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ABSTRACT

The main attraction of using radial basis functions (RBFs) for generating finite

difference type approximations (RBF-FD) is that they naturally work for unstruc-

tured or scattered nodes. Therefore, a geometrically complex domain can be effi-

ciently discretized using scattered nodes and continuous differential operators such

as the Laplacian can be effectively approximated locally using RBF-FD formulas

on these nodes. This RBF-FD method is becoming more and more popular as

an alternative to the finite-element method since it avoids the sometimes complex

and expensive step of mesh generation and the RBF-FD method can achieve much

higher orders of accuracy. One of the issues with the RBF-FD method is how to

properly handle non-Dirichlet boundary conditions. In this thesis, we describe an

effective method for handling Neumann conditions in the case of Poisson’s equation.

The method uses fictitious points and generalized Hermite-Birkhoff interpolation to

enforce the boundary conditions and to improve the accuracy of the RBF-FD method

near boundaries. We present several numerical experiments using the method and

investigate its convergence and accuracy.
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CHAPTER 1

INTRODUCTION

Interpolation of scattered data is a common problem that arises in many disciplines.

For example, one may be given measurements of quantity, such as soil moisture

content, at spatially varying locations and want to interpolate the data to a location

where the information is unknown. In one dimension, many interpolation methods

exist (e.g., polynomial and Fourier methods) and each of them uses the same basic

principle. Given a set of data sites X = {x1, . . . , xn} and a set of linearly independent

functions ψi(x), the interpolant to the data, {f(x1), . . . , f(xn)}, is given by

s(x) =
n∑
i=1

λiψi(x), (1.1)

where λi are determined by requiring s(xi) = f(xi) for i = 1, . . . , n. These conditions

lead to a linear system for the interpolation weights λi, which is non-singular if all

elements of X are distinct. Unfortunately, this method does not extend to multiple

dimensions. In fact, it can be shown that for any set of basis functions independent of

the data, {ψi(x)}ni=1, there exists a set of distinct data sites {xi}ni=1, where xi ∈ Rd>1,

such that the linear system for interpolation becomes singular [17]. Therefore, for

a given scattered node set in Rd>1, this method of interpolation may fail to provide

a unique interpolant. There is, however, a way around this singularity: the basis

{ψi(x)}ni=1 must be chosen to depend on the data sites. One of the first and most
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powerful methods to employ this strategy was the multiquadric method developed by

Rolland Hardy [12] and the thin plate spline method developed by Duchón [2]. The

generalization of Hardy and Duchón’s methods have now become known as the radial

basis function (RBF) method. This technique chooses the basis for interpolation as

shifts of a single radially symmetric kernel. In its most simple form, the basis is given

by {ψi(x)}ni=1 = {φ(‖x− xi‖2)}ni=1, where φ is a radially symmetric kernel.

In the early 1990s, there was an explosion of research on both theory and ap-

plication of RBFs. In terms of applications, one of the most important results was

Kansa’s work showing the RBF method could be used for solving partial differential

equations (PDEs) [14]. Since Kansa’s pioneering work, many advances have been

made on using RBFs for PDEs (see for example [3, 5, 6, 13, 16, 19]). The method

is spectrally accurate for solving PDEs on irregular domains; however, it does have

some issues. For example, because of its global nature, it requires solving a large,

dense, and possibly ill-conditioned linear system. While some efforts have been made

to remedy the problems with the global method ( [3,15] and references within), there

has been no panacea. In the past 8 years, a new local RBF method has emerged

that gives up spectral accuracy of the global RBF method; but, in return, leads to

sparse, better-condition linear systems and more flexibility at handling non-linear

terms. The method is a generalization of the finite-difference method to scattered

nodes. The generalization comes from replacing polynomials (or Taylor series) with

RBFs to generate the weights in the finite difference formulas. This method is now

referred to as the RBF-FD method and was independently pioneered by Wright and

Fornberg [26], Wright [25], Shu et. al. [22], Tolstykh [23], and Cecil et. al. [1].

One issue with the RBF-FD method has been how to properly implement Neu-

mann or Robin boundary conditions so that “one-sided” stencils can be avoided.
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In this thesis, we propose a general method for implementing Neumann boundary

conditions and study the accuracy of the resulting method in terms of Poisson’s

equation in 2-D and 3-D.

1.1 RBF Interpolation

1.1.1 Global RBF Interpolation

In this section, we briefly review the RBF method for interpolation since it forms

the foundation for the RBF-FD method. In the RBF method, a linear combination

of shifts of a radially symmetric kernel φ is used to construct an interpolant to a

given set of data as follows. Let X = {x1, . . . ,xn} be a set of distinct data sites and

f |X = {f(x1), . . . , f(xn)} be a set of corresponding function values, then the RBF

interpolant to f |X is given by

s(x) =
n∑
i=1

λiφ(‖x− xi‖), (1.2)

where {λ1, . . . , λn} are determined from the interpolation conditions s(xi) = f(xi),

i = 1, . . . , n. These conditions lead to the following linear system for determining λi:



φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)

φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xn‖)
...

...
. . .

...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)


︸ ︷︷ ︸

A



λ1

λ2
...

λn


︸ ︷︷ ︸

λ

=



f(x1)

f(x2)

...

f(xn)


︸ ︷︷ ︸

f

.

The non-singularity of this system (invertability of A) is dependent on the radial
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kernel used. Table 1.1 lists several popular choices for φ. For the first 3 of these,

the matrix A, is guaranteed to be positive definite, and for the next 2 the matrix

is guaranteed to be invertible. For the last 2, there is a possibility the matrix can

be singular. However, the interpolant (1.2) can be augmented with side conditions

to avoid this issue (see [18] for a full discussion). Some radial kernels feature a

shape parameter ε, which is used to flatten or sharpen the kernel in order to improve

the accuracy of the interpolant. Choosing the right shape parameter is a difficult

problem and typically depends on the application [9]. More can be found on the

shape parameter in [4, 8, 10, 21,24].

In our application of the RBF method to generating finite differences, we have

found that more accurate results are obtained when the underlying interpolant is

modified slightly from (1.2). We add a constant to the interpolant giving

s(x) =
n∑
i=1

λiφ(‖x− xi‖) + λn+1.

With a new unknown constant, we need a new constraint for the interpolation system.

This is given by
n∑
i=1

λi = 0.

We choose this because it will yeild a symetric linear system for determining the

expansion coefficients.
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Table 1.1: Examples of popular choices of radial kernels. The free parameter ε is
called the shape parameter.

Types of RBF’s φ(r) r > 0
Infinitely Smooth RBF’s

Gaussian e−(εr)
2

Inverse Quadratic 1
1+(εr)2

Inverse Multiquadric 1√
1+(εr)2

Multiquadric
√

1 + (εr)2

Piecewise Smooth RBF’s
Linear r
Cubic r3

Thin Plate Spline r2 log r



φ(‖x1 − x1‖) φ(‖x2 − x1‖) · · · φ(‖xn − x1‖) 1

φ(‖x1 − x2‖) φ(‖x2 − x2‖) · · · φ(‖xn − x2‖) 1

...
...

. . .
...

...

φ(‖x1 − xn‖) φ(‖x2 − xn‖) · · · φ(‖xn − xn‖) 1

1 1 · · · 1 0


︸ ︷︷ ︸

A



λ1

λ2
...

λn

λn+1


︸ ︷︷ ︸

λ

=



f(x1)

f(x2)

...

f(xn)

0


︸ ︷︷ ︸

f

.

(1.3)

1.1.2 Local Interpolation Using RBFs

Creating local scattered data interpolants is similar to that of the global technique.

For example, one can construct an interpolant centered about x1 that only involves

the m closest data values to x1 as follows. First, sort the data set X based on their

distance from x1 and take the m-closest points. This creates a new, smaller, data set,

call it X1 = {x1 . . .xm}. Next, we can use the same technique as discussed above for

finding the interpolation coefficients λi. The resulting system for determining local
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interpolation coefficients would look like the following:

A(1)λ(1) = f |X1 .

We can then evaluate this local interpolant at values near x1 as follows:

s(1)(x) =
m∑
i=1

λ
(1)
i φ(‖x− xi‖) + λ

(1)
m+1

s(1)(x) = [ φ(‖x− x1‖) . . . φ(‖x− xm‖) 1 ]λ(1)

s(1)(x) = [ φ(‖x− x1‖) . . . φ(‖x− xm‖) 1 ](A(1))−1f |X1 .

1.2 RBF Finite Differences

Similar to how we derived the local interpolation weights in Section 1.1.2, we will

calculate finite difference weights for approximating derivatives locally. First, we find

X1 = {x1 . . .xm} as we did in Section 1.1.2. Given the sorted data set, we wish to

find a vector D such that Df |X1 ≈ Dx1f(x1), where Dx1 is any derivative operator

taken with respect to x1. Consider the interpolation weights λ = A−1f |X1 from (1.3).

Now consider the derivative of the interpolant

Dxs(x)|x=x1 =
m∑
i=1

λiDxφ(‖x− xi‖) ≈ Dxf(x),

which we put in vector format
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[
Dx1φ(‖x1 − x1‖) Dx1φ(‖x1 − x2‖) · · · Dx1φ(‖x1 − xm‖) 0

]
︸ ︷︷ ︸

B



λ1

λ2
...

λm

λn+1


= Dx1f(x1).

Then, Bλ = Dx1f(x1) and BA−1f |X1 = Dx1f(x1). Now we see that D = BA−1

[7, 26].

1.3 Outline of Thesis

Through the remainder of this thesis we will introduce Hermite-Birkoff interpolation.

We will use this technique to introduce a new fictitious point method using RBFs

and how it can be used to implement Neumann boundary conditions. Lastly, we will

numerically experiment with this technique and compare it to analytic solutions and

solutions for structured data.



8

CHAPTER 2

FICTITIOUS POINT METHOD FOR ENFORCING

BOUNDARY CONDITIONS

Here we develop a fictitious point method for enforcing Neumann-type boundary con-

ditions within the RBF-FD method. Fictitious point methods are standard practice

in the regular finite difference methods. In this context, the formulas are derived using

symmetry conditions and Taylor series. Since these symmetries cannot be exploited

with scattered data, we derive a fictitious point method using the Hermite-Birkhoff

method for interpolating scattered data [27].

2.1 Hermite-Birkhoff RBF Interpolation

A Hermite-Birkhoff interpolation problem is one where a mix of function and deriva-

tive values are known at a given set of nodes X = {x1, . . . , xn}. Consider, for example,

Figure 2.1 where we wish to interpolate function values at XI = {x1, . . . ,x4} and

derivative values at XD = {x5,x6}. One solution to this problem is known as the

symmetric Hermite-Birkhoff RBF interpolant and was first proposed by Wu [27] (see

also [20]). This method looks for an interpolant to the data of the form

S(x) =
4∑
i=1

λiφ(‖x− xi‖) +
6∑
j=5

αjDxj
φ(‖x− xj‖) + β, (2.1)
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Figure 2.1: An example stencil known function values at x1, . . . ,x4 and derivative
values at x5,x6.

where Dxj
is the derivative operator applied to φ(‖x− xj‖) with respect to xj. To

determine λi, αj, and β, we impose the constraints that S(x) will fit our known

function/derivative values:

S(xi) = f(xi), for i = 1, . . . , 4

Dxj
S(xj) = Dxj

f(xj), for j = 5, 6∑4
i=1 λi = 0.

As in standard RBF interpolation, we impose
∑4

i=1 λi = 0 in order to keep a

symmetric system. We can create a linear system for finding these constraints as

follows. First, we define

A =


φ(‖x1 − x1‖) · · · φ(‖x1 − x4‖)

...
. . .

...

φ(‖x4 − x1‖) · · · φ(‖x4 − x4‖)


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D =



Dx5φ(‖x1 − x5‖) Dx6φ(‖x1 − x6‖)

Dx5φ(‖x2 − x5‖) Dx6φ(‖x2 − x6‖)
...

...

Dx5φ(||x4 − x5||) Dx6φ(||x4 − x6||)



E =

 Dx5Dx5φ(‖x5 − x5‖) Dx5Dx6φ(‖x5 − x6‖)

Dx6Dx5φ(‖x6 − x5‖) Dx6Dx6φ(‖x6 − x6‖)

 .
The linear system for determining the interpolation coefficients is then given by


A D 1

DT E 0

1 0 0



λ

α

β

 =


f

Df

0

 .

Note that this creates a symmetric system that can be solved for the interpolation

weights λ and α. This system is guaranteed to be non-singular for the first 4 radial

kernels listed in Table 1.1 and is called the symmetric Hermite-RBF interpolant [20,

27]. A non-symmetric Hermite-RBF interpolation can be created by altering the

second constraint.

To evaluate at points not in X, say at points x7,x8, we create matrices

B =

 φ(||x7 − x1||) φ(||x7 − x2||) · · · φ(||x7 − x4||)

φ(||x8 − x1||) φ(||x8 − x2||) · · · φ(||x8 − x4||)



C =

 Dx5φ(||x7 − x5||) Dx6φ(||x7 − x6||)

Dx6φ(||x8 − x6||) Dx6φ(||x8 − x6||)

 .
We can then evaluate (2.1) as follows
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[
B C 1

]
A D 1

DT E 0

1 0 0


−1



f(x1)

f(x2)

...

f(x4)

Dx5f(x6)

Dx7f(x7)

0



≈

 f(x7)

f(x8)

 (2.2)

2.2 General Fictitious Point Method for Discretizing the Lapla-

cian Near Boundaries

We now discuss our fictitious point method for solving Poisson’s equation with either

Neumann, Dirichlet, or mixed boundary conditions on an irregular domain. Poisson’s

equation is given by:

∇2u = f(x),

with Dirichlet conditions

u(xb) = g(xb),

or Neumann conditions

n∇̇u(xb) = h(xb),

where xb are points on the boundary. Before we discuss the procedure and the

techniques for discretizing the Laplacian, we define the different types of RBF stencils.
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(a) (b)

(c) (d)

Figure 2.2: Plots in (a)-(d) illustrate 4 types of stencils that can occur. Blue
corresponds interior points, red to boundary points, and green to fictitious points.
The center of the stencil is always x1.

2.2.1 Important Definitions

In Figure, 2.2 we illustrate 4 different types of RBF-FD Stencils that can occur in a

bounded domain. We define the different points that occur in these stencils as follows.

Definition 1. Boundary Point : A point in the domain is a boundary point if it is

on the boundary of the continuous domain. For example, if the domain is the unit

disk, then the point x = (x, y) is on the boundary if x2 + y2 = 1. See Figure 2.2(a).
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Definition 2. Purely Interior Point : A point is a purely interior point if it has a

stencil that contains only interior or boundary points. See Figure 2.2(c) 2.2(d).

Definition 3. Edge Point: A point is an edge point if it is not on the boundary, but

its corresponding RBF-FD stencil contains at least one fictitious point. See Figure

2.2(b).

Definition 4. Fictitious Point: A point is a fictitious point if it is not a boundary,

purely interior, or edge point. Fictitious points lie on the outside of the domain. See

Figure 2.2(b) 2.2(a) (green points).

2.2.2 RBF-FD Approximation for a Purely Interior Node

Consider the purely interior stencil as seen in Figure 2.2(c). We apply the standard

RBF-FD method to discretize the Laplacian at x1 ( [6, 23]). This gives the following

expression for RBF-FD weights:

LT ≡



φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − x8||) 1

φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − x8||) 1

...
...

. . .
...

...

φ(||x8 − x1||) φ(||x8 − x6||) · · · φ(||x8 − x8||) 1

1 1 · · · 1 0



−1



∇2φ(||x1 − x1||)

∇2φ(||x1 − x2||)

∇2φ(||x1 − x3||)
...

∇2φ(||x1 − x8||)

0


The Laplacian of a function at x1 can then be approximated as
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[
L1 L2 L3 L4 L5 L6 L7 L8

]


u1

u2

u3
...

u8


≈ ∇2u(x1). (2.3)

Note that this is the method used for computing the RBF-FD weights for all the

nodes. However, depending on the node type, some modifications are necessary, as

discussed in the following sections.

2.2.3 RBF-FD Approximation for a Boundary Node

In this section, we derive an approximation of the Laplacian for a boundary point.

We only consider the case of Neumann boundary conditions as no approximations

are needed at the boundaries for Dirichlet boundary conditions. The main idea is to

use Hermite-Birkhoff interpolation to fictitious points and enforce the derivative con-

ditions at the boundaries as the Hermite-Birkhoff conditions. Consider the boundary

stencil displayed in Figure 2.2(a). Nodes 1-3 are on the boundary, nodes 4-6 are on

the interior of the domain, and 7 and 8 are fictitious points. We first discretize the

Laplacian about x1 on this stencil so we have RBF-FD weights Li as in Equation

(2.3) such that, for function values ui,

[
L1 · · · L8

]
u1
...

u8

 ≈ ∇2u(x1).

Consider splitting this system into a sum of individual components:
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L1u1 + L2u2 + · · ·+ L6u6 + L7u7 + L8u8 ≈ ∇2u(x1). (2.4)

Now u7 and u8 are unknown so we need to replace them with an extrapolated value.

This is where we will use the boundary condition. We use Hermite-Birkhoff RBF

interpolation to find values for u7 and u8, with the Neumann derivative operator as

the Hermite-Birkhoff condition. The Hermite-Birkhoff interpolant is given by

S(x) =
6∑
i=1

λiφ(||x− xi||) +
3∑
j=1

αjDxj
φ(||x− xj||) + β

with Dxj
being the Neumann operator applied to the RBF with respect to xj. We

apply the Hermite-Birkhoff method for interpolation discussed in the first section

of this chapter with XI = {x1, . . . ,x6} and XD = {x4, . . . ,x6}. Consider the first

matrix-vector multiplication in (2.2):

[
B C 1

]
A D 1

DT E 0

1 0 0


−1

=

 W7,1 W7,2 · · · W7,6 W̃7,1 · · · W̃7,3 T1

W8,1 W8,2 · · · W8,6 W̃8,1 · · · W̃8,3 T2

 = [W,W̃,T],

where T1, T2, and T are a result of the constant β in the interpolant. Since in (2.2)

T1 and T2 are multiplied by 0, they will no longer need to be used. We can then

evaluate at x7 and x8 using
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 W7,1 W7,2 · · · W7,6 W̃7,1 · · · W̃7,3

W8,1 W8,2 · · · W8,6 W̃8,1 · · · W̃8,3





u1

u2
...

u6

Dx1u(x1)

Dx2u(x2)

Dx3u(x3)



≈

 u7

u8



We can replace u7 and u8 in (2.4) with the interpolant above; i.e., (2.4) becomes

L1u1+L2u2+· · ·+L6u6+L7



W7,1

W7,2

...

W7,6

W̃7,1

...

W̃7,3



T 

u1

u2
...

u6

Dx1u(x1)

Dx2u(x2)

Dx3u(x3)



+L8



W8,1

W8,2

...

W8,6

W̃8,1

...

W̃8,3



T 

u1

u2
...

u6

Dx1u(x1)

Dx2u(x2)

Dx3u(x3)



.

Expanding this expression gives

L1u1+L2u2+· · ·+L6u6+L7(W7,1u1+W7,2u2+· · ·+W7,6u6)+L7(W̃7,1Dx1u1+· · ·+W̃7,3Dx1u3)

+ . . .+L8(W8,1u1+W8,2u2+· · ·+W8,6u6)+L8(W̃8,1Dx1u1+· · ·+W̃8,3Dx3u3) ≈ ∇2u(x1).

We can then write (2.4) as:
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[
(L1 + L7W7,1 + L8W8,1) (L2 + L7W7,2 + L8W8,2) · · · (L6 + L7W7,6 + L8W8,6)

]


u1

u2
...

u6


+

[
(L7W̃7,1 + L8W̃8,1) (L7W̃7,2 + L8W̃8,2) (L7W̃7,3 + L8W̃8,3)

]
Dx1u(x1)

Dx2u(x2)

Dx3u(x3)

 ≈ ∇2u(x1).

Once we compute L1, . . . ,  L8,W7,1, . . . ,W7,6,W8,1, . . . ,W8,6, W̃7,1, . . . , W̃7,3, W̃8,1, . . . , W̃8,3,

we can approximate∇2u(x1) for any values of u1, . . . , u6 andDx1u(x1), . . . ,Dx3u(x3).

2.2.4 Edge Point

We consider both Dirichlet and Neumann boundary conditions when developing an

approximation for an edge point. Here, both Dirichlet and Neumann conditions

require approximation (since we are not on the boundary). Let us start with Dirichlet

conditions.

Dirichlet Boundary Conditions

For Dirichlet conditions, we do not need to enforce any extra derivatives on the

boundary. However, we still have a choice to make. Since our stencil contains fictitious

points, we could use the Hermite-Birkhoff method (as done with boundary points)

and use the Laplacian as the Hermite condition since ∇2u = f has to hold on the

boundary. The other option is to replace the fictitious points in the stencil with non-

fictitious points, which turns the point into a purely interior point. The disadvantage
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of the latter is that it results in a one-sided stencil. Regardless, we now only need to

consider the first option since the second is discussed in Section (2.2.2).

To this end, consider the edge point stencil in Figure (2.2(b)). Nodes 2-3 are

on the boundary, nodes 1 and 4-6 are on the interior of the domain, and 7 and 8

are fictitious points. We first discretize the Laplacian on this stencil. So, we have

Laplacian weights Li and function values ui

[
L1 · · · L8

]
u1
...

u8

 ≈ ∇2u(x1) (2.5)

Now, we split this system into a sum of individual components as in Equation (2.4).

However, u7 and u8 are unknown, so we need to replace them with an extrapolated

value. We will use Hermite-Birkhoff RBF method to find values for u7 and u8. The

interpolant is given by

S(x) =
6∑
i=1

λiφ(||x− xi||) +
3∑
j=2

αjDxj
φ(||x− xj||) + β (2.6)

Note that since Dxj
= ∇2

xj
, it does not matter if it is applied to x or xj since both

the Laplacian and φ are radially symmetric. Thus, we can say Dxj
= ∇2. In this

case, XI = {x1,x4, . . . ,x6} and XD = {x4, . . . ,x6} and we find the Hermite-Birkhoff

interpolation weights [W,W̃] as in Section (2.2.3), but with the proper Hermite-

Birkhoff constraints (Dxj
= ∇2). If we now go back to the weights for the Laplacian

(2.5), we can replace u7 and u8 with the interpolant (2.6).
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L1u1+L2u2+· · ·+L6u6+L7



W7,1

W7,2

...

W7,6

W̃7,2

W̃7,3



T 

u1

u2
...

u6

∇2u(x2)

∇2u(x3)


+L8



W8,1

W8,2

...

W8,6

W̃8,2

W̃8,3



T 

u1

u2
...

u6

∇2u(x2)

∇2u(x3)


≈ ∇2u(x1)

Expanding this expression gives

L1u1+L2u2+· · ·+ L6u6+L7(W7,1u1+W7,2u2+· · ·+W7,6u6)+L7(W̃7,2∇2u(x2)+W̃7,3∇2u(x3))

+ . . .+L8(W8,1u1+W8,2u2+· · ·+W8,6u6)+L8(W̃8,2∇2u(x2)+W̃8,3∇2u(x3)) ≈ ∇2u(x1),

and we can write (2.5) as

[
(L1 + L7W7,1 + L8W8,1) (L2 + L7W7,2 + L8W8,2) · · · (L6 + L7W7,6 + L8W8,6)

]


u1

u2
...

u6


+

[
(L7W̃7,2 + L8W̃8,2) (L7W̃7,3 + L8W̃8,3)

] ∇2u(x2)

∇2u(x3)

 ≈ ∇2u(x1).

Now that we have obtained weights L1, . . . ,  L8,W7,1, . . . ,W7,6,W8,1, . . . ,W8,6, W̃7,2, W̃7,3, W̃8,2, W̃8,3,

we can approximate ∇2u(x1) for any values of u1, . . . , u6 and Dx1u(x2),Dx3u(x3).
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Neumann Boundary Conditions

Here we will use the same stencil as in the Dirichlet case above. So consider the edge

point stencil in Figure 2.2(b). We could change the stencil to make the point a purely

interior point, however we wish to enforce the boundary condition wherever possible.

So let us consider the Hermite-Birkhoff extrapolation technique again. Only now,

we use the Neumann operator as the Hermite condition (denoted below as D). The

only difference between this scenario and the approximation for a boundary point is

the center of the stencil. In this case, the center is not on the boundary. Instead,

nodes 2-3 are on the boundary, nodes 1 and 4-6 are on the interior of the domain,

and 7 and 8 are fictitious points. We again discretize the Laplacian on this stencil

as in (2.4). However, now u7 and u8 are unknown, so we need to replace them with

an extrapolated value. Using Hermite-Birkhoff RBF interpolation, the interpolant is

given by:

S(x) =
6∑
i=1

λiφ(||x− xi||) +
3∑
j=2

αjDxj
φ(||x− xj||) + β

Once more, Xi = {x1,x4, . . . ,x6} and Xb = {x2,x3} and we find [W,W̃] and replace

the unknown function values in (2.4). We replace u7 and u8 with the Hermite-Birkhoff

interpolant,

L1u1+L2u2+· · ·+L6u6+L7



W7,1

W7,2

...

W7,6

W̃7,2

W̃7,3



T 

u1

u2
...

u6

Dx2u(x2)

Dx3u(x3)


+L8



W8,1

W8,2

...

W8,6

W̃8,2

W̃8,3



T 

u1

u2
...

u6

Dx2u(x2)

Dx3u(x3)


≈ ∇2u(x1).
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Expanding this expression gives

L1u1+L2u2+· · ·+ L6u6+L7(W7,1u1+W7,2u2+· · ·+W7,6u6)+L7(W̃7,2Dx2u(x2)+W̃7,3Dx3u(x3))+

. . . L8(W8,1u1+W8,2u2+ · · ·+W8,6u6)+L8(W̃8,2Dx2u(x2)+W̃8,3Dx3u(x3)) ≈ ∇2u(x1),

and we can write (2.4) as

[
(L1 + L7W7,1 + L8W8,1) (L2 + L7W7,2 + L8W8,2) · · · (L6 + L7W7,6 + L8W8,6)

]


u1

u2
...

u6


+

[
(L7W̃7,1 + L8W̃8,1) (L7W̃7,2 + L8W̃8,2) (L7W̃7,3 + L8W̃8,3)

] Dx2u(x2)

Dx3u(x3)

 ≈ ∇2u(x1).

We have now computed weights for approximating ∇2u(x1) for any values of

u1, . . . , u6 and Dx1u(x2),Dx3u(x3).

2.3 Method for Solving Poisson’s Equation

We have seen several scenarios where we discretize the Laplacian for different points

in the domain. Notice that each section above has some row vector of weights that

we multiply by function values to get an approximation. We go through each point

in the domain and find these weights, indexing and ordering them in a square sparse

matrix L. However, in the scenarios that had Hermite-Birkhoff interpolation used,

we had two row vectors. We must index and order a second sparse matrix (L̃) for
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multiplication by the Hermite conditions. This results in 2 matrices, a square matrix

L and non-square matrix L̃, such that

[
L

] [
u

]
+

[
L̃

] [
Dxb

u(xb)

]
≈ ∇2u (2.7)

where u is the solution to Poisson’s equation and Dxb
u(xb) is a vector of points

where the Hermite condition is being enforced. If we apply this discretization to the

Laplacian, we get

[
L

] u(xb)

u(xi)

+

[
L̃

] [
Du(xb)

]
=

[
∇2u

]
(2.8)

Since

[
L̃

] [
Du(xb)

]
is known, we can move it to the right-hand side.

[
L

] u(xb)

ui

 =

[
∇2u

]
−
[
L̃

] [
Du(xb)

]

Thus, to determine the approximate RBF-FD solution to Poisson’s equation, we need

to solve the above sparse linear system. We call this method the RBF-FD fictitious

point method.
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CHAPTER 3

NUMERICAL RESULTS

As mentioned in Chapter 2, we are solving Poisson’s equation on an irregular domain

Ω. This is given by

∇2u = f(x) (3.1)

and is subjected to the Dirichlet boundary condition

u(xb) = g(xb), xb ∈ ∂Ω (3.2)

or Neumann boundary conditions

n · ∇u = h(xb), xb ∈ ∂Ω (3.3)

where n is the unit normal vector.

Since the RBF-FD method does not require a grid or mesh, it is possible to

discretize the domain in an “optimal” way. To do this, we developed a method based

on a minimum energy algorithm and we discuss this algorithm in Appendix A.

In the following experiments, we will use the Gaussian radial kernel from Table

1.1. Additionally, since we will be applying the RBF-FD fictitious point method to

solve Poisson’s equation, we need analytical formulas for the Laplacian applied to the

Gaussian. These are given in [26]:
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∇2φ = (d− 1) ∗ ∂φ(r)

∂r
+
∂2φ(r)

∂r2

where d is the dimension of the domain. Our applications include several different

domains, an annulus, an ellipse, and a spherical shell. As seen in Section 2.3, we

require a matrix inversion for the solution. Here we will be using the MATLAB built

in linear system solver \or mldivide together with MATLAB’s sparse matrix library.

3.1 Solutions on an Annulus

In this section, we will solve Poisson’s equation on an annulus using the RBF-FD

fictitious point method. Then, we will compare the results to both the analytical

solution and to a standard second order finite difference solution applied on a polar

grid. Let j be the third zero of the Bessel function J1(r) and consider the following

Poisson’s equation, written in polar form.

∇2u =
1

r2
− 8 sin(4θ)J0(jr)− j2 sin(4θ)J0(jr)/2 (3.4)

defined on the domain Ω = {(x, y)|1
2
≤ x2 + y2 ≤ 1}, where x = r cos θ and y =

r sin θ. We consider the following Neumann conditions on the exterior boundary

(∂Ω : x2 + y2 = 1)

∂u

∂r
(r = 1, θ) = −j cos(2θ) sin(2θ)J1(jr) = 0

and Dirichlet conditions on the interior boundary

u

(
r =

1

2
, θ

)
= cos(2θ) sin(2θ)J0(jr) + 1
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Figure 3.1: The error in the standard second or FD method based on a polar grid

The analytic solution to this equation is

n · ∇u(r, θ) = cos(2θ) sin(2θ)J0(
1

2
j) + 1.

Recall that in Section 2.2, when given Dirichlet boundary conditions, we had to

make a choice. We would either use the fictitious point method with the Laplacian as

the Hermite-Birkhoff condition, or use one-sided stencils with the RBF-FD method.

In this section, we will test both cases.

3.1.1 Standard Finite Differences in Polar Coordinates

Using equally-spaced polar grid and the standard second order 5-point finite difference

formula in polar coordinates, we compute the solution to (3.4). With 2000 nodes, the

standard finite difference approximation had a maximum error of 9.1528 ∗ 10−4. The

error for this solution is plotted in Figure 3.1.
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Figure 3.2: The scattered data domain with red points as boundary nodes, blue points
as purely interior nodes, and green points as fictitious nodes.
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using Hermite interpolation on Dirichlet points
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Table 3.1: Errors for variable node set density with one-sided interior boundary

Node Density Error ‖‖̇∞ Optimal ε Error ‖‖̇2 Optimal ε
500 0.0014 3.3 6.09E-004 3.2
1000 5.37E-004 3.1 2.03E-004 3.3
2000 1.31E-004 3.3 5.83E-005 3.3
4000 5.33E-005 3.0 1.88E-005 3.2
8000 1.46E-005 3.2 4.08E-006 3.2

3.1.2 RBF-FD with One Sided-Stencils on Dirichlet Boundary

Now we consider the RBF-FD approximations on the point set seen in Figure 3.2.

First, we use the technique described in Section 2.2.4 and choose the one-sided stencils

on Dirichlet boundary points. In Figure 3.3(a), we plot the spread of error over the

domain. Here our shape parameter was ε = 1.5 with a stencil size of 15.

We consider two types of convergence plots for this technique. First, in Figure

3.4(a), we do a convergence plot based on variable stencil size (with fixed node

set density of 2000 nodes and fixed ε = 3.3). Then, in Figure 3.4(b), we plot

the convergence based on variable node set density (with fixed stencil size of 15).

This is to show, as in standard finite differences, that as the stencil size increases a

better solution is obtained. In the second case, we loop through a vector of possible

ε and used the error from the optimal shape parameter. That is, of all possible

ε = 0.1, 0.2, . . . , 5, we use the result that has the smallest error. We plot the maximum

error of each case over the possible ε in Figure 3.5. We also consider two types of

error; relative error based off the infinity norm, and that of the two norm (both are

plotted and labeled in the figures). Note that all of these are plotted on a log scale

in order to estimate the order of accuracy. Since order of accuracy can be measured

by the slope of a log scale error plot, we find the method to be approximately 2nd

order. The data used to create these plots are seen in Table 3.1 and Table 3.2.
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Table 3.2: Errors for varying stencil width with one-sided interior boundary

Stencil Size Error ‖‖̇∞ Error ‖‖̇2
5 4.72E-002 1.99E-002
10 3.61E-004 1.75E-004
15 1.3E-004 5.82E-005
20 4.99E-005 1.30E-005
30 1.53E-005 4.74E-006
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Figure 3.4: Convergence of the RBF-FD solution with one-sided stencils: (a) Relative
two-norm errors as a function of increasing stencil sizes with fixed node set size of
2000 points. (b) Relative two-norm errors as a function of increasing node sets with
fixed stencil size of 15. Note that the axes from both plots are on a logarithmic scale.
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29

Table 3.3: Errors for Node Set Density with Hermite Interior Boundary
Node Density Error ‖‖∞ Optimal ε Error ‖‖2 Optimal ε

500 0.0013 3.3 6.77E-004 3.2
1000 5.98E-004 3.2 2.23E-004 3.2
2000 1.25E-004 3.3 6.13E-005 3.3
4000 5.08E-005 3 1.71E-005 3.2
8000 1.45E-005 3.2 4.21E-006 3.2

3.1.3 RBF-FD with Hermite Interpolation on Dirichlet Boundary

Lastly, we will use the other technique described in Section 2.2.4, which uses Hermite-

Birkhoff interpolation to fictitious points. With the same ε and stencil size as in

Section 3.1.2, we plot the spread of error (seen in Figure 3.3(b)). Notice that these

results in comparison to Figure 3.3(a) are indistinguishable. However, by subtracting

the two approximations, we saw that they differ by very little. This is expected

since the techniques for finding solutions are the same everywhere but the interior

boundary.

Further experimentation was done with the Hermite interpolation technique to

investigate convergence with respect to stencil size. Figure 3.6(a) was the resulting

convergence plot. As in the previous example, this was done to show the effectiveness

of increasing the stencil size. Lastly, convergence plots were done with respect to node

set density and we can see that this is approximately a second order method (seen in

Figure 3.6(b)). The values that created these plots can also be found in Table 3.3.

If you compare the data seen in Table 3.1 with 3.3, you see the Hermite technique

did improve the accuracy of the solution, but by very little. As in the last case, we

found these values by solving over a set of possible ε. We also show a plot of error

over possible ε in Figure 3.7.
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Table 3.4: Errors for Varying Stencil Width With Hermite Interior Boundary

Stencil Size Error ‖‖̇∞ Error ‖‖̇2
5 4.71E-002 1.99E-002
10 3.51E-004 1.70E-004
15 1.25E-004 6.13E-005
20 4.76E-005 1.38E-005
30 1.74E-005 5.35E-006
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Figure 3.6: Convergence of the RBF-FD solution with Hermite stencils: (a) Relative
two-norm errors as a function of increasing stencil sizes with fixed node set size of
2000 points. (b) Relative two-norm errors as a function of increasing node sets with
fixed stencil size of 15. Note the axes from both plots are on a logarithmic scale.
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3.2 Elliptical Domain with a Hole

Here we will solve a problem where the geometry is more complex. In this complex

domain, an unreasonable mesh refinement would be required near the boundary, so

standard finite differences cannot be applied. We will solve Poisson’s equation on

an ellipse punctured by a smaller ellipse with Neumann boundary conditions on the

exterior and Dirichlet conditions on the interior ellipse. This domain can be described

as Ω = {(x, y)|x2
4

+ y2 = 0} − {(x, y)|16x2 + 4y2}. We use the following function to

generate the right-hand side of Poisson’s equation along with the Neumann boundary

condition.

u(x, y) =
1

5

[
(x− 1)2y(16(x+ 1)2 + 4y2 − 1)

(
x2

4
+ y2 − 1

)]
+ 1

The Dirichlet condition is given by evaluating the function on the interior boundary,

which gives f(xinterior) = 1.

This will be solved using the domain seen in Figure 3.8 with fictitious points used

to enforce the exterior boundary condition. This domain was created with boundaries

x2

4
+ y2 = 0 (outer ellipse) and 16(x + 1)2 + 4y2 = 0 (inner ellipse). We then run

the RBF-FD fictitious points solution method and attain the errors in the domain

(Figure 3.9(a)). For this experiment, we use ε = 1.8 and ε = 1.5, the stencil size was

15. We see that this method can handle irregular domains with a reasonable amount

of accuracy.
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Figure 3.9: Errors for the elliptical domain. Left: Error with ε = 1.8; Right: Error
with ε = 1.5
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3.3 Spherical Shell

Here we test the method on a 3-dimensional problem. We solve Poisson’s equation

on a spherical shell with interior radius 0.55 and exterior radius 1 (which gives an

aspect ratio similar to that of the Earth’s mantle). We will create the problem based

on the solution

u(x, y) =
1− r
r

+
1

2

(
15

16

√
5

7π
(x4 − 6x2y2 + y4) +

3(3− 30z2 + 35z4)

16
√
π

)
sin2

(
20

9
π

(
−11

20
+ r

))

with r =
√

(x2 + y2 + z2). This was constructed such that n ·∇u = 0 on the exterior

boundary and the interior Dirichlet condition f(xi) = 1. We find a solution using the

RBF-FD method and compare it to the analytic solution. Again, we experimented

with different values of ε and stencil sizes. We chose to use a stencil size of 35 and

ε = 0.9. Since it is difficult to visualize the error in 3D, we plot the error in 2D with

the x-axis as the radial distance from the origin and the y-axis as the error at the

given nodes. Note the large gap between the closest interior points and boundary

points. This limits the amount of edge points in the domain and therefore the extent

to which the derivative-based boundary conditions can be enforced. The method was

still robust enough to yield a reasonable solution. We use the same 2D technique to

plot the true solution in Figure 3.10(b) to show the solution is not radially symmetric.
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CHAPTER 4

CONCLUDING REMARKS

In this thesis, we have introduced the first fictitious point method for solving Poisson’s

equation on irregular domains with Neumann boundary conditions using “scattered

nodes” and the RBF-FD method. We summarize the main results of our findings as

follows:

• The method uses fictitious points to implement Neumann boundary conditions,

which limits the use of one-sided stencils.

• We tested the method on irregular domains in 2 and 3 dimensions:

– The method exhibited smaller errors than the standard FD method.

– The approximate solution converges to the true solution as the node density

increases with a fixed stencil size.

– For a fixed node set, the accuracy of the method can be improved by

increasing the stencil size.

• The method should be extendable to other types of boundary conditions, such

as Robin.

In a future study, we will explore the applications of the RBF-FD fictitious point

method to time-dependent problems of both parabolic and hyperbolic types.
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APPENDIX A

NODE PLACEMENT AND NODE SET GENERATING

Before we can use these methods, we first have to generate a set of distinct scattered

nodes. We wish for the data to be unstructured and seemingly random. Here we

develop an algorithm for generating such a data set. The idea behind this node set

generator comes from Coulomb’s law of repulsion in spring mass systems. Suppose

we have a discrete domain Ω, such as a grid. We first need to break Ω into a series of

overlapping sub domains {Ω1,Ω2, . . . ,Ωn}, with each node being the center of a sub

domain. For instance, let x1 be the center of sub domain Ω1 and let Ω1 be composed

of x1 and the k closest nodes to x1. Thus, Ω1 = {x1,x2, . . . ,xk}. This will represent

the set of all nodes that has an effective repulsion force acting on x1.

We then sum the forces acting on x1 (assume all forces have magnitude 1) and we

will use this to find a direction of the overall force by normalizing it. In 2D, this will

look like

F =
k∑
i=2

[(x1, y1)− (xi, yi)]

F is a vector composed of the forces acting on x1; however, we wish to normalize, so

let

FN =
F

‖F‖p

Here we introduced the p-term in Coulomb’s law of repulsion [11]. Now, we repeat

this process for each point in Ω, thus finding the direction of force for each point.
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Figure A.1: Reflecting Point Moved Outside the Boundary

Next, we must understand that the magnitude of these forces may be too large

for the size of an arbitrary domain. This is why we normalized the forces and only

use them for direction. However, we are looking to relocate the point in the direction

of this force, and we are looking for an equilibrium of the spring mass system. So,

we propose moving each node an equal magnitude (call it δ) in the direction FN .

We then decrement δ and repeat this process until some desired equilibrium is found

(pseudo code will follow).

However, another problem will arise in this. Points near the boundary will not

have forces from an outer node and thus they will be moved through the boundary.

To correct for nodes moved outside the boundary, we propose reflecting them back

in. First, find all nodes moved outside of the boundary of the domain. Then, reflect

them back in the domain on a path normal to the boundary at a distance equal to

the nodes current distance from the boundary (seen in Figure A). If the reflection

moves the point through the domain and back outside the boundary, the initial δ of

the algorithm is too large.

Pseudo Code:
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While equilibrium tolerance is not met do

For length of Omega do

Find Forces acting on each point in Omega

Normalize Forces

end

Move points in direction of normalized force by magnitude delta

Find points moved outside of boundary

Reflect these points back in Omega as instructed above

decrement delta

end

There are many options for experimentation with this method. For instance, how

often do you decrement δ? What is the equilibrium tolerance? We found that it is

best to do a max number of iterations for equilibrium tolerance and to decrement δ

on a scale that is linear to the current iteration number. Essentially, this means we

add another loop; our pseudo code then becomes

for j = 1:max

for i = 1:4*j

for length of Omega

Find Forces acting on each point in Omega

Normalize Forces

end

Move points in direction of normalized force by magnitude delta

Find points moved outside of boundary

Reflect these points back in Omega as instructed above
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Decrement delta

end

end

Figure A.2 shows how this algorithm behaves through several iterations. Notice

the similarity from A.3(e) to A.3(f). This is due to the fact that the spring mass

system is reaching equilibrium.
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Figure A.2: Several Iterations of the Node Generating Algorithm
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