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Abstract 

 

Global climate change has affected avian migration patterns and nesting phenology.  Changes in 

one phase of a bird’s cycle will most likely affect other stages, but few studies focus 

simultaneously on multiple life-history events.  We used western North American ringing records 

and Christmas Bird Counts to examine whether changes in migration patterns were concordant 

with advancing American kestrel (Falco sparverius) nesting phenology.  Consistent with previous 

findings, male kestrels migrated shorter distances than female kestrels, and kestrels nesting in 

southern latitudes migrated shorter distances than kestrels nesting in more northern areas.  In 

addition, kestrel migration distance decreased significantly from 1960-2009 and was negatively 

associated with winter minimum temperatures.  Christmas Birds Counts from the same time 

period showed increasing indices of overwintering kestrel abundance in northern states 

(Washington, Idaho, and Utah), where winter minimum temperatures have increased significantly, 

and concomitant decreases in southern states (California and Arizona).  Finally, changes in nesting 

phenology of kestrels in southwestern Idaho were best explained by warmer winters, not springs.  

Warmer winters may decrease energetic demands on migrants by allowing for shorter migration 

distances, decreasing thermoregulatory costs, or both.  Decreased energy demands during winter 

may allow birds to gain resources necessary for reproduction earlier in the nesting season.  Higher 

winter temperatures that decrease (former) constraints on early nesting may be a particularly 

important mechanism leading to advancing nesting phenology for species with strong seasonal 

declines in fecundity or intense early season competition for high-quality nesting areas.   

 

Keywords: band, climate change, overwinter, reproduction, short-stopping  

 

Climate change has been associated with changes in avian life history patterns. Changes in one life-history event are 

likely to affect other aspects of an annual cycle, and climate change may have variable impacts on life histories 

depending on the role of climate in driving life history patterns (Both and Visser 2001, Visser et al. 2003, Both and 

Visser 2005, Gordo et al. 2005, Balbontín et al. 2009, Lehikoinen et al. 2010, Smallegange et al. 2010).  Interactions 

among climate and life history events may be especially complex for migratory birds that experience variation in the 

type and magnitude of climate change across seasons and locations (Balbontín et al. 2009). Several migratory 

species show decreased migration distances (Berthold et al. 1992, Fiedler et al. 2004, Visser et al. 2009, 

Smallegange et al. 2010), shifting over-wintering distributions (Zuckerberg et al. 2011), or a complete cessation of 

migratory behavior (van Vliet et al. 2009) in areas with warmer winters.  Decreased costs associated with shorter 

migration distances, decreased thermoregulatory demands, increased winter food availability (Romanowski and 

Żmihorski 2009), or a combination of these changes, may affect nesting phenology by facilitating obtainment of 

energetic resources necessary for reproduction or allowing for early return to nesting areas (Przybylo et al. 2000, 

Nooker et al. 2005).   

 

Birds that nest earlier in the season typically have higher reproductive success compared to conspecifics that nest 

later in the season (Perrins 1970, Newton 1979), and high competition for quality nest sites and mates often results 

in only a few individuals producing most of the juveniles that survive to recruitment (Espie et al. 2000, Grande et al. 
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2009).  Given a strong seasonal decline in reproductive success, and the heritability of nesting phenology (van 

Noordwijk et al. 1981, van der Jeugd and McCleery 2002), one might predict that nesting seasons would advance 

over time (Gienapp and Visser 2006).  For birds that depend on resource availability at the time of egg production 

(i.e., income breeders), severe winter and early spring conditions may constrain directional change in nesting 

phenology (Meijer et al. 1999, Nooker et al. 2005, Drent et al. 2006, Gienapp and Visser 2006).  Climate change 

may release prior ecological constraints on early nesting by decreasing costs associated with over-wintering near 

nesting areas, facilitating earlier attainment of reproductive condition, or both.  Once the energetic constraints 

related to winter severity have decreased, the underlying relationship between early nesting and reproductive success 

may drive rapid advancement of nesting seasons. 

 

The American kestrel (Falco sparverius) is a widely distributed, cavity-nesting falcon that feeds on a variety of prey 

including insects, small mammals, reptiles, and birds.  American kestrels in southwestern Idaho are nesting 

approximately 21 days earlier than they did 20 years ago (Steenhof and Peterson 2009a).  In this population, early 

nesting pairs are more likely to produce young (Strasser 2010), and these young are more likely to survive and 

return to the nesting population compared to young produced by later nesters (Steenhof and Heath, in review).  In 

addition, adult female kestrels that nest early in the season have higher survival and return rates, independent of 

success, compared to adult females that nest later in the season (Steenhof and Heath 2009).  In central and eastern 

North America, evidence from both migration watchsites (Farmer and Smith 2009) and breeding populations 

(Smallwood et al. 2009) suggest that American kestrels are experiencing a population decline.  In western North 

America, the numbers of migrating American kestrels observed at some watchsites have decreased significantly 

from 1995-2005 (Farmer and Smith 2009).  However, to date, there is no evidence that kestrel nesting populations 

are decreasing in western states (Steenhof and Peterson 2009a).  The decrease in migrating kestrels at western 

watchsites may indicate that western kestrels are declining, fewer kestrels are migrating, or both. 

 

We hypothesize that climate change has affected western kestrel migratory behaviour and, as a result, some kestrels 

may show earlier nest initiation.  Specifically, birds are migrating shorter distances and overwintering further north 

because the thermoregulatory and energetic constraints of remaining near nesting areas have decreased with climate 

change. The strong seasonal decline in reproductive success and apparent survival drive earlier nest initiation.  In 

this paper, we use ringing records to evaluate whether migration distances of American kestrels in western North 

America have changed from 1960-2010.  We also evaluate changes in overwintering American kestrel populations 

in the western U.S. using data from the National Audubon Society’s 1960-2009 Christmas Bird Counts (CBC).  

Finally, we examine the relationship between advancing nesting dates and local weather conditions for kestrels 

nesting in southwestern Idaho.  We explore whether shifts in nesting were associated with winter or spring weather 

conditions.  

 

Methods 
 

Study species 

 

American kestrels show a variety of migration strategies.  Kestrels from northern populations tend to have a higher 

proportion of migrants compared to southern populations (Henny 1972, Bird and Palmer 1988), and males migrate 

shorter distances than females (Willoughby and Cade 1964). American kestrels are strong north-south migrants and 

use distinct migration flyways between nesting and wintering areas, especially in western North America (Henny 

and Brady 1994, Hoffman et al. 2002).  Southward migration begins in mid-Aug; by the last week in Oct the 

southernmost watch sites in New Mexico have counted > 90% of their total kestrel observations (Smith and Neal 

2009).  The timing of southward migration may be limited by completion of a post-nesting molt, which may cause 

adults to migrate later than juveniles (Smallwood and Bird 2002).  Kestrels defend winter territories and early-

arriving birds occupy higher quality overwintering sites than late-arriving birds (Smallwood and Bird 2002).  

Northward migration begins in early Mar and most kestrels arrive on their nesting grounds by 1 Apr (Henny 1972), 

although nesting may begin earlier at southern sites (Smallwood and Bird 2002).  The migration study area 

boundaries were the Pacific Ocean in the west and the Rocky Mountains in the east.  Ringing records included birds 

nesting as far north as British Columbia, Canada and wintering as far south as Hidalgo, Mexico. No kestrels ringed 

within this area were encountered east of the Rocky Mountains. 
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Migration distance 

 

We used ringing and encounter records of American kestrels kept by the North American Bird Banding Program 

(BBL), a program that is jointly administered by the United States Department of the Interior and the Canadian 

Wildlife Service, to investigate changes in migration distance.  Data were limited to kestrels ringed near nesting 

areas during the spring and summer (1 Apr – 15 Aug) and encountered on wintering areas (1 Nov – 28 Feb) or 

kestrels ringed on wintering areas (1 Nov – 28 Feb) and encountered during the spring and summer (1 Apr – 15 

Aug).  Winter seasons were labeled by the Nov-Dec year of each winter.   

 

No records were missing information about ringing date or location, and records lacking information about 

encounter date or locations were removed.  Birds that were recovered as skeleton only, birds reared by hand, or held 

in captivity for > 24 hrs when ringed also were removed.  The BBL required that ringing and encounter locations be 

reported to the nearest 10’ block of latitude or longitude.  Kestrels encountered in the same 10’ block where the 

kestrel was ringed (n = 33) were excluded because these records may be the result of increased ringer efforts to 

obtain encounters (Fiedler et al. 2004), and birds overwintering within nesting areas may be distinctly different than 

migrants (Visser et al. 2009).  Records of marked kestrels encountered by ringers in a different 10’ block from 

where they were originally ringed (n = 9) were not removed.  Records before 1960 were omitted because encounters 

were sparse before this year (n = 5).  The final dataset consisted of 104 encounters from 1960-2009 with 61% after-

hatch year birds, 32% hatch-year birds, 7% unknown age birds. The distance between ringing and encounter 

locations was calculated along a loxodromic path (constant direction bearing) (Fiedler et al. 2004, Visser et al. 

2009).   

 

Some kestrels (46%) were encountered > 270 d after ringing.  A bird’s nesting area was assumed to be the same 

location where it was originally ringed or, for birds marked in the winter, later encountered.  Although birds may 

disperse between nesting seasons, kestrel dispersal distances tend to be relatively short (< 13 km, or within a 10’ 

block) compared to migration movements (Smallwood and Bird 2002, Steenhof and Peterson 2009b).  Further, there 

were no significant residual patterns from a regression of migration distance and number of days between ringing 

and encounter date to suggest that dispersal may have biased the results.   

 

Overwintering areas 

 

Christmas Bird Count data for western states (Washington, Oregon, California, Idaho, Utah, Nevada, Arizona) were 

queried from the National Audubon website (National Audubon Society 2010).  Christmas Bird Counts were 

conducted by volunteers who counted all birds detected within a designated survey area of one 24-km diameter 

circle, on 1 day between 14 Dec and 5 Jan (National Audubon Society 2010).  American kestrels occur in areas 

likely to be surveyed by volunteers and are relatively easy to detect and identify because of their size and use of 

exposed perches (Fuller and Mosher 1981).  The number of kestrels per 100 observer hours (kestrels_100hr
-1

) was 

used as an index of wintering populations within each state (Kim et al. 2008).  Analysis was limited to CBC’s 

conducted from 1960-2009 to be consistent with the ringing data and because kestrels were not regularly reported in 

each state’s CBC until 1960 (some states did not have counts every year pre-1960).   

 

Nesting phenology 

 

From 1987 to 2009, except for 2007, a population of American kestrels nesting in boxes in southwestern Idaho was 

monitored (43º N 116 º W; Steenhof and Heath 2009).  Each year, prior to the nesting season, nest boxes were 

cleaned and lined with pine shavings.  Beginning in early March, boxes were visited every 7-21 days to determine 

occupancy and clutch size.  Nest discovery dates (dates when fresh eggs were first found) were used as an index of 

nest initiation because occasionally nests were discovered with complete clutches (Steenhof and Heath 2009).  Nest 

discovery dates correlated well with hatching dates (r = 0.89, n = 577, p < 0.001) and were considered to be a 

reliable index of nest initiation.  

 

Climate variables 

 

We selected large-scale and landscape-scale temperature data based on evidence from other studies that both large-

scale (Kim et al. 2008) and landscape-scale (Visser et al. 2009) weather patterns may predict migration or phenology 

changes.  Large-scale climate patterns were represented by the southern oscillation index (SOI) (Kiladis and Diaz 
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1989).  Warmer winters (El Niño) are associated with negative SOI values and cooler winters (La Niña) are 

associated with positive SOI values (Kiladis and Diaz 1989).  SOI data were accessed from the National Oceanic 

and Atmospheric Administration Climate Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/soi) and 

monthly SOI values (Nov-Feb) were averaged for each winter from 1960-2009.   

 

Landscape-level climate patterns were represented by minimum air temperature anomaly data from the Global 

Historical Climatology Network gridded dataset (HadGHCND, http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/).  

The grid dataset provides daily minimum temperature anomalies compiled for several climate stations within a grid 

(2.5° latitude by 3.75° longitude) area.  Daily anomalies were the difference of each daily minimum temperature 

from a daily “base” value (Caesar et al. 2006).  Daily “base” minimum temperatures were calculated for each 

climate station’s minimum temperature records from 1961-1990 using a five-day window centered on each day 

(Caesar et al. 2006).  The use of anomaly values, versus recorded temperatures, allowed for standardized 

representation of climate change across a variety of locations with different minimum temperatures.  We averaged 

daily minimum temperature anomalies  for each winter (Nov-Feb) 1960-2009 for all western North America grids.  

We used “spatial join” in ArcGIS (ESRI 2009) to associate individual kestrel nesting locations with the closest grid 

station in the HadGHCND dataset and then queried the average daily minimum temperature anomaly for the winter 

the kestrel was encountered, or ringed as a wintering bird.  We also averaged the daily minimum temperatures 

during winter across each state from 1990-2009 to index the amount of change in each state’s daily minimum 

temperatures.  Finally, we used daily minimum temperature anomaly data from the HadGHCND station nearest the 

southwestern Idaho kestrel population to examine changes in winter and spring minimum temperatures from 1987-

2009.  Spring months were defined as Mar and Apr to coincide with the months when migratory birds arrive from 

overwintering areas and initiate nesting (Crick and Sparks 1999; Both et al. 2010). 

 

Statistics 

 

We used a linear model with migration distance as the dependent variable, and sex, SOI, nesting latitude, winter 

(winter that the bird was encountered or initially ringed), age, and minimum winter temperature anomaly for the 

nesting site in the winter of encounter (or ringing) as predictor variables to understand the factors associated with 

kestrel migration distance.  Terms for interactions between sex and winter, minimum temperature anomaly, and SOI, 

and interactions between nesting latitude with winter, minimum temperature anomaly, and SOI also were included.  

Nesting latitude, SOI, minimum temperature anomaly, and winter were standardized by subtracting the mean from 

each observation and dividing by the standard error of the variable to allow for effect sizes to be more easily 

compared (Rhodes et al. 2009). The natural log of the loxodromic distance between ringing and encounter locations 

to represent migration distance was used to meet assumptions of randomly distributed residuals.  Multicollinearity 

(|r| > 0.7) among our predictor variables was checked with a correlation analysis.  Terms from the full model were 

removed in a stepwise fashion when p > 0.05.  Parameter estimates were based on the final model.   

 

We removed two outliers from the CBC data before analysis (California n = 1, Oregon n = 1).  Annual 

kestrel_100hr
-1 

outliers were more than 1.5 standard deviations than average kestrel_100hr
-1 

in the two years 

preceding and after the outlier year.  We used analysis of covariance to examine whether year, state or the 

interaction between year and state best explained kestrels_100hr
-1

.  There was a significant interaction between year 

and state so we used state-specific linear models with the independent variable of winter predicting the dependent 

variable kestrels_100hr
-1

 to examine temporal trends in overwintering kestrels.  We examined changes in each 

state’s winter weather using a one-sample t-test of the null hypothesis that mean winter minimum temperature 

anomalies from 1990-2009 have not changed (μ = 0) with respect to the base period of 1961-1990.    

 

We used a linear model to examine whether the dependent variable of average American kestrel nest discovery dates 

changed over the study period, 1987-2009.  Linear models also were used to understand whether winter minimum 

temperature anomalies or spring minimum temperature anomalies changed over the same time period.  We 

examined the associations between average date of nest discovery and average daily minimum temperature 

anomalies from winter and spring with linear models where average date of nest discovery was the dependent 

variable and temperature anomaly was the independent variable.  Analyses were performed in SAS 9.2 (SAS 

Institute Inc. 2008) or R 2.12.1 (R Development Core Team 2009) 
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Results 

 

Migration distance 

 

American kestrel migration distance depended on sex, nesting latitude, winter minimum temperature anomalies, and 

winter-year (Table 1).  Female kestrels migrated farther than male kestrels (Table 1).  Kestrels nesting in more 

northern latitudes migrated farther than kestrels nesting in more southern latitudes (Table 1).  Kestrels migrated 

farther during colder winters than warmer winters (Table 1), and kestrel migration distances decreased significantly 

over time (Fig. 1).  Trends of decreasing migration distances over time did not depend on sex or nesting latitude (all 

interactions p > 0.05).  Large-scale weather patterns, specifically the SOI (F1,98 = 0.05, p = 0.66), and age (F1,97 = 

0.08, p = 0.78) were not predictive of migration distances.  Twenty-one birds (20% of 104) in the final dataset 

consisted of birds ringed or encountered in southwesten Idaho during the nesting season.  

 

Changes in migration distances may result from spatial shifts in ringing effort or encounter probability over time 

(Visser et al. 2009).  Specifically, shorter migration distances in winters could result from increased sampling of 

short distance migrants (males or birds from southern latitudes) in recent years.  We examined whether sampling 

bias could explain temporal trends in migration distances by testing for temporal trends in the sex or nesting latitude 

composition of our ring encounter sample.  The proportion of males and females did not change over time 

(generalized linear model with logit link, Wald X
2
 = 2.1, p = 0.15).  Nesting latitude and winter year correlated 

positively (rs = 0.25, p = 0.01), suggesting that more northern nesting birds were sampled in recent winters. If 

migration distances were not changing over time, this correlation should produce a temporal trend of increasing 

migration distances, because northern kestrels migrate farther than kestrels nesting in southern latitudes.  Therefore, 

sampling bias is unlikely to be driving the temporal trend of decreasing migration distance observed in the final 

model.    

 

Overwintering areas  

 

National Audubon observers observed, on average, 34 kestrels_100hr
-1

 during the 1960-2009 CBCs.  The minimum 

kestrels_100hr
-1 

was 0.8 and the maximum kestrels_100hr
-1 

was 86.  The kestrels_100hr
-1 

changed significantly over 

time, and patterns of change depended on state (year*state interaction, F6,333 = 28.14, p < 0.0001).  Kestrels_100hr
-1 

increased significantly from 1960-2009 for Washington (β = 0.38 ± 0.04, CI: 0.29 - 0.47), Idaho (β = 0.50 ± 0.13, 

CI: 0.23 - 0.76), and Utah (β = 0.67 ± 0.07, CI: 0.5 - 0.82).  In contrast, kestrels_100hr
-1 

decreased significantly over 

the past 40 years in California (β = - 0.66 ± 0.09, CI: -0.83 - -0.47) and Arizona (β = - 0.31 ± 0.06, CI: -0.44 - -0.18).  

Kestrels_100hr
-1

 did not change significantly over time for CBCs in Oregon (β = - 0.14 ± 0.09, CI: -0.30 - 0.05) and 

Nevada (β = 0 ± 0, CI: -0.2 - 0.2) (Fig. 2).  Despite these trends California consistently recorded the highest 

kestrels_100hr
-1

 (58 ± 1.2) compared to Idaho (45 ± 1.2), Oregon (41 ± 1.2), Utah (31 ± 1.2), Arizona (27 ± 1.2), 

Nevada (26 ± 1.2), and Washington (15 ± 1.2), in decreasing order. 

 

One possible alternative explanation for declining trends in kestrels_100hr
-1

 is that observer groups in recent years 

spent more time in areas that were not suitable wintering habitat for kestrels.  The number of CBC observer hours 

increased for all states but the proportion of counts in California and Arizona reporting kestrels did not change, 

suggesting that there were not a disproportionate number of new counts in unsuitable habitat.   

 

During the years of 1990-2009, winter minimum temperatures increased in several western states relative to the 

1961-1990 reference period used to calculate minimum temperature anomalies.  Minimum winter temperature 

anomalies from 1990-2009 for Washington (t(1)19 = 2.89, p = 0.009), Idaho (t(1)19 = 2.11, p = 0.048), Utah (t(1)19 = 

2.73, P = 0.013), California (t(1)19 = 2.63, p = 0.016), and Arizona (t(1)19 = 4.83, p = 0.0002) were all significantly 

greater than zero (Fig. 2a).  Over the same time period, winter minimum temperature anomalies for Oregon (t(1)19 = 

1.70, p = 0.105) and Nevada (t(1)19 = 1.99, p = 0.06) did not differ significantly from zero (Fig. 2a).  Northern states 

with an increase in winter minimum temperature anomalies (Washington, Idaho, and Utah) all had increasing 

kestrels_100hr
-1

 while southern states with an increase in winter minimum temperature (California and Arizona) had 

decreasing kestrels_100hr
-1

. The two states lacking a change in winter temperature anomalies over time (Oregon and 

Nevada) had no trends kestrels_100hr
-1

 (Fig. 2). 
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Nesting phenology 

 

We documented nest discovery dates for 999 American kestrel nesting attempts in southwestern Idaho from 1987 - 

2009 except 2007.   Nest discovery dates ranged from 26 March to 9 July, and average nest discovery date has 

advanced significantly over the past 22 years (β = - 1.4 ± 0.1, CI: -1.7- -1.1, F1,20 = 63.72, p < 0.0001).  Average 

minimum temperature anomalies during winter months (Nov-Feb) in southwestern Idaho have increased 

significantly over that same time period (β = 0.08 ± 0.04, CI: 0.01 - 0.16, F1,21 = 4.83, p = 0.039).  Average 

minimum temperature anomalies during spring have not changed significantly (β = -0.04 ± 0.02, CI: -0.09 - 0.003, 

F1,21 = 3.02, p = 0.097) and winter and spring anomalies were not correlated with each other ( r= -0.06, p = 0.79).   

Annual mean nest discovery dates were associated with minimum temperature anomalies during the winter (F1,20 = 

6.68, p = 0.018, Fig. 3), but not with average minimum temperature anomalies during spring (F1,20 = 2.46, p = 0.13).  

Kestrels tended to nest earlier in seasons preceded by a warmer winter (β = -3.9 ± 1.4, CI: -6.7 - -1.1).   

 

Discussion 

 

Our analyses of 49 years of ring encounter data for American kestrels western North America documented two 

strong patterns of differential migration that have been shown previously: females migrate greater distances than 

males, and kestrels nesting at northern latitudes migrate greater distances than kestrels nesting at southern latitudes 

(Willoughby and Cade 1964, Smallwood and Bird 2002).  After controlling for these two patterns, we found that 

kestrel migration distances in western North America have decreased significantly between 1960 and 2009.  We also 

found that kestrels migrated shorter distances when winter minimum temperatures were warmer on their nesting 

grounds.  A decrease in American kestrel migration distances in response to increasing winter temperatures is 

consistent with findings from Visser et al. (2009) and Smallegange et al. (2010) that have shown evidence for 

decreased migration distances for many European bird species.     

 

Changes in migration distance corresponded with our analysis of CBC data collected during the same period.  CBCs 

showed increasing trends in overwintering kestrels in northern states, where winter minimum temperatures have 

increased in recent years, and decreasing trends in overwintering kestrels in southern states. We would predict 

declining counts in southern states if northern kestrels were migrating shorter distances and wintering at more 

northern latitudes.  These results were consistent with climate change studies that have shown pole-ward shifts in 

wintering grounds (La Sorte and Thompson 2007).  Many environmental conditions may affect kestrel migration 

distances and wintering distributions, such as increased risk or energetic costs because of stop-over and winter 

habitat degradation or loss.  In this case, poor conditions on wintering grounds and decreased costs associated with 

wintering near nesting areas because of increased temperatures may have an additive effect in driving shorter 

migration distances and more northern winter distributions.  In a time of global change, understanding the relative 

effect sizes of land-use and climate will be important.     

 

Kestrels in southwestern Idaho have advanced their clutch initiation by almost a month since 1987.  For many 

species, changes in nesting phenology have been explained primarily by the hypothesis that warmer springs and 

earlier growing seasons drive advancement of prey availability (i.e., insect emergence) and birds ultimately benefit 

by arriving early to nesting areas and timing their reproduction to coincide with periods of high food availability 

(van Noordwijk et al. 1995, Crick et al. 1997, Dunn and Winkler 1999, Strode 2003, Both et al. 2004, Both and 

Visser 2005, Bradshaw and Holzapfel 2006, Smallegange et al. 2010).  The effect of shifts in prey availability 

relative to other selection pressures, such as early attainment of reproductive condition and competition for quality 

nest sites, may be less important for a generalist species that forages on a variety of prey with asynchronous 

abundance patterns (Both et al. 2010) or heterogeneous distributions (Jonzén et al. 2007).  Changes in growing 

seasons or prey availability may affect kestrel nesting phenology; however, spring temperatures in Idaho have not 

changed over the past 20 years and nesting phenology shifts were not associated with spring temperatures. Kestrel 

nest discovery dates were associated with higher winter minimum temperature anomalies suggesting that changes in 

winter ecology (i.e., increased over-wintering near the breeding grounds) allowed for advancing kestrel nesting 

phenology.  Further, generalizing from regional patterns of shorter migration distances and northern increases in 

wintering populations to the Idaho population seems reasonable because 20% of the ringing data consisted of birds 

nesting in southwestern Idaho and there were significant increases in the number of kestrels counted during the 

Idaho CBC.  It is likely that kestrels in southwestern Idaho migrate shorter distances in response to warmer winters.  

If cues about prey availability were advancing, kestrels wintering near nesting areas may be better able to respond to 
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prey phenology shifts (Butler 2003, Lehikoinen et al. 2004, Végvári et al. 2010).  Understanding the relative effects 

of changes in the growing season and changes in the winter season will be an important area for future research.   

 

In southwestern Idaho, early nesting is associated with increased reproductive success and production of offspring 

that are more likely to survive and recruit to the local population (Strasser 2010, Steenhof and Heath, in review).  

Early nesting barn swallows (Hirundo rustica) (Møller 2008) and great tits (Parus major) (Verboven and Visser 

1998) also produce more local recruits compared to later nesting conspecifics.  For species with high early-season 

fecundity, we suggest that warmer winters could be driving recent shifts towards early clutch initiation by releasing 

constraints that previously limited early nesting.    

 

Warming winters may be conducive to shorter migration distances and overwintering at more northern latitudes 

because of decreased thermoregulatory costs, increased prey availability in winter months (Romanowski and 

Żmihorski 2009), or both.  Shorter migration distances and minimization of energetic demands may result in females 

arriving at nesting areas in better condition.  Experimental evidence has shown that a strong proximal constraint on 

laying dates is the inability of the female to find sufficient nutrients (Drent et al. 2006).  This mechanism is 

supported by evidence from Mexican jays (Aphelocoma ultramarine, Brown et al. 1999), tree swallows 

(Tachycineta bicolor; Nooker et al. 2005), collared flycatchers (Ficedula albicollis, Przybylo et al. 2000), common 

eiders (Somateria mollissima, D’Alba et al. 2010), and golden eagles (Aquila chrysaetos, Steenhof et al. 1997).  

These studies show shifts towards earlier nesting when energetic costs were reduced during warmer winters.  

European starlings (Sturnus vulgaris) delayed reproduction in a study that experimentally increased female 

thermoregulation costs by decreasing nest box temperatures (Meijer et al. 1999).  Similarly, if warmer winters also 

have decreased snow cover (as is true in Idaho), increased foraging opportunities for wintering kestrels may lead to 

earlier attainment of reproductive condition, which could allow birds to advance their nesting activity.   

 

A rapid selection for decreasing migration distance and earlier nesting may be explained by potential fitness gains 

conferred by these behaviours across the full annual cycle (Bearhop et al. 2005, Pulido and Berthold 2010).  Early 

nesting allows for a longer pre-migratory period for juvenile birds, allowing juveniles more time to gain foraging 

experience prior to their first migration, which may increase survival of juveniles to recruitment or, in some areas, 

allow juveniles to establish territories for subsequent nesting seasons (Smallwood and Smallwood 1998). Adults that 

finish nesting earlier may be able to complete their molt earlier, allowing migrant adults to depart earlier for 

overwintering areas. Kestrels that arrive on wintering areas earlier gain higher quality territories compared to 

kestrels that arrive later (Smallwood 1988).  Similarly, adults that migrate shorter distances or not at all may 

establish winter territories near nesting areas (Steenhof and Heath, unpubl. data). Early arriving males may be able 

to secure access to high quality nesting territories and early arriving females may benefit from access to high-quality 

males.  Unfortunately, we do not have long-term data to evaluate shifts in the timing of first arrival dates for kestrels 

in southwestern Idaho.  However, this pattern is supported by evidence from prairie falcons (Falco mexicanus) 

overwintering on their nesting grounds in southwestern Idaho that began nesting 2-3 weeks earlier than long-

distance migrants; early nesting prairie falcons had higher nesting success rates than later nesting migrants (Steenhof 

et al. 2005).  In raptors, access to quality mates and territories is an important predictor of lifetime reproductive 

success (Newton 1979, Espie et al. 2000) and likely to be a strong selection pressure favoring early attainment of 

reproduction condition. 

 

Studies of avian life cycles in changing climates can offer interesting insights to evolutionary patterns and ecological 

constraints.  Further, understanding the mechanisms by which climate change affects phenology, distributions, and 

behaviour is important for species conservation because monitoring and management programs require informed 

predictions about population responses.  For example, most song birds are monitored during the breeding season by 

auditory point counts that depend on detection of bird songs, and raptors are monitored at migration watchsites.  As 

phenology and migration patterns change, the availability of individual birds for detection during surveys may also 

change, making it difficult to determine if trends in population indices represent changes in population size or shifts 

in life history patterns (McClure et al. 2011).  Declining counts of American kestrels at western migration watchsites 

may indicate a decrease in kestrel populations, changes in migration patterns, or both.  We suggest that warming 

winters may release prior ecological constraints on early nesting by allowing shorter migration distances or earlier 

attainment of reproductive condition.  Whether these migration pattern and phenology shifts result in changes in 

overall population sizes remains uncertain.  Incorporation of changes in life history events and the associated carry-

over effects will be an important component of population monitoring and management in a time of climate change. 
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Table 1.  Explanatory variables used to model migration distance (ln[km]) based on ringing and 

encounter locations of American kestrels in western North America 1960-2009.   Kestrels were 

ringed in the spring and summer (Apr- 15 Aug) and encountered in the winter (Nov-Feb) or 

ringed in the winter and encountered in the spring or summer (n = 104).   

variable estimate (SE) d.f. F p-value 

sex (female) 0.70 (0.32) 1,99 6.05 0.0156 

nesting latitude 0.94 (0.17) 1,99 22.30 <0.0001 

tmin
a 

-0.26 (0.16) 1,99 7.9 0.0057 

winter year -0.54 (0.17) 1,99 10.13 0.0019 

a
tmin: average daily minimum temperature anomaly for winter months (Nov-Feb) 
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Figure Legend 

Figure 1.  American kestrel migration distance residuals, ln(km), from a model with sex, nesting 

latitude, and average daily winter minimum temperature anomaly over time.  Migration distances 

of kestrels ringed and encountered in western North America decreased significantly from 1960 

to 2009.   

Figure 2. (a) Average (± SE) daily winter (Nov-Feb) minimum temperature anomalies for 

western United States (1990-2009).  Washington, California, Idaho, Utah, and Arizona had 

significantly warmer minimum temperatures compared to the reference period of 1961-1990.  

Oregon and Nevada minimum temperature anomalies were not significantly greater than zero.  

Statistical significance is indicated by asterisks. b-h.  Number of American kestrels per 100 

observer hours (kestrels_100hr-1) of CBCs from 1960-2009 in the western United States.  The 

CBC index of overwintering populations increased significantly for Washington (b), Idaho (e), 

and Utah (f), showed no change for Oregon (c) and Nevada (g), and decreased for California (d) 

and Arizona (h).  An increase in northern latitudes and decrease in southern states is consistent 

with shorter distances between overwintering sites and nesting locations. 

Figure 3.  Average annual American kestrel nest discovery dates were negatively associated with 

winter minimum temperature anomalies from 1987-2009, except 2007.  Kestrels tended to nest 

earlier after warmer winters. 
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