


DES lensing and galaxy clustering forecasts 5383

high values. As discussed previously this leads to a decrease in the 
satellite fraction and therefore depresses the 1-halo term. The origin 
of the small-scale impact of n s is not obvious, but we suspect it 
derives from the effect of the power spectrum shape on the halo mass 
function. 

3.4 Summary 

Regardless of the detailed explanations of each curve in Fig. 2 , 
our critical finding is that each parameter that has a significant 
impact on �� or w p , gg does so with a distinct scale dependence, 
which is typically different for the two observables. Therefore, 
even though the HOD introduces many free parameters, precise 
measurements of �� and w p , gg o v er a wide dynamic range provide 
enough information to break parameter degeneracies and achieve 
tight constraints on cosmological parameters. The distinctive scale 
dependence arises because we span the linear , trans-linear , and 
fully non-linear regimes. Modelling measurements into small scales 
thus offers the prospect of significantly improving cosmological 
inferences from weak lensing and galaxy clustering data, as we 
demonstrate in subsequent sections. 

4  C OVA R I A N C E  ESTIMATION  

We use a combination of analytic and numerical methods to compute 
the observ able cov ariance matrix for w p , gg and ��. We analytically 
compute the �� covariance using a Gaussian formalism, i.e. 
assuming the galaxy and matter fields are Gaussian random and 
adding a shape noise contribution (e.g. Singh et al. 2017 ; Wibking 
et al. 2020 ). Recently, Wu et al. ( 2019 ), in the context of cluster weak 
lensing, showed that the standard Gaussian formalism for computing 
the lensing covariance becomes insufficient when the large-scale 
structure contribution to the covariance becomes comparable to 
shape noise. Because our �� covariance is shape-noise dominated 
we utilize the standard Gaussian formalism, but we note that in a 
deeper weak lensing surv e y than DES it may become insufficient 
for g alaxy–g alaxy lensing as well. Because the lensing covariance 
matrix is shape-noise dominated, we also ignore the cross-observable 
covariance with w p , gg and treat the two observables as independent 
in all that follows. 

We include a correction to the �� covariance matrix to analyti- 
cally marginalize o v er potential contributions from a point mass at the 
center of each galaxy lens (e.g. MacCrann et al. 2020 ; Wibking et al. 
2020 ). This enclosed point mass, which is allowed to be positive or 
ne gativ e, can represent the impact of small-scale substructure that is 
unresolved and absent from our simulations. It can also characterize 
the impact of baryonic physics effects like dissipation and feed- 
back. In the covariance matrix, the point-mass correction takes the 
form, 

˜ C = C + σ 2 v v T , (18) 

where v is a column vector with values 
[
r −2 
p, 0 , r 

−2 
p, 1 , ..., r 

−2
p,N 

]
and σ is 

the width of the Gaussian prior on the enclosed point mass. We use 
the Sherman–Morrison matrix identity and assume a flat prior on σ
(e.g. MacCrann et al. 2020 ; Wibking et al. 2020 ), yielding 

˜ C 

−1 = C 

−1 − C−1 v v T C 

−1

v T C 

−1 v 
. (19) 

To compute the covariance for w p , gg , we use a combination of 
analytic and numerical methods. Unlike �� the covariance for w p , gg 

contains a significant non-Gaussian contribution, particularly at small 

scales. 3 To account for this contribution we use bootstrap methods to 
numerically compute the covariance using the 20 (1100 . 0 h 

−1 Mpc ) 3 

simulation boxes of a fiducial cosmology with different phases 
from Garrison et al. ( 2018 ). Each box is divided into 25 equal 
area subvolumes in the x − y plane. In each subvolume w p , gg is 
computed in projection for the fiducial HOD model. We obtain 500 
bootstrap resamples by choosing 500 subvolumes with replacement 
and averaging w p , gg for each resample. These bootstrap resamples are 
used to compute the covariance for w p , gg . This numerical covariance 
matrix is inherently noisy and may lead to optimistically biased 
forecasted parameter constraints. For this reason we also compute 
the Gaussian covariance for w p , gg (e.g. Cooray & Hu 2001 ; Marian, 
Smith & Angulo 2015 ; Krause & Eifler 2017 ; Singh et al. 2017 ) 
and use the diagonal elements of the numerical covariance matrix to 
normalize the analytic correlation matrix. Thus, our final covariance 
matrix uses the Gaussian model to compute off-diagonal correlations 
and the numerical simulations to compute variances and to scale 
correlations to covariances. 

Our forecasts are meant to model DES weak lensing and galaxy 
clustering with redMaGiC selected galaxies. Consequently, we 
consider three bins of redshift for our galaxies, z = 0.15 −0.35, 
z = 0.35 −0.55, and z = 0.55 −0.75, and we assume a surv e y area 
of � = 5000 deg 2 . These bins are modelled using AbacusCosmos 
simulation snapshots at z = 0.3, z = 0.5, and z = 0.7, respectively, 
which are also assumed as lens redshifts when calculating � crit . Mean 
source redshifts are computed using the source redshift distribution 
of Rozo, Wu & Schmidt ( 2011 ). This source redshift distribution is 
also used to compute source surface densities in each bin assuming 
a total source surface density of � src = 10.0 arcmin −2 . We assume a
shape-noise per galaxy of σγ = 0.2. 

5  C O S M O L O G I C A L  FORECASTS  

5.1 Fiducial scenario 

We forecast parameter constraints for our fiducial scenario, a DES- 
like surv e y, with the co variance matrix described in Section 4 and 
deri v ati ves calculated by finite difference from emulator predictions 
described in Section 3.3. Additionally, we impose a 5 per cent 
Gaussian prior on the galaxy number density and a 3 per cent prior 
on A lens . The parameter A lens allows for some amount of scale 
independent lensing bias. It can be thought of as representing some 
combination of uncertainty in shear calibration and photometric 
redshift errors that lead to uncertainty in � crit . Our choice of a 
3 per cent prior on A lens is loosely moti v ated by MacCrann et al. 
( 2022 ) and Myles et al. ( 2021 ). Note that we forecast constraints for 
the natural logarithm of our parameters, except for Q cen and Q sat , 
which can be zero or ne gativ e. 

Our fiducial scenario combines w p , gg and �� with information 
from 0 . 3 h 

−1 Mpc < r p < 30 . 0 h 

−1 Mpc in the z = 0.35 −0.55 red- 
shift bin. We focus on this single redshift bin for the sake of clarity, 
chosen because it produces the strongest constraints. In Section 5.4 
we examine constraints from our other redshift bins. Results for 
this fiducial case are shown in Fig. 3 . The bottom left block shows 
our forecast with all cosmological parameters other than �m and 
σ 8 fixed. The upper right block shows the fiducial constraints 
on all cosmological parameters (note that these constraints are 

3 fig. 5 of Salcedo et al. ( 2020b ) shows the magnitude of this non-Gaussian 
contribution, boosting the diagonal elements of the w p , gg covariance matrix 
by a factor of 3 on 1-halo scales. 
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Figure 3. Forecast parameter constraints (68 per cent and 95 per cent contours) for our fiducial scenario, assuming DES-Y6 surv e y parameters for galaxies 
between z = 0.35 −0.55, and using all scales 0 . 3 < r p < 30 . 0 h −1 Mpc of �� and w p , gg . The bottom block shows constraints on �m and σ 8 and all of our 
HOD parameters while holding all other cosmological parameters ( H 0 , w 0 , n s ) fixed at their fiducial values. The upper right block shows constraints on all 
cosmological parameters while marginalizing o v er all HOD parameters. Fully marginalized errors on each parameter are listed abo v e each PDF panel. Standard 
HOD parameters are labelled in green, extended HOD parameters in blue, and cosmological parameters in black. 

marginalized o v er all other HOD and nuisance parameters, which 
have been suppressed for visual clarity). Typically other data, such 
as CMB anisotropies, the supernova Hubble diagram, and the galaxy 
power spectrum, provide tight constraints on H 0 , w 0 , and n s , so the 
fixed parameter case is more representative of what DES can achieve 
on ( �m , σ 8 ) in a multiprobe analysis. 

When σ 8 and �m are our only cosmological parameters the best 
constrained combination of the two is σ8 �

0 . 438 
m 

, with a 1 σ uncertainty 
of 2 . 19 per cent after marginalizing o v er the halo–galaxy connection. 

Individual marginalized constraints on σ 8 and �m are 2 . 6 per cent 
and 3 . 2 per cent . Our choice to constraint σ 8 ( z = 0) rather than 
σ 8 ( z = 0.5) affects the �m − σ 8 constraint slightly because of the 
effect of �m on the gro wth factor, but the ef fect is smaller than our 
precision. F or e xample, a 3 . 0 per cent dif ference in the v alue of �m 

corresponds to a sub-per cent change in the linear growth factor at 
z = 0.5. There are significant degeneracies between σ 8 and HOD or 
nuisance parameters, particularly A lens and α. In the case of �m , there 
is a significant de generac y with Q cen , likely due to the large scales of 
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Table 2. Parameter forecast uncertainties with H 0 , w 0 , and n s and fixed, in the z = 0.5 bin. 

Case � ln A lens � ln �m � ln σ 8 � ln S 8

�� and w p , gg , A lens fixed – 0.031 0.021 0.012 
�� and w p , gg , A lens free, 3 per cent prior 0.028 0.032 0.026 0.022 
�� and w p , gg , A lens free, no prior 0.078 0.037 0.047 0.053 
�� and w p , gg , No point-mass, A lens fixed – 0.031 0.021 0.012 
�� and w p , gg , No point-mass, A lens free, 3 per cent prior 0.028 0.031 0.026 0.022 
�� and w p , gg , No point-mass, A lens free, no prior 0.078 0.036 0.047 0.053 

w p , gg . Among HOD parameters σ log M 

and M 1 / M min exhibit a strong 
de generac y, leading to poor constraints on both parameters. This is 
unsurprising as both parameters have virtually the same effect on 
both of our observables (see Fig. 2 ). Interestingly f cen also exhibits 
a strong de generac y with both σ log M 

and M 1 / M min , likely due to 
the way all three parameters affect w p , gg . Our two assembly bias 
parameters, Q cen and Q sat , also exhibit a strong de generac y with 
each other, likely due to their similar scale dependence at large r p . 
Constraints on Q cen are much tighter than constraints on Q sat because 
it has a much stronger effect on our observables. 

When we forecast with all other cosmological parameters free 
we find constraints of 4 . 4 per cent and 7 . 7 per cent on σ 8 and �m , a 
degradation by roughly a factor of 2. In this case, the best constrained 
combination of σ 8 and �m is σ8 �

0 . 444 
m 

with a forecasted constraint of 
2 . 79 per cent , moderately degraded from the 2 . 19 per cent constraint 
with fixed H 0 , w 0 , and n s . With DES data alone, much of the ability 
to break the �m − σ 8 de generac y comes from the shape of w p , gg , 
but the impact of H 0 and n s on the linear power spectrum is largely 
degenerate with that of �m . Leaving these parameters free therefore 
widens the constraints on �m and σ 8 individually but with less impact 
on their best constrained combination. The value of w 0 has little 
impact on our observables (Fig. 2 ), and unsurprisingly we do not 
forecast a meaningful w 0 constraint. The value of w 0 is somewhat 
degenerate with σ 8 and �m because σ 8 is defined at z = 0 and our 
observation redshift is z = 0.5. If we fix w 0 but leave H 0 and n s 
free then the constraint on the best constrained parameter σ 8 and 
�m combination σ8 �

0 . 604 
m 

impro v es to 2 . 3 per cent , similar to the 
case with all three parameters fixed. In contrast, the constraint on �m 

only impro v es to 6 . 0 per cent compared to the 3 . 2 per cent constraint 
when H 0 , n s , and w 0 are fixed. We discuss constraints in the S 8 −
�m plane below, for the fiducial scenario and other cases.

5.2 Impact of systematics: A lens and point-mass 

Our forecasts include two important sources of systematic uncer- 
tainty in ��. As described in Section 4 we modify our lensing 
covariance to marginalize over an enclosed point-mass. This point- 
mass marginalization is meant to characterize the impact of baryonic 
physics on the mass profile within haloes as well as representing 
small-scale substructure potentially unresolved by our simulations. 
We also include a multiplicative bias parameter A lens that captures 
potential scale independent errors in lensing calibration. This may 
be caused by errors in shear calibration or errors in the measurement 
of � crit . 

To test the sensitivity of constraints to these systematics, we 
perform a variety of tests and list resulting forecasted constraints 
on A lens , �m , σ 8 , and S 8 = σ8 �

0 . 5 
m 

in Table 2 . In these tests we fix all 
cosmological parameters besides σ 8 and �m and we marginalize o v er 
all HOD parameters. All of these results are for the z = 0.35 −0.55 
bin only. Our first series of tests utilizes the full datavector ( �� 

and w p , gg ). We see that our constraints on A lens are largely prior 

Figure 4. Forecast constraints on ln S 8 as a function of A lens prior in the z = 

0.5 bin marginalized o v er all HOD parameters with all other cosmological 
parameters fixed. The black line shows results from all scales of �� and 
w p , gg , the red (blue) line shows results from small (large) scales of �� with 
all scales of w p , gg , and the green line shows the results from large scale of both 
�� and w p , gg . Points on these lines mark our fiducial forecast assumption 
of σ ( A lens ) = 0.03. Analogously coloured dashed lines show constraints with 
A lens fixed. 

dominated; when A lens is free with no prior our datavector only 
constrains it at the 7 . 8 per cent level. This significantly degrades 
our forecast constraint on σ 8 , almost doubling the uncertainty 
from 2 . 6 per cent to 4 . 7 per cent , but it has less of an effect 
on �m . 

Because the impact of parameters other than A lens is scale- 
dependent, we might hope that modelling �� and w p , gg into 
non-linear scales could break the de generac y between A lens and 
cosmology. Table 2 shows that this is only partly the case. If we adopt 
no prior on A lens , then our data vector constrains it to 7 . 8 per cent 
and constrains S 8 to 5 . 3 per cent . This is a huge impro v ement on 
linear theory, where A lens and σ 8 are perfectly degenerate. Ho we ver, 
with a 3 per cent A lens prior, the posterior uncertainty in A lens is only 
slightly better at 2 . 8 per cent . Furthermore, the A lens uncertainty 
remains a significant limitation, causing the S 8 uncertainty to be 
2 . 2 per cent instead of the much stronger 1 . 2 per cent that could 
be achieved if A lens were known perfectly. We further examine the 
sensitivity of our constraints to our A lens prior in Fig. 4 , discussed 
below. 

We next test the robustness of our forecasts to our point-mass 
marginalization scheme. We repeat each of the previous tests without 
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Table 3. Parameter forecast uncertainties with H 0 , w 0 , and n s fixed in the z = 0.5 redshift bin. Also included are constraints on S 8 = σ8 �
0 . 5 
m . Entries in the 

first and second columns indicate which scales are retained in the �� and w p , gg datavectors, with ‘small’ indicating 0 . 3 –3 . 0 h −1 Mpc and ‘large’ indicating 
3 . 0 –30 . 0 h −1 Mpc . All cases assume a 3 per cent prior on A lens and marginalization o v er a point mass contribution to ��. 

�� w p , gg � ln 
n gal
n fid

� ln σ log M 

� ln M 1
M min

� ln α � Q cen � Q sat � ln A con � ln f cen � ln A lens � ln �m � ln σ 8 � ln S 8

all all 0.049 0.698 0.334 0.083 0.063 0.373 0.704 0.299 0.028 0.032 0.026 0.022 
all – 0.050 3.353 0.990 0.709 0.275 3.234 5.763 1.095 0.030 0.354 0.233 0.238 
– all 0.050 1.649 0.678 0.162 0.123 0.613 1.108 0.564 0.030 0.061 0.184 0.206 

small all 0.050 1.185 0.521 0.095 0.105 0.472 0.803 0.468 0.030 0.037 0.028 0.027 
large all 0.050 0.858 0.394 0.138 0.066 0.422 1.032 0.350 0.029 0.036 0.034 0.027 

all small 0.050 0.825 0.431 0.139 0.110 0.899 1.172 0.359 0.029 0.065 0.053 0.029 
all large 0.050 1.439 0.594 0.190 0.085 0.522 0.846 0.554 0.029 0.036 0.037 0.030 

small small 0.050 1.558 0.734 0.171 0.250 1.815 1.435 0.638 0.030 0.125 0.079 0.042 
large large 0.050 2.499 1.078 0.628 0.130 0.636 4.756 0.843 0.029 0.040 0.056 0.046 

including this modification to the lensing covariance. We see that in 
this case the point-mass marginalization has very little effect on the 
final constraints. When A lens is fixed it has a completely negligible 
effect. When we assume a 3 per cent prior on A lens or assume no 
prior, the point-mass marginalization has a very small effect on 
constraints on �m . These results suggest that for our datavector, 
the small scales of �� are not the most important regime for 
constraining �m or σ 8 . It may also appear to suggest that the point- 
mass marginalization is unimportant, but we caution that this depends 
on the choice of datavector and galaxy sample. Because our assumed 
lensing covariance is shape-noise dominated, we can imagine a 
future scenario in which the errors on �� are substantially impro v ed 
relativ e to w p , gg . Conv ersely, a sparser lens sample would have larger 
errors for both �� and w p , gg , but the impact on w p , gg could be larger. 
In either scenario, including marginalization o v er a point-mass would 
be more important because of the increased relative importance of 
the small scales of ��. Also, while we are considering point-mass 
marginalization as a proxy for baryonic physics uncertainties, it is 
necessary to check that it does in fact remo v e biases from baryonic 
effects at the DES statistical precision. 

5.3 Relati v e contributions of scales 

Table 3 examines a variety of alternative scenarios in which we omit 
different elements of the fiducial datavector. In all of these tests we 
fix all cosmological parameters other than �m and σ 8 and report 
constraints on S 8 = σ8 �

0 . 5 
m 

. We assume our fiducial 3 per cent prior 
on A lens and 5 per cent prior on n gal , and we include the point-mass 
marginalization term in the lensing covariance matrix. In addition 
to omitting one of �� and w p , gg entirely, we also try omitting 
small ( r p < 3 . 0 h 

−1 Mpc ) and large ( r p > 3 . 0 h 

−1 Mpc ) scales of
either. The choice of 3 . 0 h 

−1 Mpc roughly corresponds to a division 
between the linear regime and non-linear regime, and it also splits 
each observable into equal numbers of data points. The first line 
of Table 3 (‘all all’) corresponds exactly to the fiducial scenario 
shown in Fig. 3 . We again focus on the z = 0.5 redshift bin for 
simplicity. 

The second line of Table 3 shows a forecast with �� as the 
only observable. We see that the precision on all parameters has 
de graded drastically, e xcept for n gal and A lens which hav e informativ e 
priors. Compared to the fiducial case, the precision on σ 8 , �m , 
S 8 degrades by roughly a factor of 10. This poor performance is 
unsurprising: without g alaxy clustering, g alaxy–g alaxy lensing in 
the linear regime has no cosmological constraining power because 
of de generac y between b g and σ 8 , and non-linear scale-dependence 

at DES measurement precision allows only moderate de generac y 
breaking. 

We next consider the case of w p , gg on its own. We again see 
that all parameter constraints are significantly degraded, although 
not by as much as in the case of �� on its own. Constraints on 
all of our HOD parameters are significantly worse than with the 
full data vector, b ut are significantly better than from �� on its own. 
This difference is not surprising in the context of Fig. 2 , which shows 
that w p , gg is generally more sensitive to the galaxy–halo connection, 
particularly at small scales. Since many of these HOD parameters 
are degenerate with each other, these individual impro v ements in 
sensitivity synergize with each other to significantly impro v e o v erall 
constraints on the HOD. The large-scale shape of w p , gg constrains 
�m , so the cosmological parameter constraints from w p , gg alone are
better than those from �� alone. Ho we ver, fractional errors in σ 8 and
S 8 are still at the 20 per cent level, drastically worse than the fiducial
scenario. In linear theory the impact of b g and σ 8 on w p , gg would
be fully degenerate. Non-linear scaling provides enough leverage to
obtain 20 per cent precision, but σ 8 remains significantly degenerate
with HOD parameters. As expected, precise constraints on matter
clustering require both �� and w p , gg .

The remaining lines of Table 3 show the impact of omitting small- 
or large-scale measurements from one or both components of the 
datavector. When we omit the large scales of �� (line 4, ‘small 
all’), the S 8 constraint degrades to 2 . 7 per cent from its fiducial 
value of 2 . 2 per cent . Both σ 8 and �m are individually degraded. 
If we retain the large scales of �� instead of the small scales (line 
5, ‘large all’) then the S 8 precision is again 2 . 7 per cent . The fact 
that large and small scales of �� can independently give precise 
S 8 constraints in concert with w p , gg has encouraging implications. 
Modelling systematics and some measurement systematics are likely 
to be very different in these two regimes, so comparing inferred 
parameters will provide a strong test of robustness and a valuable 
diagnostic of systematics if they are present. 

If we retain all scales of �� but use only the small or large 
scales of w p , gg , then S 8 constraints degrade to 2 . 9 per cent or 
3 . 0 per cent , respectively. HOD constraints are typically much worse 
if we have only large scales of w p , gg , so it may seem surprising 
that S 8 constraints are comparable. Ho we ver, in the linear regime 
it is only the o v erall galaxy bias factor b g that matters, so large 
trade-offs among HOD parameters may not have much impact 
on S 8 precision. Furthermore, the large scales of w p , gg provide 
better �m constraints, so the breaking of �m − σ 8 de generac y is 
considerably better for the ‘all large’ scenario than the ‘all small’ 
scenario. 

MNRAS 510, 5376–5391 (2022) 



DES lensing and galaxy clustering forecasts 5387

The final rows of Table 3 show cases in which we take either large 
or small scales of both w p , gg and ��. The most important tak eaw ay 
is the large gain in cosmological constraining power from using all 
scales of �� and w p , gg (first line of Table 3 ) versus using only scales 
r p > 3 . 0 h 

−1 Mpc (last line). The impro v ement on S 8 precision from
4 . 6 per cent to 2 . 2 per cent is equi v alent to a (4.6/2.2) 2 ≈ 4.4 increase 
in surv e y area. The ‘small small’ scenario slightly outperforms 
the ‘large large’ scenario, with a 4 . 2 per cent versus 4 . 6 per cent S 8 
precision. Ho we ver, gi ven the increased modelling complexity of 
small scales there is no reason to contemplate pursuing this scenario 
in practice, whereas the ‘large large’ scenario (in multiple redshift 
bins) is roughly analogous to the DES key project analyses performed 
to date. 

We summarize and expand upon some of these results in Fig. 4 . 
Curves show the constraint on S 8 marginalized o v er the HOD 

with all other cosmological parameters fixed as a function of the 
prior assumed on A lens . Each colour corresponds to a different 
forecast scenario from Table 3 , and analogous dashed lines show 

the constraint on S 8 when A lens is fixed. The black curve in Fig. 4 
shows the relationship between the A lens prior and S 8 when the full 
datavector is used. We see that if A lens were perfectly known then 
the best constraint we could achieve with our z = 0.5 datavector is 
about a factor of two narrower than our fiducial scenario, 1 . 2 per cent 
versus 2 . 2 per cent . At large values of σ ( A lens ), the curve begins to 
flatten around σ ( A lens ) = 0.07 and asymptote towards a ∼5 per cent 
constraint on S 8 . This behaviour is consistent with our results in 
Table 2 ; when A lens is completely free our full datavector yields a 
7 . 8 per cent constraint on A lens and a 5 . 3 per cent constraint on S 8 . 
The red and blue curves correspond to omitting the large and small 
scales of ��, respectively. Finally the green curve shows results 
when we omit the small scales of both of our observables. The relative 
ordering of these curves at a given σ ( A lens ) indicates the relative 
importance of the respective elements of the datav ector. Giv en our 
fiducial prior on A lens , the large and small scales of �� have similar 
impact on the constraint on S 8 . The large difference between the 
black and green curves emphasizes the value of the small scales of 
both observables. If the σ ( A lens ) prior could be tightened from 0.03 
to 0.01 then the difference between all the scales and large scales 
analysis would be equi v alent a to (3.93/1.36) 2 ≈ 8.35 times increase 
in surv e y area. 

5.4 Dependence on redshift 

So far we have limited our forecasts to a bin of redshift z = 

0.35 −0.55. Since DES redMaGiC galaxies extend from redshift 
z = 0.15 −0.70, we now consider additional bins at lower and 
higher redshift. Specifically, we define three bins in redshift, z = 

0.15 −0.35, z = 0.35 −0.55, and z = 0.55 −0.70, and we use ABACUS 

snapshots at z = 0.3, z = 0.5, and z = 0.7, respectively, to compute 
emulator deri v ati v es. We also compute separate co variance matrices 
for each bin taking into account the full range in redshift in each 
bin. Comparing across bins we observe little qualitative difference 
in deri v ati ves for a gi ven parameter. Quantitati vely there is mild 
evolution, with most parameters having slightly larger effect at low 

redshift. A more important effect is the evolution of the covariance 
matrix. For w p , gg fractional errors, decrease with increasing redshift 
because of increasing bin v olume. For �� increasing v olume with 
redshift is counteracted by fewer sources, which increases the shape 
noise contribution to the covariance and is dependent on the assumed 
source redshift distribution from Rozo et al. ( 2011 ). Fractional errors 
for �� impro v e going from the z = 0.3 to z = 0.5 redshift bin. 
Ho we ver, going from z = 0.5 to z = 0.7 we find an increase 

Figure 5. Forecast constraints on ln S 8 as a function of redshift marginalized 
o v er all HOD parameters with all other cosmological parameters fixed. Red
points show constraints with A lens fixed, while blue points show constraints
from including our fiducial 3 per cent prior on A lens . Analogously coloured
dashed lines show constraints from combining all three of our redshift bins.
When combining redshift bins we constrain HOD parameters in each bin
separately.

in fractional error because the increase in volume is not able to 
compensate for the loss in sources. 

Forecast results in all three redshift bins are shown in Fig. 5 . In 
each bin we forecast constraints on S 8 with our full datavector, w p , gg 

and ��, with all other cosmological parameters fix ed. F or each bin 
we perform two separate forecasts in which A lens is fixed (red points) 
or free with a 3 per cent prior (blue points). Finally we indicate 
the constraint on S 8 from combining all three bins together with 
horizontal dashed lines. When combining constraints from multiple 
redshift bins we allow for different HOD parameters in each redshift 
bin and we assume redshift bins are independent. When A lens is free 
we forecast constraints of 3 . 2 per cent , 2 . 2 per cent , and 2 . 4 per cent 
on S 8 in the z = 0.3, z = 0.5, and z = 0.7 bins, respectively. Fixing 
A lens impro v es these constraints to 2 . 6 per cent , 1 . 2 per cent , and 
1 . 3 per cent . As expected from our covariance matrices, we see that 
our constraint impro v es from z = 0.3 to z = 0.5. From z = 0.5 to 
z = 0.7 the constraint slightly degrades. In this case the precision 
has impro v ed for w p , gg but gotten worse for ��. When all three 
redshift bins are combined we forecast constraints of 1 . 9 per cent and 
0 . 8 per cent on S 8 with A lens free and fix ed, respectiv ely. Both of these 
constraints slightly underperform simple quadrature combination of 
individual constraints. 

5.5 Summary 

We have forecast cosmological parameter constraints for an analysis 
of g alaxy–g alaxy lensing �� and galaxy clustering w p , gg while 
marginalizing o v er a fle xible HOD model and a scale independent 
lensing bias parameter A lens . Fig. 6 summarizes our main results in 
the S 8 − �m plane. The green contours in the left-hand panel show 

our fiducial scenario combining information from �� and w p , gg 

measured on scales 0 . 3 h 

−1 Mpc < r p < 30 . 0 h 

−1 Mpc in a DES- 
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Figure 6. Forecast constraints (68 per cent and 95 per cent contours) on S 8 = σ8 �
0 . 5 
m and �m with H 0 , n s , and w 0 fixed, summarizing some of our main results. 

Contours in the left-hand panel show constraints from just the z = 0.35 −0.55 bin, while the right-hand panel shows constraints from combining all three of our 
redshift bins. Blue contours show constraints when only the large scales of �� and w p , gg are used and a 3 per cent prior on A lens is assumed. Green contours 
show our fiducial scenario in which all scales of �� and w p , gg are used with a 3 per cent prior on A lens . Red contours show constraints from all scales of �� 

and w p , gg when our prior on A lens is sharpened to 1 per cent . 

like surv e y of galaxies within a bin of redshift z = 0.35 −0.55. For 
this scenario we forecast 3 . 2 per cent and 2 . 2 per cent constraints on 
�m and S 8 . When the ‘small’ scales ( r p < 3 . 0 h 

−1 Mpc ) are omitted
from such an analysis (blue contours) these constraints are degraded
to 4 . 0 per cent and 4 . 6 per cent , respecti vely. This dif ference in
precision on S 8 is equi v alent to a ∼4.4-fold increase in surv e y area,
illustrating the stakes of accurate modelling of non-linear scales. If
our external prior on A lens is be sharpened to 1 per cent (red contours)
then constraints on �m and S 8 sharpen even further to 3 . 1 per cent
and 1 . 4 per cent , respectively.

In the right-hand panel of Fig. 6 we show results for the same 
three forecast scenarios when combining all three of our redshift bins 
spanning z = 0.15 −0.70. When small scales of �� and w p , gg are 
omitted (blue contours) using all three bins of redshift we forecast a 
2 . 6 per cent and 3 . 0 per cent constraint on �m and S 8 . This constraint 
on S 8 is an impro v ement on the 4 . 6 per cent constraint from the z = 

0.5 bin, but it is still relatively weak. When the small scales are 
also included in the datavector we forecast 1 . 9 per cent constraints 
on both �m and S 8 (and 2 . 0 per cent on σ 8 ). These constraints are 
an impro v ement on the 3 . 2 per cent and 2 . 2 per cent obtained from 

the z = 0.5 bin, though the S 8 gain is moderate in part because the 
A lens uncertainty affects all three redshift bins coherently. When the 
prior on A lens is reduced to 1 per cent these constraints impro v e to 
1 . 8 per cent on �m , 1 . 4 per cent on σ 8 , and 1 . 1 per cent constraint 
on S 8 . This result shows the impressive gains that are attainable if 
future analyses can include small-scale information from galaxy–
galaxy lensing and clustering while controlling the uncertainty in 
lensing calibration o v er a broad range in redshift z = 0.15 −0.70. 
Our forecasts show that if those conditions are met the de generac y 
between �m and σ 8 can be broken to yield per cent-level constraints 
on the amplitude of matter clustering. 

Fig. 7 presents a different summary form of our results, with an 
emphasis on the information content of smaller scales. Here we have 

Figure 7. Forecast constraints on ln σ 8 as a function of minimum scale 
of �� and w p , gg . The constraint on ln σ 8 is marginalized o v er all HOD 

parameters with all other cosmological parameters fixed. The black solid line 
shows the case for the fiducial bin at z = 0.5 with A lens fixed, while blue and 
red lines show results from the z = 0.3 and z = 0.7 bins. The dashed black 
line shows the case for the fiducial bin at z = 0.5 with A lens included with our 
fiducial 3 per cent prior. For the sake of comparison analogously coloured 
triangles show constraints from the cluster weak-lensing ��, w p , cg , and 
w p , gg datavector of Salcedo et al. ( 2020b ) using all scales of 0 . 3 < r p < 

30 . 0 h −1 Mpc . Filled in triangles show constraints for the case of fixed scatter 
in the cluster mass–observable relation σln M c , while empty triangles show 

the case of free σln M c . 
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forecast constraints on σ 8 with fixed values of the other cosmological 
parameters including �m ; in a given redshift bin, fractional errors on 
σ 8 at fixed �m are similar to the errors on S 8 with free �m . Filled 
circles and connecting solid curves show forecast constraints for the 
three redshift bins with fixed A lens , as a function of the minimum 

scale included in both �� and w p , gg (with r p, max = 30 . 0 h 

−1 Mpc
in all cases). At z = 0.5, the precision on σ 8 degrades moderately 
as r p , min increases from 0 . 3 h 

−1 Mpc to 1 . 8 h 

−1 Mpc , then degrades
sharply as r p , min crosses 2 . 0 h 

−1 Mpc . For z = 0.7, the precision
with small r p , min is similar to z = 0.5, and it degrades more slowly 
with increasing r p , min until jumping sharply at r p, min = 8 . 0 h 

−1 Mpc .
For z = 0.3, the precision is lower as explained previously, and it 
is nearly constant for r p, min ≤ 1 . 0 h 

−1 Mpc . The black dashed curve
shows the forecast at z = 0.5 with a 3 per cent prior on A lens . The 
A lens uncertainty significantly degrades the σ 8 precision, as shown 
previously in Table 2 , but the loss is smaller than one would expect 
from a naive quadrature combination of the A lens and σ 8 uncertainties, 
even though both parameters have the same effect on �� in linear 
theory. Determining σ 8 with a precision tighter than the A lens prior is 
a benefit of working into the non-linear regime, where the impact of 
σ 8 is scale-dependent. 

Open triangles show the σ 8 precision forecasts from Salcedo 
et al. ( 2020b ) for a combination of three observables: cluster 
weak lensing profiles �� c ( r p ), the projected cluster–galaxy cross- 
correlation function w p , cg ( r p ), and the projected g alaxy–g alaxy 
correlation function w p , gg ( r p ). These forecasts are computed in the 
z = 0.15 −0.35 and z = 0.35 −0.55 redshift bins assuming DES- 
like cluster samples and weak lensing and clustering measurements, 
with fixed A lens . We see that this three-observable combination can 
attain a σ 8 precision comparable to that of GGL + clustering at 
z = 0.5 and better at z = 0.3. Salcedo et al. ( 2020b ) do not 
compute a forecast for z = 0.7. Although some systematics would 
be in common between these two analyses such as uncertainties in 
shear calibration and source photometric redshifts, many systematics 
would be different. It is encouraging that clusters and GGL offer 
parallel routes to high-precision constraints on matter clustering 
from DES. The three-observable combination considered by Salcedo 
et al. ( 2020b ) constrains the scatter σln M c 

between true cluster mass 
and an observable mass proxy such as richness, which is the most 
important nuisance parameter that affects cosmological constraints 
from cluster weak lensing. Filled triangles show the still tighter 
constraints that could be derived from cluster �� c alone if σln M c 

were 
known independently. Wu et al. ( 2021 ) discuss cluster weak lensing 
constraints and the trade-off with σln M c 

and surv e y parameters in 
greater detail. 

6  C O N C L U S I O N S  

We have investigated potential cosmological constraints from a 
combination of g alaxy–g alaxy lensing �� and g alaxy clustering 
w p , gg measured using redMaGiC selected galaxies with the precision 
expected in the final (Y6) data release of DES. We have computed 
observables using simulations from the ABACUSCOSMOS suite (Gar- 
rison et al. 2018 ) of N -body simulations and populating haloes with 
mock galaxies using a flexible HOD parametrization that includes 
central and satellite galaxy assembly bias. Using these observables 
we have constructed Gaussian process emulators (Wibking et al. 
2020 ) of w p , gg and ��, which accurately model each observable 
o v er a wide range of scales 0 . 3 –30 . 0 h 

−1 Mpc and a large space of
HOD and cosmological parameters. We have also included in our
analysis the effects of biased lensing calibration, represented by the
parameter A lens . We assume a fiducial HOD that is meant to describe

the clustering of redMaGiC selected galaxies in DES; these values 
are listed in T able 1 . T o compute covariance matrices we have used 
a mixture of analytic and numerical methods described in Section 4. 
To represent potential measurements and modelling systematics, we 
have included a parameter A lens that multiplies all scales of �� by a 
common factor, and we have modified the weak lensing covariance 
matrix to analytically marginalize o v er a point mass contribution to 
��. These parameters can represent effects such as shear calibration 
bias, photo-z bias, or baryonic modification of halo density profiles 
on small scales. 

With a 3 per cent prior on A lens , we forecast precision of 
1 . 9 per cent and 2 . 0 per cent on �m and σ 8 , respectively, from the 
combination of all three redshift bins, with fixed values of H 0 , n s , 
and w 0 and separate marginalization o v er all HOD parameters in 
each redshift bin. The precision on S 8 is 1 . 9 per cent . If the prior 
on A lens is sharpened to 1 per cent , then the S 8 constraint tightens to 
1 . 1 per cent . Our results demonstrate the great promise of modelling 
GGL and galaxy clustering into the non-linear regime using HOD 

and N -body + emulator methods. If we restrict our datavectors 
to scales r p ≥ 3 . 0 h 

−1 Mpc then the S 8 precision degrades by a
factor of 1.6, equi v alent to a factor of 2.5 in surv e y area. F or the 
1 per cent A lens prior the benefit of small scales is even larger, a 
factor of 2.8 in S 8 precision (a factor of 7.7 in equi v alent surv e y 
area). For the z = 0.5 redshift bin, Sections 5.1–5.3 examine the 
correlations between HOD and cosmological parameters, the impact 
of different systematics assumptions, and the contribution of different 
scales of the two observables (Figs 2 –4 and Tables 2 and 3 ). In our 
forecasts, point-mass marginalization does not noticeably degrade 
cosmological parameter precision, but uncertainty ≥ 1 per cent in 
A lens does. 

The recent DES-Y3 3 × 2pt. cosmological analysis (DES Col- 
laboration 2021 ) uses only large-scale lensing and clustering data 
and obtains 9.3 per cent, 6.1 per cent, and 2.2 per cent constraints 
on �m , σ 8 , and S 8 . Comparison to our forecasts is difficult because 
this analysis includes cosmic shear, uses a magnitude-limited sample 
instead of redMaGiC, uses lower depth (Y3 versus Y6) DES data, 
and includes nuisance parameters we have not considered here 
(such as intrinsic alignments). Closer to our scenarios, P ande y et al. 
( 2021 ) analysed DES-Y3 redMaGiC lensing and clustering in the 
linear regime, obtaining 10.7 per cent and 4.2 per cent constraints 
on �m and S 8 . They caution that their S 8 results are likely biased 
by an unknown systematic causing internal inconsistency between 
redMaGiC lensing and clustering. We have implicitly assumed that 
this challenge can be o v ercome by the time of the final DES analyses 
and that remaining systematics can be adequately encapsulated by 
our A lens parameter even if they arise from multiple contributing 
factors. 

Our emulator already appears accurate enough for the expected 
precision of final DES redMaGiC data (see Fig. 1 ), though further 
testing and training on still larger simulation suites is desirable. 
We expect that our methods can be readily adapted to magnitude- 
limited samples, which should allow more precise �� measurements 
that require more careful treatment of photo- z errors. Fortunately, in 
addition to affording high statistical precision, analyses that extend to 
non-linear scales provide rich opportunities for internal consistency 
checks and systematics tests, through distinctive scale dependence 
and comparison among galaxy samples that have different HODs 
but should yield consistent cosmological parameters. For our z = 0.5 
forecast with all scales used in w p , gg , we find essentially equal cosmo- 
logical precision using scales r p > 3 h 

−1 Mpc and r p < 3 h 

−1 Mpc
in ��, allowing a strong consistency check between regimes where 
many systematics are very different. If there is a 5–10 per cent 
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discrepancy between low redshift matter clustering and CMB- 
normalized � CDM predictions, as suggested by some but not all 
recent weak lensing studies, then final DES analyses will demonstrate 
the discrepancy at high precision and allow initial explorations of 
its redshift and scale dependence. Alternatively, if early universe 
fluctuations and low redshift matter clustering are consistent at the 
1 per cent lev el, then maximally e xploiting the potential of Stage 
III weak lensing surv e ys will demonstrate impressive success of 
standard cosmology and prepare the way for Stage IV dark energy 
experiments that are underway or beginning soon. 
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