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A B S T R A C T 

Cosmological constraints from current and upcoming galaxy cluster surv e ys are limited by the accuracy of cluster mass 
calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass 
calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, 
using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster 
halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given 

richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass 
probability distribution. The cluster lensing selection bias can thus lead to o v erestimated mean cluster mass and biased cosmology 

results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for �� 

at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 h 

−1 Mpc along the line of
sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member 
galaxies in photometric cluster surv e ys. While our results qualitatively agree with those in the literature, accurate quantitative 
modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues 
co v ering a wide range of galaxy–halo connection models. 

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: theory. 

1  I N T RO D U C T I O N  

The number density of galaxy clusters as a function of mass and 
redshift is a sensitive probe for the growth rate of large-scale structure 
and the nature of cosmic acceleration (e.g. Vikhlinin et al. 2009 ; 
Mantz et al. 2010 , 2014 ; Rozo et al. 2010 ; Bocquet et al. 2015 , 2019 ; 
de Haan et al. 2016 ; Planck Collaboration XXIV 2016 ; Costanzi 
et al. 2019b , 2021 ; To et al. 2021a ; also see e.g. Frieman, Turner & 

Huterer 2008 ; Allen, Evrard & Mantz 2011 ; Weinberg et al. 2013 ; 
Huterer et al. 2015 for re vie ws). Among dif ferent observ ational 
techniques, wide-field optical imaging surv e ys simultaneously pro- 
vide large cluster samples and allow for weak gravitational lensing 
mass calibration. The upcoming Vera C. Rubin Observatory Le gac y 
Surv e y of Space and Time (LSST), Euclid , and the Nancy Grace 
Roman Space Telescope ’s High Latitude Surv e y hav e the potential 
to achieve unprecedented precision in cluster lensing and constraints 
on cosmological parameters (e.g. Sartoris et al. 2016 ; Eifler et al. 
2021 ; Wu et al. 2021 ). 

� E-mail: hywu@boisestate.edu

Precision cosmology from optical clusters relies on unbiased mass 
calibration for the underlying dark matter haloes. From surv e y data, 
one first identifies clusters as o v erdensities of galaxies in the sky 
and assigns each cluster a mass proxy, e.g. richness ( λ), the number 
of cluster member galaxies. Since the weak lensing signal for a 
single cluster usually has an insufficient signal-to-noise ratio for mass 
calibration, it is common to combine the lensing signal for clusters 
in a richness range and use this stacked signal to calibrate their mean 
mass (see e.g. Johnston et al. 2007 ; Rozo et al. 2010 ; Umetsu et al. 
2014 ; Simet et al. 2017 ; Murata et al. 2018 , 2019 ; McClintock et al. 
2019 ). The number counts of galaxy clusters and their mean mass are 
used to constrain cosmology. In this process, biased mass calibration 
would lead to biased cosmological constraints. 

This work focuses on the biased cluster lensing signal associated 
with optical selection. In the weak lensing mass calibration process, 
one usually assumes that the richness-selected cluster sample has an 
unbiased weak lensing signal for clusters of the same mass. Ho we ver, 
if the richness selection preferentially includes clusters with higher 
lensing signals at a given mass, the stacked lensing signal and the 
derived mean mass would be biased high. We refer to this as the 
optical selection bias in cluster lensing and mass calibration. 
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The recent cosmological results from the Dark Energy Surv e y 
Year 1 (DES Y1) cluster abundance and lensing (Abbott et al. 
2020 , hereafter Y1CL ) suggest the presence of significant systematic 
bias in mass calibration associated with the optical cluster sample 
defined by the redMaPPer algorithm (Rykoff et al. 2014 , 2016 ). In 
particular, Y1CL include an analysis that fixes the cosmology to 
the DES Y1 3 × 2 point results (derived from galaxy clustering, 
g alaxy–g alaxy lensing, and cosmic shear; see Abbott et al. 2018 ) 
to derive the mass–observable relation using number counts. The 
mass–observable relation derived this way indicates that, without 
correcting for the optical selection bias, the lensing mass calibration 
is biased high ∼10 per cent for high-richness clusters ( λ > 30). On 
the other hand, the low-richness clusters ( λ < 30) have unexpectedly 
low lensing signals in Y1CL . In addition, To et al. ( 2021a ) combine 
the DES Y1 cluster data (abundance, lensing, and clustering) with 
galaxy lensing and clustering and show that the impact of selection 
bias on the cluster lensing signal is approximately 15 per cent and is 
scale independent at � 8 h 

−1 Mpc.
In this work, we show that the cluster lensing selection bias largely 

originates from projection effects, and to a smaller extent from the 
effect of halo concentration. We use the term ‘projection effect’ to 
collectively refer to changes in cluster lensing and richness due to 
matter and galaxies projected along the line of sight. The impact 
of projection effects on lensing can be further split into the non- 
spherical matter distribution inside the halo’s virial radius and the 
matter in filaments in large-scale structure. We will sometimes refer 
to the former as orientation bias, but we consider it to be a subset of 
projection effects, and the division between these two contributions 
is only approximate. Simulations have shown that dark matter haloes 
tend to have triaxial shapes, i.e. 3D ellipsoids described by three 
different axis lengths (see e.g. Jing & Suto 2002 ; Kasun & Evrard 
2005 ; Bett 2012 ; Wu et al. 2013a ; Bonamigo et al. 2015 ). If a cluster 
sample is dominated by clusters with major axes aligned along the 
line of sight, then the stacked lensing signal would be boosted relative 
to the prediction based on spherically symmetric haloes (e.g. Gavazzi 
2005 ; Oguri et al. 2005 ; Corless & King 2007 ; Limousin et al. 2013 ; 
Dietrich et al. 2014 ; Osato et al. 2018 ; Park et al. 2021 ; Herbonnet 
et al. 2022 ; Zhang et al. 2022 ). 

Projection effects change cluster richness by including galaxies 
outside the halo virial radius in the richness calculation (e.g. Erick- 
son, Cunha & Evrard 2011 ; K ̈ohlinger, Hoekstra & Eriksen 2015 ; 
Rozo et al. 2015 ; Farahi et al. 2016 ; Wojtak et al. 2018 ; Costanzi et al. 
2019a ; Myles et al. 2021 ). In imaging surv e ys, cluster members are 
identified by their colours, and galaxies matching the colour criterion 
but outside the cluster virial radius can be misidentified as members. 
These galaxies are associated with uncorrelated background or 
correlated large-scale structure, and the latter tends to increase the 
lensing signal and richness simultaneously. 

The cluster lensing selection bias can be mathematically described 
as the correlation between richness residual and lensing residual at 
a fixed mass, i.e. after removing the mass dependence of richness 
and lensing, a cluster with a large positive richness residual tends 
to also have a large positive lensing residual. If our cluster sample 
includes all possible richness values at a given mass, then we expect 
the stacked lensing signal to be unbiased. Ho we ver, it is necessary 
to select clusters abo v e a certain richness limit because clusters with 
very low richness tend to be spurious. Therefore, in the presence 
of correlated residuals, a richness selection would lead to a biased 
stacked lensing signal. 

Given that projection effects coherently impact both richness 
and lensing signal, it is imperative to study richness and lensing 
simultaneously using simulations that self-consistently model cluster 

richness and lensing signal. In this work, we use the Buzzard 
simulations for DES (DeRose et al. 2019 , 2022 ), with cluster samples 
defined by the redMaPPer cluster finding algorithm. We first mimic 
the cluster selection in Y1CL and quantify the lensing selection bias. 
We then investigate the root cause of the selection bias by examining 
the underlying dark matter and galaxy distributions. 

Recently, Sunayama et al. ( 2020 , hereafter S20 ) use a halo 
occupation distribution (HOD) model to populate galaxies in N -body 
simulations and show that a redMaPPer-like cylindrical member 
selection leads to a 20 per cent lensing bias for scales � 10 h 

−1 Mpc.
As we will discuss in detail in Section 7 , the lensing selection bias 
they find is in general lower than ours, and we attribute this to the 
differences in the galaxy models. 

This paper is organized as follows. We briefly re vie w cluster weak 
lensing and introduce the selection bias formalism in Section 2 
and describe our simulations in Section 3 . Section 4 presents our 
main results on the cluster lensing selection bias. We investigate 
the correlation between richness residual and lensing residual in 
Section 5 and the link between projection effects and selection bias 
in Section 6 . Our results are discussed in Section 7 and summarized 
in Section 8 . 

We put most technical details and robustness tests in e xtensiv e 
appendices. Appendix A compares different versions of the Buzzard 
simulations, and Appendix B compares different diagnoses for 
calculating the selection bias. Appendix C shows that our results 
are robust against member galaxy selection criteria. Appendices D 

and E address the impact of halo triaxiality and concentration. 
Throughout the paper we use the flat � cold dark matter ( � CDM) 

cosmology implemented in the Buzzard simulations: �M 

= 0.286, 
h = 0.7, σ 8 = 0.82, n s = 0.96, �B = 0.046, and N eff = 3.046. 
All projected distances are in physical Mpc without h (denoted as 
pMpc), 1 while all line-of-sight distances are in comoving h 

−1 Mpc. 
All halo masses are virial mass M vir (in the unit of h 

−1 M �) based
on the redshift-dependent spherical o v erdensity pro vided in Bryan & 

Norman ( 1998 ). 

2  FORMALI SM  O F  CLUSTER  C O U N T S ,  W E A K  

L E N S I N G ,  A N D  SELECTI ON  BI AS  

In this section, we briefly describe the formalism for modelling 
cluster number counts and stacked weak lensing, and we extend the 
formalism to model the selection bias. For comprehensive re vie ws 
for gravitational lensing, we refer readers to Bartelmann & Schneider 
( 2001 ), Kilbinger ( 2015 ), and Umetsu ( 2020 ). 

The weak lensing signal of a galaxy cluster is related to its excess 
surface mass density ��, the surface density contrast at a projected 
distance r p , 

��( r p ) = �̄ ( < r p ) − �( r p ) , (1) 

where �̄ ( < r p ) is the cumulative mean surface mass density within 
r p , and �( r p ) is the differential mean surface mass density at r p ; �( r p ) 
can be calculated by integrating the line-of-sight 3D mass density 
distribution ρ( r ). Below we show the expressions for � and note that 
the expressions for �� can be derived analogously. 

1 Using physical instead of comoving distances is somewhat unusual for 
a simulation-based cluster study. We have made this choice because the 
redMaPPer cluster boundaries are defined in physical units. We have checked 
that for our redshift bins of �z = 0.15, stacking clusters using physical 
distances and comoving distances leads to negligible differences. 
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We focus on the number density and the mean lensing signal for 
a cluster sample defined by the richness range ( λmin , λmax ) at a given 
redshift. The comoving number density of this sample is given by 

n ( λmin , λmax ) = 

∫ λmax

λmin

d λ
∫ 

d M 

d n 

d M 

P ( λ| M) , (2) 

where P ( λ| M ) denotes the probability distribution function (PDF) of 
λ at a given mass, and d n /d M denotes the halo mass function and 
is determined by cosmological parameters. Because of the strong 
de generac y between the parameters determining d n /d M and P ( λ| M ), 
any bias in the latter will lead to biased cosmological parameters. 

To calibrate P ( λ| M ), we use the stacked lensing signal of the same 
cluster sample, which is given by 

�( λmin , λmax ) = 

∫ λmax 

λmin 
d λ

∫ 
d M 

d n 
d M 

P ( λ| M) 〈 �| M 〉∫ λmax 

λmin
d λ

∫ 
d M 

d n 
d M 

P ( λ| M)
, (3) 

where 〈 �| M 〉 is the mean lensing signal at a given mass, 

〈 �| M 〉 =
∫ 

d � � P ( �| M) . (4) 

The equations abo v e assume that λ and � are uncorrelated. Ho we ver, 
if � is correlated with λ at a given mass, P ( λ| M ) and P ( �| M ) need 
to be replaced by a joint probability distribution P ( λ, �| M ). The 
stacked lensing signal is then given by 

�( λmin , λmax ) ∝ 

∫ λmax

λmin

d λ
∫ 

d M 

d n 

d M 

∫ 
d � � P ( λ, �| M) . (5) 

To proceed, we need to model P ( λ, �| M ). It has been shown that 
at fixed mass, λ is well described by a lognormal distribution (e.g. 
Anbajagane et al. 2020 ; To et al. 2021a ). Similarly, we hav e v erified 
from our simulations that � at fixed mass can be described by a 
lognormal distribution. To account for the correlation between the 
two observables, we consider a bivariate lognormal distribution. We 
note that deviations from this assumption could exist and will require 
further numerical modelling. 

Below we analytically model the selection bias by assuming that 
ln λ and ln � follo w a bi v ariate Gaussian distribution. Let us assume 
this joint PDF has a mean 

(〈
ln λ

∣∣M 

〉
, 
〈
ln � 

∣∣M 

〉)
and a covariance 

matrix 

C = 

(
σ 2 

ln λ rσln λσln � 

rσln λσln � σ 2 
ln �

)
, (6) 

where σ ln λ and σ ln � are the standard deviations of the two observ- 
ables at a given mass, and r is the correlation coefficient between the 
residuals, corr[ln λ − 〈 ln λ| M 〉 , ln � − 〈 ln �| M 〉 ]. The PDF of the 
lensing signal associated with the richness selection is given by 

p 

(
ln � 

∣∣ln λ, M 

)
= 

P 

(
ln � , ln λ

∣∣M 

)

P 

(
ln λ

∣∣M 

)

∝ 

bi v ariate Gaussian 

(( 〈
ln λ

∣∣M〉
, 
〈
ln � 

∣∣M 

〉 )
, C 

)

Gaussian 

(〈
ln λ

∣∣M 

〉
, σ 2 

ln λ

) . (7) 

Under this assumption, the conditional probability distribution of 
ln � given ln λ corresponds to a Gaussian distribution with the mean 

〈
ln � 

∣∣ln λ, M 

〉 = 

〈
ln � 

∣∣M 

〉 + r σln �

(
ln λ − 〈

ln λ
∣∣M 

〉 )
σln λ

. (8) 

The last term describes the selection bias associated with cluster 
lensing (also see White, Cohn & Smit 2010 ; Evrard et al. 2014 

for similar deri v ations). This formalism is also mathematically 
equi v alent to the impact of halo assembly bias on cluster lensing 
and clustering (see e.g. Wu, Rozo & Wechsler 2008 ). 

The correlation between the λ residual and the � residual at a 
fixed mass is the essence of the cluster weak lensing selection bias. 
In Section 5 , we will quantify the correlated residuals in the mock 
redMaPPer cluster sample. 

3  G A L A X Y  CLUSTERS  IN  T H E  BU Z Z A R D  

SI MULATI ONS  

In this section, we describe our simulated redMaPPer clusters from 

the Buzzard simulations. 

3.1 The Buzzard simulations 

The Buzzard simulations (DeRose et al. 2019 , 2022 ) include a suite 
of synthetic catalogues based on the ADDGALS algorithm (Wechsler 
et al. 2022 ) and are designed for supporting the DES data analyses. 
Below we describe the simulation framework, and in Appendix A , 
we describe the particular versions of Buzzard we use. 

The first step of the simulation creates a galaxy catalogue with r - 
band magnitudes. The algorithm performs subhalo abundance match- 
ing between an N -body simulation with well-resolved subhaloes and 
the observed luminosity function in the r -band. Using the resulting 
galaxy catalogue, the algorithm calibrates (1) the relation between 
mass and r -band magnitude for central galaxies, and (2) the relation 
between local density and r -band magnitude for satellite galaxies. 
These relations are then used to assign galaxies to resolved haloes 
or dark matter particles in a large light-cone simulation with a lower 
resolution. 

The second step of the simulation assigns colour to each galaxy. 
At a given r -band magnitude, galaxies from the observed catalogue 
are ranked by their g − r colour, and galaxies from the simulated 
catalogue are ranked by an environmental proxy, such as the distance 
to the nearest neighbour. The algorithm then performs abundance 
matching between these tw o rank ed lists with some scatter, and the 
observed galaxy spectral energy distributions (SEDs) are assigned to 
the corresponding galaxies in the simulated catalogue. 

In this work, we use 12 realizations of the DES Y1 data (1120 deg 2 

each) based on Buzzard version 1.9.2 + 1 and one realization of the 
DES Y3 data (4143 deg 2 ) based on Buzzard version 1.9.8 (presented 
in DeRose et al. 2019 , 2022 , respectively). In Appendix A , we 
compare the two versions. The key difference relevant for this work 
is that the Y1 realizations have a narrower red sequence than the Y3 
realization. We find that the lensing selection bias results from these 
two versions are statistically consistent, and therefore in the main 
text we combine the results from both versions. 

Wechsler et al. ( 2022 ) show that the massive haloes in Buzzard 
tend to have fewer member galaxies than observed, and this deficit 
is attributed to the artificial disruption of subhaloes in dense en- 
vironments in the N -body simulation used for subhalo abundance 
matching. As a result, clusters in Buzzard tend to have lower richness 
values compared with observed clusters of similar mass, and above 
a richness threshold Buzzard has fewer clusters than observed. In 
addition, To et al. ( 2021a ) show that the selection bias in Buzzard 
is higher than that indicated by the DES Y1 data at large scales, 
which can also be attributed to the low galaxy density in clusters 
in Buzzard. Because of this discrepancy, we do not directly use the 
selection bias derived from Buzzard to correct the observed lensing 
signal. Instead, we use Buzzard to study the nature of selection bias 
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and leave to future works a full calibration using suites of galaxy–
halo connection models. 

3.2 The redMaPPer cluster finding algorithm 

The redMaPPer algorithm (Rykoff et al. 2014 , 2016 ) identifies galaxy 
clusters in a photometric galaxy catalogue based on the red sequence, 
i.e. the tight colour–magnitude relation for galaxies in clusters. The
algorithm first calibrates a red-sequence template using a sample
with both photometric and spectroscopic information. This template
is then used to select red galaxies as possible central galaxies.

For a central galaxy, the algorithm finds its candidate member 
galaxies and assigns each member a membership probability, the 
probability that a galaxy is a true cluster member calculated based 
on its magnitude, colour, and distance to the central galaxy. The 
member galaxies are selected in a projected aperture R λ, which is it- 
eratively calculated to match the relation R λ = 1( λ/ 100) 0 . 2 h 

−1 Mpc
(physical). This relation has been calibrated to minimize the scatter 
of L X given λ (Rykoff et al. 2012 ). 

In a process called percolation, all possible central galaxies are 
ranked by a preliminary richness, and a higher ranked central galaxy 
is prioritized in obtaining its members, i.e. for a candidate galaxy 
member in the vicinity of two possible central galaxies, it will 
be assigned a higher membership probability to the higher ranked 
central. 

In this work, we use the redMaPPer version 6.4.22, which is 
essentially the same version as used in DES Y1CL (see McClintock 
et al. 2019 ). We use the halo centres as cluster centres to calculate 
the richness to a v oid mismatched halo–cluster pairs and misidentified 
central galaxies (e.g. Zhang et al. 2019 ). 

3.3 Measuring stacked cluster lensing in simulations 

We use dark matter particles to calculate the surface mass density 
� and excess surface density �� of clusters, using cylinders of 
depth comoving ±100 h 

−1 Mpc. This projection depth is sufficient 
to account for the correlated structure along the line of sight (also 
see Osato et al. 2018 ), and we have tested that using cylinders 
of ±200 h 

−1 Mpc or using particles in cones leads to negligible 
differences. Because Buzzard joins two different boxes at z = 

0.32, we discard haloes within ±100 h 

−1 Mpc of this discontinuity 
boundary. We calculate the profiles for all haloes in the parent N - 
body simulations with M vir ≥ 10 13 h 

−1 M �, regardless of whether a
halo is in the mock cluster catalogue or not. As we will show below, 
we use all these haloes to form a control sample for lensing signals. 
We additionally calculate the triaxial shape of each halo using the 
dark matter particles within R vir (see Appendix D ). 

Fig. 1 compares the �� profiles for haloes with 0.2 < z < 0.35 
and M vir ≥ 10 14 h 

−1 M �, calculated from particles and from the ray- 
tracing shear catalogue. We use the true redshift and shear in the 
shear catalogue, ignoring photometric errors and intrinsic galaxy 
ellipticities. The ray tracing and particle calculations agree with 
each other at large scales, while the former does not have sufficient 
resolution below 0.4 pMpc. To test the resolution limit of Buzzard 
we use the Abacus Cosmos simulations (Garrison et al. 2018 ); we 
use the dark matter particles in the 720 h 

−1 Mpc boxes at z = 0.3, 
which have three times better mass resolution than Buzzard. 2 The 
comparison with Abacus shows that the spatial resolution of Buzzard 

2 The Abacus Cosmos simulations are based on M 200 m , a different cosmology, 
and a different redshift, and thus we only use them for resolution comparison. 

Figure 1. Mean �� profiles from the Buzzard simulations, calculated using 
dark matter particles and the ray-tracing shear catalogue, compared with the 
Abacus Cosmos simulations with three times higher mass resolution. The 
Buzzard particle calculations have adequate resolution down to 0.1 pMpc. 
The pMpc and ppc in the axis labels refer to physical megaparsec and parsec. 

is adequate down to 0.1 pMpc. Scales below 0.1 pMpc are not usually 
included in weak lensing cluster mass calibration. 

4  QUANTI FYI NG  T H E  SELECTI ON  BI AS  IN  

T H E  STACKED  REDMAPPER  CLUSTER  

LENSING  S I G NA L  

With the simulated cluster lensing signal described abo v e, we 
calculate the stacked lensing signal in redshift and richness bins. We 
use the same binning as in DES Y1CL : three redshift bins bounded 
by (0.2, 0.35, 0.5, 0.65), and four richness bins bounded by (20, 30, 
45, 60, ∞ ). 

To quantify the cluster lensing selection bias, we compare the 
stacked lensing signal of clusters selected by richness with the signal 
expected from the underlying dark matter halo mass PDF. This 
‘expected’ signal accounts for the scatter between richness and mass 
but assumes uncorrelated residuals between richness and lensing at a 
given mass. In Appendix B , we detail three methods for calculating 
the expected lensing signal from this mass PDF and show that they 
give consistent results. In the main text, we present the ‘weighting’ 
method. 

Fig. 2 shows the selection bias for � and ��. We show the mean 
and standard deviation calculated from the 12 realizations of the DES 

Y1 data and the one realization of the DES Y3 data, weighted by 
the area. For �, all richness bins exhibit biases of approximately 
10–20 per cent, with strong scale dependence. For the low-richness 
bins, the selection bias peaks at approximately 1 pMpc and is weak 
at small and large scales. For the high-richness bins, the selection 
bias is substantial at small scales. In all cases, the selection bias for 
� vanishes at scales � 20 pMpc. In contrast to �, the bias of ��

is non-vanishing at large scales because �� at each r p contains the 
information of � from r < r p (equation 1 ). The bias in �� can be 
as high as 20–60 per cent at large r p . 

We w ould lik e to understand to what extent the biased lensing 
profile presented in Fig. 2 is caused by a biased 3D density profile. To 

art/stac2048_f1.eps
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Figure 2. Cluster lensing selection bias of � and ��, quantified by the ratio between the signal from a richness-selected sample (observed) and the signal 
expected from the underlying halo mass PDF (expected). We present different redshift bins (rows) and richness bins (columns). For �, the selection bias peaks 
at approximately 1 pMpc and vanishes at large scales. For ��, the selection bias includes the small-scale effects and can be as high as 20–60 per cent at large 
scales. 

answer this, we repeat the selection bias calculation for the 3D density 
profile ρ( r ). For each halo, we calculate the spherically averaged ρ( r ) 
by counting dark matter particles in spherical shells around the halo 
centre. We then calculate the mean ρ in a richness bin and the ρ
expected from haloes with the same mass PDF. 

Fig. 3 shows the selection bias of 3D density profiles ρ out 
to 3 pMpc. For low-richness clusters, the selection bias of ρ is 
negligible, while for high-richness clusters, the small scales exhibit 
a ∼10 per cent selection bias in ρ. This difference in small-scale 
behaviour explains the difference between high- and low-richness 
clusters shown in Fig. 2 . For low-richness clusters, the small-scale 
lensing selection bias is associated with the 2D projection, while for 
high-richness clusters, part of the small-scale selection bias is due to 
the biased 3D density profiles. 

Fig. 3 implies that our high-richness sample preferentially selects 
haloes with higher 3D density at small scales at a given mass. We 
expect that these haloes have higher concentrations. We investigate 
the influence of halo concentration in Appendix E . Fig. E1 compares 
the concentration distribution for a richness-selected sample and for 
a sample with the same mass PDF. As expected from Fig. 3 , the 
high-richness clusters tend to have higher concentrations than haloes 
of the same mass PDF, while the low-richness clusters do not show 

such a bias. Fig. E2 sho ws ho w concentration affects the lensing 

Figure 3. Selection bias in 3D density profiles ρ( r ), analogous to Fig. 2 with 
matching panels. While low-richness clusters exhibit negligible selection bias 
in ρ, high-richness clusters show ∼10–15 per cent selection bias in ρ at small 
scales. This explains the different scale dependence of � bias for low- and 
high-richness clusters seen in Fig. 2 . 
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Figure 4. Left: scatter of the lensing signal at a given mass as a function of projected radius, for 0.2 ≤ z < 0.35 and three halo masses. Right: correlation 
between the lensing residual and the richness residual at a given mass, as a function of projected radius. The selection bias is proportional to the product of the 
lensing scatter and the correlation coefficient (equation 8 ), and their scale dependence explains the scale dependence of the selection bias seen in Fig. 2 . 

profile. The dependence of � on halo concentration is quite different 
from what we see in Fig. 2 , and therefore the halo concentration has 
limited predictive power for the selection bias. 

We also examine the selection bias associated with the triaxial 
halo orientation in Appendix D . Similar to concentration, our cluster 
sample preferentially selects haloes with major axes parallel to the 
line of sight. Ho we ver, the orientation and concentration selection 
cannot fully account for the selection bias we find (Fig. E3 ). 

In the next sections, we will investigate the origin of the selection 
bias. In Section 5 , we will calculate the correlation between the 
richness residual and the lensing residual at a given halo mass. In 
Section 6 , we will examine the relation between projection effects 
and selection bias. 

5  C O R R E L AT I O N  BETWEEN  T H E  RICHNE SS  

RE SID UA L  A N D  T H E  LENSING  RESIDUAL  AT  

A  G I V E N  H A L O  MASS  

We compare the simple model presented in equation ( 8 ) with 
the selection bias results from simulations. We first calculate the 
standard deviations ( σ ln λ, σ ln � ) and correlation coefficient ( r ) from 

simulations. To capture their mass dependence, we use the Kernel 
Localized Linear Regression method (Farahi, Anbajagane & Evrard 
2022 ). In this algorithm, each halo is assigned a Gaussian kernel 
centred on its ln M ; for a given mass, the linear regression is 
performed with each halo weighted by this kernel. We combine all 
13 Buzzard realizations, split haloes abo v e 10 13 h 

−1 M � into 20 log- 
mass bins, and use redshift bins �z = 0.15. We choose a Gaussian 
kernel width of 0.2, perform the regression independently for each 
r p , and use 100 bootstrap samples to estimate the error bars. 

The left-hand panel of Fig. 4 shows σ ln � as a function of projected 
radius, for three halo masses. The scale dependence is non-monotonic 
and exhibits a peak at ≈2 pMpc. The right-hand panel shows the 
correlation between lensing residual and richness residual at a given 
mass, r = corr[ln λ − 〈 ln λ| M 〉 , ln � − 〈 ln �| M 〉 ]. For 5 × 10 13 

and 10 14 h 

−1 M �, the correlation peaks at ≈0.4 pMpc, while for 

Figure 5. Lensing selection bias estimated from equation ( 8 ), shown in 
orange, based on the correlated residuals between richness and lensing at a 
given mass. The blue bands show the simulation results (same as Fig. 2 ). 

5 × 10 14 h 

−1 M �, the correlation is the largest at small radii. From 

equation ( 8 ), we can see that the selection bias is proportional to the 
product of σ ln � and r , and the scale dependence we see in Fig. 2 can 
be explained by the scale dependence shown here. 

Fig. 5 shows that the prediction from equation ( 8 ) agrees well with 
the selection bias shown in Fig. 2 . In this calculation, we first apply 
equation ( 8 ) to each halo and then average over all haloes in a given 
richness–redshift bin. The small discrepancy is due to the deviations 
from the Gaussian assumption associated with equation ( 8 ). 

To impro v e our understanding of selection bias, it is essential 
to calibrate each component in equation ( 8 ) using simulations and 
observations. The scatter of the lensing signal at a given mass can be 
estimated from simulations. Ho we ver, in the absence of an accurate 
galaxy–halo connection model, the correlated residuals between 
lensing and richness need to be modelled empirically. One option is to 
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use simulations to moti v ate a functional form for the scale-dependent 
correlation between the residuals and use observed lensing profiles to 
constrain this correlation. In addition, one may use multiwavelength 
observations to calibrate such a correlation; for example, by studying 
lensing and richness for a sample selected based on the Sunyaev–
Zeldovich (SZ) effect. 

6  PROJEC TION  EFFECTS  A N D  SELECTIO N  

B IAS  

We investigate the origin of selection bias by examining the impact of 
line-of-sight projection on the redMaPPer richness. Since redMaPPer 
is a rather complex algorithm, we adopt a simplified approach: we 
use a basic colour–magnitude cut on galaxies and count the number 
of galaxies in a cylinder along the line of sight. Below we show 

that our simplified calculation can largely account for the lensing 
selection bias seen in Buzzard. In this calculation, we focus on the 
single DES Y3 realization because its red-sequence width is closer 
to that observed by DES. 

6.1 Properties of the redMaPPer member galaxies 

We first quantify the redMaPPer member galaxy properties in our 
simulation. We focus on galaxies with membership probability 
greater than 0.9, as they form a tight red sequence and contribute 
to most of the richness of a cluster. 

6.1.1 Magnitude 

We hav e v erified that the magnitude selection of our simulated 
redMaPPer member galaxies is consistent with the 0.2 L ∗ threshold 
in i band calibrated from the Sloan Digital Sk y Surv e y (SDSS), 
as presented in equation (9) in Rykoff et al. ( 2014 ). We use this 
magnitude threshold for our fiducial calculation. 

6.1.2 Colour 

The left-hand panel of Fig. 6 shows the medians and 68 per cent 
intervals of the member colours ( g − r , r − i , i − z ), as a function 
of cluster redshift. At a given redshift, we find that the colour of red- 
sequence galaxies is approximately independent of the magnitude, 
and we use the median colour 〈 c 〉 and 68 per cent interval σ c as a 
simplified red-sequence template for selecting member galaxies. 

For the calculations in this section, we select galaxies with 

χ2 
colour = 

∑ 

c 

( c − 〈 c 〉 ) 2 /σ 2 
c < 9 , (9) 

assuming no correlation between colours. Fig. C1 shows that chang- 
ing this χ2 

colour threshold has little effect on the resulting lensing
selection bias. 

6.1.3 Line-of-sight distances 

We calculate the line-of-sight comoving distances between member 
galaxies and their host haloes. The right-hand panel of Fig. 6 shows 
the histogram for these distances for clusters in the range 0.2 < 

z < 0.65. The prominent peak near 0 corresponds to the galaxies 
physically associated with the cluster, while the broad tails on 
both sides correspond to the projected members. The histogram 

shows a transition from cluster galaxies to background galaxies at 
approximately 30–50 h 

−1 Mpc. A 50 h 

−1 Mpc line-of-sight distance 

includes approximately 90 per cent of the members. We will test the 
impact of projection depth in the calculations below. 

6.2 Selecting member galaxies in a cylinder: impact of 
projection depth 

We calculate the number of galaxies within a cylinder around a 
halo centre as our mock richness. We use galaxies from the GOLD 

catalogue derived from Buzzard, which represents the parent galaxy 
sample for the DES cosmology analyses (Drlica-Wagner et al. 2018 ). 
We use galaxies’ 3D positions, magnitudes, and colours. We adopt 
the following fiducial choice: an aperture R λ (from the redMaPPer 
output), a magnitude threshold of 0.2 L ∗ in i band, and a colour 
cut of χ2 

colour < 9. In addition, we mimic the percolation process in
redMaPPer to a v oid double counting member galaxies: if a galaxy 
falls in the cylinder of multiple haloes, it is only counted as the 
member of the most massive halo. We have found that including this 
process only slightly changes the results in the lowest richness bin. 

In this section, we vary the depth of the cylinder from ±1 
to 60 h 

−1 Mpc. In Appendix C , we compare different magnitude 
thresholds, colour thresholds, and apertures. For each of our cylinder- 
richness definitions, we use the same redshift bins as the redMaPPer 
calculation and split the cylinder richness into four bins, each of 
which has the same number of clusters as the redMaPPer λ bins. 

Fig. 7 shows the selection bias in � associated with different pro- 
jection depths. For all panels, a projection depth of 20–60 h 

−1 Mpc 
gives a selection bias comparable to that in the redMaPPer sample 
(black curv es). F or a projection depth of 1 h 

−1 Mpc, we see no 
selection bias for low-richness clusters but a significant selection 
bias for high-richness clusters for r p < 1 pMpc. This selection bias 
e xists ev en when we eliminate the colour and magnitude selection. 
This is consistent with the ρ( r ) bias shown in Fig. 3 and with the 
concentration bias shown in Fig. E1 . In Buzzard, for haloes abo v e 
≈5 × 10 14 h 

−1 M �, high-concentration haloes tend to have higher 
richness. This is opposite to the theoretical expectation that high- 
concentration haloes tend to form earlier and have fewer surviving 
satellite galaxies (e.g. Wu et al. 2013b ; Mao, Williamson & Wechsler 
2015 ). This correlation between concentration and richness could be 
spurious and could lead to o v erestimated selection bias for high- 
richness clusters in Buzzard. 

Given that the selection bias of redMaPPer is well approximated 
by selecting member galaxies in a cylinder, we can use this approach 
to systematically study cluster selection bias in a wide range of 
simulations. Since redMaPPer self-calibrates the red sequence, it 
can only be applied to mock catalogues with realistic galaxy colour; 
therefore, redMaPPer has only been applied to a limited number of 
mock catalogues. Our cylinder selection, on the other hand, can be 
readily applied to any mock galaxy catalogue for red galaxies and is 
computationally ine xpensiv e. In our upcoming work, we plan to use 
this tool to study a wide range of mock galaxy catalogues, including 
those generated from hydrodynamic simulations and HOD models. 

7  DI SCUSSI ON  

In this section, we compare our results with previous work and 
discuss mitigation strategies for selection bias. 

7.1 Comparison with previous studies 

S20 quantify the impact of projection effects on cluster lensing and 
clustering using HOD-based galaxy catalogues. They simulate the 
redMaPPer richness using cylinders of depth ±60 h 

−1 Mpc. We have 
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Figure 6. Left: the colour of the redMaPPer member galaxies in Buzzard as a function of cluster redshift. The lines and bands show the medians and the 
68 per cent intervals. Right: the line-of-sight comoving distances between member galaxies and their host haloes. Here we consider galaxies with a membership 
probability greater than 0.9. 

shown that the richness calculated from ±20 to 60 h 

−1 Mpc cylinders 
gives results broadly consistent with redMaPPer; therefore, their 
calculation procedures and ours are comparable. Ov erall, the y find 
negligible selection bias at small scales, and their selection bias 
amplitude is lower than ours at large scales by approximately a 
factor of 2 (their fig. 6). 

We attribute the difference between their results and ours to how 

galaxies are populated in N -body simulations. S20 assign galaxies to 
resolved haloes, while Buzzard assigns galaxies to both halo centres 
and dark matter particles. Therefore, Buzzard has a larger field galaxy 
population. In addition, S20 use an observationally constrained HOD, 
while Buzzard has lower galaxy number densities in cluster-size 
haloes compared with observations, resulting in lower cluster number 
counts abo v e a giv en richness (see figs 4 and 8 in Wechsler et al. 2022 
and figs 12 and 13 in DeRose et al. 2019 ). The combination of a lower 
cluster galaxy content and a larger background population compared 
with observations leads to stronger projection effects in Buzzard. 

Several analyses also suggest that the lensing selection bias in 
Buzzard is higher than that in observations. In Y1CL , the lensing 
selection bias needed to reconcile cluster counts with DES 3 × 2 point 
analysis is weaker than what we have calculated from Buzzard 
(their fig. 12). Combining cluster abundances, cluster lensing and 
clustering, and galaxy lensing and clustering, To et al. ( 2021a ) find 
that the best-fitting selection bias in DES Y1 clusters is ≈15 per cent 
for scales � 8 h 

−1 Mpc (comoving), which is smaller than that in
Buzzard. 

Because of the uncertainty associated with galaxy modelling, 
care must be taken when applying lensing selection bias derived 
from simulations to cosmological analyses. A conserv ati ve approach 
is to adopt a functional form for the selection bias moti v ated by 
simulations and let the observational data self-calibrate the model 
parameters. This is similar to the approach in To et al. ( 2021a ), who 
model the large-scale selection bias with a power law in mass and 
fit for the model parameters (also see Park et al. 2021 ). Ho we ver, 
in an analysis combining cluster counts and weak lensing such as 

Y1CL , fully uninformative priors on the selection bias parameters 
w ould completely w ash out the cosmological constraining power of 
the catalogue. It is thus necessary to develop informative priors using 
a wide range of galaxy models, which could be achieved by exploring 
HOD parameters. 

An alternative approach is to model the correlated residuals 
between observables and fit for the correlation coefficients (e.g. 
Grandis et al. 2021a ; Chiu et al. 2022 ). This approach extends the 
analytic model described in Section 2 and can be part of the forward- 
modelling procedure. Ho we ver, this approach could lead to many 
weakly constrained nuisance parameters, and informative priors on 
the correlation coefficients would also be necessary. 

It would be valuable to develop emulators for calculating the 
selection bias for a range of galaxy models and cluster selection 
methods. Recent studies have used N -body simulation-based emula- 
tors to predict cluster lensing on non-linear scales (e.g. Nishimichi 
et al. 2019 ; Salcedo et al. 2020 ; Cromer et al. 2021 ), but they have 
so far used halo-based cluster selection. With cylinder selection as a 
proxy for the full redMaPPer selection, it may be feasible to construct 
emulators that directly model the cluster selection procedure. 

Our results indicate that the redMaPPer cluster projection effects 
are dominated by galaxies within approximately ±60 h 

−1 Mpc along 
the line of sight, which corresponds to a redshift difference of 0.02. 
This is slightly smaller than the observational results in Myles et al. 
( 2021 ). They fit the spectroscopic redshift distribution of galaxies 
associated with redMaPPer clusters using a double Gaussian mixture 
model to account for true and spurious members, finding that the 
latter has a standard deviation of approximately 0.03. Their result 
is consistent with Costanzi et al. ( 2019a ), who develop a projection 
effect proxy σ z to describe how widely cluster members are spread 
along the line of sight. We plan to use these observations to constrain 
the projection depth and to impro v e the modelling of projection 
effects in simulations. 

Baryonic effects have been shown to alter the cluster lensing 
signal and bias the lensing-derived mass low by 5–10 per cent (e.g. 
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Figure 7. Lensing selection bias from our simplified richness proxies calculated with cylinders of various projection depths. A projection depth of ±20 to 
60 h −1 Mpc reproduces the selection bias seen in the full redMaPPer calculation. For high-richness clusters, part of the selection bias is contributed by galaxies 
within ±1 h −1 Mpc. 

Bah ́e, McCarthy & King 2012 ; Henson et al. 2017 ; Lee et al. 2018 ; 
Debackere, Schaye & Hoekstra 2021 ; Grandis et al. 2021b ); ho we ver, 
selection bias is comparable or larger in magnitude, extends to larger 
scales, and is potentially more difficult to model because it depends 
on the uncertain relation between galaxies and haloes. Therefore, 
we expect that projection effects would be the most significant 
systematic uncertainty in optical cluster lensing. On the other hand, 
baryonic effects tend to make clusters more spherical (e.g. Bryan 
et al. 2013 ; Henson et al. 2017 ), which would reduce orientation 
bias. It would be valuable to use full hydrodynamic simulations with 
reliable galaxy populations to self-consistently study the projection- 
induced correlated residuals between lensing and richness. 

Forecast studies show that the cosmological precision attainable 
from cluster weak lensing is competitive with that attainable from 

cosmic shear analyses of the same weak lensing data set, if the 
statistical limits can be achieved (e.g. Oguri & Takada 2011 ; Yoo & 

Seljak 2012 ; Weinberg et al. 2013 ; Salcedo et al. 2020 ; Wu et al. 
2021 ). F or e xample, Wu et al. ( 2021 ) find that a DES-like surv e y of 
cluster lensing could achieve 0.26 per cent precision on σ 8 (with other 
cosmological parameters held fixed) if the mass–observable scatter 
is constrained independently, and Salcedo et al. ( 2020 ) forecast a 
σ 8 precision of better than 1 per cent if the scatter is not known 

independently but constrained by cluster–galaxy cross-correlations 
and galaxy autocorrelations. The challenge is to realize this statistical 
precision in the face of selection bias that affects �( r p ) at the 10–
20 per cent level. 

7.2 Mitigation strategies 

Below we discuss strategies for mitigating the cluster lensing 
selection bias. 

7.2.1 Simulating different galaxy models 

As discussed earlier, the lensing selection bias depends on the 
underlying galaxy population. One way to reduce this modelling 
uncertainty is to quantify how projection effects depend on the 
HOD parameters of galaxies that contribute to the redMaPPer 
richness. Specific choices of HOD parameters have been studied 
(e.g. Costanzi et al. 2019a ; S20 ), but quantifying their effects would 
require a systematic study of a wide range of HOD models. For 
example, HOD models with a larger satellite fraction or more 
galaxies in low-mass haloes would exhibit stronger projection 
effects. 
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7.2.2 Combining multiwavelength cluster observables 

We can potentially use multiwavelength observations to quantify the 
optical selection bias. For example, one can use the SZ signal to 
select clusters and study the correlated residuals between richness 
and lensing, taking advantage of the small mass scatter of SZ-selected 
clusters. Such cluster samples exist for λ � 50 systems and have been
used to calibrate the scatter of optical clusters (e.g. Rozo & Rykoff 
2014 ; Saro et al. 2015 ; Farahi et al. 2019 ). In addition, the cross- 
comparison between optical and SZ clusters can be used to study 
projection effects (e.g. Grandis et al. 2021a ); for example, a cluster 
heavily contaminated by galaxies along the line of sight would have 
a lower SZ signal than expected from its richness. 

7.2.3 Combining cluster lensing and clustering 

The multiwavelength approach described abo v e is usually not ap- 
plicable to low-richness clusters. To calibrate the selection bias for 
low-richness clusters, one can combine the clustering and lensing of 
galaxy clusters. At large scales, the selection bias manifests as the 
clustering bias, and we can calibrate it by combining cluster lensing, 
cluster–g alaxy cross-correlation, and g alaxy autocorrelation. This is 
similar to combining clustering and lensing to constrain the mass–
observable relation (e.g. Chiu et al. 2020 ; Salcedo et al. 2020 ; To 
et al. 2021a ). 

Spectroscopic observations of member galaxies can distinguish 
true from spurious member galaxies (e.g. Rozo et al. 2015 ; Rines 
et al. 2018 ; Sohn et al. 2018 ; Myles et al. 2021 ; Wetzell et al. 
2022 ). As we have shown in Section 6 , galaxies with different 
line-of-sight distances lead to different amounts of selection bias. 
Therefore, quantifying the redshift distribution of the redMaPPer 
member galaxies associated with the line-of-sight structure would 
reduce the modelling uncertainties of selection bias. The Dark Energy 
Spectroscopic Instrument (DESI) and Roman Space Telescope ’s 
grism spectroscopy will provide large cluster samples for such 
analyses. 

Stellar mass can potentially serve as a low-scatter mass proxy, 
especially with optimally chosen member galaxies (e.g. Golden- 
Marx & Miller 2018 ; Anbajagane et al. 2020 ; Bradshaw et al. 2020 ; 
Huang et al. 2022 ). A cluster sample selected by stellar mass could 
also provide a useful sanity check for the commonly used richness 
selection (e.g. Pereira et al. 2018 , 2020 ; Palmese et al. 2020 ). The 
stellar mass may have weaker projection effects than richness because 
it has a large contribution from the brightest cluster galaxies. 

7.2.4 Defining a cluster sample by a threshold 

One way to simplify the modelling of selection bias is to use a 
single richness threshold instead of multiple richness bins to define 
our cluster sample. Wu et al. ( 2021 ) have shown that the former 
requires fewer nuisance parameters for the mass–observable relation 
and can a v oid diluting the cosmological information. In addition, 
the threshold approach does not require the power-law assumption 
of the mass–observable relation, an assumption that could be too 
restrictive. Similarly, the threshold approach only requires modelling 
the selection bias near the richness threshold and can significantly 
simplify the analyses. 

Mitigating selection bias requires us to consider all aspects of the 
cosmological parameter inference, including the impact of projection 
on cluster number counts and on the determination of the richness–
mass scatter, which is the critical nuisance parameter for analyses 
focusing on cluster number counts and weak lensing. For example, 

in a conventional analysis such as Y1CL , which models number 
counts and ��( r p ) in richness and redshift bins based on the halo 
mass function and a parametrized richness–mass relation, one can 
incorporate selection bias curves like those in Fig. 2 into the model 
prediction. It is essential to study a wider range of galaxy HODs and 
cosmologies to establish the appropriate priors for such corrections. 
Other approaches bring in cluster autocorrelations, cluster–galaxy 
cross-correlations, and galaxy autocorrelations as additional con- 
straints (Salcedo et al. 2020 ; To et al. 2021b ), and for these one must 
examine the impact of selection bias on these additional observables. 

8  SUMMARY  

We investigate the bias of the stacked weak lensing signals around 
optically selected clusters, using the redMaPPer cluster finder applied 
to the Buzzard simulations. We find that the large-scale excess surface 
mass density ��( r p ) of richness-selected clusters in Buzzard is 20–
60 per cent higher than that expected from the underlying halo mass 
PDF. Expressed in surface mass density �( r p ) rather than ��( r p ), 
the bias shows strong scale dependence and peaks at r p ≈ 1 pMpc 
with an amplitude of 10–20 per cent. This scale dependence is well 
explained by an analytical model that accounts for the correlated 
residuals between the surface mass density and richness at a given 
halo mass (equation 8 ). The correlated residuals arise mainly from 

projection effects, the boosting of richness and surface mass density 
by galaxies and matter that lie along the line of sight but outside the 
halo virial radius. At high richness and small scales, the preferential 
selection of higher concentration haloes also makes a significant 
contribution. 

We have shown that the complex redMaPPer cluster selection 
can be modelled by a cylinder member selection. We have found that 
galaxies within ±20 to 60 h 

−1 Mpc along the line of sight but outside 
the halo virial radius are the main cause of the selection bias. This 
simplified cylinder selection method can be efficiently applied to a 
wide range of simulations to study the impact of the galaxy model 
on selection bias. Our ultimate goal is to mitigate the impact of this 
bias on cosmological constraints derived from cluster weak lensing 
surv e ys. 

The selection bias is currently one of the key systematic effects that 
limit the statistical power of optical cluster cosmology analyses. As 
discussed abo v e, solving the selection bias would require a concerted 
effort of simulations, multiwavelength observations, and combined- 
probe analyses. Currently, DES provides an unprecedented data set 
for cluster weak lensing, and in the next decade Euclid , LSST, and 
the Roman Space Telescope will all provide data sets that are more 
powerful still. Exploiting the measurements from these data sets is a 
theoretical challenge, with a potentially critical payoff in unveiling 
the physics behind cosmic acceleration. 
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APPENDIX  A :  C O M PA R I N G  TWO  V E R S I O N S  

O F  T H E  BU Z Z A R D  SIMULATIONS  

As described in Section 3 , we use two versions of Buzzard: 12 
realizations of the DES Y1 data (1120 deg 2 ) based on Buzzard ver- 
sion 1.9.2 + 1 (presented in DeRose et al. 2019 ), and one realization 
of the DES Y3 data (4143 deg 2 ) based on Buzzard version 1.9.8 
(presented in DeRose et al. 2022 ). The main differences between the 
two versions are as follows. 

Figure A1. Comparison between two versions of Buzzard and different 
realizations. The colour curves correspond to the 12 DES Y1 realizations, and 
the black curve corresponds to the single DES Y3 realization. The statistical 
fluctuation is larger than the difference between the two versions. Therefore, 
in the main text, we show the area-weighted means and standard deviations 
of all 13 realizations. 

(i) For the subhalo abundance matching, the former uses the DES
Y1 luminosity functions, while the latter uses the DES Y3 luminosity 
functions (both are modified from the SDSS luminosity functions). 

(ii) For the environmental proxy for the SED assignment, the for- 
mer uses a galaxy’s projected distance to the fifth nearest neighbour, 
while the latter uses a galaxy’s 3D distance to the nearest halo abo v e 
a given mass. 

(iii) The former has a narrower red sequence compared with DES
data, while the latter explicitly matches the mean and scatter of the 
red sequence observed in DES Y3. 

Fig. A1 compares the lensing bias derived from the two versions 
and their individual realizations: the colour curves show the 12 
DES Y1 realizations, and the black curve shows the one DES 

Y3 realization. Overall, the statistical fluctuations associated with 
different realizations are larger than the difference between the two 
versions. While To et al. ( 2021b ) found that the galaxy clustering of 
realization ‘3b’ is problematic and remo v ed it from their analysis, we 
do not find such a discrepancy in cluster lensing. Therefore, unless 
otherwise noted, throughout this paper we combine all 13 realizations 
and calculate area-weighted means and standard deviations. 

APPENDI X  B:  C O M PA R I N G  DI AGNOSI S  

M E T H O D S  F O R  LENSING  SELECTI ON  B I A S  

Here we compare three diagnosis methods for cluster lensing 
selection bias, which is quantified by the ratio between (1) the lensing 
signal from a sample selected in a richness and redshift bin, similar to 
the DES cluster analyses (we call this the ‘richness-selected’ sample), 
and (2) the lensing signal we expect from the underlying halo mass 
PDF of the richness-selected sample. The former is straightforward 
to compute. Below we present three methods to compute the latter. 
For all cases, we split each redshift bin �z = 0.15 into three narrower 
bins �z = 0.05 to account for the redshift dependence. 

(i) Shuffling richness at a given halo mass . We start with the full
halo catalogue and put haloes in narrow mass bins. For haloes in 
a given mass bin, we shuffle their richness values. This procedure 
washes out any correlated residuals between lensing and richness at a 
given mass. Each halo is assigned a new richness λshuff . We calculate 
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Figure B1. Comparison between the three diagnosis methods for lensing 
selection bias detailed in Appendix B . The three methods agree well with 
each other. 

the ratio between the stacked lensing signal of clusters selected with 
λ and that of clusters selected with λshuff . This ratio corresponds 
to the biased lensing signal due to the correlated residuals between 
richness and lensing. 

(ii) Matching the underlying mass PDF . From the full halo
catalogue, we select random haloes to match exactly the same mass 
PDF as the richness-selected sample. We construct this random 

sample to be five times the number of the richness-selected sample, 
although for massive haloes we need to draw with replacement. We 
call this the ‘mass-matched’ sample and calculate its mean weak 
lensing signal. 

(iii) Weighting by the underlying mass PDF . This method is
analogous to the matching method, but instead of constructing a 
random halo sample to match the mass PDF of the richness-selected 
sample, we use all haloes in the catalogue weighted by this PDF. We 
use the full halo catalogue and put haloes in narrow mass bins and 
calculate the mean lensing signal from this bin. Using the PDF of 
the richness-selected sample, we can calculate the weight associated 
with each narrow mass bin. We then perform a weighted average of 
the lensing signal from all mass bins. 

Fig. B1 shows that all three methods give consistent results. The 
shuffling method is the easiest to understand but is also the noisiest 
because it uses the smallest number of haloes. The weighting method 
is the least noisy because it av erages o v er the lensing of all haloes in 
the catalogue. In the main text, we present the results calculated 
from the weighting method. As an additional sanity check, we 
have constructed catalogues with no selection bias by assigning to 
each halo a random richness with a lognormal scatter, and we have 
reco v ered unbiased results. 

APPEN D IX  C :  I M PAC T  O F  M AG N I T U D E ,  
C O L O U R ,  A N D  APERTURE  O N  SELECTIO N  

B IAS  

In the main text, we present the impact of projection depth on lensing 
selection bias. In this appendix, we compare different magnitude cuts, 
colour cuts, and apertures for selecting member galaxies. 

Fig. C1 shows the selection bias using galaxies selected with 
different magnitude and colour criteria. For each cluster, we use 
a cylinder of radius R λ and depth ±30 h 

−1 Mpc to define its richness.
We compare the redMaPPer results with (1) galaxies in the GOLD 

Figure C1. Impact of member galaxy magnitude and colour cuts on lensing 
selection bias. We select members using a cylinder of radius R λ and length 
±30 h −1 Mpc and compare the richness calculated with (1) using all galaxies 
in the GOLD catalogue, (2) setting a magnitude cut at 0.2 L ∗, and (3) setting 
an additional colour cut at χ2 

colour < 9. While the magnitude and colour cuts
significantly reduce the selection bias for high-richness clusters, they have 
weak impact on low-richness clusters. 

Figure C2. Impact of member galaxy selection aperture on lensing selection 
bias. We compare R λ with fixed, richness-independent apertures: 0.75 and 
1 physical h −1 Mpc. A fixed aperture increases the selection bias. 

catalogue, which correspond to an i -band magnitude limit of ≈26 
and no colour cut, (2) a magnitude cut at 0.2 L ∗ and no colour cut, 
and (3) our fiducial magnitude and colour cut (0.2 L ∗ and χ2 

colour < 9,
see equation 9 ). Releasing the magnitude and colour cut increases 
the selection bias for high-richness clusters but has small effects on 
low-richness clusters. 

Fig. C2 shows the selection bias associated with richness defined 
by different apertures, using our fiducial magnitude–colour selection 
and cylinder depth ±30 h 

−1 Mpc (comoving). We compare R λ =
1( λ/ 100) 0 . 2 h 

−1 Mpc (physical) with a fixed, richness-independent 
aperture, 0.75 and 1 physical h 

−1 Mpc. We find that using a fixed 
aperture leads to a higher selection bias compared with R λ. This 
increased selection bias is related to the increased scatter of mass at 
a given richness when using a fixed aperture. Although R λ and fixed 
apertures giv e v ery similar scatter in λ at a giv en mass, the latter 
gives a shallower slope of λ–mass relation, which leads to a larger 
scatter in mass at a given λ. Rykoff et al. ( 2012 ) chose the relation 
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between λ and R λ to minimize the scatter of L X at a fixed λ, and it is 
encouraging that this radius also gives a weaker selection bias. 

APPENDIX  D :  SELECTION  BIAS  ASSOCIATED  

WITH  H A L O  O R I E N TAT I O N  

D1 Measuring the triaxial shape of haloes in simulations 

We use a triaxial ellipsoid to describe the 3D shape of a halo, and its 
orientation is described by the angle between its major axis and the 
line of sight, i . For a halo sample with random orientations, cos ( i ) 
follows a uniform distribution, because the surface area element on 
a sphere is given by d(cos ( i ))d φ, where φ is the azimuthal angle and 
runs from 0 to 2 π. 

For haloes in Buzzard, we measure the triaxial shapes and axis 
orientations following the method described in Osato et al. ( 2018 ) 
with slight modifications. We use all dark matter particles inside R vir 

to iteratively measure the reduced inertia tensor and its eigensystems. 
We adopt the convention a ≤ b ≤ c for an ellipsoid, following Osato 

Figure D1. Probability distribution of halo orientation cos ( i ) for the 
richness-selected sample (orange) and the sample constructed to match the 
underlying mass and redshift distribution (blue). The panels match the redshift 
and richness bins in Fig. 2 . The richness selection preferentially selects haloes 
with high cos ( i ). 

Figure D2. Dependence of � on halo orientation. Each panel represents a 
mass and redshift bin, and the � profiles are split into five cos( i ) bins between 
0 and 1. 

et al. ( 2018 ) and Jing & Suto ( 2002 ). Unlike Bett ( 2012 ), we do not 
trim particles in each iteration. We have tested that using slightly 
different radii, trimming particles in each iteration, or using a non- 
reduced tensor changes the cos ( i ) by less than 0.1. 

The iterative calculation of the halo shape starts with 

q = 1 , s = 1 , 

R p , 1 = x , R p , 2 = y , R p , 3 = z, 

R 

2 
p = 

(
R p , 1 

q 

)2

+ 

(
R p , 2 

s 

)2

+ R 

2 
p , 3 ,

M ij = 

1 

N p 

N p ∑ 

p= 1

R p ,i R p ,j 

R 

2 
p 

for i, j ∈ (1 , 2 , 3) , (D1) 

where ( x , y , z) are the positions of individual particles, N p is the 
number of particles, and the subscript p runs through all particles. 
We calculate the eigenvalues ( λ1 , λ2 , λ3 ), sorted from small to large, 
and the corresponding eigenvectors ( v 1 , v 2 , v 3 ), 

a = 

√ 

λ1 , v minor = v 1 , 

b = 

√ 

λ2 , v int = v 2 , 

c = 

√ 

λ3 , v major = v 3 . (D2) 

We then update the values: 

q = a/c, 

s = b /c , 

R p , 1 = R p · v 1 , 

R p , 2 = R p · v 2 , 

R p , 3 = R p · v 3 , 

R 

2 
p = 

(
R p , 1 

q 

)2

+ 

(
R p , 2 

s 

)2

+ R 

2 
p , 3 . (D3) 

These numbers are used for the next iteration. 
In each iteration, we transform the coordinate system using the 

matrix 

R i = 

⎡ 

⎣ 

v T1 
v T 2

v T3

⎤ 

⎦ .

We multiply the rotation matrix in each step: 

R final = R n · · ·R 1 R 0 , (D4) 

and the third row of R final is the major axis, denoted as v final 
3 . The

orientation with respect to the line of sight is given by 

cos ( i) = 

∣∣v final
3 · v LOS 

∣∣ . (D5) 

This cos ( i ) is very similar to the result using v 3 in the initial step. 
The iteration ends when the fractional changes in both q and s are 
less than 10 −7 . In Buzzard, the observer is placed at the origin of the 
z = 0 N -body simulation box, and thus the line-of-sight direction is 
the same as the position vector. 

D2 Orientation PDF for the Buzzard redMaPPer clusters 

One of the possible sources of the selection bias is associated with 
preferentially selecting haloes with major axes parallel to the line 
of sight. At a given halo mass, haloes with high cos ( i ) tend to have 
higher lensing signal than haloes of the same mass. Osato et al. ( 2018 ) 
show that the halo orientation can be associated with the enhanced 
lensing signal at both small and large scales (100 comoving h 

−1 Mpc 
along the line of sight). Using Buzzard simulations, Zhang et al. 
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( 2022 ) show that the redMaPPer clusters indeed preferentially select 
haloes with major axes aligned along the line of sight. 

Fig. D1 presents the cos ( i ) distribution of our cluster sample, com- 
bining both Y1 and Y3 Buzzard realizations. The orange histograms 
show the probability distribution of cos ( i ) for our richness-selected 
sample, and the blue histograms show that for the sample with the 
same mass and redshift distribution (based on the matching method 
in Appendix B ). The richness-selected sample includes more high- 
cos ( i ) haloes. 

Fig. D2 sho ws ho w the � profile depends on halo orientation. 
Each panel corresponds to a redshift and mass bin. For a given mass 
and redshift, we divide cos ( i ) into five bins of � (cos ( i )) = 0.2 
(colour curves). Let us focus on 0.8 < cos ( i ) < 1 (red), i.e. haloes 
with their major axes almost perfectly aligned with the line of sight. 
Their average � profile is significantly boosted at small scales, has a 
dip at ≈1 pMpc, and has another peak at approximately 2–3 pMpc. 
The selection bias we have seen in Fig. 2 , ho we ver, has a dif ferent 
scale dependence. For high-richness clusters, the scale dependence 
of selection bias is similar to what we see here. Ho we ver, for lo w- 
richness clusters, the selection bias is usually small at small radii and 
peaks at approximately 1 pMpc. In addition, the 2–3 pMpc peak in 
Fig. D2 is at 5–10 per cent level, which is lower than the amplitude in 
Fig. 2 . Therefore, while the orientation bias can account for part of the 
selection bias for the high-richness clusters, it cannot account for the 
selection bias for low-richness clusters because of the disagreement 
in the scale dependence and the amplitude. It is possible that other 
orientation bias proxies (e.g. Dietrich et al. 2014 ; Herbonnet et al. 
2022 ) could capture the selection bias more fully. For example, we 
have only calculated halo triaxiality at R vir ; it is possible that a halo 
triaxiality proxy calculated at larger radii or a proxy of large-scale 
filaments connected to the halo could lead to a better model for 
selection bias. 

APPEN D IX  E:  LENSING  SELECTION  BIAS  

ASSOCIATED  WITH  H A L O  C O N C E N T R AT I O N  

In the main text, we have shown that high-richness clusters exhibit 
a selection bias in the 3D density profiles (Fig. 3 ). In this appendix, 
we investigate the role of halo concentration. Fig. E1 shows the PDF 

Figure E1. Distribution for halo concentration for the richness-selected 
sample (orange) and a sample selected to match its mass and redshift 
distribution (blue). High-richness clusters show a stronger selection bias 
towards haloes with high concentration, while low-richness clusters do not 
show such a bias. 

Figure E2. Dependence of � on halo concentration. For a given mass and 
redshift, we split the haloes into five concentration quintiles. Haloes in the 
highest concentration quintile have high � for at r p � 0.5 pMpc, which is 
compensated by a drop at r p ≈ 1 pMpc. 

Figure E3. Reduced lensing selection bias by accounting for the mass, c vir , 
and cos ( i ) distribution. The four curves correspond to taking into account 
mass (blue), mass and concentration (orange), mass and orientation (green), 
and all three properties (red). The lensing selection bias is not eliminated. 

of halo concentration, c vir = R vir / r s . Here r s comes from the fitting 
of NFW profiles provided by the ROCKSTAR halo finder (Behroozi, 
Wechsler & Wu 2013 ). As in Fig. D1 , the orange histograms 
correspond to the richness-selected sample, and the blue histograms 
correspond to the mass-matched sample. For high-richness clusters 
(the two right-hand columns), we see a clear preference for high- 
concentration clusters. Such preference does not exist for low- 
richness clusters (the two left-hand columns). 

Fig. E2 shows the dependence of � on halo concentration. For a 
given mass and redshift bin, we split the haloes into five concentration 
quintiles. For high concentration haloes, the small-scale behaviour is 
similar to high-cos ( i ) haloes. Ho we ver, we can see that the scale 
dependence for high-concentration haloes is very different from 

that of the selection bias. Therefore, while the concentration could 
account for some of the high-richness selection bias, it plays a 
negligible role in the selection bias of low-richness clusters. 

Fig. E3 shows the reduction of selection bias when we match 
not only mass but also cos ( i ) and ln c vir PDF when calculating the 
‘e xpected’ signal. F or this calculation, we generalize equation ( 8 ) 
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to include ln c vir and cos ( i ) in the linear regression. The blue 
curves are our fiducial case that takes into account the mass, 
while the orange and green curves additionally take into account 
ln c vir and cos ( i ), respectiv ely. The red curv es take into account all 
three properties. The selection bias is slightly reduced but is not 
eliminated. This agrees with our reasoning that the lensing selection 
bias cannot be fully quantified by the biased selection of cos ( i ) 
and c vir . 
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