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The use of an addressable, faceted cathode has been proposed as a method of modulating current
injection in a magnetron to improve performance and control phase. To implement the controllable
electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters
are considered as these emitters could be fabricated on flat substrates. For demonstration, the
conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL,
has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and
benchmarked against a typical continuous current source. For the modulated, ten-sided faceted
cathode case, the electrons are injected from three emitter elements on each of the ten facets. Each
emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one
time to drive the five electron spokes of the m-mode. The emitter duty cycle is then 1/6th the
Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35ns for the
modulated case compared to 100ns for the continuous current cases. Analysis of the RF phase
using the electron spoke locations and the RF magnetic field components shows that the phase is
controlled for the modulated case while it is random, as typical, for the continuous current case.
Active phase control during oscillation was demonstrated by shifting the phase of the electron
injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles.

© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883395]

High power microwave oscillators and amplifiers are
used in many applications including radar, communications,
defeat of improvised explosives, and electronic warfare.'
Crossed-field devices including magnetrons® and crossed-
field amplifiers' have been used for many decades in a num-
ber of these applications. Improvements in power density,
device efficiency, phase-locking or control, and reduced,
consistent startup times are of particular interest.
Conventional magnetrons provide RF power in the tens to
hundreds of kW range.' These coaxial structures consist of
an electron-supplying cathode at the center and a surround-
ing anode, forming a slow-wave structure. These devices
have static radial electric fields, E, and axial magnetic fields,
B, perpendicular to each other, and electrons drift in the de-
vice at the E x B drift velocity. Electrons cycloid azimu-
thally around the cylindrical structure. The electron motion
results in a rotating hub around the cathode. The collective
behavior of these electrons causes a perturbation which then
interacts with the slow wave circuit. This process feedbacks
and induces bunching of the electrons until spokes form and
the device is oscillating. The operating frequency is deter-
mined by the resonant modes of the slow wave circuit and
the synchronous velocity of the electrons.

Magnetrons use either thermionic' or field emission
cathodes. Thermionic cathodes are very reliable and proven
but offer no method of temporal control over electron injec-
tion. Field emission cathodes rely on the anode to cathode
electric field for emission, so no temporal or addressable
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control is possible. Research into transparent or multiple
cathodes*™® has demonstrated a degree of spatial control of
current injection and reduced startup times. In a previous
work,” we proposed the use of gated, vacuum field emitter
arrays in place of thermionic cathodes. Other groups® have
also demonstrated the use of gated field emitters in traveling
wave tubes. In our approach, the emitters would be placed
below the interaction space in a shielded structure. Because
the gated emitters would need to be fabricated on flat plates,
the proposed cathode would be made up of five or ten facet
plates containing the field emission cathode. These ideas
were explored in the prior work’ including simulation of the
faceted cathode structure in a ten-cavity, rising sun magne-
tron. Those simulations were performed using the 3D parti-
cle-in-cell (PIC) code ICEPIC.” In this current work, we
look at the effects of temporally modulating the electron
injection using discrete (addressable) emitter sources. This
work presents 2D simulation results from VORPAL.'® The
simulation setup and magnetron parameters are provided,
and results for both continuous and modulated current sour-
ces are presented and discussed.

The conformal finite-difference time-domain (CFDTD)
PIC simulation'® as implemented in VORPAL'' was used to
simulate a ten cavity, rising sun magnetron'> with cylindri-
cal, five-sided, and ten-sided cathodes. The dimensions of
the magnetron and the cathode structures are given in Table
I. The simulation was set up with a grid of 102 x 102 for the
cylindrical cathode and 202 x 202 for the five-sided and ten-
sided cathode cases. The higher spatial resolution was
needed for proper simulation of the modulated, addressable
emitter sources. The macro-particle size was set to 10°

© 2014 AIP Publishing LLC
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TABLE I. Rising sun magnetron dimensions used in the simulation for cylindrical and faceted cathodes.

Facet Width (cm)
Cathode radius (cm)  Anode radius (cm)  Five-sided Ten-sided Small cavity outer radius (cm)  Large cavity outer radius (cm) — Cavity angle (deg)
1.0 2.24 1.18 0.618 6.0 10.0 10.0

electrons per macro-particle. The time step size was typically
2.3 ps, but for the modulated cathode cases, the time step
size was set to 1.0 ps to be an integer fraction of the RF pe-
riod to prevent timing errors. An absorber is used in one of
the large cavities to create a load for the RF power. The
absorber sets the quality factor, Q, of the magnetron which is
404 for the standard case. Based on the prior results of
ICEPIC simulations and studies with VORPAL, the operat-
ing parameters for the magnetron were chosen to be a cath-
ode voltage of —22.2kV and a magnetic field of 0.09T.
Because the primary mode of the rising sun magnetron is the
n-mode, no strapping is needed. For the 2D simulations, a
linear cathode current density was used. For the results
shown here, the current density was set to 326 A/m for the
standard case. The current injection model for VORPAL is
described here.'? The simulations showed an oscillating fre-
quency of 960 MHz for the cylindrical cathode and 957 MHz
for both the five-sided and ten-sided cathodes; the oscillation
of the m-mode was confirmed by looking at the RF axial
magnetic field component and by the formation of 5 electron
spokes for the ten cavity structure.

For the modulated, addressable current source simula-
tions, each facet plate was divided up into current elements.
Each element per facet is turned ON one at a time in
sequence at a frequency of 957 MHz. Note that actual gated
emitters are not simulated. For the ten-sided cathode, there
are two facet plates for every electron spoke. Therefore, the
emitter elements were divided into three elements per plate
or six elements for two plates (or one spoke). Each element
is turned ON for 1/6th of the RF period (1.04 ns) with five
elements ON simultaneously. Using this modulation tech-
nique, the electrons can be injected at the location and time
of the desired electron spokes.
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FIG. 1. Frequency vs. time for VORPAL simulation of the ten-sided cathode
for (top) the continuous current source and (bottom) the modulated, address-
able current source. The start-up time is indicated and is also based on elec-
tron spoke formation.

Simulations were first performed for a continuous cur-
rent source with the three cathode geometries. The results
were studied to optimize performance and to compare with
the prior ICEPIC results.” An important diagnostic tool in
VORPAL is the frequency of oscillation of the loaded cavity
voltage versus time. An example of this diagnostic is shown
in Fig. 1 for a ten-sided cathode with both (a) a continuous
current source and (b) a modulated current source with an
injected linear current density of 326 A/m. Note the indica-
tion of “start-up” time on the figure where the frequency of
oscillation appears to be stable and constant. This diagnostic
along with visual inspection of the electron spokes was used
to determine the start-up time of the magnetron. For the con-
tinuous current case shown, the startup time was determined
to be ~110ns. Shown in Fig. 2 is a plot of the start-up time
versus the injected linear current density for the three cath-
ode geometries and for the modulated, ten-sided cathode
case. For the continuous current sources, it is observed that
the start-up time is relatively constant at 100 ns for current
densities above 500 A/m. Space charge effects limit the start-
up times for high current densities. Below 500 A/m, the
start-up time increases as expected, but the variation in start-
up time among the three geometries increases. This variation
is believed related to the cathode shape, and it may be possi-
ble to optimize the start-up times for each geometry by
adjusting the applied static fields. For the cylindrical cath-
ode, start-up below 250 A/m was not observed, and a lower
frequency (650 MHz) mode of the device would try to
oscillate.

For the modulated, addressable cathode several simula-
tions were performed to study the device behavior and the
phase control. First, the oscillations were observed, and as
shown in Fig. 1(b), the frequency of the cavity voltage oscil-
lation indicates start-up in less than 60 ns. As seen in Fig. 2,
the modulated cathode starts up much faster than the contin-
uous current cathodes with times as short as 35 ns compared
to 100ns for the continuous source. The injected current at
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FIG. 2. VORPAL simulation results showing the oscillation startup time vs.
injected linear current density for the cylindrical, five-sided, ten-sided, and
modulated ten-sided cathodes.
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FIG. 3. FFT of the loaded cavity voltage from VORPAL simulation for the
modulated, addressable, current source, ten-sided faceted cathode. This plot
indicates that the 7-mode is dominant at the frequency of operation of 957
MHz. The 650 MHz peak is a cavity mode from the magnetron geometry.

the proper location and time generates bumps, or perturba-
tions, that act to induce oscillation rapidly in the device. This
formation is very clear in the simulation images of the elec-
tron macro-particles during start-up (not shown). Figure 3
shows the Fast Fourier Transform (FFT) of the cavity volt-
age over the simulation time of 150ns, and the 957 MHz
peak (n-mode) and the smaller 650 MHz peak are observed.
Next, the locations of the spokes were compared for dif-
ferent simulation runs. If as claimed, the electron injection
controls the start-up and spoke locations, then every simula-
tion with the modulated cathode should have the same spoke

(a) continuous source
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locations, and hence, RF phase. Shown in Fig. 4 are the elec-
tron spokes for two cases: (a) ten-sided with continuous
source and (b) ten-sided with modulated source. Three simu-
lations were performed for each case. As seen in Fig. 4(a),
the spokes are at random locations for the same simulation
time, but for the modulated case in Fig. 4(b) the spokes are
at the same locations. Although two of the simulations
appear identical, careful inspection will show slight differen-
ces. Therefore, these results show that the electron spoke
location and resulting RF phase are controlled by the elec-
tron injection. This result was also confirmed by comparing
the phase of the RF axial magnetic field components in the
loaded cavity.

Finally, the electron injection times were changed dur-
ing a single simulation run. The oscillations are stable after
50 ns. At 88.4ns, the electron injection times were changed
abruptly to generate a 180° phase shift. Shown in Fig. 5 are
the electron spokes before the phase shift and then after the
phase shift at integer multiples of the RF period. If no phase
shift is occurring, the spokes should remain at the same loca-
tions, but it is observed that the spokes change location over
time until the spokes now align at adjacent cavities com-
pared to the pre-shift case. The spokes have shifted to match
the electron injection by 180°. To further analyze this result,

FIG. 4. VORPAL simulation results
for the ten-sided cathode for (a) three
different runs with a continuous cur-
rent source at the same capture time
(t=1322.12ns) and for (b) three differ-
ent runs with a modulated, addressable
current source to control phase at the
same capture time (t=76.38ns). The
spokes for the modulated cases are at
the same locations while the continu-
ous cases have random spoke
locations.

(b) modulated source
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FIG. 5. Ten-sided faceted cathode with modulated addressable current sour-
ces, showing transition to a phase shift of 180°. (a) Reference case:
Phase =0° at 82.0 ns, phase shift initiated at 88.40ns (b) After 14.5 RF peri-
ods (t=96.8ns) from the reference, 8 RF periods from the phase shift (c)
After 17 RF periods (t=100.0ns), 11 RF periods from the phase shift. (d)
After 35 RF periods (t = 118.4 ns), 29 RF periods from the phase shift.

the RF axial magnetic field components in the loaded cavity
were compared with a pre-shift reference time at integer
multiples of the RF period, and the phase difference with the
pre-shift field was calculated. Figure 6 shows this phase dif-
ference versus RF time periods after the phase shift is initi-
ated. The phase shifts 180° in 25 RF cycles for the reference
case (Q=404). The phase shift simulations were also per-
formed for Q =540 with the phase shift occurring in about
40 RF cycles and for Q =202 with the phase shift occurring
in about 14 RF cycles. It is also important to note that for the
lower Q case, the oscillations were less stable, and the
spokes were not well formed. The poor spoke quality
affected the shape of the phase transition curve as observed
in Fig. 6.

Simulations of a ten cavity, rising sun magnetron in 2D
have been performed using the CFDTD PIC simulations.
The simulations use cylindrical, five-sided, and ten-sided
cathodes to represent a device concept using gated field emit-
ters as the electron source. These simulations show that the
device oscillates in the m-mode at 960 MHz for the cylindri-
cal cathode and 957MHz for the faceted cathodes. The
start-up times for oscillation were calculated for the three
geometries with a minimum start-up time of 100 ns for the
best cases. Then, the ten-sided cathode was modulated at
the operating frequency using emitter elements spaced along

Appl. Phys. Lett. 104, 233507 (2014)
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FIG. 6. VORPAL simulation results showing the change in RF phase vs. RF
period for different values of Q after a 180° phase shift is generated using
the modulated cathode. Phase was determined from the RF B, component.

ol

the facet plates. Each element was chosen to inject electrons
at a time and location to generate the five electron spokes
during oscillation. These simulations demonstrated a reduced
start-up time with a minimum of 35 ns for the best case. The
simulations demonstrated that the electron spokes for the
modulated case are at the same location for every simulation
run indicating phase control. Driving a 180° phase shift with
the electron injection was demonstrated within a run show-
ing that active phase control is possible with a magnetron.
Future work will look at overlapping the electron pulses in
time, combining continuous current with modulated current,
and modifying the simulations for 3D.
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