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INTRODUCTION

A major challenge to conservation biologists is prioritizing 
wildlife habitat for preservation because habitat preserva-
tion is a fundamental component of most efforts to main-
tain animal populations and biodiversity (e.g., Stattersfield 

et al. 1998, Woodrey et al. 1998, Faaborg et al. 2010a). When 
only a fraction of existing natural areas can be preserved, it 
becomes critical to understand how animals use habitats so 
that areas of greatest value to the conservation of wildlife can 
be prioritized. Toward this end, Partners in Flight—an orga-
nization concentrating on conservation of bird populations 
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Abstract. Information regarding microhabitat, here defined as small-scale vegetation structure, is often useful 
in predicting use of habitat by birds. Quantifying microhabitat, however, is expensive and labor intensive com-
pared to assessment of habitat at a larger scale, possibly from remotely sensed imagery. To assess the importance of 
microhabitat information in constructing predictive models of habitat occupancy, we compared occupancy models 
built on the basis of macro- and microhabitat together and separately. We based our models on counts of wintering 
migratory bird species and vegetation surveys within Tuskegee National Forest, Alabama, completed during win-
ter 2009. Models built from macrohabitat data only outperformed models built from microhabitat data only for five 
of the six species analyzed. However, the best model for every focal species included both macro- and microhabi-
tat covariates. Pine forests—excluding plantation—were the only land-cover classification important to our focal 
species, and measures of density of vegetation were important in predicting occupancy. Our results suggest that 
migrants wintering at our study site select habitat at multiple scales—specializing in certain types of cover and 
then preferring specific structural aspects of vegetation within them. We conclude that microhabitat information is 
important for inference into use of habitat by wintering migratory birds.
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Prediciendo la Ocupación de Aves Migratorias Invernales: ¿Es Necesaria la Información 
del Micro Hábitat?

Resumen. La información relacionada al micro hábitat, definida aquí como la estructura de la vegetación a 
pequeña escala, es usualmente útil para predecir el uso de hábitat por parte de las aves. La cuantificación del micro 
hábitat es, sin embargo, costosa y demanda mucho esfuerzo, comparado con la evaluación del hábitat a gran escala, 
posiblemente a partir de imágenes remotas. Para evaluar la importancia de la información de micro hábitat en la 
construcción de modelos predictivos de ocupación de hábitat, comparamos modelos de ocupación construidos 
sobre la base de macro y micro hábitat juntos y por separado. Basamos nuestros modelos en conteos de especies de 
aves migratorias invernales y muestreos de vegetación dentro del Bosque Nacional Tuskegee, Alabama, comple-
tados durante el invierno de 2009. Los modelos construidos sólo con datos de macro hábitat fueron mejores que 
los modelos construidos sólo con datos de micro hábitat para cinco de las seis especies analizadas. Sin embargo, el 
mejor modelo para cada especie focal incluyó covariables tanto de macro como de micro hábitat. Los bosques de 
pino—excluyendo las plantaciones—fueron la única clasificación de cobertura del suelo importante para nuestras 
especies focales y las medidas de densidad de la vegetación fueron importantes para predecir ocupación. Nuestros 
resultados sugieren que los migrantes invernales en nuestro sitio de estudio seleccionan el hábitat a múltiples 
escalas—especializándose en ciertos tipos de cobertura y luego prefiriendo aspectos estructurales específicos de 
la vegetación dentro de ellos. Concluimos que la información de micro hábitat es importante para inferir el uso del 
hábitat por parte de aves migratorias invernales.
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in the Western Hemisphere—has listed identification of 
high-quality habitats as a research priority for conservation 
of bird species in North America (Donovan et al. 2002).

The identification of the most valuable habitat for birds 
becomes more challenging when the species being managed 
migrate between distinct breeding and nonbreeding ranges. 
Migratory bird species use different geographical areas 
for breeding, during the nonbreeding season, and for mov-
ing between the two areas (Martin and Finch 1995, Faaborg 
et al. 2010b), and often the habitat needs of a given species 
of bird are different in each of these areas of seasonal use. 
Most research on the habitat associations of migratory birds 
in North America has been conducted during the breeding 
season, but it has been suggested that populations of migra-
tory land birds are limited by mortality during winter (e.g., 
Lack 1968, Sherry and Holmes 1996, Rappole et al. 2003). 
Moreover, nonbreeding habitat can affect the physical condi-
tion of individuals and produce effects that carry over into the 
breeding season (Norris et al. 2004, Studds and Marra 2005). 
Therefore, understanding habitat associations and needs in 
the winter is a conservation priority (Sherry and Holmes 1995, 
1996). Despite a growing acknowledgement of its importance, 
knowledge of use of habitat by wintering birds remains lim-
ited (e.g., Peterjohn 2003, Faaborg et al. 2010a). 

Given the need to identify and preserve habitat, conserva-
tionists must determine what aspects of an area signify its quality 
as habitat. Habitat can be defined as distinct environmental con-
ditions and resources within an area that allow for reproduction 
and survival (or occupancy) of an organism (Hall et al. 1997). 
Many aspects of the environment, including availability of food, 
nest sites, cover, and competitors, interact with behavior and 
morphology to allow occupancy of a habitat (Cody 1981, Wiens 
1989a, b, Block and Brennan 1993). Habitats of highest quality 
should contain the fittest individuals, i.e., individuals that con-
tribute most to the overall population of the species (Van Horne 
1983, Wiens 1989a, Franklin et al. 2000, Jones 2001). Thus qual-
ity of a habitat can be inferred by mean fitness of individuals per 
unit area of habitat (Van Horne 1983). This requires knowledge 
of survival, fecundity, and density (Van Horne 1983), which 
often is difficult to obtain (Johnson 2009). 

Information regarding distributions of animals, such as 
occupancy and density, is relatively inexpensive to obtain 
compared to data needed to calculate mean fitness associ-
ated with a habitat, but estimates of occupancy and density 
can reveal which habitats are used most often (Johnson 2009). 
There are scenarios in which birds may not occupy highest-
quality habitats (Van Horne 1983, Johnson 2009) but, in most 
cases, density (Bock and Jones 2004, Johnson et al. 2006) and 
occupancy are positively correlated with quality of habitat 
(Ferrer and Donazar 1996, Sergio and Newton 2003) and with 
each other (Gaston et al. 2000). Therefore, occupancy, or the 
presence of individuals within an area, has become an often-
used measure of the quality of an area as habitat (MacKenzie 
2005). Because occupancy is often used as a surrogate for 

habitat quality, determining which aspects of an area influ-
ence occupancy of organisms is important for conservation.

Another challenge related to understanding the habitat 
requirements of birds is identifying the scale at which they 
select habitat (Donovan et al. 2002). Macrohabitat generally 
refers to larger-scale attributes of landscape such as vegetation 
type or seral stage (Johnson 1980, Block and Brennan 1993, 
Hall et al. 1997), whereas microhabitat relates to smaller-scale 
features of floristics and physiognomy (Block and Brennan 
1993) such as number of snags, density of shrub layer, or basal 
area of oaks (Quercus). Johnson (1980) and Hutto (1985) 
described birds’ selection of habitat as a spatially hierarchi-
cal process. An individual bird may be seen as making choices 

Habitat selection at broader, geographic scales is likely 
genetically determined, whereas selection at finer scales is 
influenced by learning and availability of food (Wiens 1972, 
Hutto 1985). Because selection at different scales is some-
times the result of different processes, differing scales of 
investigation can lead to conflicting conclusions regarding 
birds’ habitat needs (Wiens et al. 1987, Wiens 1989a). Any 
one scale of inference is unlikely to accurately predict use of 
habitat across a group of species, because birds perceive habi-
tat on a scale that reflects their unique life-history strategies 
(Mitchell et al. 2001; Lee et al. 2002). Also, a complete habitat 
model for any species of bird may involve multiple scales of 
investigation (Wiens 1989c, Knick and Rotenberry 1995). 

Because birds choose habitat at multiple scales, micro-
habitat information may improve the performance of models 
that predict a species’ presence (Hagan and Meehan 2002). 
There is disparity between the scales, however, in the cost of 
information. Information regarding microhabitat typically 
requires costly labor-intensive surveys (Fearer et al. 2007), 
whereas, within Europe and North America, macrohabitat 
information can be obtained from publicly available satellite 
imagery. Use of habitat by wintering migrants could there-
fore be assessed more easily if researchers could demonstrate 
that microhabitat information does not improve the inference 
gained from occupancy models.

In this study, we used occupancy models to determine 
the use of habitats by migratory birds wintering in the Tuske-
gee National Forest, Alabama. We focused on species with 
breeding distributions lying entirely north of the study area, 
so we studied individual birds that had moved from a distant 
breeding area to the Tuskegee National Forest for the non-
breeding period. Birds wintering in the southeast United 
States are often referred to as “short-distance migrants” 
because they do not travel south of the United States border, 
but many of these species move a great distance to reach the 
Tuskegee National Forest. We had two primary goals in this 
study: (1) to develop habitat-occupancy models to predict 
where our focal species occur during the nonbreeding season 
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and (2) to assess performance of occupancy models with and 
without microhabitat data. We therefore assessed the impor-
tance of microhabitat data to understanding winter habitat use 
by birds.

METHODS

BIRD SURVEYS

We established a systematic grid of 92 bird-survey points 
within the southwest corner of Tuskegee National Forest in 
Macon County, Alabama (32° 26  N, 85° 39  W). This study 
site consisted mostly of pine and floodplain forests but also 
included agricultural, scrub, and developed areas (Table 1). 
Each point was separated by roughly 250 m. We surveyed 
each point for birds by using five consecutive 4-min point 
counts and following protocols of Hamel et al. (1996) and 
recommendations of Mackenzie and Royle (2005). Observers 
recorded every bird detected within a 100-m radius during 
each count as well as weather information such as wind speed 
and temperature. Although many studies count birds within 
a smaller radius, many others use 100-m counts (e.g., Rich 
et al. 1994, Hanowski and Niemi 1995, Bolger et al. 1997, 
Kreisel and Stein 1999). Furthermore, a 100-m radius has 
been empirically shown to be best for grassland birds (Savard 
and Hooper 1995) and some forest birds (Laurent et al. 2005). 
The surveys extended from 28 January to 28 February 2009 
and 06:00 to 14:00 CST, according to the recommendations of 
Rollfinke and Yahner (1990). 

MACROHABITAT

Using the Alabama Gap Analysis Program Land Cover Map 
(Kleiner et al. 2007) and the National Landcover Database 
Tree Canopy Cover Map (Homer et al. 2004), we calculated 
the percent cover of each land-cover class within a 100-m 
buffer surrounding each point with ArcGIS (ESRI 2008). 
Following McClure et al. (2011), we combined subclassifica-
tions of broad landscape classes . For instance, we combined 
low-intensity, medium-intensity, high-intensity developed 
areas and developed open spaces to form a broad habitat class 
that we termed “developed.” We combined subclassifications 
of successional scrub to form a broad scrub classification, 
those of pasture and row crops to form an agricultural clas-
sification, those of pine forests were to form pine and natural 
pine (which excludes plantations) classifications, and those of 
floodplain and mesic slope forests to form a hardwood classi-
fication (Table 2 in McClure et al. 2011).

MICROHABITAT

We quantified microhabitat within 16-m-radius plots (Anderson 
and Shugart 1974, La Sorte et al. 2009) centered on each bird 
survey location. We recorded the diameter at breast height (dbh) 
and species of all trees 10 cm dbh (Avery 1975). We measured 
the canopy and ground cover with a densitometer by sampling 
every 4 m along 16-m transects in all cardinal directions from 

the center (Robinson 1947). Depth of leaf litter was measured 
16 m from the center in each cardinal direction (Ortega and 
Capen 1999). We quantified the density of the midstory, shrub 
layer, and understory with a striped 12-m modified Robel pole 
in the center of each plot (Mills et al. 1991). Observers recorded 
the number of stripes obscured by vegetation at heights of 
0–0.6 m, 0.6–4.6 m, 4.6–7.6 m, and 7.6–12 m (MacArthur and 
MacArthur 1961) in each cardinal direction from the edge of 
the plot. We measured dbh in 2008 and 2009, all other measure-
ments in the same year as the bird surveys.

We calculated total basal area of all tree species as well 
as basal area of pines and oaks within each plot. We calcu-
lated canopy and ground cover as the percentage of densitom-
eter readings that encountered vegetation. At each plot, we 
calculated the thicknesses of the ground-cover, lower-shrub, 
upper-shrub, and midstory layers as the average percentage 
of Robel-pole readings in the intervals 0–0.6 m, 0.6–4.6 m, 
4.6–7.6 m, and 7.6–12 m along the pole, respectively.

STATISTICAL ANALYSES

To model bird habitat, we used a two-step approach with the 
program Presence (Hines 2006). First we modeled detection—
the probability that a species will be detected if it is present—
while holding occupancy—the probability that a species is 
present—constant across all sites. We only used covariates 
hypothesized a priori to affect bird detection. Because we 

TABLE 1. Abbreviations, means, standard deviations (SD), and 
maximum values recorded for habitat variables quantified in the 
Tuskegee National Forest, Alabama, 28 January–28 February 2009. 
The minimum for each variable was zero.

Variable Abbreviation Mean SD Max

Ground layer thickness (%) Ground 0.72 0.15 1.00
Shrub layer thickness (%) Shrub 0.56 0.10 1.00
Upper shrub layer thickness (%) Hi shrub 0.58 0.16 1.00
Midstory thickness (%) Mid 0.53 0.21 1.00
Canopy cover, 16-m radius (%) CC 0.14 0.10 0.70
Vegetative ground cover (%) GC 0.11 0.10 1.00
Total basal area (m2) BATot 1.32 0.76 3.98
Basal area of pines (%) BAPine 0.52 0.57 2.40
Basal area of oaks (%) BAOak 0.28 0.36 1.63
Depth of leaf litter LL 2.98 1.63 5.80
Developed area (%)a Dev 0.01 0.05 0.59
Developed open space (%)a DOS 0.01 0.04 0.50
Pine forest (%)a Pine 0.52 0.17 1.00
Natural pine forest (%)a NatPine 0.49 0.15 1.00
Hardwood forest (%)a Hard 0.26 0.20 1.00
Mixed forest (%)a Mix 0.02 0.03 0.37
Scrub area (%)a Scrub 0.01 0.04 0.46
Agriculture (%)a Ag 0.00 0.01 0.19
Floodplain forest (%)a Flood 0.16 0.25 1.00
Canopy cover, 100-m radius) (%)b Can 0.77 0.01 0.88

aFrom Kleiner et al. (2007).
bFrom Homer et al. (2004).
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sampled on five consecutive occasions, there is a chance of 
temporal autocorrelation; a bird being observed at time t may 
be conditional on its being observed at time t – 1. Therefore, 
we also considered a binary covariate that indicated if a spe-
cies was detected at t – 1 (Betts et al. 2008). We had no a priori 
expectation of which combination of covariates best described 
detection. For instance, we hypothesized that time, date, 
wind, temperature, and observer may influence the probabil-
ity of detecting the Blue-headed Vireo (for scientific names 
see Table 3). But we had no reason to hypothesize that date 
and time, together, would predict detection better than the rest 
of the covariates together, or any other combination of covari-
ates. Therefore, we used a manual forward-stepwise proce-
dure for model building (King et al. 2009) in which we built 
models containing each covariate separately, then sequen-
tially added covariates that lowered Akaike’s information cri-
terion, corrected for small sample size (AICc; Burnham and 
Anderson 2002). We then incorporated this final detection 
model into all subsequent models. Next we examined use of 

macrohabitat with covariates hypothesized a priori to affect 
habitat use at the macro-scale (Table 2). We used the global 
model, which included all hypothesized covariates (Table 2), 
to calculate the overdispersion-correction factor ( ) and used 

to correct AICc for overdispersion if > 1 (QAICc, Burn-
ham and Anderson 2002). We then used the same stepwise 
procedure described for modeling detection to develop a 
model minimizing QAICc and the same stepwise procedure 
described above to model occupancy, using only microhabi-
tat covariates that we hypothesized a priori (Table 2) to affect 
habitat use.

Next, we incorporated hypothesized microhabitat 
covariates into the macrohabitat models by the same step-
wise procedure as above. If addition of microhabitat infor-
mation created more parsimonious models, we would expect 
that models including both macro- and microhabitat covari-
ates would receive a lower AICc (or QAICc) value than would 
the final macrohabitat model. We analyzed each focal spe-
cies separately and considered covariates to be useful for 
inference if they were in the final model and if their 85% 
confidence intervals did not include zero. We used 85% con-
fidence intervals because they are more consistent with an 
AIC approach than are 95% confidence intervals (Arnold 
2010). All percentage variables were arcsine-square root 
transformed to assure normality. We scaled all variables to 
between 10 and –10 to aid in model convergence. We ana-
lyzed only species that were detected at >10 survey sites 
to avoid difficulties with model convergence inherent with 
small sample sizes. Although the choice to model species 
detected at >10 survey sites was arbitrary, we believe that it 
should not bias the results of our study.

MODEL PERFORMANCE

To determine the performance of our final models we calcu-
lated the area under the receiver operator characteristics curve 

TABLE 2. Covariates hypothesized a priori to affect patterns of 
occupancy of migrants wintering in the Tuskegee National Forest, 
Alabama. Ones indicate that a covariate was considered for model 
building for a given species. Abbreviations of habitat covariates are 
defined in Table 1.

Scale and 
covariate

Blue-
headed 
Vireo

Golden-
crowned 
Kinglet

Ruby-
crowned 
Kinglet

Hermit 
Thrush

Yellow-
rumped 
Warbler

White-
throated 
Sparrow

Macro
NPine 1 1 1 1 1
Pine 1 1
Hard 1 1 1 1 1 1
Mix 1 1 1 1 1 1
Scrub 1 1 1 1 1 1
Ag 1 1 1 1 1 1
Flood 1 1
Dev 1 1 1 1 1 1
DOS 1
Can 1 1 1 1 1 1
GC 1 1 1

Micro
Ground 1 1 1
Shrub 1 1 1 1 1
Shrub2 1 1 1
Hi Shrub 1 1 1 1 1 1
Hi Shrub2 1 1 1 1
Mid 1 1 1 1 1 1
Mid2 1 1 1 1
CC 1 1 1 1 1 1
CC2 1 1 1 1 1
LL 1 1
LL2 1
BATot 1 1 1 1 1 1
BAOak 1
BAPine 1 1 1 1

TABLE 3. Species, number of detections (n), and naïve occupancy 
rate ( ) of migrants wintering in the Tuskegee National Forest, 
Alabama, 28 January–28 February 2009. 

Species n

Yellow-rumped Warbler (Setophaga coronata) 139 0.38
Ruby-crowned Kinglet (Regulus calendula) 92 0.40
White-throated Sparrow (Zonotrichia albicollis) 32 0.16
Golden-crowned Kinglet (Regulus satrapa) 92 0.32
Hermit Thrush (Catharus guttatus) 41 0.24
Blue-headed Vireo (Vireo solitarius) 30 0.15
Cedar Waxwing (Bombycilla cedrorum) 25 0.05
Yellow-bellied Sapsucker (Sphyrapicus varius) 11 0.08
Fox Sparrow (Passerella iliaca) 13 0.04
Winter Wren (Troglodytes hiemalis) 3 0.01
Song Sparrow (Melospiza melodia) 2 0.02
Dark-eyed Junco (Junco hyemalis) 4 0.02
Swamp Sparrow (Melospiza georgiana) 3 0.02
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(AUC; Zweig and Campbell 1993, Fielding and Bell 1997, 
Pearce and Ferrier 2000). An AUC value represents the prob-
ability that if we randomly chose a site within the dataset at 
which a species was present, then randomly drew one at which 
the species was absent, a model will assign a higher probabil-
ity of occupancy to the site at which the species was detected 
(Bonn and Schroder 2001). Models with AUC values >0.7 are 
considered useful, models with values >0.8 are considered 
good, and models with AUC values >0.9 are considered excel-
lent (Pearce and Ferrier 2000). Because we calculated AUC 
values from the same dataset we used to build the models, 
AUC values should be interpreted as a measure of model fit, 
not of predictive ability (Seavy and Alexander 2011). We cal-
culated AUC values with the ROCR package (Sing et al. 2005) 
in the R statistical programming environment (R Develop-
ment Core Team 2008). 

RESULTS

During our surveys, we detected 16 species of winter-
ing migrants. Six species were detected on enough sites 
(>10) to be analyzed (Table 3). We first assessed factors that 
affected the detectability of species and present results as 
the coefficient ± SE. Rates of detection of the Blue-headed 
Vireo (–3.93 ± 2.55), Hermit Thrush (3.88 ± 1.54), and Ruby-
crowned Kinglet were affected by time of day (–2.64 ± 1.10). 
Yellow-rumped Warblers (1.23 ± 0.35) were more likely to be 
detected if they were detected on the previous survey. Date 
(55.01 ± 3.21) and wind speed (-3.37 ± 1.65) affected the rate 
of detection of the Yellow-rumped Warbler only. Ability to 
detect the Ruby-crowned Kinglet (observer 1 = –1.46 ± 0.66, 
observer 2 = 0.15 ± 0.39) and Yellow-rumped Warbler (observer 
1 = –0.54 ± 0.7, observer 2 = 0.66 ± 0.42) differed by observer.

We then constructed models to predict occupancy with 
microhabitat data only, macrohabitat data only, or both and 
assessed how these three sets of models performed. For all spe-
cies except the White-throated Sparrow, models built with only 
microhabitat covariates performed poorly compared to models 
containing only macrohabitat covariates (Table 4). However, 
addition of microhabitat covariates to the macrohabitat mod-
els reduced AICc (or QAICc) for each focal species, resulting 
in more parsimonious models. Addition of microhabitat covari-
ates for the Golden-crowned Kinglet, Yellow-rumped Warbler, 
and White-throated Sparrow resulted in models >2 AICc from 
the model built with only macrohabitat covariates, suggesting 
that models including both micro- and macrohabitat informa-
tion are substantially more supported for these species than are 
models ignoring microhabitat (Table 4, Burnham and Anderson 
2002). Thus we failed to support the hypothesis that macrohabi-
tat alone is sufficient to model habitat occupancy by birds win-
tering in the Tuskegee National Forest.

Relationships between the occupancy of focal species and 
informative habitat variables are presented in Figure 1. The 

Blue-headed Vireo (4.66 ± 1.54), Golden-crowned (11.11 ± 3.36) 
and Ruby-crowned (2.20 ± 0.90) Kinglets, Hermit Thrush 
(1.02 ± 0.76), and Yellow-rumped Warbler (7.04 ± 2.62) were 
all associated with natural pine forests. The Golden-crowned 
Kinglet was also positively associated with canopy cover (4.28 
± 2.10) within the vegetation plots, negatively associated with 
total basal area (–5.0 ± 1.56), and showed a quadratic asso-
ciation with thickness of shrub layer (shrub = –21.07 ± 5.35, 
shrub2 = 14.78 ± 3.53). The Hermit Thrush showed a qua-
dratic relationship with depth of leaf litter (leaf litter = 19.15 ± 
8.52, leaf litter2 = –31.29 ± 15.04), a positive relationship with 
midstory thickness (19.15 ± 8.52), and a negative association 
with scrub areas (–3.67 ± 2.43). The Ruby-crowned Kinglet 

TABLE 4. AICc, AICc, model weights (wi), and area under curves 
of receiver operating characteristics (AUC) for models describing 
occupancy of migrants wintering in Tuskegee National Forest, Ala-
bama, 28 January–28 February 2009. Models were built with macro-
habitat covariates (macro), microhabitat covariates (micro), or both 
(macro + micro).

Species and scale Covariatesa AICc
b wi AUC

Blue-headed Vireo
macro + micro NPine + Ground 0 0.7 0.841
macro NPine 1.74 0.29
micro Null 12.22 0

Golden-crowned Kinglet
macro + micro NPine + CC + 

Shrub2 + BATot
0 0.99 0.884

macro NPine 9.35 0.01
micro CC + Shrub2 +

BATot
12.99 0

Ruby-crowned Kinglet
macro + micro NPine + Can + 

BAPine
0c 0.56 0.737

macro NPine + Can 0.53c 0.43
micro Null 6.82c 0.02

Hermit Thrush
macro + micro NPine + Scrub + 

LL2 + Mid
0 0.48 0.757

macro NPine + Scrub 1.08 0.28
micro  LL2 + Mid 1.39 0.24

Yellow-rumped Warbler
macro + micro NPine + BAOak 0c 0.81 0.817
macro NPine 3.37c 0.15
micro CC2 5.89c 0.04

White-throated Sparrow
macro + micro DOS + Can + Mid 0c 0.49 0.852
micro BATot + Mid 0.54c 0.37
macro DOS + Can 2.53c 0.14

a For abbreviations see Table 1.
b Minimum values of AICc 157.69 for the Blue-headed Vireo, 156.33 
for the Golden-crowned Kinglet, 330.19 for the Ruby-crowned King-
let, 231.23 for the Hermit Thrush, 264.61 for the Yellow-rumped 
Warbler, and 138.37 for the White-throated Sparrow.
c QAICc.
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was positively associated with canopy cover within 100 m 
(6.17 ± 2.77) and negatively associated with basal area of pine 
(–1.06 ± 0.61). The White- throated Sparrow was negatively 
associated with canopy cover within 100 m (–11.89 ± 5.45) and 
midstory thickness (–2.77 ± 1.51) and positively associated 
with developed open space (6.58 ± 3.56). TheYellow-rumped 
Warbler (7.09 ± 3.33) and Blue-headed Vireo (2.28 ± 1.13) 
were positively associated with basal area of oak and ground 
cover, respectively.

Overall models of use of habitat that included both micro- 
and macro-habitat characterizations performed well in pre-
dicting occupancy by wintering migrants. Final models for the 
Hermit Thrush and Ruby-crowned Kinglet met the criterion 
for useful (AUC > 0.7, Table 4), and those for the Blue-headed 

Vireo, Golden-crowned Kinglet, Yellow-rumped Warbler, 
and White-throated Sparrow met the criterion for good (AUC 
> 0.8, Table 4).

DISCUSSION

Because collection of microhabitat data is labor intensive, 
it would be useful if researchers could rely strictly on mac-
rohabitat data from publicly available remote imagery in 
constructing occupancy models. Justification for ignoring 
microhabitat data would be strongest if it could be shown that 
microhabitat lends little inference to models of animal occu-
pancy beyond that provided by assessment of macrohabitat 
data. In our study of wintering birds, however, the effect of 

FIGURE 1. Relationship between probability of occupancy ( ) and habitat covariates within final models of occupancy of migrants wintering 
in Tuskegee National Forest, Alabama, 28 January–28 February 2009.
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adding microhabitat information is clear—occupancy models 
for each focal species improved with the addition of micro-
habitat information, and models for half of our focal species 
improved substantially. Furthermore, AUC values revealed 
that our models fit the data well (AUC >0.7). Thus, it appears 
that when wintering migrants settle in a certain land-cover 
classification, they further select habitat on the basis of an 
area’s structure or floristics (Hutto 1985), highlighting the 
importance of including both macro- and microhabitat data in 
assessments of the occupancy of wintering migrants.

At our study site, wintering migratory birds used pine 
forests more than any other classification of land cover. Five 
of the six species analyzed—the Blue-headed Vireo, Ruby- 
and Golden-crowned Kinglets, Yellow-rumped Warbler, and 
Hermit Thrush—were associated with natural pine forests, 
supporting past studies showing that these species prefer to 
winter in pine forests (Quay 1947, Hamel 1992). Coniferous 
forests provide wintering migrants with much needed shel-
ter (Petit 1989) and contain an abundance of fruiting plants, 
such as waxmyrtle (Morella cerifera), that are important to 
wintering species such as Yellow-rumped Warbler and Her-
mit Thrush (Kwit et al. 2004). Our results support calls for the 
preservation of pine forests as habitat for wintering migrants 
(e.g., Woodrey et al. 1998).

Within pine forests, wintering migrants used sites with dif-
ferent structural characteristics. For instance, use of habitat by 
wintering Ruby- and Golden-crowned Kinglet was influenced 
by canopy cover. Our results support observations of Vaughan 
(2009) showing that wintering forest birds, including the two 
kinglets, are positively associated with canopy cover. Further-
more, the Ruby- and Golden-crowned Kinglets were negatively 
associated with basal area of pine and total basal area respec-
tively. Conner et al. (1979) found that wintering Golden-crowned 
Kinglets to be most abundant in 10-year-old pine stands, declin-
ing in abundance as stands matured beyond that age. In Georgia, 
White et al. (1996) found wintering Golden-crowned Kinglets 
less abundant in mature pine stands than in younger stands with 
less basal area, although Ruby-crowned Kinglets showed no 
preference. Because stand age is correlated with basal area (e.g., 
Hedman et al. 2000), our results support past studies showing 
that Golden-crowned Kinglets wintering in the southeast U.S. 
prefer mid-stage pine forests and suggest that the Ruby-crowned 
Kinglet also prefers younger pine forests. 

Within the pine forests we studied, Blue-headed Vireos 
were associated with areas of increased ground cover. In a 
study of the winter ecology of the Golden-cheeked Warbler 
(Setophaga chrysoparia) in Central America, Rappole et al. 
(1999) commonly observed Blue-headed Vireos with Golden-
cheeked Warblers, which preferred areas of high ground 
cover. Our results suggest that at our study site wintering 
Blue-headed Vireos also prefer areas with high vegetative 
ground cover within pine forests. 

Yellow-rumped Warblers and Hermit Thrushes winter-
ing at our study site also preferred pine forests with certain 

structural aspects. Hermit Thrushes preferred an intermedi-
ate level of leaf litter, likely because they often forage on the 
ground (Hamel 1992), and Yellow-rumped Warblers chose 
sites with a larger basal area of oaks. The Yellow-rumped 
Warbler’s association with oaks may reflect a preference for 
moist low-lying areas (Hamel 1992) within pine forests. 

The White-throated Sparrow was the only focal spe-
cies not associated with pine forests. It was associated with 
developed open spaces, which at our study site consist mostly 
of unpaved roads. The White-throated Sparrow was also 
negatively associated with canopy cover within 100 m and 
density of the midstory, likely reflecting an affinity for edges. 
Our results therefore support past studies suggesting that 
White-throated Sparrows prefer woody margins and an open 
canopy (Hamel 1992, Vaughan 2009) and suggest that both 
macro-and microhabitat information contribute to inference 
of this species’ habitat use. 

Realistic inference into patterns of habitat use by a given 
species often requires multiple scales of investigation (Wiens 
1989c, Knick and Rotenberry 1995). When designing stud-
ies, ecologists must consider the ecological neighborhood in 
which processes operate (Wiens 1989a, Pearson 1993) as well 
as the costs involved with the collection of data (Fearer et al. 
2007) at multiple scales. Our results are consistent with the 
proposal that wintering migrants select habitat at multiple 
scales. Therefore, collection of microhabitat data, although 
costly and time-consuming, remains important and necessary 
in the assessment of occupancy of migrants wintering in the 
southeast U.S.
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