from enzymatic hydrolysis of both ball-milled sawdust and Avicel 

produced higher enzyme activity per gram of carbon than 1% Avicel in the nursery 

reactor.  Specifically, sawdust hydrolysate produced approximately 80% more cellulase 

activity and 67% more xylanase activity in the nursery reactor while Avicel hydrolysate 

produced 27.5% and 15% more cellulase and xylanase activity, respectively, than 

unhydrolyzed Avicel powder. Preliminary economic analyses suggest that feeding the 

nursery reactor sawdust hydrolysate resulted in the least expensive cellulase and xylanase 

production. 

Introduction 

Improving the economics of lignocellulose saccharification processes has new 

importance in light of revisions made to the U.S. Renewable Fuel Standards (RFS2) in 

2007 that require lignocellulose to play an increasingly dominant role in the liquid bio-

fuels arena (EPA 2010a). Biochemical conversion of lignocellulose to sugar for the 

production of alcohol-based liquid biofuels and other economically relevant bio-

molecules has gained appreciable interest due to its lower energy requirements and 

environmental impact (i.e. reactions occur at mild pressure, temperature, and pH) 
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compared to thermo-chemical approaches (Dwivedi, Alavalapati et al. 2009; Jones 2009; 

Piccolo and Bezzo 2009). Although recent advances in biocatalyst synthesis have 

dramatically reduced the cost of enzymatic saccharification, lignocellulosic biofuels are 

still economically infeasible at large scales (Wyman 2007; Dwivedi, Alavalapati et al. 

2009; EERE 2010; Somma, Lobkowicz et al. 2010). Therefore, additional advancements 

in biochemical conversion strategies are necessary to reach current lignocellulosic biofuel 

production goals.  

The majority of commercial systems, employing enzymatic lignocellulose 

hydrolysis for liquid biofuels production, purchase saccharification enzymes from a third 

party (Humbird and Aden 2009; Banerjee, Mudliar et al. 2010; Kazi, Fortman et al. 2010; 

Humbird, Davis, et al. 2011), accounting for $0.50 - $0.69/gallon of end product 

(assuming $1.60/gallon of finished product) (EERE 2010; Kazi, Fortman et al. 2010; 

Humbird, Davis et al. 2011).  Furthermore, sensitivity analyses indicate that, along with 

feedstock costs, fluctuations in enzyme prices can greatly contribute to the cost of 

lignocellulosic biofuels. Adding to expenses associated with hydrolytic enzyme 

purchases is the fact that cellulase and xylanase can permanently adsorb to the solid 

substrate and lose catalytic activity over time (Singh, Kumar et al. 1991; Lu, Yang et al. 

2002; Lynd, Weimer et al. 2002; Tu, Pan et al. 2009), making enzyme recovery and reuse 

expensive and impractical.  

Several recent techno-economic analyses have determined that combining enzyme 

production and hydrolysis within the same facility can lower the cost of enzymatic 

hydrolysis by minimizing costs associated with third-party purchases, preservation, 

transportation, and storage (Piccolo and Bezzo 2009). For example, a recent NREL report 
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predicts that on-site enzyme production can lower catalyst cost by 31% - 51% to 

$0.34/gal ethanol (EERE 2010; Kazi, Fortman et al. 2010; Humbird, Davis et al. 2011). 

Piccolo and Bezzo (2009) estimates on-site enzyme production could lower biofuel 

production costs by 18%, while Barta, Kovacs et al. (2010) estimates are more 

conservative at 2%.  Furthermore, Iogen, a commercial provider of cellulase and xylanase 

has demonstrated the feasibility of on-site enzyme production at a 40-ton/day 

lignocellulosic ethanol plant (Lawford and Rousseau 2003) . 

The current costly and energy intensive off-site production model endures 

because several hurdles make on-site enzyme production impractical.  Commonly, to 

implement on-site enzyme production, additional equipment is required in the form of 

seed reactors and enzyme/biomass separation systems, costing 18.3-24 million dollars 

(MM) (Kazi, Fortman et al. 2010; Humbird, Davis, et al. 2011). Additionally, the need 

for a separate feedstock or enzyme inducing molecules, not only add to costs but also 

increases overall system complexity.  For example, the 1999 NREL cellulosic ethanol 

production model for on-site enzyme production utilizes the same pre-treated feedstock 

stream for both enzyme production and saccharification (Wooley, Ruth et al. 1999). At 

first glance, the ability to use the same low-cost material for catalyst feedstock and 

hydrolysis substrate would seem to favor on-site enzyme production. Yet, solid substrates 

present many challenges, especially if periodic or continuous enzyme removal is desired. 

In addition to non-productive binding of enzymes (Juhász, Egyházi et al. 2005; 

Jørgensen, Kristensen et al. 2007), solid substrates also decrease bioreactor efficiency by 

increasing the energy needed for mixing and diminishing oxygen transfer for organism 

respiration (Szengyel, Zacchi et al. 1997). The revised 2010 NREL model, using 
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Trichoderma reesei as the on-site enzyme producing organism, describes using glucose 

as the initial feedstock for enzyme production. Although a soluble carbon source 

eliminates the non-productive binding of enzymes to the substrate, this approach requires 

an additional carbon input (i.e., glucose) from food crops. Furthermore, glucose is a 

cellulase inhibitor and must first be converted to sophorose, a cellulase expression 

inducer (Ilmén, Saloheimo et al. 1997; Lo and Ju 2009). This can be accomplished by 

treating glucose with T. reesei  cellulase at 65
o
C for three days (Mitchinson 2004). 

However, this step requires a 10% increase in cellulase production to support sophorose 

production (Barta, Kovacs et al. 2010; Kazi, Fortman et al. 2010) and increases energy 

inputs while adding additional steps and a higher potential for contamination. Over the 

past twenty years, innovative process design has been attributed to lowering the cost of 

biofuels (Wyman 2001; Humbird, Davis et al. 2011). Using this same line of reasoning, 

instituting a cultivation strategy that optimizes growth and extracellular enzyme 

production while minimizing the complexity of culture maintenance and enzyme 

recovery is needed to make on-site enzyme production a cost-efficient option. Although 

met with limited success, much of the current lignocellulosic biofuel research is focused 

on genetically modified organisms, thermo-tolerant species, and consolidating hydrolysis 

and alcohol production as a means to reduce cost. The approach described here focuses 

on optimizing reactor processes through enhanced control of biomass distribution, a 

strategy that has the potential to be used with current and future microorganisms.  

Whole-cell encapsulation in a porous hydro-gel matrix such as calcium alginate is 

one approach used in other bioconversion industries (e.g., pharmaceuticals, municipal 

waste and food production) to optimize bioreactor parameters (Kokufuta, Yukishige et al. 
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1987; Steenson, Klaenhammer et al. 1987; Park and Chang 2000; Talebnia, Niklasson et 

al. 2005). Encapsulation of microorganisms allows for high-density populations to be 

maintained in a bioreactor for prolonged and efficient bio-synthesis (Park and Chang 

2000; Kar, Mandal et al. 2008), while simultaneously simplifying separation of biomass 

from extracellular products (Kar, Mandal et al. 2008). 

Trichoderma reesei strain RUT C-30 produces large quantities of extracellular 

cellulases and xylanases and are commonly found in commercially available enzyme 

preparations (Nevalainen, Suominen et al. 1994; Mach and Zeilinger 2003; Kar, Mandal 

et al. 2008; Stricker, Mach et al. 2008; Ahamed and Vermette 2009). The highest titer of 

hydrolytic enzymes are produced during the stationary growth phase (Pakula 2005), 

suggesting that maintenance of high density stationary phase cultures is necessary for 

continuous cellulase and xylanase production. However, stationary phase cultures of T. 

reesei commonly support large amounts of hyphal biomass that complicate separation 

and purification of extracellular hydrolytic enzymes (Weber and Agblevor 2005; Patel, 

Choy et al. 2009).  

To address the challenges associated with integrating on-site enzyme production 

for lignocellulosic biofuel production, I have optimized operational parameters for a 

novel two-stage, semi-continuous bio-reactor. This design segregates on-site enzyme 

production and hydrolysis activities to separate reactors, allowing for simultaneous 

process optimization and a semi-continuous fed-batch operation of both reactors for 

extended time periods.  I investigated the utility of several soluble carbon sources 

including hydrolysis reactor effluent to maintain nursery culture growth and enzyme 

production.  I demonstrated that the novel two-stage reactor design produces enzymes 
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with consistently high levels of activity, shortened enzyme production times, and 

enhanced ease of catalyst separation. Utilization of a single feedstock for enzyme and 

fermentable sugar production increased hydrolysis throughput, diminished overall system 

complexity, and reduced the number/size of bioreactors and their associated capital costs. 

Materials and Methods 

 Strain and Media Preparation 

Trichoderma reesei RUT-C30 (NRRL 11460, ATCC 56765) used in this study 

was obtained with permission from the Department of Agriculture’s ARS Culture 

Collection.  Composition of the culture medium used for liquid cultures and agar plates 

was as follows (amounts for each ingredient are indicated in per liter values): KH2PO4 

(2g), MgSO4·2H2O (0.3g), CaCl2·2H2O (0.3g), FeSO4·7H2O (0.005g), MnSO4·4H2O 

(0.0016g), ZnSO4·7H2O (0.0014g), CoCl·6H2O (0.002g), (NH4)2SO4 (1.4g), Urea (0.3g), 

Peptone (1.0 g), Tween 80 ( 2 ml).  This media was filter sterilized and added to sterile 

carbon substrates.  Minimal media was supplemented with Avicel PH-101 (sigma 11365) 

(10.0g/L) for 2% agar plates and enzyme production experiments.   

Subculture Preparation  

T. reesei was grown on 2% agar plates at 30
o
C containing 1% Avicel for 3-4 days 

and stored at 30
o 
C for up to 3 weeks. Plugs from these plates were used as an innoculum 

for each experiment by aseptically introducing the agar plug into the media described 

above.  Subcultures with a working volume of 200 ml were incubated in 250 ml 

Erlenmeyer flasks at 30° C on a 200 RPM orbital shaker for four days.  Subcultures were 

concentrated to 40 ml by centrifugation at 7000 RPM for 5 min.  After centrifugation, the 
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fungal pellet was rinsed in sterile basal media three times, centrifuging as described 

above after each rinse.  

Hydro-Gel Preparation  

Calcium alginate bead production was performed using 2% sodium alginate 

solutions.  Sodium alginate solutions for hydro-gel encapsulation of T. reesei were 

produced using the following method: 6 g of Na-alginate (Fisher Scientific NC9676930) 

was slowly added to 286 ml of 100° C continuously stirred distilled water.  The solution 

was allowed to cool to room temperature and stirred until the Na-alginate dissolved.  pH 

of the alginate solution was adjusted to 5.7 using approximately 0.5 ml 1N HCl.  Distilled 

water was added to bring the total volume to 288 ml before autoclaving.  Twelve ml of 

subculture concentrate was added to the sterilized and cooled Na-alginate solution.  The 

hydro-gel was then polymerized by adding the solution drop-wise to a continuously 

stirred solution of 0.2 M CaCl2 at 4° C using a peristaltic pump and a 27½ Ga. needle.  

Hydro-gel beads were rinsed three times with an equal volume of basal media to remove 

excess CaCl2 and used immediately for experiments.  

Culture Conditions 

Nursery Reactor Experiments 

Enzyme synthesis experiments consisted of 62.5 ml of media and 20 g of calcium 

alginate beads.  Unencapsulated treatments were prepared using 62 ml media and 0.5 ml 

subculture concentrate.  A half milliliter of subculture concentrate and 20 g of T. reesei 

laden calcium alginate beads contained the same amount of T. reesei biomass, thus 

normalizing the initial biomass across encapsulated and unencapsulated treatments.  Both 

treatments were prepared in 250 ml Erlyenmeyer flasks and incubated on an orbital 
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shaker at 400 RPM.  Carbon substrates evaluated included purified cellulose (Avicel PH-

101), lactose, lodge pole pine sawdust ball-milled to <100 mesh size, concentrated acid 

hydrolysate of sawdust, and enzymatic hydolysate of Avicel or sawdust. All carbon 

substrate evaluations were carried out using unencapsulated T. reesei at 1% w/v or 1% 

v/v carbon concentrations except where noted. Nursery reactor runs consisted of up to 

four 72 hour batches. After each batch, the crude enzyme liquor was separated from the 

organism and retained for hydrolysis experiments. Nursery flasks were replenished with 

additional carbon substrate media after removal of the enzyme-laden supernatant. For 

encapsulated treatments, the enzyme cocktail was simply drawn off using a serological 

pipette. To separate unencapsulated T. reesei from the supernatant, treatments were 

transferred to 50 ml tubes and centrifuged at 5000 RPM for 10 minutes.  

Hydrolysis Reactor Experiments 

Fifty ml centrifuge tubes containing 35 ml of nursery reactor effluent, 5 ml citrate 

buffer (pH 4) and 0.4g Avicel or ball-milled sawdust were incubated on a 200 RPM 

orbital shaker at 50
o
C for 72 hours.  After the 72-hour incubation samples were collected 

and a fraction was preserved for HPLC analysis by boiling for 10 minutes to stop 

enzymatic activity and stored at -20
o 
C. 

Pilot Reactor Experiments 

The pilot reactor consisted of two 52 liter stirred tank reactors.  Nursery and 

hydrolysis reactions were carried out simultaneously. Nursery incubations were scaled to 

46 liters. At the end of 72 hours, nursery effluent was transferred to the hydrolysis reactor 

and the nursery was replenished with fresh 1% Avicel media. Hydrolysis reactions were 
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scaled to 38 liters and were incubated for 72 hours in 1% Avicel at a pH of 4.8 and a 

temperature of 50
o 

C.  

Cellulase Activity Measurements 

Cellulase activity was determined using the standard colorimetric Filter Paper 

Assay adapted for micro-plate use (Xiao, Storms et al. 2004).  Briefly, an aliquot of 

enzyme preparation was added to a defined mass of known quality cellulose paper and 

incubated at 50°C in 0.2M citrate buffer at pH 4 for one hour.  After incubation, DNS 

reagent (Xiao, Storms et al. 2004) was added and samples were incubated at 95°C for 5 

minutes.  Absorbance was measured at 540 nm, reducing sugars released were 

determined by comparison to a glucose standard, and enzyme activity reported as Filter 

Paper Units (FPU)/ml.  One FPU is defined as the amount of enzyme that will liberate 1 

µmol of glucose equivalents from the filter paper in 1 minute.  Enzyme activity is 

expressed as glucose equivalents because this assay detects, not just glucose, but all 

reducing carbohydrates.  

Xylanase Activity Measurement 

Xylanase activity measurements were determined using a colormetric assay 

similar to the cellulase filter paper assay. As described by Bailey (1992), an aliquot of 

enzyme preparation was added to a 1% xylan solution (pH 5.8) and incubated at 50°C for 

5 minutes.  After incubation, to stop the reaction and to develop the color, DNS reagent 

(Xiao, Storms et al. 2004) was added and samples were boiled for 20 minutes. Fifty 

microliters of reaction was added to a 96-well microplate containing 150 µl distilled 

water. Absorbance was measured at 540 nm, reducing sugars released were determined 

by comparison to a xylose standard, and enzyme activity reported as Xylanase Activity 
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Units (XAU)/ml.  One XAU is defined as the amount of enzyme that will liberate 1 µmol 

of xylan equivalents in 1 minute.   

Biomass Determinations 

With the exception of yeast, micro-fungi are not comprised of discrete cells 

making conventional cell counting methods impractical.  Total biomass levels were 

determined using a standard Bradford (coommasie blue) assay kit (Thermo-Fisher 23200) 

for total soluble protein. Aliquots were taken from unencapsulated treatments and hyphal 

pellets were collected by centrifugation at 5000 RPM for 5 minutes. Hyphal pellets were 

washed in sterile minimal media three times, centrifuging after each wash as described 

above.  Fungal hyphae were lysed by adding a 0.1 M NaOH to the pellet and incubating 

at 4° C overnight.  One milliliter of pellet solution was added to 0.5 g silicon beads 

(BioSpec Products Cat. #11079101Z) and subjected to bead beating using a Fastprep FP 

120 (MP Biomedicals, Solon, OH) at a setting of 6.5 for 45 seconds.  Samples were put 

on ice for 5 minutes between each round of bead beating.  Bead beating was repeated 3 

times and followed by a 20-minute incubation in a 100
o
 C water bath.  Biomass from 

encapsulated treatments was determined by dissolving the Ca-alginate matrix in a 0.1M 

Na-citrate buffer.  The liberated mycelia mass was then lysed using the procedure 

described for unencapsulated treatments.  The resulting soluble proteins were measured 

colorimetrically by adding 250 µl of commassie blue reagent at room temperature to 5 µl 

of prepared sample.  After a 10-minute incubation in the dark at room temperature, 

absorbance at 540 nm was measured.  Total protein levels were converted to estimates of 

Cell Dry Weight (CDW) as describe previously (Zhang, Lo et al. 2009).  
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Quantities of culture media proteins (e.g. extra-cellular proteins) were determined 

by using the initial supernatant from the CDW pellet directly with the Bradford method.  

Results and Discussion 

Integrated Reactor Design Fed-Batch Cycle Optimization 

An advantageous integrated enzyme production and hydrolysis reactor system 

must simplify the process of enzyme/organism separation while allowing for continuous 

or semi-continuous reactor operation. Biomass-enzyme separation in our experiments 

was achieved quickly and efficiently by merely stopping agitation of the reactor. Within 

seconds, the alginate-encapsulated mycelium settles to the bottom of the reactor and then 

the enzyme-laden supernatant can simply be decanted or pumped from the reactor.  

Moreover, we have successfully reused the alginate-encapsulated fungus for multiple 

reactor runs lasting up to three weeks in duration.   

Optimization of Nursery Reactor Fed-Batch Intervals 

Initial nursery fed-batch experiments were counducted at 144-hour batch 

intervals. Three successive incubations of encapsulated T. reesei produced increasingly 

higher levels of filter paper activity. Cellulase activity increased from 1.04 FPU/ml 

during the initial run to 1.46 FPU/ml and 1.51 FPU/ml at the end of two subsequent runs.  

However, cell growth accumulation in the supernatant approached unencapsulated levels 

by the end of the third incubation (Figure 2.1a and Figure 2.1b). During the 144-hour 

reactor runs, approximately 91% of total enzyme activity was achieved by 72 hours. 

Therefore, shorter 72-hour nursery fed-batch reactions were performed and evaluated for 

enzyme activity and supernatant cell growth. Although initial cellulase activity of the 

encapsulated treatment was approximately 20 - 40% lower than its unencapsulated 
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control, by the third batch similar cellulase activity (1.61 FPU/ml) was observed in both 

reactors (P=  0.97) (Figure 2.1c). At the end of the fourth batch, encapsulated reactor 

cellulase activity (1.76 FPU/ml) was significantly higher (P=  0.03) than unencapsulated 

reactors (1.30 FPU/ml).  

Shorter batches also limited cell growth outside the encapsulation matrix. Over 

the course of four 72-hour batch experiments free biomass in the encapsulated reactor did 

not exceed 2.4 mg CDW/ml. This concentration of biomass was 65% less than observed 

in unencapsulated reactors (Figure 2.1d) and 23% less than encapsulated 144-hour batch 

reactors during the same time period. 

Optimization of Nursery Reactor Volume 

Nursery reactor configuration was modulated to examine how surface area to 

volume ratios between the air-media interface affect bioreactor productivity. Reactors 

with surface area to volume ratios (mm
2
:ml) of 19.47 and 53.45 were evaluated. Prior 

work by our group determined that these ratios influence T. reesei enzyme production 

rates (Deis, Bala et al. 2011). Preliminary nursery reactor experiments consisting of one 

144-hour run revealed that at 19.47 mm
2
:ml, the unencapsulated reactor yielded 0.70 

FPU/ml and 0.56 FPU/ml for the encapsulated reactor. Increasing the ratio to 53.45 

mm
2
:ml doubled FP activity for both unencapsulated and encapsulated treatments (1.36 

FPU/ml and 1.12 FPU/ml, respectively). Additional experiments were conducted to 

assess if this pattern held true for multiple short reactor runs (i.e., four 72-hour batches) 

when the T. reesei innoculum was being reused. Reactor volume had no significant effect 

on cellulase activity over the course of 4 batches for both unencapslated (P=  0.78) and 

encapsulated treatments (P=  0.08) (Table 2.1). Additionally, there was no significant 
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difference in overall reactor productivity (FPU/L
∙
hour) between unencapsulated and 

encapsulated at 53.45 mm
2
:ml (P=  0.035).  It is noteworthy that the 19.47 mm

2
:ml 

unencapsulated reactor reached a peak activity of 1.52 FPU/ml at the end of the 2
nd 

cycle 

and 1.76 FPU/ml at the end of the 3
rd

 cycle of reactions while encapsulated cellulase 

activity continued to increase over the entire run at both volumes. Although 53.45 

mm
2
:ml reactors had higher mean productivity, crude enzymes from the larger 19.47 

mm
2
:ml nursery reactors were used to ensure that there was enough effluent to evaluate 

performance of purified cellulose (Avicel) and ball-milled sawdust hydrolysis reactors. 

Evaluation of Purified Cellulose and Ball-Milled Sawdust as C-Substrates for Growth 

and Cellulase/Xylanase Production in the Hydrolysis Reactor 

Reducing sugars released by crude enzymes from encapsulated nursery reactors 

were similar to or higher than reactors containing unencapsulated nursery enzymes 

despite lower nursery cellulase activity (Figure 2.2a) when the hydrolysis reactors 

contained Avicel. Although reducing sugars released from ball-milled sawdust in 

hydrolysis reactions containing enzymes from encapsulated nursery reactors trended 

lower for each batch, hydrolysis activity was only significantly different between 

encapsulated and unencapsulated effluent fed reactors during the first batch (Figure 2.2b).  

To determine sugar composition of the hydrolysis reactor output, HPLC analysis 

was performed on 12-hour samples from the third hydrolysis batch. Interestingly, similar 

sugar composition trends between encapsulated and unencapsulated hydrolysis reactors 

were observed regardless of substrate.  For example, both Avicel and sawdust, 

encapsulated hydrolysis reactors contained half the cellobiose (glucose dimers) and 

approximately twice the glucose of unencapsulated treatments (Table 2.2). Additionally, 



50 

 

 

though not optimized for xylanase production, encapsulated nursery enzymes produced 

twice the xylose of their unencapsulated counterparts.  

Increased output of easily fermentable monosacchrides (i.e., glucose and xylose) 

may have been caused by the low levels of fungal cells detected in the encapsulated 

nursery reactor supernatant.  Cellulose is hydrolyzed into cellobiose by the action of 

endo- and exo-gluconases (i.e., cellulases) (Jørgensen, Kristensen et al. 2007). Cellobiose 

is then converted to glucose monomers by the hydrolytic activity of ß-glycosidase 

(Jørgensen, Kristensen et al. 2007). Xylose is hydrolyzed by xylanases in the same 

manner. In the absence of ß-glycosidase, cellobiose can accumulate and act as an 

inhibitor of cellulose activity (Bezerra and Dias 2004; Bezerra and Dias 2005; Andrić, 

Meyer et al. 2010b). In fact, a 60% reduction in cellulase activity can be observed at a 

cellobiose concentration of 6 g/L (Nag 2008). Similarly, the unencapsulated effluent fed 

Avicel hydrolysis reactor (1.14 g cellobiose/L) produced nearly 38% less reducing sugars 

than the encapsulated fed hydrolysis reactor. The lower cellobiose concentrations of the 

sawdust hydrolysis reactors may exhibit less inhibition and in turn account for the 

relative difference in encapsulated reactor performance compared to unencapsulated (i.e., 

higher hydrolysis rates for Avicel and similar rates for sawdust).  

T. reesei ß-glycosidase is, for the most part, an intracellular enzyme and its 

activity is considered to be the rate-limiting step of cellulose hydrolysis (Slade, Bauen et 

al. 2009). We hypothesized that the increased temperature from 30° C in the encapsulated 

nursery reactor to the optimal saccharification temperature of 50° C in the hydrolysis 

reactor would facilitate autolysis of any transferred T. reesei hyphae and subsequent ß-

glycosidase release. This would, in turn, result in more conversion of cellobiose to 
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monosaccharides, which can be fermented to liquid biofuels. CDW analysis of the 

hydrolysis reactor cell pellets revealed lower biomass density at the end of 72 hours, 

suggesting a loss of soluble proteins through cell lysis, supporting this hypothesis.  

Pilot Reactor Scale-Up 

To evaluate performance of the integrated reactor design at larger volumes, 72-

hour fed-batch reactions were scaled up by three orders of magnitude using an integrated 

two-stage stirred-tank pilot reactor (Figure 1.3).  The nursery reactor (left), with a 

working volume of 46 liters, and hydrolysis reactor (right), with a working volume of 38 

liters were controlled for pH and temperature. Crude enzyme liquor from the nursery 

reactor was pumped aseptically into the hydrolysis reactor leaving the encapsulated T. 

reesei behind. Fresh media and Avicel were added to the nursery at the beginning of each 

batch.  

Nursery reactor agitation was initially set at 1400 RPM. At the end of the first 72-

hour batch, cellulase activity (0.2 FPU/ml) was 6 times lower than the bench top 

experiments while xylanase activity (1.03 XAU/ml) was similar to levels observed in the 

bench top-scale reactors (Figure 2.4).  Since high sheer stress from aggressive agitation 

can significantly lower cellulase production (Lejeune and Baron 1995; Ahamed and 

Vermette 2010) and activity (Gunjikar, Sawant et al. 2001; Jørgensen, Kristensen et al. 

2007; Ahamed and Vermette 2010), agitation was reduced to 700 RPM for the second 

batch. At 700 RPM, specific cellulase activity (FPU/g extracellular protein) decreased 

slightly but yielded the highest cellulase production and activity (0.42 FPU/ml). Absolute 

xylanase activity (XAU/ml) and specific activity (XAU/mg extracellular protein) dropped 

38% and 77%, respectively. Further reduction of agitation in the 3
rd

 batch resulted in the 
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lowest reactor productivity for both enzymes. Agitation in the nursery reactor greatly 

affects enzyme production and activity  (Lejeune and Baron 1995; Patel, Choy et al. 

2009; Ahamed and Vermette 2010). The close similarity of specific cellulase activity at 

1400 and 700 RPM suggests that the higher agitation rate was affecting cellulase 

production and not enzyme activity (i.e., enzyme deactivation). The higher xylanase 

activity at 1400 RPM agree with Lejeune and Baron (1995) who observed that xylanase 

production increases in relation to cellulase production at higher agitations when Avicel 

is used as the carbon source. Other factors could have potentially contributed to higher 

xylanase production at 1400 RPM as well. During a comparison of 500 ml shake flasks 

and 10 L stirred tank reactors, Antonio Rocha-Valadez, Estrada et al. (2006) found that 

production of 6-pentyl-α-pyrone by Trichoderma harzianum occurred earlier in the 

stirred tank reactor than in the shake flasks, suggesting that hydro-mechanical forces 

influence expression characteristics of secondary metabolites. It is possible that a similar 

process is responsible for the increased xylanase production at 1400 RPM in our system. 

Lastly, xylanase synthesis is favored at a pH of 6 while cellulase production increases at a 

pH of 5. The pH of the first batch ranged from 5.0 to 5.69 where the 2
nd

 batch ranged 

from 5.0 to 3.98. Furthermore, the drop in total enzyme activity at 350 RPM suggests that 

aeration was limiting enzyme production. These results underscore the important role 

agitation and other environmental factors have on reactor productivity characteristics. 

Overall fungal density reached levels seen in bench-top nursery reactors, though a 

larger fraction was detected in the culture media. This is not surprising as the beads 

showed signs of degradation at the end of batch 2, likely due to high mechanical shear 

forces during the first nursery reactor run. The increased fungal biomass transferred to the 
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hydrolysis reactor did not exhibit growth nor did it seem to negatively impact the 

saccharification step.  

Despite lower nursery productivity in the 46 L reactors relative to the bench-top 

scale, hydrolysis activity was not greatly attenuated.  A majority of the hydrolysis 

occurred within the first 36 hours during batch 2, similar to bench-top experiments 

(Figure 2.5). Additionally, sugar production was only 5.5% less than that observed in 

flask reactors (P=   0.018). The relatively similar activity of the hydrolysis reactor at both 

large and small scales may be due the non-linear relationship between enzyme loading 

and hydrolytic activity (i.e., diminishing returns at higher enzyme loading) (Wyman, 

Grohmann, Lastik 1986; Kim, Irwin et al. 1998; Bezerra and Dias 2004; Zhang, Su et al. 

2010). Although the pilot scale nursery reactor enzyme output was 65% lower than the 

bench-top scale at the end of batch 2, the hydrolysis reactor was being dosed with 42 

FPU/g cellulose, twice the amount determined sufficient in the NREL saccharification 

model (Kazi, Fortman et al. 2010). This observation is in agreement with finding from 

other investigations that suggest increasing enzyme concentration beyond 35-50 FPU 

does not substantially improve hydrolysis yield (Wyman, Grohmann, Lastik 1986; 

Zhang, Su et al. 2010).  

Nursery Carbon Source Evaluation 

Encapsulated T. reesei produces significant quantities of lignocellulose 

hydrolyzing enzymes when grown on purified cellulose (Avicel) and on less expensive, 

and therefore, more industrially relevant feedstocks.  Several soluble carbon sources have 

been identified as inducers of cellulose, such as cellobiose, lactose, and sophorose. 

However, these inducers are either not as potent as cellulose (e.g., lactose) or are very 
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expensive (e.g., sophorose).  Lo, Zhang et al. (2005) demonstrated that hydrolysate from 

concentrated acid treated lignocellulose induced cellulase production. Here I evaluated 

several feedstocks for their potential as growth and cellulolytic enzyme production 

substrates for T. reesei in the bench-scale nursery reactors including effluent from the 

hydrolysis reactor.  Cellulase induction results for lactose and acid hydrolyzed sawdust 

were similar to results reported in the literature but less than Avicel. Interestingly, 

effluent from enzymatic hydrolysis of both ball-milled sawdust (0.11% reducing sugars) 

and Avicel (0.57% reducing sugars) produced activity (FPU/g carbon substrate) higher 

(80% and 27.5% respectively) than 1% Avicel (Table 2.3). These high levels of enzyme 

activity:carbon substrate ratios were also observed for xylanase activity.  Specifically, the 

sawdust and Avicel hydrolysate produced approximately 67% and 15% more xylanase 

per gram of carbon than Avicel treatments. Our analysis also examined substrate cost. 

Based on a sawdust price of $50/ton, sawdust hydrolysate produced the least expensive 

enzymes. It is important to note that expenses associated with feedstock processing (e.g., 

ball-milling, acid neutralization, and sophorose conversion) were not taken into account 

and would attribute to enzyme production cost. Due to the nature of the integrated reactor 

design, hydrolysis effluent used for maintaining the nursery would require minimal if any 

processing. Results of these studies suggest that using a fraction of the hydrolysis reactor 

output to sustain growth and enzyme production in the nursery reactor is a simple and 

cost-effective method for prolonged and continuous enzyme production.  

Economics of an Encapsulated Nursery Reactor vs. NREL Base Case 

An economic-sensitivity analysis was conducted to determine how reactor and 

encapsulation parameters affect enzyme production costs at a commercial scale over 10 
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years. The intent of this evaluation was not to determine feasibility of the currently 

proposed encapsulated reactor system as much as it was to identify critical areas of focus 

that could most influence cost reduction during commercial-scale development of this 

enzyme production approach.  

Enzyme production costs were calculated as kg extracellular protein/initial 

equipment cost + encapsulation reagents. To evaluate the affect of reaction characteristics 

on enzyme costs, several assumptions were used to provide a straightforward and 

simplified model for comparison.  One major assumption used in this model is that the 

large, commercial-scale encapsulated reactor design is in an n
th

 plant (i.e., optimized 

reactor parameters) and enzyme production performance is similar to the NREL base case 

(Humbird, Davis et al. 2011). Considering the lack of general information on 

encapsulation equipment prices, $150,000 was used for hydro-gel production equipment 

and consumables were estimated to be $0.30/kg of finished encapsulation matrix.  

Additional operational parameters of both NREL and encapsulation base models are 

listed in Table 2.4.  

Equipment costs for the encapsulated nursery model ranged from $750,000 or 9% 

below the NREL base case when the enzyme production reactor size was kept the same 

This reduced cost was due to the elimination of multiple pre-enzyme production seed 

reactor trains needed to inoculate the shorter reactor runs of the NREL model. Increasing 

encapsulated reactor size to compensate for the liquid fraction displaced by the 

encapsulation matrix increased capital costs by $1.4 million or 16% over the NREL base 

case. Although these differences in costs may not have a dramatic affect on long term 

enzyme costs, they may be of importance when acquiring initial capital. 
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Alternative reactor scenarios were based upon a combination of our experimental 

data and published literature. For instance, the NREL model describes a 96-hour enzyme 

production period while my results reveal maximum enzyme production has occurred by 

72 hours. Additionally, I found that reducing the sodium alginate solution from 2% to 

1.5% has no significant affect on encapsulation matrix performance. Reducing the hydro-

gel diameter has also been shown to increase mass-transfer and enzyme production while 

fluidized bed reactors may provide additional encapsulation matrix longevity. Although 

many of the encapsulated scenarios suggest higher annual enzyme yield and a cost 

benefit during the first year, there is an increase in enzyme cost over the remaining nine 

years that can be attributed to the cost of encapsulation matrix reagents. Reducing the 

amount of alginate needed (e.g., sodium alginate concentration and hydro-gel volume in 

the reactor) or increasing encapsulation matrix shelf-life had more impact on enzyme 

costs than did increased reactor volume or reactor productivity. Decreasing the 

encapsulation cost of a 390 kiloliter reactor producing 0.24 kg protein/l from $14,040 to 

$7,000 per run could lower the cost of enzyme production from $0.038/kg (NREL base 

case) to $0.037/kg resulting in a savings of $330,000 to $475,000 over 10 years 

depending on annual enzyme yields. This cost reduction could be realized by extending 

the encapsulation matrix shelf life to 45 days, reducing hydro-gel volume in the reactor to 

11% or a combination of these two approaches.   

Conclusion 

On-site enzyme production is one possible strategy to lower the cost of 

lignocellulosic biofuels. We have established a whole-cell encapsulation approach that 
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enables both high levels of enzyme production, simplified catalyst recovery, and efficient 

hydrolysis for extended periods of time.   

Decreasing the nursery reactor incubation period from 144 hours to 72 hours 

improved reactor productivity (i.e., volumetric cellulase activity and FPU/gram of 

Avicel) during fed-batch reactions. Encapsulated nursery reactors reached productivity 

levels (FPU/L∙hour) similar to unencapsulated reactors when surface area:volume ratios 

were increased. Even when encapsulated nursery reactor productivity was lower than 

unencapsulated reactors, hydrolysis performance, for the most part, was similar or higher 

when encapsulated nursery enzymes were used. Furthermore, higher quality sugars (i.e., 

glucose and xylose) were being produced in these reactors. At pilot scale, the nursery 

reactor produced less enzymes though hydrolysis performance was only slightly affected.  

Enzymatic hydrolysate of sawdust, when used as a carbon source in the nursery 

reactor, produced higher enzyme activity than other traditional, more expensive cellulase 

inducing substrates. These results serve to illustrate that an integrated on-site enzyme 

production and hydrolysis reactor system can be easily maintained and operate at high 

levels of productivity for extended periods of time. These results also suggest that this 

system has the potential to be successfully scaled to an industrially relevant size.   
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Figure 2.1. Filter Paper Activity and Unencapsulated Hyphal Growth as a Function 

of Fed-Batch Retention Time. A) FP Activity and B) Unencapsulated Mycelia 

Accumulation of 3 Successive 144 Hour Encapsulated Fed-Batch Runs Compared to 

a Single 144 Hour Unencapsulated Batch. C) Cellulase Activity and D) 

Unencapsulated Mycelial Accumulation in Encapsulated and Unencapsulated 

Reactors During Four Successive 72 Hour Fed-Batch Runs. * Denote Significant 

Difference in FP Activity When Compared to the Unencapsulated Treatment 

(P<0.05). 
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Table 2.1. The Effect of Reactor Surface Area:Volume Ratio on Nursery Reactor 

Productivity During Four 72 Hour Fed-Batch Runs. Values Represent the Mean ± 

Standard Deviation; n=3.  * Denotes a Significant Difference Between Treatments 

(P<0.05). 
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Figure 2.2. Reducing Sugar Production During 4 Successive Hydrolysis Batch 

Reactions Containing A) Avicel or B) Ball-Milled Sawdust.  * Denotes a Significant 

Difference Between Treatments During the Same Batch (P<0.05). 
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Table 2.2. A Comparison of Hydrolysis Reactor Sugar Production with Avicel and 

Sawdust Substrates. Values Represent the Mean ± Standard Deviation; n=3. 
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Figure 2.3. The Pilot Scale Integrated Nursery Reactor (left) and Hydrolysis 

Reactor (right) System. 
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Figure 2.4. A Comparison of  A) Cellulase and B) Xylanase Activity as a Function of 

Time During 3 Successive Pilot-Scale Fed-Batch Reactions. 
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Figure 2.5. Reducing Sugar Production From Avicel as a Function of Time During 

Pilot-Scale and Bench-Top Scale Hydrolysis Reactions.  
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Table 2.3. Comparison of Cost and Cellulase Induction Properties of Various 

Carbon Substrates. 
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Table 2.4. NREL and Encapsulated Nursery Reactor Base Case Models for 

Commercial Scale Enzyme Production. 
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Table 2.5. Economic Evaluation of Different Commercial Scale Encapsulated 

Nursery Reactor Scenarios. 
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CONCLUSION 

On-site enzyme production is one possible approach to improve the economic 

viability of lignocellulosic biofuels. To this end, we have developed a novel two-stage 

enzyme production and hydrolysis reactor. Encapsulating an industry relevant 

lignocellulosic enzyme producing organism allows for extended enzyme production, ease 

of catalyst recovery, and enhanced hydrolysis activity. Encapsulated enzyme production 

was similar to unencapsulated nursery reactors over 4 consecutive 72-hour batch runs. 

Reducing sugar concentrations of Avicel hydrolysis reactors containing crude enzymes 

from encapsulated nursery reactors were similar to, or higher than, reactors containing 

unencapsulated nursery enzymes. Furthermore, effluent from encapsulated treatments 

produced nearly two times more fermentable sugars from Avicel. Pilot-scale reactions 

yielded fewer enzymes in the nursery reactor though hydrolysis performance was only 

minimally affected. Enzymatic hydrolysate of sawdust when used as a carbon source in 

the nursery reactor produced higher enzyme activity than other traditional and more 

expensive cellulase inducing substrates.  

These results serve to illustrate that an integrated on-site enzyme production and 

hydrolysis reactor system can be self-maintained and operate at high levels of 

productivity for extended periods of time. These results also suggest that this system has 

the potential to be successfully scaled to an industrially relevant size.  An on-site 

biochemical hydrolysis approach, such as this one, that focuses on optimizing the spatial 

and environmental parameters of the bioreactor may play  an increasingly relevant role in 
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the bio-transformation arena as continued advances in bio-prospecting and molecular 

biology provide industries with improved strains and more efficient enzymes.
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