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ABSTRACT 

It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to 
process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision 
computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal 
relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated 
with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing 
architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data 
processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed 
between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being 
investigated for global training of the network. In contrast to a software implementation, hardware realization of these 
networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we 
employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STOP) to efficiently update the 
network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-and­
fire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN 
circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<I 
pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the 
IFN with memristor synapses, its response to incoming spike trains and STOP learning characterization. 

Keywords: Machine Leaming, Memristors, Spiking Neural Networks, Spike-Timing-Dependent Plasticity (STOP). 

1. INTRODUCTION 

Society has realized enormous processing gains leveraging the von Neumann computing architecture. However, 
maintaining the growth trend now faces significant challenges at both the fundamental and practical levels. The von 
Neumann computer architecture is built upon the separation of memory from the processing units, which makes it a 
multi-purpose and generic design that has successfully leveraged the rapid exponential growth of modem electronics in 
the past decades; but at the same time limits the performance of the computing system architecture. This so called von 
Neumann bottleneck renders a processor unable to execute a program faster than it can fetch instructions and data from 
the memory. Many methods have been invented and used to alleviate the von Neumann bottleneck, including adding 
cache hierarchies between the processor and main memory, providing separate cache and separate access paths for data 
and instructions, using branch predictor algorithms and logic, providing a limited CPU stack or other on-chip scratchpad 
memory to reduce memory access, and so on. For many years, simply increasing clock speeds allowed chips to improve 
performance without addressing the von Neumann bottleneck, though frequency scaling has likely reached its limit 
following the transistor scaling in semiconductor technology is approaching atomic scale. Multiprocessor designs were 
used to improved processor performance in the absence of further frequency scaling as well, however, simple multi core 
scaling of this type will be ultimately limited by power constraints, as well as the parallelizability of the applications that 
will run on them. Finally, with several decades of development, trough the von Neumann computers have been very 
powerful, they are still incredibly inefficient at several tasks that are easy for even the simplest brains, such as 
recognizing images and navigating in unfamiliar spaces. Machines found in research labs or vast data centers can 
perform such tasks, but they are huge and energy-hungry, and they need specialized programming. 
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Recently, neural inspired computing architecture and the hardware implementation of neural networks, called 
Neuromorphic system, has become a frontrunner for inspiring non- von Neumann computing systems. The re-emergence 
ofNeuromorphic systems is fueled by two factors. First, more understanding has been obtained on both biological neural 
networks and artificial networks through experimental and modeling based studies. Second, the emergence of new 
classes of nano-devices, particularly two-terminal resistive switching devices (memristive devices), makes it possible to 
build functional Neuromorphic hardware that will not only serve to test the various neural network models but also can 
directly lead to new, effective, high-performance computing hardware 1

•
2

• 

Radically different from the von Neumann computer, the brain, and more specifically the mammalian cerebral cortex, is 
capable of harnessing a large number of inherently faulty components, is highly parallel, energy efficient, and fault 
tolerant. Complex pattern recognition tasks such as recognizing images, speech, text, and finding the connections among 
massive amount of information are almost trivial to humans. For these reasons, computing models inspired by the cortex 
have become a promising candidate model for future computing devices. Instead of separating the memory and 
processing elements, this biological system stores memory and performs computation in the same elements. Neurons 
perform computation by propagating spikes, and their synapses (connections between neurons) store memories through 
particular connectivity and their relative weights (or strengths). Specially, recent advances in computational 
neuroscience discovered and demonstrated unsupervised and supervised learning with spiking neural networks 3.4. These 
spiking neural networks are not only useful for large-scale cortical network simulation, but also demonstrate powerful 
computational capabilities for engineering applications. This interest in spiking neurons has also inspired the 
development of many Neuromorphic hardware implementations, specifically designed for simulating cortical networks 
or executing neural-inspired applications. For a hardware implementation of the large-scale cortical network, it is very 
crucial to have very compact designs of silicon synapse and neuron. 

The key to the high efficiency of biological systems is the large connectivity between neurons that offers highly parallel 
processing power. The synaptic weight between two neurons can be precisely adjusted by the ionic flow through them 
and it is widely believed that the adaptation of synaptic weights enables the biological systems to learn and function. A 
synapse is essentially a two-terminal device and its high-level functionality bears striking resemblance to an electrical 
device termed memristor. Similar to a biological synapse, the conductance of a memristor can be incrementally modified 
by controlling charge or flux through it. Researchers recently reported several silicon nano-scale memristive devices 
demonstrating such variable resistance, and then can be used in implementation of synaptic functions. In particular, 
compatible with this structure is the weight setting paradigm spike-timing-dependent plasticity (STDP) 5• 
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Figure I (a) A cross-point spiking neural network with memristor synapses, (b) a synapse connected between two spiking 
neurons showing pre- and post-synaptic spikes, (c) graphical depiction of the STDP rule. 

STDP is an important synaptic modification rule for competitive Hebbian learning can be achieved in a hybrid 
synapse/neuron circuit composed of complementary metal-oxide semiconductor (CMOS) neurons and nano-scale 
memristor synapses 6

• Under the STDP learning rule, the node preceding the synapse fires as does the node following 
(post) the synapse, both influencing the weight value. The difference in timing of the pre- and post- synaptic pulses 
determines the weight change ~w. The difference of the pre- and post- synaptic pulses is equivalent to a traditional 
voltage pulse, which researchers have shown to be able to set a memristor's resistance. Memristor amenable with STOP 
has led to fast, low-energy, high-endurance and powerful plastic devices that can be scaled down to nanometer scale and 
has potential to stack in three dimensions, then supporting for the implementation large-scale memristor-based 
Neuromorphic systems. A promising hardware structure of such Neuromorphic systems is cross-point network: a two-
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terminal memristor synapse is formed at each cross-point and connects CMOS-based pre- and postsynaptic neurons. 
Figure 1 shows how STDP works with the memristor in a cross-point network. The hybrid memristor/CMOS circuits 
discussed here can be fabricated using similar techniques developed recently for memristor-based memory and logic. 
The cross-point synapse network can potentially offer connectivity and function density comparable to those of 
biological systems and operate in a way analogous to biological systems rather than digital computers. In this case, every 
CMOS neuron in the pre-neuron layer of the cross-point configuration is directly connected to every neuron in post­
neuron layer with unique synaptic weights. A high synaptic density of 1010/cm2 can also be potentially obtained for 
cross-point networks with 100 nm pitch, a feature size readily achievable with advanced lithography approaches 6

. 

Since the emergence of nano-scale memristors, there has been a growing interest in integrating these devices with 
CMOS circuits to realize novel Neuromorphic functionality. Since the brain uses analog computation principles based on 
spiking neural networks (SNNs) that significantly vary from the digital von Neumann paradigm, researchers have made 
several investigations into VLSI (Very Large Scale Integration) implementation of neural networks 7

. These 
investigations of silicon neuron (SiN) circuits initiated the field of Neuromorphic Engineering intending to emulate the 
electrophysiological behavior of mammalian neurons and synapses. The silicon neurons are comprised of several 
synapse blocks and a soma block. The synapses receive the synaptic spikes from the other connected neurons and 
convert them into currents, and the soma blocks perform spatio-temporal integration of the spiking pulses and generate 
output spikes (or action potentials). Further, the dendrites and axon blocks are implemented using interconnect circuits 
which model the spiking signal propagation through the passive neuronal fibers and help realize larger signal processing 
networks, comprised of hierarchical neural blocks. To provide a background on the Neuromorphic circuits, several 
silicon neuron design styles have appeared in the literature, which model certain aspects of biological neuron, such as 
sub-threshold biophysically realistic models, compact IFN circuits, switched-capacitor neuron and digital VLSI 
implementations . The sub-threshold biophysically realistic SiNs work on the equivalence between the transport of ions 
in biological channels and charge carriers in transistor channels when biased near a threshold. A prominent silicon 
neuron implementation is the thalamic relay neuron .which models the dynamics of calcium and potassium ion relay 
channels in the biological neurons. Another is the sub-threshold Hodgkin-Huxley neuron which implements a non-linear 
channel kinetics model 7

• Faithful modeling of biological spiking neurons typically consumes a large amount of silicon 
layout area and are useful for biomimetic emulation of neural dynamics. However, for building large spiking 
Neuromorphic systems that can perform tasks faster than with a von Neumann architecture, only an empirical spiking 
neuron model is needed which can sufficiently abstract the underlying biophysiological processes while capturing the 
computational functionality of the biological neurons. Researchers have used this bio-inspired approach as an alternative 
to biomimetic neuron design to implement large arrays of interconnected spiking neurons. In these systems, researchers 
have used a compact integrate-and-fire neuron (IFN) circuit as an abstraction for the biological neuron. Further, these 
IFN circuits are designed to capture the transient spiking behavior of the neurons with reasonable accuracy to be useful 
for neural learning and require a far lower number of transistors to implement. The IFN employs modifications of the 
basic spike-event generation concept, called the Axon-Hillock circuit. 

2. INTEGRATE AND FIRE NEURONS WITH MEMRISTIVE SYNAPSES 

As discussed earlier, several silicon integrate-and-fire neurons (IFN) which mimic the electrophysiological functionality 
of the biological neurons have emerged in literature. However, barely any of them has leveraged the STOP-learning 
characteristics of the memristors. 

The memristor used here was designed using carefully chosen layers of silver (Ag), metal-chalcogenide (M-Se), and 
chalcogenide glass, stacked between tungsten electrodes. We identify the electrode nearest the Ag layer as the 
"oxidizable electrode." The device operates by changing resistance according to the quantity of Ag forced into the 
chalcogenide glass layer8

• First, to program the device, we force Ag into the chalcogenide glass layer by applying a 
potential across the device. When we apply a positive voltage above a threshold voltage (Vi,p) to the oxidizable electrode, 
Ag in the Ag layer is oxidized to Ag+, which then migrates with the applied electric field, into the glass layer. When 
these Ag+ ions make electrical contact with the electrode at the lower potential, Ag+ is reduced to Ag and eventually 
forms a conductive filament which spans the two electrodes. Conversely, when we erase the device, we apply a negative 
potential of larger magnitude than a threshold voltage (Vi,n) to the oxidizable electrode, Ag+ is generated at the more 
positive potential electrode and migrates with the applied electric field towards the top electrode. This process reduces 
the metallic contact between the two electrodes, and eventually severs the contact; both outcomes increase device 
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resistance. A typical range of device resistances (or memristance) is from 1 kQ to 10 Mil with quasi-static (DC) 
threshold voltage magnitude ranging from 150 mV to 250 mV 8

• The threshold voltage magnitude is, however, a 
function of the duration of the applied pulse. The shorter the applied pulse, the higher the threshold voltage. 

To work with the above memristor, the IFNs are expected to generate spikes with the desired action potential waveform 
and drive the memristive synapses with pre- and post-synaptic potentials. In order to integrate currents across several 
memristors (with lkQ tolOMQ resistance range) and drive thousands of these in parallel, the conventional current-input 
IFN architecture cannot be directly employed; current summing and the large current drive required would be 
prohibitive. Instead, an opamp-based IFN is desirable as it provides the required current summing node and a large 
current drive capability. 

Figure 2 shows a schematic diagram for the proposed leaky IFN block. Here, a low-power opamp operates in two 
asynchronous phases: integration and firing phases, as shown in Figure 3. In the integration phase, the opamp realizes a 
leaky integrator with leak rate controlled by the transistor Ricaky• and charges the capacitor Cmem resulting in "membrane 
potential" Vmem· The potential Vmcm is compared with a threshold Vth, crossing which causes the spike-generation circuit 
to create the required action potential waveform Vspk and forces the opamp into the "firing phase." During the firing­
phase, the opamp is reconfigured as a buffer, propagating the pre-synaptic spikes in the forward direction and post­
synaptic spikes in the direction of the input synapses. In the absence of an input spike, the membrane potential rests at 
the refractory potential (V,.rr). We employed folded-cascade opamp with class-AB output stage for realizing low power 
operation at 1 MHz spiking rate. Circuit structures to further reduce standby power by shutting down sections of IFN 
circuit when not in integration or firing phases were also employed. Using these techniques, the IFN is realized an 
energy consumption less than I pl/spike/synapse and less than 30µm2 layout area in 0.18µm CMOS process. 
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Figure 2. A leaky integrate-and-fire neuron (IFN) circuit, compatible with STOP-learning memristive synapses. 
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Figure 3. (a) IFN in integration phase where the opamp integrates the input spikes. (b) IFN in firing phase where the opamp 
drives all the memristive synapses with the spiking action potential. 
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The shape of the action potential function Vspk strongly influences the shape of the resulting STDP function. A 
biological-like STDP pulse with exponential rising edges is not friendly for circuit implementation. However, a 
biological-like STDP learning function can be achieved with a simpler action potential shape by implementing narrow 
short positive pulse of large amplitude and a longer slowly decreasing negative tail 9

• Moreover, with analog/digital 
configurable capacitor and resistor banks, an external tunability of IFNs was designed to optimize their response to the 
memristor characteristics (e.g., threshold voltage and the STDP program/erase pulse shape required by the fabricated Ag 
memristors with varied stack compositions) and the action potential shape required by learning algorithms. 

To realize unprecedented on-chip integration density, we can employ dense cross-point arrays of memristive devices in 
the BEOL of a CMOS process, physically on top of the mixed-signal neuron arrays. The concurrent mixed-signal neural 
architecture, where currents through all the memristors are simultaneously integrated as opposed to a random-access 
memory architecture, alleviates the sneak-path issues typically associated with sensing in such dense cross-point device 
arrays. The Neuromorphic chips should consist ofregular structures of cross-point arrays (synapses), with tiled integrate­
and-fire neurons. Further, peripheral circuits to implement the SNN learning algorithms such as rank order coding of 
spikes will be needed to encode and decode neuron firing patterns. 

3. SIMULATION RESULTS 

The proposed structure shown in Figure 2 was simulated using Cadence Spectre. Figure 4 illustrates the neuron's 
member voltage Vmcm and the STDP spike Vspk generated by the neuron. This spike is sent to pre- and post-synapses and 
then creates STDP of memristors' resistance. The shape of spike were adjustable to fit the characters of memristors and 
effective learning algorithm. Because of the opamp reconfiguration, the membrane voltage demonstrated the integration 
on the input spikes during the integration phase, and switched to drive a spike during firing phase later. As an example, 
the tunable spike amplitudes were selected to be able to produce net potentials across a memristor with write and erase 
threshold voltages around 0.16V and -0.JSV respectively. 
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Figure 4. (a) Response of 'membrane voltage' Vmem and (b) output firing spike Vspk· 

A published device model 10 has been fitted to our device and implemented using Verilog-A for circuit simulation in 
Cadence Spectre. To prepare the memristive device model for STDP simulation, the memristor was warming up by 
given a JO kHz 6V sinusoid potential across the device for three to five cycles. This warming up procedure a transient 
simulation to move the memristive device model from an "initial state" to a "steady state". Then the parameter of the 
memristive device model to set the initial device resistance in a simulation in the range of I kn to I MO, and the device 
was connected into the target neural network with two neurons: a pre-synapse neuron firing pre-spikes, and a post­
synapse neuron to integrate and fire post-spikes. 

According to STDP learning rule, ifthe spike (action potential) from the pre-synaptic neuron arrives at the synaptic cleft 
before that of the post-synaptic neuron, potentiation will be induced. Otherwise depression will be induced. How 
effectively the potentiation and depression take place in tum depends on the relative timing of the pre- and post-synaptic 
spikes. The synaptic weight in such a circuit is effectively the conductance of the memristor; the lower the resistance of a 
memristor is (or the higher its conductance is) the stronger the synaptic efficiency will be, as it will let more current 
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through and thus affect more strongly the effective synaptic potential (ESP) of the post neuron. In the simulation 
presented here, post-synaptic spikes are always after the pre- synaptic spikes, simply due to post-synaptic spikes are 
generated once the integration of pre- synaptic spikes crossed threshold. Also with the same reason, pre-synaptic spikes 
and post-synaptic spikes here are correlated. 

Figure 5 (a) shows the plasticity of memristor synapse with the STDP spike pairs from pre and post-neuron run across it. 
Each time when there is a pair of correlated pre-synaptic and post-synaptic spikes run across memristor, its resistance is 
reduced. In other words, the correlated pre-synaptic and post-synaptic spike pair strengthens the synaptic connection 
between the pre and post neurons. Figure 6 zooms in a cycle of correlated pre-synaptic and post-synaptic spike pair. The 
figure shows a post-synaptic spike was generated just after the last pre-synaptic came in and integrated by the neuron. As 
results, the action voltage of the post-synapse neuron crossed the firing threshold, and then one post-synapse spike was 
generated with the neuron's firing. The shape of STDP spike generated was carefully designed to be small enough to 
avoid to disturb memristor, at the same time, be large enough to be able create a net potential across memristor with 
potential above the programing threshold of the memristor. In our simulation, the STDP spike was designed with 
positive amplitude A~p = 140 mV, negative amplitude A~p = 100 mV, positive tail r+ = 0.5 µs and negative tail 
,- = 1.5 µs. With these parameters, a pre/post-synapse spike pairs with 0.5 µs arriving time difference created a 0.25 µs 
synapse updating time with the overlap of their negative and positive tails respectively, and resulting a decrease of 
resistance around 1.5 kn. 
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Figure 5. (a) Memristor's resistance Rm,, (b) Pre-synaptic voltage Vpre and (c) post-synaptic voltage VposL 
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Vi.n= -0.15 Vin the model. 
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4. CONCLUSION 
Significant progress has been made in spiking neural networks (SNNs) which expect to emulate data processing in the 
cortical brain recently. To realize SNNs on a chip, we are densely integrating mixed-signal integrate-and-fire neurons 
(IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Further, we employ bio­
inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights. 
Novel IFN circuits have been designed to drive > 1000 memristive synapses in parallel while maintaining overall power 
efficiency (<1 pl/spike/synapse), even at spike rate greater than 10 MHz. 
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