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ABSTRACT 

The reversible magnetic-field-induced plastic deformation that occurs in Ni-Mn-

Ga alloys proceeds through the field-induced displacement of twin boundaries in the 

martensite phase. On the microscopic scale, the twin boundaries move through the 

motion of twinning dislocations. A fundamental understanding of the motion of twin 

boundaries requires detailed characterization of the twinning systems and the associated 

twinning dislocations. Twinning dislocations and twin microstructure of non-modulated 

Ni-Mn-Ga martensite were characterized with transmission electron microscopy. For ease 

of interpreting results, two different axis systems were used to represent the non-

modulated structure: a face-centered tetragonal (T) lattice and a body-centered 

monoclinic (2M) lattice.  

Two types of martensite variant interfaces were studied. The habit plane of the 

twins within each variant is (001)2M/(101)T. One type of interface appears smooth, where 

the martensite variants themselves are related with the habit plane ( 211 )2M/(022)T. A 

second type of interfaces appears stepped, with a microscopic habit plane (100)2M /

.)T1(10 Close to an inter-variant martensite interface, the thickness of twins varies. This 

is explained in terms of twin branching. It is shown that the modulated martensite 

structures can be constructed from branching of the non-modulated structure into nano-

twinned variants.  
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Off-axis imaging of twins produced a distinct fringe pattern. Three fringe contrast 

levels appeared in a repeating sequence. The repeating contrast is consistent with a twin 

produced by an array of twinning dislocations with Burgers vector 2M[100]
6
1

/ T]1[10
12
1

and a step height equal to the d spacing of the (001)2M/(101)T planes. 
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CHAPTER 1: INTRODUCTION 

Shape-memory alloys (SMAs) are a class of functional materials that have the 

unique ability to recover from large strains without permanent deformation [1]. 

Thermally activated SMAs, such as NiTi, exhibit linear plastic deformations of up to 6%. 

This deformation is recoverable by heating the deformed martensite through the 

martensitic transformation temperature. Upon heating, the material “remembers” and 

returns to its original, cold-forged or trained shape [1, 2].  

It was speculated for years that the large strains associated with the thermoelastic 

shape-memory effect, such as in NiTi alloys, could be captured by the application of a 

magnetic field in certain martensites that are also ferromagnetic [3]. This speculation was 

proven correct in 1996 when Ullakko and coworkers reported 0.2% magnetic-field-

induced strain (MFIS) in single crystals of Ni-Mn-Ga [4]. The MFIS recorded in Ni-Mn-

Ga single crystals increased to 6% in 2000 [5] and 9.6% in 2002 by varying the 

composition and martensite variant selection [6-8]. 

Magnetic shape memory alloys (MSMAs) deform, changing shape and 

dimensions, under the application of an externally applied magnetic field; however, 

unlike conventional SMAs that must thermally proceed through a martensitic 

transformation, the strains in MSMAs can be recovered by the rotation of the magnetic 

field [4, 6, 7, 9, 10]. MSMAs have an advantage over conventional shape memory alloys 

due to the much higher frequency range over which they can be operated, exceeding  
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1 kHz. The actuation in MSMAs is driven by magnetic-field-induced reorientation of 

martensitic variants and is not limited by heat transfer as it is for traditional SMAs [11]. 

The recoverable strain seen in Ni-Mn-Ga alloys (up to 10%) is two orders of magnitude 

larger than the magnetic-field-induced strain observed in ordinary magnetostrictive 

materials, such as Terfenol-D, which has shown  strain of 0.24% [11], and is also much 

larger than the electric field induced strain in piezoelectrics, which can strain up to 0.1% 

[12].  

The Ni-Mn-Ga alloy has potential for numerous applications including actuators, 

sensors, and power generators [13-15]. Due to their unique magneto-mechanical 

properties and numerous potential applications, magnetic shape memory alloys, 

specifically Ni-Mn-Ga alloys, have recently attracted significant interest from the 

scientific community.  
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CHAPTER 2: MOTIVATION 

The macroscopically observable magnetic-field-induced strain in MSMAs is 

caused by the reorientation of martensitic variants, or twins [16]. For MFIS to occur, it is 

necessary that the magnetic anisotropy of the martensite phase be large compared to the 

energy required for twin boundary motion. It is also required that the preferred direction 

of magnetization change across the twin boundary. When this is the case, application of a 

magnetic field results in a difference in Zeeman energy across the twin boundary. This 

energy difference exerts a pressure on the twin boundary so as to grow the twin variant 

having the more favorable orientation [5, 9, 17]. The resulting field-induced twin-

boundary motion produces a large strain, fully within the martensitic state of an MSMA.  

On the microscopic scale, twins grow and shrink by the movement of dislocations 

located in steps of the twin boundary [18-20]. A defect with both a dislocation and step 

character is called a disconnection [19, 20].  Disconnections can be driven to move along 

twin boundaries by an internal stress such as that caused by a magnetic field. This results 

in a displacement of the twin boundary whereby one twin domain grows while the 

adjacent domain shrinks. In addition, the dislocation character produces a deformation by 

shearing the two crystals with respect to each other [21]. 

To develop MSMAs into applications, it is important to be able to systematically 

and reproducibly influence the properties of MSMAs and to predict these properties 

accurately.  The effects of microstructure, particularly disconnections, on the magnetic-
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field-induced strain are not yet fully understood and an understanding of the character of 

the disconnections that play a role in the magnetic-shape-memory effect is currently 

lacking.  A fundamental understanding of the motion of twin boundaries requires a 

detailed characterization of these twinning dislocations. 

The objective of the present work is to study the microstructure of the non-

modulated martensite. Specifically, a complete and consistent description of the crystal 

structure of the non-modulated martensite, the twinning systems present, and the types of 

defects present in the twin interfaces was developed. The relation between the non-

modulated structure and the more complicated modulated structures was also considered.  
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CHAPTER 3: BACKGROUND 

The following chapter provides an overview of the basic mechanisms of twinning 

and the types of defects associated with twin boundaries. Section 3.1 discusses the 

crystallography of twinning and the concepts of hierarchical twinning and twin 

branching. An overview of defects including twinning dislocations, disconnections, and 

disclinations is also presented. Section 3.2 discusses the most common crystal structures 

seen in the Ni-Mn-Ga alloy, including the austenite and martensite structures. An 

overview of martensitic transformations is also presented. Section 3.3 presents the 

concept of magnetoplasticity in magnetic-shape-memory alloys in terms of twin 

boundary motion.  

3.1 Twinning 

3.1.1 Crystallography of Twinning 

Deformation twinning is a process in which a region of a crystal undergoes a 

homogeneous shear that produces the original crystal structure in a new orientation [22]. 

In the simplest case, this results in the atoms of the original crystal, ‘parent’, and those of 

the product crystal, ‘twin’, being mirror images of each other by reflection over the 

twinning plane. This is seen schematically in Figure 3.1, where the matrix crystal (purple) 

is reflected over the twin boundary (TB) to produce the twin (blue). The black atoms 

along the twin boundary are shared by both the matrix and the twin.  
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Figure 3.1 Diagram Showing the Matrix Structure (Purple), and the Twin (Blue), 
Which Is a Result of a Mirror Reflection of the Matrix Crystal Structure Over the 

Twin Boundary (TB). 

 

The twinning elements are shown schematically in Figure 3.2. The plane parallel 

to the large twin interface, called the habit plane, remains undistorted, and is denoted K1. 

The shear direction is denoted η1. The plane K2, which intersects K1 in a line 

perpendicular to the shear direction, and which makes equal angles with K1 before and 

after the shear, is also undistorted. The plane of shear, s, is the plane that is normal to K1 

and contains η1. The direction η2 lies along the line of intersection of the shear plane and 

K2 [22, 23].  



Figure 3.2 Illustration of the Twinning Elements: 
and the Shear Plane s, Perpendicular to 

Sheared Position of 

 

The requirement that the crystal lattice

condition that either K1 and 

and η1 both have rational, low

rational, the twin is called a compound twin. 

3.1.2 Hierarchical Twinning

In “hierarchically” twinned microstructure

twins, tertiary twins form within secondary twins, etc. Higher

lower-order twins, and higher

This effect is seen in (Ni51

twinning [28]. The smallest level of twins are indicated by red lines, the second level by 

blue lines, and the largest twins are indicated by green lines. 

 

 

ustration of the Twinning Elements: η1 Lying in K1, 
, Perpendicular to K1 and K2 and Containing 

Sheared Position of K2 After a Shear η1 on K1 Is Also Shown

The requirement that the crystal lattice not be changed by the shear leads to the 

and η2 both have rational, low index indices (type I twin) or 

both have rational, low-index indices (type II twin) [24, 25]. If all four indices are 

rational, the twin is called a compound twin.  

Twinning 

In “hierarchically” twinned microstructures, secondary twins form within primary 

twins form within secondary twins, etc. Higher-order twins form within 

order twins, and higher-order twins are smaller than lower-order twins

51Mn28Ga21)99.5Dy0.5  in Figure 3.3, which shows three levels of 

The smallest level of twins are indicated by red lines, the second level by 

blue lines, and the largest twins are indicated by green lines.  
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, η2 Lying in K2, 
and Containing η1 and η2. The 

Is Also Shown.  

not be changed by the shear leads to the 

both have rational, low index indices (type I twin) or K2 

. If all four indices are 

, secondary twins form within primary 

order twins form within 

order twins [26, 27]. 

3, which shows three levels of 

The smallest level of twins are indicated by red lines, the second level by 



Figure 3.3 Hierarchical Twinning in (Ni
Twinning Are Indicated by Green (Primary), Blue (Secondary), and Red (Tertiary)

Reprinted with Kind Permission 

 

When secondary twins are present, the habit plane of the primary twin can be 

distorted and, therefore, will not be strain

habit plane of the structured twin

misorientation in the primary twin, which is proportional to the fraction of secondary 

twins present. There is an in

resulting in rotation of the habit plane. 

martensite structure via twinning requires

collective way [26]. 

 

 

Hierarchical Twinning in (Ni51Mn28Ga21)99.5Dy0.5. Three Levels of 
Indicated by Green (Primary), Blue (Secondary), and Red (Tertiary)

Reprinted with Kind Permission from [28]. 

When secondary twins are present, the habit plane of the primary twin can be 

, therefore, will not be strain-free [27]. Another plane will then become the 

habit plane of the structured twin. The secondary twins impose a rotation or 

misorientation in the primary twin, which is proportional to the fraction of secondary 

twins present. There is an in-plane distortion along the interface of the structured twin, 

resulting in rotation of the habit plane. The deformation of a hierarchically twinned 

martensite structure via twinning requires that twin boundaries move in a coordinated and 
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Three Levels of 
Indicated by Green (Primary), Blue (Secondary), and Red (Tertiary). 

When secondary twins are present, the habit plane of the primary twin can be 

. Another plane will then become the 

The secondary twins impose a rotation or 

misorientation in the primary twin, which is proportional to the fraction of secondary 

plane distortion along the interface of the structured twin, 

The deformation of a hierarchically twinned 

boundaries move in a coordinated and 
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3.1.3 Twin Branching 

Kohn and Müller examined the minimization of the total energy, consisting of 

elastic and interfacial energy, in the context of an austenite-twinned-martensite interface 

[29].  Two solutions were found, corresponding to two distinct regimes. The first regime 

was one in which the twin width, W, is related to twin length, L, by 

1/21/2∝ LρW                                                                      (1) 

where ρ is a materials constant with dimensions of length. This corresponds to an 

austenite phase that is sufficiently ‘soft’ in shear and/or the surface energy of the twin 

interfaces is sufficiently large.  

The second regime is one in which the twins branch as they approach the 

austenite interface. At distance l, the twin width behaves as  

3231 // lρW ∝                                                                     (2) 

This type of behavior occurs because elastic energy minimization prefers fine 

twins at the austenite-twinned-martensite interface. Far from the austenite, there is no 

elastic advantage to the fine-scale structure. Instead, fine twins actually cost surface 

energy, which results in twin coarsening. The result of a simulation of branched twin 

structure at an austenite interface is seen in Figure 3.4 [29].  
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Figure 3.4 Simulated Austenite/Twinned-Martensite Interface. Twins Were Seen 
to Branch Close to the Austenite Inferface Because Elastic Energy Minimization 

Prefers Fine Twins at the Interface, While Far from the Interface Twins Coarsen to 
Reduce Surface Energy. Reprinted with Kind Permission from [29]. 

3.1.4 Twinning Dislocations 

Frank and van der Merwe [30] reported that a step on a coherent twinning plane 

would cause several severely distorted unit cells in the center of the step. This distortion 

was noted to contain a dislocation with a Burgers vector that is not a full lattice vector. 

Such a dislocation is called a partial dislocation. The authors referred to this defect as a 

‘twinning dislocation’. The Burgers vector is parallel to the twinning plane, which 

coincides with the glide plane of the dislocation. It was predicted that the defect “should 

by its motion translate the twinning surface, causing one twin to grow into the other: and 

an applied stress should cause it to move.” The original image published by Frank and 

van der Merwe is reproduced in Figure 3.5, where the distorted unit cells around the step 

can be seen.  
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Figure 3.5 Schematic of a Coherent Twin Interface with a Step Introduced in the 
Center. The Unit Cells in the Vicinity of the Step Are Distorted. This Distortion 

Contains a Partial Dislocation. This Type of Defect Was Termed ‘Twinning 
Dislocation’. Reprinted with Kind Permission from [30].  

 

Using this model of twining dislocations, it was shown that the shear of a portion 

of a crystal into a twin can be accomplished by the successive motion of twinning 

dislocations, each on a glide plane one inter planar spacing removed from its predecessor. 

The twinning dislocations can move conservatively along the twin boundary without 

requiring diffusion. The tip of an advancing twin therefore corresponds to a dislocation 

pileup [22].  This is shown schematically in Figure 3.6, where a twin is advancing into 

the matrix. The twin grows by the motion of twinning dislocations on successive steps in 

the twin.  

  



Figure 3.6 Schematic Showing a Twin Advancing into the Matrix. The Twin 
Formed by Dislocations with

Reprinted with Kind Permission 

3.1.5 Twinning Disconnections

Hirth and Pond [20]

interfacial line defects, which they call 

are labeled µ and λ (black and white). If a bicrystal is created by bringing the upper 

planar surface of µ, with outward planar normal vector 

surface of λ, as seen in Figure 3.

Figure 3.7 Illustration of the Formation of a Defect Free Bicrystal by Joining 
Planar Surfaces of Crystals 

 

If the surface of µ and/or 

either side of the step, the step must be related to the crystal symmetry. It can be 

characterized by a translation vector

is  

 

 

Schematic Showing a Twin Advancing into the Matrix. The Twin 
Formed by Dislocations with Burgers Vectors Parallel to η1 Gliding 

Reprinted with Kind Permission from [22].  

Disconnections 

[20] developed a theory of moving crystal interfaces

which they call ‘disconnections’. Conventionally, the 

 (black and white). If a bicrystal is created by bringing the upper 

, with outward planar normal vector n, into contact with a lower planar 

as seen in Figure 3.7, a defect-free interface can result.   

 

Illustration of the Formation of a Defect Free Bicrystal by Joining 
Planar Surfaces of Crystals λ and µ. Reprinted with Kind Permission 

of µ and/or λ contains a step and the surface structure is identical on 

either side of the step, the step must be related to the crystal symmetry. It can be 

characterized by a translation vector, ti (i=µ,λ), of the lattice. The height, 
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Schematic Showing a Twin Advancing into the Matrix. The Twin Is 
Gliding on K1. 

interfaces based on 

Conventionally, the two crystals 

 (black and white). If a bicrystal is created by bringing the upper 

into contact with a lower planar 

Illustration of the Formation of a Defect Free Bicrystal by Joining 
Reprinted with Kind Permission from [31]. 

contains a step and the surface structure is identical on 

either side of the step, the step must be related to the crystal symmetry. It can be 

, hi, of such a step 
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hi = n·t                                                                                  (3) 

The step height can be signed positive or negative.  If the surfaces with steps are 

brought together to form a bicrystal with no atoms removed and no spaces left along the 

stepped interface, the material in the vicinity of the resulting overlap step will have to be 

distorted to fit. Thus, a dislocation is created with Burgers vector  

b = tλ-tµ                                                                                                                            (4) 

If two surfaces have steps with height of opposite sign, the resultant interface 

defect is a dislocation with no step character. This is illustrated in Figure 3.8, where       

hλ = -hµ. 

 

Figure 3.8 Illustration of the Formation of a Bicrystal by Joining Surfaces of 
Crystals λ and µ. The Crystals Have Heights of Equal but Opposite Value. This 

Results in a Defect of Pure Dislocation Character, Where b = tλ-tµ. Reprinted with 
Kind Permission from [31]. 

 

If crystals are joined in which the translation vectors are equal (tλ = tµ /hλ = hµ), 

then the defect is pure step without dislocation character. This type of defect is shown in 

Figure 3.9.  
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Figure 3.9 Illustration of the Formation of a Bicrystal by Joining Surfaces of 
Crystals λ and µ. The Crystals Have Translation Vectors Which Are Equal in 

Value. The Step Heights Are of Equal Value. This Results in a Defect of Pure Step 
Character, Where b = 0. Reprinted with Kind Permission from [31].  

If the surfaces have steps with heights that are of the same sign but t vectors that 

are not equal, the interface will have both a step height and Burgers vector. These types 

of defects are termed disconnections. The step height, h, is equal to the height of smaller 

magnitude (hλ or hµ).  This type of defect is illustrated in Figure 3.10.  

 

Figure 3.10 Illustration of the Formation of a Bicrystal by Joining Surfaces of 
Crystals λ and µ. The Crystals Have Different Step Heights and Non-Parallel 

Translation Vectors. This Results in a Defect Which Has Both Step and Dislocation 
Character, Called a Disconnection. b = tλ-tµ and the Step Height Is Equal to the 

Smaller of hλ and hµ.  Reprinted with Kind Permission from [31]. 
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A special type of disconnection is one in which hλ=hµ=h, but the translation 

vectors are not parallel.  The Burgers vector of this type of disconnection has no 

component perpendicular to the interface and it is free to glide along the interface.  A 

special case of this type of disconnection is a twinning dislocation, as discussed in 

Section 3.1.4.  

Disconnections play an important role in phase transformations involving the 

growth of one crystal at the expense of the other. Examples include twinning, martensitic 

transformations (see Section 3.2.2), and precipitation [19]. The motion of disconnections 

over the interface is the mechanism that transforms sites of one crystal to sites of the 

other. 

Disconnections that have a small Burgers vector and step height and move in a 

glissile manner with minimal atomic shuffling are likely to be mobile [19]. Defects 

having a relatively large Burgers vector may decompose into “partial disconnections.” 

For partial disconnections, the interface structures on either side of the disconnection are 

not identical. For twining dislocations, wider cores lead to enhanced mobility. A larger 

step height tends to localize a defect’s core and motion generally requires extensive 

shuffling.  

3.1.6 Twinning Disclinations 

A disclination is a linear defect that bounds the surface of a cut in a continuous 

body, with the undeformed faces of the cut undergoing the displacement produced by 

mutual rotation around a fixed axis. The rotation is defined by a rotation axis and a 

rotation angle ω (also called disclination strength) [32, 33]. Material is removed where it 

overlaps and inserted where there is a gap. The rotation axis may have any orientation 
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and position relative to the cylinder axis. Figure 3.11 demonstrates three different 

methods of formation of a disclination. Figure 3.11 (a) and (b) show twist disclinations in 

which the rotation axis is perpendicular to the cylinder axis. Figure 3.11 (c) shows a 

wedge disclination in which the rotation axis coincides with the cylinder axis. 

 

Figure 3.11 Disclination Formation in a Cylinder. A Cut Is Made in the Cylinder 
and the Faces Are Rotated About ω.  (a) and (b) Show Twist Disclinations in Which 

the Rotation Axis Is Perpendicular to the Cylinder Axis. (c) Shows a Wedge 
Disclination in Which the Axis of Rotation Is Parallel to the Cylinder Axis. 

Reprinted with Kind Permission from [33].  

 

Figure 3.12 (a)-(f) shows the disclination projected along its line. The surfaces of 

the cut are rotated with respect to each other such that a wedge-shaped gap is formed 

(Figure 3.12 (a)).  A wedge-shaped piece exactly matching the gap is inserted in Figure 

3.12 (b) and the interfaces are adhered in Figure 3.12(c). This forms a negative wedge 

disclination, which is symbolized by an open triangle in Figure 3.12(c). A positive wedge 

disclination, symbolized by a solid triangle, is formed when the rotation produces 

overlapping material that needs to be removed, as in Figures 3.12 (d)-(f).  
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Figure 3.12 Schematic Demonstrating the Formation of Positive and Negative 
Wedge Disclinations. Material Is Inserted (a–c) to Form the Negative Wedge 
Disclination (Open Triangle) and Removed (d-f) to Form a Positive Wedge 
Disclination (Filled Triangle). Reprinted with Kind Permission from [26]. 

 

There is a direct relationship between disclinations and dislocations. Any 

disclination can be represented in the form of a super-position of dislocations. Likewise, 

any dislocation can be represented by a set of disclinations [33]. For example, two 

parallel disclinations at a distance 2a, one positive, with strength ω, the other negative, 

with strength -ω, form a disclination dipole. The long-range stress field of a wedge 

disclination dipole is the same as that of an edge dislocation [26] with Burgers vector 
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 b = 2aω                                                                                (5) 

The wedge-shaped gap may be approximated by crystal surfaces with step height 

h and step width b/2 [26] (Figure 3.13). If a wedge with complementary steps is inserted, 

as in Figure 3.13(b), a wall of dislocations is formed with Burgers vector b and 

dislocation separation h (Figure 3.13(c)). Figures 3.13 (d)-(f) show the dislocation 

approximation when material is removed. 

 

Figure 3.13 The Wedge-Shaped Gap May Be Approximated By Crystal Surfaces 
with Step Height h and Step Width b/2 [26]. (b) A Wedge with Complementary 

Steps Is Inserted, Creating a Wall of Dislocations with Burgers Vector b and 
Dislocation Separation h. (d-f) Dislocation Approximation When Material Is 

Removed. Reprinted with Kind Permission from [26]. 
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When the step width and step height are reduced with constant ratio, b/h, until 

they are infinitesimal, a wedge disclination is obtained [26] with strength 

 ω = b/h                                                                                   (6) 

 Therefore, a disclination is equivalent to a semi-infinite wall of infinitesimal 

dislocations. A disclination dipole can be represented by different dislocation 

arrangements as seen in Figure 3.14 (a)-(e). Each disclination corresponds to a semi-

infinite wall of edge dislocations. The two walls may be extended to the left side (Figure 

3.14 (b)), to the right side (Figure 3.14 (c)), or to the top or bottom (Figure 3.14 (d)). In 

the case of Figure 3.14 (d), the dislocation walls overlap and most of their dislocations 

mutually cancel because they have opposite sign. Therefore, the net dislocation wall is 

finite. The finite dislocation wall has a finite net Burgers vector and may be considered a 

super dislocation, shown in Figure 3.14 (e). Which defect arrangement describes the 

physical situation best depends on the nature of the atomic arrangement, the 

crystallography, the length scale, and the accuracy required of the model [26]. 

 

Figure 3.14 a) Various Dislocation Representations for a Disclination Dipole.  
b) and c) Pairs of Semi-Infinite Dislocation Walls, d) A Finite Dislocation Wall.  

e) A Superdislocation. Reprinted with Kind Permission from [26]. 
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When moving as dipoles, disclinations produce a homogeneous shear in the 

volume bound by the glide planes of each disclination. The shear ratio, s, is related to the 

strength of the disclination by 

ω
ω

s ≈=
2

tan2                                                                 (7) 

The strength, ω, of the twinning disclination is related to the Burgers vector and 

the step height of the twinning disconnection as 

s
h

b
≈= −

2
tan2ω 1                                                                (8) 

When free to move along an infinite twin boundary, twinning disconnections 

(described in Section 3.1.5) with like-signed Burgers vectors mutually repel and spread 

apart as far as they can. Disclinations are formed only where twin boundaries meet other 

defects such as other twin boundaries, as in hierarchically twinned martensite. For 

hierarchically twinned martensite, disconnections are attracted towards the lower-order 

twin boundary where they instantaneously form walls of disclinations with alternating 

signs, even in the absence of an externally applied stress [28].  

3.1.7 Stacking Faults and Twinning 

Twinning dislocations were described as partial dislocations located in steps of a 

coherent twin boundary [30]. Partial dislocations in crystalline material cause stacking 

faults [22]. A stacking fault is a planar defect and is described as a local region in the 

crystal where the regular stacking sequence has been interrupted [31].   

A common example of a stacking fault is in close-packed structures. Face-

centered cubic (fcc) structures differ from hexagonal close packed (hcp) structures only 

in stacking order. Both structures have close packed atomic planes with six-fold 
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symmetry. When stacking one of these layers on top of another, the first two layers are 

identical for hcp and fcc, and labelled AB. If the third layer is placed so that its atoms are 

directly above those of the first layer, the stacking will be ABA. This is the hcp structure, 

and it continues ABABABAB; however, there is another location for the third layer, such 

that its atoms are not above the first layer. Instead, the fourth layer is placed so that its 

atoms are directly above the first layer. This produces the stacking ABCABCABC, and is 

actually a cubic arrangement of the atoms. A stacking fault is an interruption in the 

stacking sequence, for example if the sequence ABCABABCAB were found in an fcc 

structure. 

3.2 Crystal Structures and Martensitic Transformations 

3.2.1 Austenite 

The high-temperature austenite phase of Ni2MnGa exhibits an L21-ordered face 

centered cubic crystal structure, also known as the Heusler structure [34]. This structure 

was named after Friedrich Heusler (1866-1947), a German mining engineer and chemist 

who discovered that upon alloying three non-magnetic metals (Cu, Al, and Mn) the 

resulting alloy, Cu2MnAl, is ferromagnetic.  

The L21 structure (space group m3Fm ) has a composition X2YZ. The X and Y 

components are generally transition metals. The Y component can also be a rare earth 

metal.  The Z component is a non-metal or non-magnetic metal. In Ni2MnGa, X, Y, and Z 

are Ni, Mn, and Ga, respectively. The atomic positions of Ni, Mn, Ga atoms are as 

follows [34]:  
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Nickel atoms occupy eight positions at: 

[ ¼  ¼  ¼ ], [ ¾ ¼ ¼ ], [ ¼ ¾ ¼ ], [ ¼ ¼ ¾ ], [ ¾ ¾ ¼ ], [ ¾ ¼ ¾ ], [ ¼ ¾ ¾ ],  

[ ¾ ¾ ¾ ] 

Manganese atoms occupy four positions at: 

[ ½ 0 0], [0 ½ 0], [0 0 ½ ], [ ½ ½ ½ ] 

Gallium atoms occupy four positions at: 

[0 0 0], [ ½ ½ 0], [ ½ 0 ½ ], [0 ½ ½ ] 

Figure 3.15 illustrates the crystal structure for the Heusler phase of Ni2MnGa. 

Gallium occupies the green sites, manganese occupies the red sites, and nickel occupies 

the blue sites. 
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Figure 3.15 Crystal Structure of the Austenite Phase for Ni2MnGa, Modified from 
[34]. Gallium Occupies Red Sites, Manganese Green, and Nickel Blue. 

3.2.2 Martenisitic Transformations: Phenomenological and Topological Theory 

3.2.2.1 Phenomenological Theory 

The transformation from the high-symmetry, austenite phase to the lower-

symmetry, martensite phase is a diffusionless transformation that occurs by shear 

distortion of the lattice structure [1].  The phenomenological theory of martensitic 

transformations [35, 36] uses matrix algebra to describe the total shape change, P1, which 

the martensitic transformation imposes to a volume element of austenite. The austenite 

lattice is transformed to the martensite lattice by  

P1=RP2B                                                                                                                (9) 
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In this equation, B is the homogeneous distortion, or Bain distortion, P2 is the 

lattice invariant shear, and R is a rigid-body rotation. The total shape change is 

decomposed into three transformations, occurring simultaneously. The Bain strain tends 

to distort all directions and thus there is no invariant plane that could serve as the habit 

plane. The lattice invariant shear, P2, serves to deform the martensite phase plastically so 

that P2B produces an undistorted plane. The image of the undistorted plane has to be 

rotated by R in order to become invariant after the complete transformation RP2B.  

There are two options for the deformation P2, slip or twinning [37]. These 

mechanisms aid formation of martensite with little or no volumetric change. The 

formation of an invariant plane by slip and twinning is schematically shown in Figure 

3.16.  

 

Figure 3.16 Schematic of the Interface of Austenite and Martensite Phases During 
the Martensite Phase Transformation. (a) Shows the Crystal Structure at a 

Temperature Greater Than the Martensitic Phase Transformation Temperature. 
The Crystal Is in the Austenite Phase. (b) and (c) Show the Crystal Structure 

During the Martensitic Phase Transformation. It Is Necessary for Either Slip (b) or 
Twinning (c) to Occur to Accommodate the Geometry of the Austenite During 

Phase Transformation. Reprinted with Kind Permission from [37]. 

 



Figure 3.17 is an illustration demonstrating the austenite/martensite interface with 

its associated invariant plane that separates the austenite fr

region. 

Figure 3.17 Schematic Demonstrating the Austenite/Martensite Interface. The 
Invariant Plane (Habit Plane) Forms the Interface Between Martensite and 
Austenite. Twins Form at 

 

During the martensitic transformation in shape

can have different crystallographic orientations with respect to the cubic parent phase. 

Each unit cell having a different orientati

variants that form arrange themselves in a pattern to minimize the overall strain energy 

due to the transformation. This behavior is known as “self accommodation” of twinned 

martensite [1].  

 

is an illustration demonstrating the austenite/martensite interface with 

riant plane that separates the austenite from a twinned martensite 

Schematic Demonstrating the Austenite/Martensite Interface. The 
Invariant Plane (Habit Plane) Forms the Interface Between Martensite and 
Austenite. Twins Form at the Austenite Interface to Accommodate Strain.

ensitic transformation in shape-memory materials, the martensite 

can have different crystallographic orientations with respect to the cubic parent phase. 

Each unit cell having a different orientation is called a variant. The twins

that form arrange themselves in a pattern to minimize the overall strain energy 

due to the transformation. This behavior is known as “self accommodation” of twinned 
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om a twinned martensite 

 

Schematic Demonstrating the Austenite/Martensite Interface. The 
Invariant Plane (Habit Plane) Forms the Interface Between Martensite and 

ustenite Interface to Accommodate Strain.  

memory materials, the martensite 

can have different crystallographic orientations with respect to the cubic parent phase. 

twins and martensite 

that form arrange themselves in a pattern to minimize the overall strain energy 

due to the transformation. This behavior is known as “self accommodation” of twinned 
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The phenomenological theory of martensite transformations predicts the habit 

plane for many transformations; however, the interface structure and transformation 

mechanism are not represented. It cannot, for example, explain why habit planes 

sometimes vary with small changes of composition or mode of formation.  

3.2.2.2 Topological Theory 

The topological model of martensitic transformations is based on dislocation 

theory. In this theory, the transformation is modelled in terms of glissile motion of 

partially coherent interfaces (see Section 3.1.5).  The austenite/martensite interface can be 

modelled as an array of disconnections, superimposed on coherent terraces, and the 

resulting habit plane orientation and misorientation of adjacent crystals is in close 

agreement with the predictions of the phenomenological theory [19]. The validity of the 

disconnection structure of the martensite interface is supported by experimental 

observations, where high-resolution microscopy has shown step-like character of 

disconnections in martensite/austenite interfaces [19].  

3.2.3 Martensite Structures 

Below the martensite phase transformation temperature, several different 

structures are known to exist in Ni-Mn-Ga alloys, depending on compositions, 

temperature, and externally applied forces. The most commonly reported structures are 

the 14-layered structure (14M), the ten-layered structure (10M), and non-modulated (NM 

or 2M) structure [38].   

Composition is the most important factor in determining the martensitic crystal 

structure at room temperature. Richard et al. [39] characterized the crystal structure of 
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powdered single crystals with varying composition. Figure 3.18 summarizes their results. 

In this figure, orthorhombic refers to the 14M structure and tetragonal refers to the 10M 

structure. Lanksa et al. [40] collected similar data and noted that the non-modulated 

tetragonal structure was seen in compositions on the upper left of this graph, where Mn 

concentration is low and Ga concentration is high.  

 

Figure 3.18 Composition Effects on Crystal Structure After Annealing. 
Orthorhombic Is Plotted with Squares, Tetragonal with Circles, and Mixtures with 

Triangles. The Solid Sloped Lines Are Different Maretensite Transformation 
Temperatures. Reprinted with Kind Permission from [39].  

 

Other factors also affect the crystal structure of Ni-Mn-Ga alloys. For example, 

upon cooling from austenite parent phase, an intermartensitic transformation has been 

seen [41] in which a modulated martensite formed first and further cooling lead to a non-

modulated martensite phase. Upon heating, only a phase transformation from the non-

modulated martensite to austenite phase was observed.  Transformations upon cooling 
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from an austenite parent phase to a 10M martensite and further to a 14M martensite have 

also been observed [42]. Depending on the martensite phase the sample was in when the 

cooling was stopped, 14M to austenite and 10M to austenite phase transformation have 

been observed, but no intermartensitic transformations upon heating were seen [42].   

Applied stress also impacts the crystal structure. It has been shown that upon 

cooling and with increasing stress the austenite phase changes to the 10M, then to the 

14M, and then to the non-modulated phase or from austenite to the 14M and then to the 

non-modulated or directly from the austenite to the non-modulated phase [43]. The non-

modulated structure is the ground state for martensite [44].  

3.2.3.1 Non-Modulated Martensite Structure 

The non-modulated lattice results from a tetragonal distortion of the cubic parent 

phase. There are two separate tetragonal unit cells commonly used to describe the non-

modulated structure, both of which have a c/a ratio larger than unity. The most 

commonly reported cell is one that shares an axis system with the parent cubic cell, 

where the a and b axes have been compressed and the c axis elongated to form a face-

centered tetragonal cell [38, 45]. The structure is also sometimes reported as body-

centered tetragonal [46].  The relationship between the two axis systems is shown 

schematically in Figure 3.19. The face-centered unit cell is outlined in black, and the axes 

are labeled a1 and c1. The body-centered tetragonal unit cell is outlined in grey, with axis 

a2 and c2. The c axis of the two unit cells are identical, and the relationship between a1 

and a2 is 21 2aa = . 
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Figure 3.19 Relationship Between the Face-Centered Tetragonal and Body-
Centered Tetragonal Unit Cells. The Face-Centered Axis Are Labeled a1 and c1. The 

Body-Centered Tetragonal Axis Are Labeled a2 and c2. The c Axis of the Two 
Coordinate Systems Are of the Same Magnitude, and 

21 aa 2= . Gallium Occupies 
Red Sites, Manganese Green, and Nickel Blue. 

 

Figure 3.20 shows a high-resolution transmission electron micrograph of a twin 

boundary between non-modulated variants viewed along the [010]T zone axis of the face-

centered tetragonal structure, and the corresponding diffraction pattern [47]. The arrows 

indicate the location of the twin boundary.  The tetragonal unit cell can be seen in the 

high-resolution image and is outlined in red.  



Figure 3.20 High Resolution Transmission Electron Micrograph and 
Corresponding Electron Diffraction Patte

Tetragonal Structure of the Non
Marked by White Arrows.

Variants in Red. 

 

Typical lattice parameters for the non

both axis systems [45].  

 

 

High Resolution Transmission Electron Micrograph and 
Corresponding Electron Diffraction Pattern Viewed Along [010]T, 

Tetragonal Structure of the Non-Modulated Martensite. A Twin Boundary 
Marked by White Arrows. The Tetragonal Unit Cells Are Outlined in Both Twin 

Variants in Red. Reprinted with Kind Permission from [47]

Typical lattice parameters for the non-modulated cell are given in Table 3.1
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High Resolution Transmission Electron Micrograph and 
, Revealing the 

Modulated Martensite. A Twin Boundary Is 
Outlined in Both Twin 

[47]. 

ated cell are given in Table 3.1 for 
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Table 3.1 Lattice Parameters of the Non-Modulated Martensite Structure 
Reported for Both the Face-Centered Tetragonal Unit Cell and the Body-Centered 
Tetragonal Unit Cell. 

 Lattice Parameters [Å] 

Unit cell a b c 

 

Face-Centered Tetragonal 5.46 5.46 6.58 
 

Body-Centered Tetragonal 3.86 3.86 6.58 
 

 

3.2.3.2 Modulated Structures 

The superlattice diffraction peaks due to the modulation of the 14M and 10M unit 

cells are of very low intensity and are often not seen in X-ray diffraction experiments; 

therefore, the modulated cells are often described by unit cells that are deduced from the 

fundamental diffraction spots and do not include the modulation [38]. Both the 

modulated unit cell and the unit cell deduced from fundamental diffraction spots will be 

discussed for the modulated structures.  

The modulated martensites differ in the arrangment of (101)c planes of the cubic 

austenitic parent phase. These planes undergo a systematic displacement resulting in a 

long-periodic structure. The axis [010]C and [010]M, where M signifies monoclinic, are 

identical. Following the Zdanov notation [48], the stacking sequence is described by a 

symbol )( YX
m 

where X and Y are the numbers of successive displacements in the 00]1[ M 

and [100]M directions and m is the number of repetitions of )( YX units that complete a 

martensite unit cell. Otsuka et al. [49] suggested the use of the number mn followed by a 

capital letter indicating the crystal axis system, where n=X+Y, to describe the martensite 
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as “mn layered.” The layered structures are therefore called 14M and 10M and denoted 

2)25( and 2)23( , respectively.  

 14M Martensite Structure.  The fundamental diffraction spots in the 14M 

structure describe an orthorhombic crystal structure with a c/a ratio of around 0.90 [45]. 

TEM diffraction patterns show six extra spots between the fundamental diffraction spots.  

The unit cell accounting for the extra diffraction spots is a stacked body-centered 

monoclinic cell (space group I2/m), shown in Figure 3.21 along the [010]14M direction. 

The 2)25( stacking sequence is emphasized with dashed lines. Gallium occupies the red 

sites, manganese occupies the green sites, and nickel occupies the blue sites.  
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Figure 3.21 Structure of the (a) Cubic Austenite Phase and (b) 14M Structure 
Represented as a Body-Centered Monoclinic Unit Cell (Space Group I2/M) Viewed 

Along [010]14M. The 22)5( Stacking Sequence Is Emphasized with Dashed Lines. 
Gallium Occupies Red Sites, Manganese Green, and Nickel Blue. 

 

Figure 3.22 is an X-ray diffraction pattern of the 14M structure, modified from 

[38]. The pattern is indexed in accordance with the stacked monoclinic cell, index M, and 
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according to the orthorhombic cell, index O. All of the high-intensity peaks can be 

indexed in either reference frame.  

 

Figure 3.22 X-Ray Diffraction Pattern of the 14M Martensite Structure. All of the 
High-Intensity Peaks Can Be Indexed According to the Stacked Monoclinic Cell (M) 

or the Orthorhombic Cell (O). Reprinted with Kind Permission from [38].  

 

Figure 3.23 (a) is a TEM diffraction pattern of the 14M structure [38]. The 

diffraction pattern shows the six extra spots in between the fundamental reflections and is 

indexed according to the monoclinic structure. The reflection 107 is a result of chemical 

ordering. Figure 3.23 (b) is a high-resolution micrograph [47] of the 14M structure. The 

high-resolution micrograph was not taken in the same location as the diffraction pattern; 
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however, the micrograph emphasizes the 2)25( stacking sequence seen in the 14M 

structure.  

 

Figure 3.23 (a) Experimental Electron Diffraction Pattern of the 14M Structure, 
Which Reveals the 7 Extra Spots Between the Primary Diffraction Spots. The 

Diffraction Pattern Is Indexed According to the Monoclinc Cell. Reprinted with 
Kind Permission from [38]. (b) High-Resolution Transmission Electron Micrograph 
of the 14M structure, the Lines Drawn on the Image Emphasized the 22)5( Stacking 

Sequence. Reprinted with Kind Permission from [47]. 

 

Table 3.2 gives typical lattice parameters found for the 14M structure given in 

terms of the monoclinic axis system [38] and the orthorhombic axis system [45]. 
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Table 3.2 Lattice Parameters for the 14M Martensite Structure Given for Both 
the Monoclinic and Orthorhombic Unit Cells. 

 Lattice Parameters [Å] Angles 

Unit cell a b c 

 

α β γ 

 

Monoclinic 4.23 5.5 29. 
 

90 93.5 90 
 

Orthorhombic 6.19 5.8 5.53 
 

90 90 90 
 

 

 10M Martensite Structure.  Fundamental diffraction spots of the 10M 

structure show a tetragonal unit cell with a c/a of about 0.94. TEM diffraction patterns 

show four extra spots between the fundamental reflections.  There is currently debate 

about the nature of the stacking of atomic planes in the 10M unit cell. It is possible that 

the 10M cell is built by long period stacking of planes, in the form 2)23( . Alternatively, a 

periodic shuffling of the basal planes may occur, the displacement of each plane from its 

original position being given by a function containing harmonic terms [38]. An example 

unit cell built using atomic positions derived using the latter approach [50] is given in 

Figure 3.24 in the [010]10M direction. This is a body-centered monoclinic cell (space 

group I2/m). Gallium occupies the red sites, manganese occupies the green sites, and 

nickel occupies the blue sites.   
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Figure 3.24 10M Martensite Structure Represented as a Body-Centered 
Monoclinic Cell (space group I2/m) Viewed Along the [010]10M Direction. Gallium 
Occupies the Red Sites, Manganese Occupies the Green Sites, and Nickel Occupies 

the Blue Sites. 

 

Figure 3.25 (a) [38] shows a selected area diffraction pattern from a 10M 

structure, indexed according to the monoclinic unit cell. The SADP shows the four extra 

spots between the fundamental diffraction spots. A high-resolution image of the 10M 



sample is also shown below

diffraction pattern), which shows the stacking sequence. 

Figure 3.25 (a) Selected Area Diffraction Pattern of the 10M Structure Reveals 
Four Spots in Between the Primary Diffracted Spots. The Pattern 
According to the Monoclinic Cell.
(b) High Resolution Transmission Elect

Positions in the 10M Structure.

 

Table 3.3 gives typical lattice parameters for the 10M structure in terms of the 

monoclinic [38] and tetragonal 

 

 

below in Figure 3.25 (b) [47] (not from the same area as the 

pattern), which shows the stacking sequence.  

a) Selected Area Diffraction Pattern of the 10M Structure Reveals 
n Between the Primary Diffracted Spots. The Pattern 

According to the Monoclinic Cell. Reprinted with Kind Permission 
(b) High Resolution Transmission Electron Mircrograph Showing the Atomic 

Positions in the 10M Structure. Reprinted with Kind Permission 

gives typical lattice parameters for the 10M structure in terms of the 

and tetragonal [45] unit cells.  
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(not from the same area as the 

 

a) Selected Area Diffraction Pattern of the 10M Structure Reveals 
n Between the Primary Diffracted Spots. The Pattern Is Indexed 

Reprinted with Kind Permission from [38]. 
ron Mircrograph Showing the Atomic 

Reprinted with Kind Permission from [47]. 

gives typical lattice parameters for the 10M structure in terms of the 
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Table 0.3 10M Lattice Parameters Presented for Both the Monoclinic and 
Tetragonal Unit Cells. Lattice Parameters from [38] and [45]. 

 Lattice Parameters [Å] Angles 

Unit cell a b c 

 

α β γ 

 

Monoclinic 4.24 5.66 20.5 
 

90 90.5 90 
 

Tetragonal 5.94 5.94 5.59 
 

90 90 90 
 

 

3.3 Magnetoplasticity 

A macroscopic change of shape occurs in Ni-Mn-Ga when exposed to a magnetic 

field. Upon the removal of the magnetic field, the alloy does not return to its original 

shape; however, the original shape can be achieved by rotating the magnetic field. This 

effect is known as magnetoplasticity [1]. Significant magnetoplasticity occurs in single 

crystals. Magnetoplasticity is suppressed in bulk polycrystals.  

The magnetoplasticity of MSMAs takes place through the motion of twin 

boundaries. Upon the application of a magnetic field, the magnetic moment of the twins 

tends to align with the magnetic field in order to reduce the Zeeman energy. Because Ni-

Mn-Ga exhibits magnetic anisotropy, the rotation of the magnetic moments increases the 

magneto crystalline energy in twin variants that do not have their easy axis of 

magnetization parallel with the applied magnetic field. This effect drives twin 

rearrangement [37]. When one twin variant realigns, the boundary between a set of twins 

moves. Figure 3.26 illustrates this concept. The initial state shows two twin variants, 

labeled 1 and 2. They are separated by the twin boundary. Upon the application of the 

magnetic field, the magnetic moments will tend to align with the applied field, causing 

variant realignment and twin-boundary motion.  



40 
 

 

 

Figure 3.26 Schematic of Twin Boundary Motion. (a) The Initial Twin Structure 
Contains Two Twin Variants, 1and 2. The Top Variant’s Magnetic Moment Is 

Oriented to the Left While the Bottom Variant’s Magnetic Moment Is Oriented to 
the Right. Upon the Application of a Magnetic Field, (b) the Magnetic Moment in 

the Top Variant Aligns with the Field. The Twin Boundary Moves Up and the 
Bottom Variant Grows at the Expense of the Top Variant. Reprinted with Kind 

Permission from [37]. 

 

To reach the maximum shape change, the MSMA needs to be completely in one 

twin variant or the other, so that all c directions are aligned. The maximum theoretic 

magnetic-field-induced strain is equal to the spontaneous strain c/a−=1ε . The c/a ratio 

depends on the crystal structure of the martensite phase. Table 3.4 gives the theoretical 

maximum strain for each martensite crystal structure based on lattice parameters given in 

Section 3.2, along with the maximum MFIS found experimentally. Strains close to the 

theoretical maxima have been achieved for the modulated structures [7, 8, 45]; however, 

the non-modulated structure has high twinning stresses and only very small MFIS has 

been achieved [51].  
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Table 3.4 Maximum Theoretical MFIS for Each of the Martensite Structures 
and the Maximum MFIS Seen Experimentally. The 14M and 10M Structures Have 
Achieved MFIS Close to the Theoretical Max; However, the NM Structure Has 
High Twinning Stresses and Only Very Small MFIS Has Been Seen Experimentally. 

Structure Theoretical Strain % Max Experimental  

MFIS % 

14M 10.66 9.6                   [8] 

10M 5.89 5.8                 [45] 

NM 20.5 0.17                [51] 

 

On the microscopic scale, twins grow and shrink by the movement of dislocations 

located in steps on the twin boundary [19]. A defect with both step and dislocation 

character is termed a disconnection [18, 19] and is discussed in detail in Section 3.1.5.  

Moving the disconnection requires a force, which can be induced by a magnetic field or a 

mechanical stress. An applied magnetic field causes a magnetic force, FM, on the 

disconnections. The maximum force, FM, that can be produced by a magnetic field that is 

larger than the saturation field on a twinning disconnection is [52]:  

hKF =M                                                               (10) 

where K is the magnetic anisotropy constant and h the step height of the 

disconnection. The magneto-stress, τM, on the twinning plane in the twinning direction is 

a shear stress. With s being the twinning shear s = bt/h, the maximum magnetostress is: 

sK /M =τ                                                                  (11) 

The magnetic field exerts a magnetic force on the disconnection and causes the 

disconnection to move. The motion of the disconnections causes motion of the twin 

boundary and the growth of one twin and shrinkage of the other.  
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CHAPTER 4: EXPERIMENTAL 

The twinned microstructure and the disconnection structure of individual twins 

were characterized in Ni-Mn-Ga with non-modulated martensite samples.  The non-

modulated structure was chosen because of its simplicity in comparison to the other 

martensite structures, with the intention to later apply the knowledge gained to the more 

complicated structures. The microstructure of the non-modulated structure is, itself, 

important to understand. The non-modulated structure is frequently encountered as the 

ground state for martensite [44].  

4.1 Sample Preparation 

The dislocation structures and branching of twins in non-modulated Ni-Mn-Ga 

were studied in polycrystalline samples. Polycrystalline Ni-Mn-Ga of nominal 

composition Ni46.75Mn34Ga19.25 (at%) was prepared in a Reitel induction furnace from the 

constitutive metals Ni 99.9% (Alfa Aesar), Mn 99.9% (Alfa Aesar), and Ga 99.999% 

(Sigma Aldrich) and cast into a copper mould. During the casting, 2.5% of the mass of 

the ingot was lost. This is presumed to be primarily Manganese loss. 

The bulk ingot was sectioned and mechanically polished down to 1 micron grit 

size for XRD experiments. A section was then mechanically thinned to a foil thickness 

(80-120 µm) and 3 mm disks were punched using a Model 656 Disc Punch (Gatan, Inc). 

Thin foils were double jet electro-polished in a solution of 700 mL methanol (Aldrich, 
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USA) and 300 mL 69.9% (vol.) nitric acid (Aldrich, Aldrich) in a TenuPol 3 (Struers) 

system at 243 K and 10 V.  

4.2 Transmission Electron Microscopy 

Transmission electron microscopy is a microscopy technique in which an electron 

beam is transmitted through an ultra thin specimen, interacting with the specimen as it 

passes through. An image is formed by the electrons that pass through the specimen. The 

image is magnified and focused onto an imaging device or detected by a sensor such as a 

CCD camera.  

A transmission electron microscope (TEM) is composed of several main 

components, including a vacuum system in which the electrons travel, an electron 

emission source for generation of the electron stream, and a series of electromagnetic 

lenses and apertures [53]. The lenses and apertures are used to guide and manipulate the 

beam. A device to allow the insertion into, motion within, and removal of specimens 

from the beam path is also required. Imaging devices are subsequently used to create an 

image from the electrons that exit the system. 

There are several different types of electron sources. The most common consists 

of a thermionic gun capable of accelerating the electrons through a selected potential 

difference in the range of 40-200 kV [54]. A field emission gun can also be used in which 

a single crystal of tungsten is subjected to an extremely high electric field to create the 

beam of electrons [54]. The condenser lens assembly demagnifies the beam emitted by 

the gun and controls its diameter as it hits the specimen. This allows control of the area of 

illumination and the intensity of the beam. An aperture is present between the condenser 

lenses (condenser aperture), which can be used to control the convergence angle. The 



44 
 

 

first condenser lens is often labeled ‘spot size’ and sets the demagnification of the gun 

crossover. The second lens, called ‘intensity’, provides control of the convergence angle 

of the beam leaving the condenser assembly. As the convergence angle is increased, the 

beam diameter at the specimen decreases until it reaches its minimum, when the beam is 

focused on the sample. The specimen is held between pole pieces of the objective lens.  

Figure 4.1 shows a ray diagram of the electrons through the TEM. The objective 

lens forms the first intermediate image and diffraction pattern, one or the other of which 

is enlarged by subsequent projector lenses and displayed on the viewing screen. A 

diffraction pattern is always formed in the back focal plane of the objective lens. The 

intermediate lens can be switched between two settings. In the image mode, Figure 

4.1(a), the intermediate lens is focused on the image plane of the objective lense. In 

diffraction mode, Figure 4.1(b), the intermediate lens is focused on the back focal plane 

of the objective lens and the diffraction pattern is projected onto the viewing screen. 

There are several sizes of objective aperture, which can be inserted into the column in the 

back focal plane. This aperture can control the contrast that is seen in the image.  

For all TEM results presented in this thesis, the foils were imaged at 200kV in a 

JEOL 2100 HR (JEOL LTD) TEM operated with a LaB6 filament.  
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Figure 4.1 Ray Diagram Showing the Electron Path in a TEM for a) Formation 
of an Image, and b) Formation of a Diffraction Pattern.  

 

The objective aperature can be used to allow either the undeflected beam or a 

diffracted beam to form the image, giving strong contrast from regions that are diffracting 

strongly. Strong diffraction contrast occurs when the crystal is oriented such that only the 

undeflected beam and one low index diffracted beam are present in the diffraction 
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pattern. This is known as a two-beam condition. The sample is tilted so that a Kikuchi 

line runs through the undeflected beam, and the parallel kikuchi line runs through a 

strongly diffracted beam. In bright-field imaging, the objective aperture is used to stop all 

diffracted beams and only permits undeflected electrons to contribute to the image, as 

seen in Figure 4.2(a). If the aperture is displaced, it can be used to select a particular 

diffracted beam, as shown in Figure 4.2(b). This is known as displaced-aperture, dark-

field imaging. If the dark-field image is created by displacing the aperture in this way, 

aberrations are likely to be introduced since all the imaging electrons are traveling far 

from the optical axis, where spherical aberrations are large.  

 

Figure 4.2 Schematic Illustrating the Use of an Objective Aperture in the TEM 
to Select (A) the Direct or B) the Scattered Electrons Forming BF and DF Images, 

Respectively. Reprinted with Kind Permission from [53].  

 

A better method is to tilt the incident electron beam so that the chosen diffracted 

beam travels along the optical axis and passes through the centered aperture. This method 

is shown schematically in Figure 4.3.  
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Figure 4.3 a) The Standard Two-Beam Condition with Only the 000 and hkl 
Spots Bright. B) The Incident Beam Is Tilted through 2θ So That the Excited ghkl  

Spot Moves onto the Optic Axis. Reprinted with Kind Permission from [53].  

 

Analysis of TEM micrographs is not directly straightforward and requires 

significant knowledge of electron diffraction and contrast mechanisms. The following 

section provides the basic theoretical background of diffraction and contrast mechanisms 

in the TEM.  

4.2.1 Electron Diffraction  

When the electron beam interacts with a perfect crystal, some of the constituent 

atoms will cause elastic scattering of the beam. The incident electron beam is locally 

coherent, and any scattered waves that are also in phase with one another will reinforce 

and lead to a strong beam of electrons, whereas any scattered waves that are out of phase 



will not reinforce. In Figure 4.4

scattered waves at D will be in phase if the path length of the electrons scatter

atom A and the electrons scattered from atom B differ by an integral number of 

wavelength.  

Figure 4.4 Scattering of an Incident Beam of Electrons (I) by a Crystalline 
Specimen. The Beam May Emerge 

(T), or Having Been Diffracted (D) 
Diffracted Directions (N)

Forms.

 

The condition for reinforcement is known as Bragg

where d is the spacing between the planes of atoms 

electrons, or interplanar spacing, and 

integer n is the order of di

consider only the first order of diffraction, 

order by modifying the hkl

100 is equivalent to first-order diffraction (n=1) from 200. 

 

will not reinforce. In Figure 4.4, the A and B atoms scatter the incident wave. The 

scattered waves at D will be in phase if the path length of the electrons scatter

and the electrons scattered from atom B differ by an integral number of 

Scattering of an Incident Beam of Electrons (I) by a Crystalline 
Specimen. The Beam May Emerge from the Other Side of the Specimen 

(T), or Having Been Diffracted (D) Form Atomic Planes of Spacing 
s (N), the Waves Did Not Reinforce and No Diffracted Spot 

Forms. Reprinted with Kind Permission from [54]. 

The condition for reinforcement is known as Bragg’s law, and is given as

λθ nd =sin2                                                                

is the spacing between the planes of atoms that are scattering the 

s, or interplanar spacing, and λ is the wavelength of the incident beam. The 

der of diffraction; however, in electron diffraction it is conventional to 

consider only the first order of diffraction, n = 1.  Higher orders can be described as first

hkl such that, for example, second-order diffraction (n=2) from 

order diffraction (n=1) from 200.  
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, the A and B atoms scatter the incident wave. The 

scattered waves at D will be in phase if the path length of the electrons scattered from 

and the electrons scattered from atom B differ by an integral number of the 

 

Scattering of an Incident Beam of Electrons (I) by a Crystalline 
rom the Other Side of the Specimen Undeviated 

Atomic Planes of Spacing d. In Other 
the Waves Did Not Reinforce and No Diffracted Spot 

 

s law, and is given as 

                                                               (12) 

are scattering the 

is the wavelength of the incident beam. The 

in electron diffraction it is conventional to 

Higher orders can be described as first-

order diffraction (n=2) from 
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Because the wavelength of electrons is much smaller than the spacing of lattice 

planes, the Bragg angles for electron diffraction are very small. Therefore, there will be 

strong diffraction only from lattice planes that are almost parallel to the electron beam.  

Each type of plane in a crystal will have a different spacing and a different density 

of atoms per unit area, resulting in different intensities of electron diffraction for each 

type of plane. The theory of kinematical electron diffraction can be used to predict the 

planes in crystals that give zero diffracted intensity. The intensity of a diffracted beam is 

proportional to the structure factor squared, which is given by: 

)](2exp[)(
1

jj

r

j

jjhkl lwkvhuifF ++−=∑
=

πθ                                        (13) 

The structure factor is obtained by adding up the contribution to electron 

scattering made by each atom in the unit cell, taking into account the phase of each wave 

that is scattered. Since the crystal is periodic, this only has to be done for one unit cell of 

the crystal, not a complete specimen. In Equation 13, uj vj wj give the coordinates of the 

j
th atom. The factor fj(θ) is the scattering factor, or atomic form factor, of the jth atom, and 

the exponential factor keeps track of the phase of each scattered wavelet.  In the 

kinematic approximation, which disregards effects of multiple scattering events, the 

structure factor can be used to predict which lattice planes result in constructive 

interference, and with what intensity.  

4.2.2 Contrast Mechanisms 

There are three basic contrast mechanisms: mass-thickness contrast, diffraction 

contrast, and phase contrast. All three may contribute strongly to the appearance of the 

TEM image.  
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4.2.2.1 Mass Contrast 

In a thin specimen, the majority of electrons that enter the top of a sample will 

exit through the bottom; however, many will have been scattered. The effect of an 

aperture in the back focal plane of the objective lens is to stop all electrons that have been 

scattered through an angle greater than the angle selected for by the aperture. Regions of 

a specimen that are thicker, or have a higher density, will scatter more strongly. This 

results in more electrons being deflected through an angle larger than the aperture selects 

for. These areas will appear darker in the image.   

4.2.2.2 Diffraction Contrast 

Any defect that changes the orientation and spacing of the diffracting planes will 

typically cause diffraction contrast. Such defects include dislocations, stacking faults, and 

other crystallographic defects. For most real samples, the electron is likely to be 

diffracted numerous times, and the dynamical theory must be used for a quantitative 

analysis. The two-beam approximation is used when discussing dynamical theory. The 

Howie-Whelan equations [55] describe the amplitudes of the undeflected (subscript 0) 

and diffracted (subscript g) waves as a function of z, the distance through a perfect 

crystal.  
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The first term in each equation arises from scattering from the undeflected beam 

and the second term arises from scattering from the diffracted beam. The equations show 
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that the amplitude of each wave changes as the wave progresses through the crystal due 

to contribution from the other. The variable s is the vector describing the deviation of the 

Ewald sphere from reciprocal lattice point, known as the deviation parameter. ξ is a 

constant of the material for a particular value of g, and is known as the extinction 

distance. It is given by  

g

Bc

g
F

V

λ
θπ

ξ
cos

=                                                          (16) 

where Vc  is the volume of the unit cell, λ is the electron wavelength, θB is the 

Bragg angle, and Fg is the structure factor.  

 The Howie-Whelan equations can be solved analytically for a perfect crystal. 

When integrating over the whole crystal thickness, the intensity at the surface of the 

direct and diffracted beams can be calculated. The diffracted beam (dark field) intensity 

for a perfect crystal of thickness t is  
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=                                                               (17) 

The variable s’ is known as the effective deviation parameter, given by 
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A crystal defect that disturbs the planes will locally modify the deviation 

parameter. When a defect is present, the Howie-Whelan equations can be re-written as: 
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In these equations, g is the reciprocal lattice vector that describes the planes that 

are diffracting, and R is the displacement of atoms from their lattice positions due to the 

defect. These equations are just as before, with the addition of the 2πig·R factor. This 

additional phase is termed α,  

Rg ⋅= iπα 2                                                                  (21) 

The factor g·R is a measure of the modulation of the electron wave as it travels 

through the defect. When g·R is zero or an integer, the displacements do not disturb the 

operating planes and so the defect is invisible.  

Two specific types of defects, stacking faults and dislocations, occur frequently in 

shape-memory material. The contrast caused by each is now discussed in detail.  

 Stacking Faults.  Stacking faults are planar defects. The displacement of 

atoms, R, is effectively zero for all positions above the fault plane and has a non-zero but 

constant value everywhere below the fault. Since R is constant, α is also constant.  

The Howie-Whelan equations can be solved for the case of a constant α. The 

intensity of the diffracted beam is found to be [53] 

)]'2cos([
1

2
stBA

s
I g π−∝                                                     (22) 

where t’ is the distance of the fault below the center of the slice (t’=t1-t/2 where t1 

lies between 0 and t and t/2 is the center of the foil); therefore, the contrast depends on 
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both the thickness of the sample and depth of the fault. The intensity will generally vary 

periodically, unless the beam is perpendicular to the stacking fault. The characteristic 

contrast of stacking faults consists of fringes running parallel to the intersection of the 

fault with the specimen surface [53]. A typical example of fault contrast is shown in 

Figure 4.5.  

 

Figure 4.5 Characteristic Contrast of Stacking Faults. Fringes of Alternating 
High and Low Contrast Run Parallel to the Intersection of the Fault with the 

Specimen Surface. Reprinted with Kind Permission from [53].  

 

 Dislocations.  Near the core of a dislocation, lattice planes are usually bent 

quite severely, but the extent of lattice bending decreases at greater distances. If the 

crystal away from the dislocation is set close to a two-beam condition (i.e., near to but 

not exactly at Bragg angle), then the bent planes on one side of the dislocation core may 

reach the Bragg orientation, and will diffract more strongly than their surroundings [53].  

This is demonstrated schematically in Figure 4.6.   
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Figure 4.6 Illustration of Contrast Created by Dislocations. (A) The Specimen Is 
Tilted Slightly Away from the Bragg Condition. The Distorted Planes Close to the 

Edge Dislocation Are Bent Back into the Bragg-Diffracting Condition.  
(B) Schematic Profiles Across the Dislocation Image Showing That the Defect 

Contrast Is Displaced from the Projected Position of the Defect. Reprinted with 
Kind Permission from [53].  

 

The dislocation will therefore appear as a dark line in a bright-field image. A 

general rule is that dislocations are invisible if g·b = 0. This is true for screw dislocations; 

however, for edge and mixed dislocations, 0=×⋅ ubg  must also be true, where u is the 

line sense [53].  Partial dislocations have non-integral values of g·b. The rule of thumb 

for visibility is that a partial dislocation is visible if g·b > 1/3 [53].  
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4.2.2.3 Phase Contrast 

Phase contrast results whenever electrons of different phases are allowed to pass 

through the objective aperture. Since most electron scattering mechanisms involve a 

phase change, this means that some sort of phase contrast is present in every image. 

Phase contrast is most useful in obtaining high-resolution electron micrographs.  

4.3 X-Ray Diffraction 

The crystal structure of the bulk polycrystalline sample was analyzed via X-ray 

diffraction (XRD) using a Bruker D8 Discover diffractometer with a Cu Kα source 

equipped with a Göbel mirror, a monochromator and point detector. NIST corundum 

standards were used to characterize the peak positions and widths. If the peak position 

was within 0.04° in 2ϴ of the reference, the detector position was deemed acceptable 

according to ASTM standards.  

For polycrystalline samples with many randomly orientated crystallites, diffracted 

beams of any plane hkl form a diffraction cone. Therefore, intensity can be detected 

easily without the need of sample rotations or precise sample alignment and a moving 

point detector is sufficient to record all reflections. 
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CHAPTER 5: RESULTS 

Before presenting the results, a new body-centered monoclinic axis system, called 

“2M,” is introduced to describe the non-modulated structure. The monoclinic cell is half 

the size of the tetragonal unit cell and eases the interpretation of the TEM results. The 

relationship between the lattice parameters and unit cell orientation for the monoclinic 

(2M) and tetragonal (T) axis systems are given in Figure 5.1. From the tetragonal 

symmetry, it follows that in the monoclinic axis system, a2M = c2M, b2M = bT and  

22
2 2

1
TTM acc += . Results are given in both reference frames. Some important lattice 

planes and directions are listen in Table 5.1 for both axis systems.  

Table 5.1 Important Lattice Planes and Directions for Tetragonal (T) and 
Monoclinic(2M) Axis Systems. 

Tetragonal (T) Monoclinic (2M) Tetragonal (T) Monoclinic (2M) 

Plane (hkl) Direction (uvw) 

110  100 110  100 

010 010 010 010 

101 001 101 001 

220 121 111  210 

422  312  100  110  
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022 211    

750  160    

840  260    

 

The relationship between the planes and directions of the 2M and the tetragonal 

cells can be written as: 
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Figure 5.1 Relationship Between Face Cetered Tetragonal (T) Unit Cell and the 
New, Body-Centered Monoclinic Cell (2M). 

 

5.1 XRD Results 

X-ray diffraction experiments were first performed on bulk polycrystalline 

samples to ensure the material was in the non-modulated phase and to determine the 

lattice parameters. The diffracted x-ray intensity as a function of Bragg angle, 2θ, is 

shown in Figure 5.2, indexed according to the face-centered tetragonal axis system 

(indexed T) and the new, monoclinic axis system (indexed 2M). 



59 
 

 

 

Figure 5.2 XRD of Bulk Polycrystalline Ni-Mn-Ga with Non-Modulated 
Martensite Structure. The Pattern Is Indexed According to the Face-Centered 
Tetragonal Axis System (T) and Body-Centered Monoclinic Axis System (2M). 

 

The lattice parameters calculated for the tetragonal and monoclinic axis systems 

are given in Table 5.2. The tetragonal lattice parameters match well with those reported 

in Table 3.1.  

Table 5.2 Lattice Parameters of the Non-Modulated Structure Measured with 
XRD for the Tetragonal and 2M Axis Systems. 

Unit Cell Lattice Parameters Å 

a b c 

 

Angles 

α β λ 

 

Face-Centered Tetragonal “T” 5.568 5.568 6.587 

 

90 90 90 

 

Body-Centered Monoclinic “2M” 4.313 5.568 4.313 

 

90 99.58 90 

 

5.2 TEM Results 

Figure 5.3 is a bright-field image showing the typical morphology of the non-

modulated martensite. Several different marensite variants are seen, with a high density 
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of nanotwins extending across an entire martensite plate. The inset diffraction pattern 

corresponds to the large martensite variant on the left, which is aligned along the [210]2M/

T]1[11 zone axis. Some martensite variants intersect in a straight line, marked with “1”, 

while other variants form jagged, stepped interfaces, marked with “2”.  

 

Figure 5.3 Bright-Field TEM Image Showing Multiple Martensitic Variants. 
Two Variants Meet in a Straight Line, Marked with “1”, While Others Meet in a 
Jagged Boundary, Marked with “2”. The Diffraction Pattern Corresponds to the 
Large Variant on the Left, Which Is Viewed Along the [210]2M/ T]1[11 Zone Axis. 

 

Figure 5.4 shows location 1 at a higher magnification. Both martensite variants 

are aligned along the [210]2M/ T]1[11 zone axis. The corresponding diffraction pattern for 

each variant is inlayed in the image. Comparison of the diffraction patterns with the 
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bright-field image shows that the reflection of (002)2M/(202)T  is nearly perpendicular to 

the twin boundaries, indicating that (001)2M/(101)T is the twin plane. The presence of thin 

plates on (001)2M/(101)T is also evident from the streaking perpendicular to this 

diffraction spot. The diffraction pattern at the top of the image is taken over the center of 

both variants. The diffraction patterns are rotated approximately 60° from one another. 

 

Figure 5.4 A Higher Magnification Image of Location 1. Both Martensitic 
Variants Are Aligned Along the [210]2M/ T]1[11 Zone Axis. The Corresponding 
Diffraction Patterns for Each Variant Are Inset in the Image. The Diffraction 

Pattern at the Top of the Image Is Taken over the Center of Both Variants.  

The interface at “1” appears as a smooth, straight line in Figure 5.3. However, at 

higher magnification, Figure 5.4 shows that the interface actually undulates slightly. The 

density of internal twin variants in the left martensite variant of Figure 5.4 appears to 

change along the interface. The changing density of internal twins changes the exact 
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location of the interface, so that microscopically the interface is not a smooth line. The 

macroscopic variant interface is approximately )211( 2M / )121( 2MT.  

The [210]2M/ T]1[11 zone axis of the variants meeting at location 2 do not coincide. 

Instead, the sample was tilted to the [010]2M/[010]T zone axis to obtain the bright field 

image shown in Figure 5.5. The diffraction pattern from each variant is inlayed in the top 

and bottom corners, along with the diffraction pattern of both variants in the top-right 

corner. Again, comparison of the diffraction patterns with the bright-field image shows 

that (002)2M/(202)T is the twinning plane, and streaking corresponds to the thin plates on 

(002)2M/(202)T. The diffraction patterns of the two variants are rotated approximately 90° 

from each other. The interface is not a smooth line, as in location 1. Instead, it is stepped 

parallel and perpendicular to the (002)2M planes of the internal twins in both variants.  
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Figure 5.5 Location 2 Viewed Along the [010]2M/[010]T Zone Axis. The 
Diffraction Pattern from Each Variant Is Inlayed, Along with the Diffraction 

Pattern of Both Variants. (002)2M Is the Twinning Plane. The Interface Is Not a 
Smooth Line, as in Location 1, But Steps Parallel and Perpendicular to the (001)2M 

Planes of the Internal Twins in Both Variants. 

 

The remaining results focus on the interface at location 1. Figure 5.6 (a) and (b) 

are two complementary dark-field images of location 1, rotated by about 60° from Figure 

5.3. The images were taken with the lower martensitic variant aligned along the [210]2M/

T]1[11  axis. The aperture was displaced to circle the )211( 2M reflection to create Figure 
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5.6 (a), and the twinned spot )121( 2MT was used to create Figure 5.6 (b). The twins are 

edge-on, with the twin density highest at the martensitic interface.  The twins appearing 

bright in (a) appear dark in (b), and visa versa.  

 

Figure 5.6 Complementary Dark Field Images of Location1 Viewed Along 
[210]2M Zone Axis So That the Twins Are Viewed Edge On. The Aperture Was 
Displaced to Select the 21)1( 2M

 
Spot for the Image on the Left, and the Twinned 

Spot )121( 2MT for the Image on the Right. The Density of Twins Is Highest at the 

Martensitic Interface. 

 

Figure 5.7(a)  shows a bright-field image of Location 1 in a two-beam condition 

with g = 2022M/400T near the zone axis 2M]1[10 / T]1[00 . Away from the martensite 

interface, three levels of fringe contrast are distinguishable and occur in a regular 

sequence. Figure 5.7(b) shows the fringe contrast at higher magnification and Figure 

5.7(c) is a schematic emphasizing the three types of contrast, which are two fringe 

patterns and a region without contrast. 

Close to the martensite interface, the fringe contrast becomes undistinguishable. 

The twins are much finer and denser close to the interface, as seen in Figure 5.6. In the 

tilted view of Figure 5.7, many twin boundaries overlap, which confuses the contrast.  



Figure 5.7 (a) Bright Field Image of Location 1 in a Two
= (202)2M/(400)T Near the Zone Axis 

Away from the Martensite Interface, Three Levels of Fringe Contrast 
Distinguishable and Occur in a Regular Sequence. (b) Fringe Contrast at Higher 

Magnification. (c) Schematic Emphasizing the Three Types of Contrast.

 

(a) Bright Field Image of Location 1 in a Two-Beam Condition with 
Near the Zone Axis 2M]1[10 / T]1[00 (Diffraction Pattern 

rom the Martensite Interface, Three Levels of Fringe Contrast 
stinguishable and Occur in a Regular Sequence. (b) Fringe Contrast at Higher 

(c) Schematic Emphasizing the Three Types of Contrast.
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Beam Condition with g 
(Diffraction Pattern Inserted).  

rom the Martensite Interface, Three Levels of Fringe Contrast Are 
stinguishable and Occur in a Regular Sequence. (b) Fringe Contrast at Higher 

(c) Schematic Emphasizing the Three Types of Contrast. 
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Figure 5.8 is a bright-field image of the same location as Figure 5.7(a), in a two-

beam condition with g = 0402M/040T near the zone axis 2M]1[10 / T]1[00 . No fringe 

contrast is seen in this image.  

 

Figure 5.8 Bright-Field Image of Location 1 in a Two-Beam Condition with g = 
(040)2M/(040)T Near the Zone Axis 2M]1[10 / T]1[00 .  No Fringe Contrast Is Seen.  

 



67 
 

 

CHAPTER 6: DISCUSSION 

6.1 2M Twin Structure 

The relationship between 2M and 2MT is determined to be the mirror operation 

parallel to the (001)2M plane. Thus, the axes of the 2MT cell form a left-handed set. The 

relationship between the 2M cell and its twin, 2MT, is shown schematically in Figure 6.1, 

where the unit cells are viewed along the [010]2M/[010]2MT axis.  

 

Figure 6.1 Relationship Between 2M and 2MT. The Viewing Direction Is Parallel 
to the [010]2M/[010]2MT. 
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The twin relation can be written as 

P2M2MT )()( hklhkl =                                                     (27) 
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P is the transformation matrix used to turn the 2M axis system into the 2MT axis 

system. The determinant of P is -1, indicating that the right-handed axis system in 2M 

converts to a left-handed axis system in 2MT. 

The twinning shear is described as s = b/h. The variables b and h are described in 

Figure 6.2, where the 2M and 2MT cells have been overlayed in the [010]2M/2MT 

direction. By geometry,  

ββ sin
2

)90cos(
2

aa
h =−=                                                (30) 

ββ cos)90sin( aab −=−=                                               (31) 

ββ cot2)90tan(2 −=−=
h

b
                                               (32) 

Using the lattice parameters presented in Table 5.1, h = 2.13Å, b = 0.72Å, and s = 

0.338.  
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Figure 6.2 2M and 2MT Unit Cells Overlayed to Calculate Twinning Shear. 
Twinning Shear Is Defined as b/h and Is Found to be Approximately 1/3. 

 

The diffraction pattern in the inlay of Figure 5.5, taken along the [010]2M  zone 

axis, is reproduced in Figure 6.3 (a). The 2M260  reflection is coincident with the 6002MT 

reflection. This is consistent with b = 1/6[100] and h = d002. From a2M = c2M, it follows 

that:  

ah
12
35

=                                                                     (33) 
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s                                                              (34) 

 Figure 6.3(b) demonstrates the relationship between the 2M and 2MT cells and 

the coincidence of the 2M260 and 6002MT  planes (dashed green lines).  The 2M/2MT)1(60

planes are coincident for both lattices (shown as blue dash-dotted lines).  

 

Figure 6.3 (a) SADP Showing the Coincidence of 6002MT and M2260 .  
(b) Schematic Demonstrating the Coincidence of 6002MT and M2260  (Green Dashed 
Lines), and MT2M/2)1(60 (Blue Dashed Lines). This Is Consistent with b = 1/6[100] 

and h = d002. 

 

6.2 Martensite Interfaces 

Two types of martensite variant boundaries are seen in Figure 5.4. The habit plane 

of the twins within each variant is (001)2M/(101)T. The martensite variants themselves are 

related to the habit planes ( 211 )2M/(022)T. These two types of plane are demonstrated 

schematically in Figure 6.4 for the tetragonal unit cell. In this figure, the (101)T/(001)2M 
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twin plane is shown in blue and the (022)T/( 211 )2M habit plane of the martensite variants 

is shown in red. Figure 6.4(a) shows the tetragonal unit cell in a random orientation, and 

(b) shows the unit cell viewed along the 2MT ]210/[]111[  direction.  The planes make an 

angle of approximately 65.37º with one another.  

 

Figure 6.4 (a) Tetragonal Unit Cell Showing the  (101)T/(001)2M Twin Plane in 
Red and (022)T/ 2M21)1( Habit Plane in Blue. (b) Tetragonal Unit Cell Viewed in the 

T]1[11 /[210]2M Direction Showing the (101)T/(001)2M Twin Plane in Red and (002)T/

2M21)1( Habit Plane in Blue. 

 

Figure 5.5 shows the twins within each variant again with the habit plane 

(001)2M/(101)T; however, the microscopic habit plane for the martensite variants is  

(100)2M / T110 )( . The steps and associated planes are demonstrated schematically in Figure 

6.5. 



Figure 6.5 Schematic Demonstration of Steps in Rough Interface of Location 2 in 
Figure 5.5. Internal Twins Have Habit Plane (001

 

These planes are demonstrated 

plane is shown in blue and the (101

tetragonal unit cell in a random direction, and (b) views the cell in the [010]

direction. The planes make an angle of approximately 80.42º with one another. 

 

 

 

Schematic Demonstration of Steps in Rough Interface of Location 2 in 
rnal Twins Have Habit Plane (001)2M/(101)T with (1

Steps.  

se planes are demonstrated in Figure 6.6, where the T)110( /(1

and the (101)T/(001)2M twin plane in red. Figure 6.6

tetragonal unit cell in a random direction, and (b) views the cell in the [010]

direction. The planes make an angle of approximately 80.42º with one another. 
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Schematic Demonstration of Steps in Rough Interface of Location 2 in 
with (100)2M/( 110 )T 

/(100)2M habit 

win plane in red. Figure 6.6 (a) views the 

tetragonal unit cell in a random direction, and (b) views the cell in the [010]T/[010]2M 

direction. The planes make an angle of approximately 80.42º with one another.  
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Figure 6.6 (a) Tetragonal Unit Cell Showing the T)1(10 / (100)2M Habit Plane in 
Blue and (101)T/(001)2M Twin Plane in Red. (b) Tetragonal Unit Cell Viewed in the 

[010]T/[010]2M Direction Showing the T)1(10 / (001)2M Habit Plane in Blue and 
(101)T/(001)2M Twin Plane in Red. 

 

The interface at location 1 in Figure 5.3 was seen to be slightly undulated at 

higher magnifications. The martensite variant on the left has varying twin densities, 

which will control the exact position of the boundary.  The variant on the right has 

constant densities of twins. These twins do not coarsen probably because they are 

sandwiched between two martensite variants. If they were to coarsen, the elastic energy 

at the jagged interface would be high.  

6.3 Twin Branching 

The phenomenological theory of martensite [35] predicts a periodic twinning of 

the non-modulated tetragonal martensite lattice, expressed through the fraction of the 

twin lamella widths d1 and d2 : d1/d2 = (a2M-aA)/(aA-c2M). The subscript ‘A’ is used to 

denote the lattice parameters of the austenite phase. The lattice parameters obtained with 
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XRD (Table 5.2) give a twinning periodicity of d1/d2 = 0.337. When considering the 14M 

structure with a 2)25( stacking sequence, the ideal value of d1/d2 = 2/5 = 0.4. The ideal 

ratio for the 14M structure is close to the ratio seen for the non-modulated structure. This 

suggests that the 14M modulated structure and a microscopic 2M structure may be 

related [56]. 

One of the dark-field images from Figure 5.6 (a) is reproduced in Figure 6.7. A 

straight line was drawn close to the martensite boundary crossing nineteen twin 

boundaries. A distance away from the boundary, a line of equal length was drawn that 

only crosses eleven twin boundaries. Further away, the same line crosses eight, and even 

further away crosses only four twin boundaries. The number fraction of twins is 

significantly higher at the martensite interface, which is consistent with the branching of 

twins described by Kohn and Müller [29]. The same procedure can be done with the 

dark-field image from the corresponding twin, which gives the same results.  
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Figure 6.7 Dark Field Image Showing the Branching of Twins Near a Martensite 
Boundary. Close to the Boundary a Line Is Drawn That Crosses 20 Twins. Further 

Away the Same Line Is Drawn That Now Crosses Only 12 Twins, then 9, then 5. 
This Is Consistent with Twin Branching. 

 

This branching is shown schematically in Figure 6.8, where some thick twins 

continue through the martensite variant, but many fine twins terminate close to the 

martensitic variant boundary.  The location circled will be discussed in detail in Section 

6.5.  
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Figure 6.8 Schematic Illustration of Twin Branching. Some Thick Twins 
Continue Through the Martensite Variant, but Many Fine Twins Terminate Close 

to the Martensitic Variant Boundary. 

 

Branching of the non-modulated structure may not always be limited to the 

martensitic boundaries, but could occur across the whole of the martensitic plate due to 

geometrical constraints such as other martensitic plates, compositional influences, etc.  If 

the non-modulated unit cell branched into full martensitic plates of nano-sized twins with 

d1/d2=0.4, the 14M structure could be built [56].  The key requirement for this branching 

is a low twin boundary energy [29].  The twin boundary energy obtained from the 

transformation enthalpy from 14M to 2M is 0.5 meV/Å2 [57], fulfilling this key 

requirement. 

6.4 Formation of 14M Structure 

The 14M unit cell can be built from building blocks of non-modulated unit cells 

stacked in a specific sequence to give the 25  stacking. This is envisaged using the non-



modulated monoclinic cell in 

outlined in red and the twinning planes ar

Figure 6.9 The 14M 
Cells An Example Monoclinic Cell 

Twinning Planes Are Shown 

 

Using the lattice parameters for the monoclinic cell calculated 

the lattice parameters of the 14M unit cell composed of nanotwins of non

 

modulated monoclinic cell in Figure 6.9.  An example monoclinic cell and its twin are

and the twinning planes are shown by dashed lines.  

 

The 14M Unit Cell Built from Building Blocks of Non-
Example Monoclinic Cell and Its Twin Are Outlined in 

Twinning Planes Are Shown by Dashed Lines. 

Using the lattice parameters for the monoclinic cell calculated from

arameters of the 14M unit cell composed of nanotwins of non

77 
 

and its twin are 

-Modulated Unit 
in Red and the 

from XRD results, 

arameters of the 14M unit cell composed of nanotwins of non-modulated unit 
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cells can be calculated. The results are shown in Table 6.1, along with lattice parameters 

for the 14M structure obtained from XRD for an alloy with composition 

Ni54.3Mn20.5Ga25.2 [38] .  

Table 6.1 Lattice Parameters for the 14M Structure (Monoclinic Cell) 
Calculated by Building the 14M Structure with Periodic Stacking of the 2M and the 
Lattice Parameters Seen Experimentally. 

 a (nm) b (nm) c (nm) β (°) 

Calculated 
Ni46.75Mn34Ga19.25 

0.431 0.556 2.984 94.14 

Experimental [38] 

Ni54.3Mn20.5Ga25.2 

0.426 0.543 2.954 94.3 

 

The calculated values are in close agreement with those seen experimentally. The 

difference may be due to difference in composition. This suggests that the 14M structure 

can be created by branching of the non-modulated structure.  

The same procedure can be used to build the 10M structure with a 2)23( stacking 

sequence. The calculated lattice parameters when the 10M cell is built out of non-

modulated cells along with the lattice parameters seen experimentally are shown in Table 

6.2.  

Table 6.2 Lattice Parameters for the 10M Structure (Monoclinic Cell) 
Calculated by Building the 10M Structure with Periodic Stacking of the 2M and the 
Lattice Parameters Seen Experimentally. 

 a (nm) b (nm) c (nm) β (°) 

Calculated 

Ni46.75Mn34Ga19.25 

0.431 0.556 2.128 91.93 

Experimental [38] 

Ni51.5Mn23.6Ga24.9 

0.424 0.566 2.05 90.5 
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The calculated values are not in as good of agreement to the experimental values 

for the 10M structure as they are for the 14M structure. The β angle predicted for the 

10M cell is 1.43° larger than found experimentally. This does not rule out the possibility 

of the non-modulated structure branching to form the 10M structure; however, it suggests 

that other factors may play a role. The d1/d2 ratio for the ideal 2)23( stacking ratio is 2/3 = 

0.667. This is significantly larger than the ratio of 0.337 found for the non-modulated 

twins.  The non-modulated structure could not simply branch into nano-twins but would 

have to change its twinning ratio to create the 10M cell.  

Upon cooling and with increasing stress the austenite phase changes to a 10M 

then 14M and then non-modulated phase or to 14M and then non-modulated or directly 

from the austenite to the non-modulated phase [44]. This transformation sequence 

suggests that the 14M structure is more closely related to the non-modulated structure 

than the 10M structure, since a direct transformation from 10M to 2M has not been 

observed. 

There is currently debate about the nature of the stacking of atomic planes in the 

10M unit cell. It is possible that a periodical shuffling of the basal planes occurs, the 

displacement of each plane from its original position is given by a function containing 

harmonic terms [38]. If this is the case, then the non-modulated structure could not 

simply branch to form the 10M structure. Instead, a period shuffling of atoms would be 

necessary.   
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6.5 Fringe Contrast 

The α fringe contrast seen in Figure 5.7 is typical of stacking fault contrast (see 

Section 4.2.2 Stacking Faults). Three types of fringe contrast indicate three types of 

stacking sequences in a regular, repeating pattern. Close to the interface it becomes 

difficult to distinguish the contrast. This is due to the branching of twins seen in Figure 

6.4. Close to the martensitic interface the twins are much finer and denser, such that twin 

boundaries overlap in the titled view of Figure 5.7.   

Figure 6.10 is a schematic of a tip of a twin containing twinning dislocations on 

each (001)2M/(101)T plane emphasizing the 2M structure, while Figure 6.11 emphasizes 

the tetragonal structure. The 2M unit cell is shown in blue, with a green twin 2MT 

growing into the matrix. The straight grey lines represent the 2M)1(60 / 2MT1(60 ) / T)750(  

planes, which are coincident for the 2M and 2MT twins (Figure 6.3 (b)). The Burgers 

vectors are 
6
1

[100]2M/
6
1

[100]2MT/ T]1[10
12
1

,
 which are represented with red dislocation 

symbols.  
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Figure 6.10 Schematic of a Twin Tip. 2M and 2MT Unit Cells Are Shown in Blue 
and Green.  Dislocations Are Drawn on Each (001)2M Plane with b = 1/6[100]2M = 

1/6[100]2MT.  
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Figure 6.11 Schematic of a Twin Tip. Tetragonal Unit Cell and Its Twin Are 
Shown in Blue and Green.  Dislocations Are Drawn on Each (101)T Plane with b = 

1/12 ]1[10 T.  
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The growth of a twin in non-modulated Ni-Mn-Ga can be described by the 

movement of dislocations with burgers vector b= 
6
1

[100]2M/
6
1

[100]2MT on each 

successive (001)2M/(001)2MT plane. The movement of such twinning dislocations will 

produce a change in the stacking sequence. At the first twinning dislocation, the matrix 

above the twin is displaced by a vector 
6
1

[100]2M/
6
1

[100]2MT relative to the matrix below 

the twin. Assuming the green twin is not in a diffraction condition, this will result in α 

fringe stacking-fault contrast.  Similarly, the second disconnection produces a 

displacement of 
6
1

[100]2M + 
6
1

[100]2M =
3
1

[100]2M. The third twining dislocation 

produces a displacement 
2
1

[100]2M/ 
2
1

 [100]2MT, which is a lattice vector and will 

therefore produce no stacking fault contrast.  

The operative reflection used to produce the fringe contrast in Figure 5.7 was g = 

2022M. Using a Burgers vector of 
6
1

[100]2M, a train of six twinning disconnections will 

result in 2πg•b values of 2π(1/3, 2/3, 1, 1/3, 2/3, 1), hence three levels of fringe contrast 

[58]. If the product g·b is zero or an integer, then the crystal containing the stacking fault 

will give contrast identical to that from a perfect crystal [53]. For this system, every third 

fringe results in an integral α value, resulting in no fringe contrast. No fringe contrast can 

be seen in the twins in Figure 5.8. In this case, g=040, so that, if   b=
6
1

[100]2M,, then  

g·b=0, resulting in no α fringe contrast. 
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The periodic pattern of fringe contrast, with every third dislocation resulting in no 

contrast, proves the perfect coincidence of the 2M260 /6002MT planes and the Burgers 

vector of exactly 
6
1

[100]2M/ 
6
1

[100]2MT. The repeating pattern of contrast requires that 

the Burgers vector have a rational relationship with the lattice parameter.  

The dislocations themselves cannot be seen in Figure 5.7. The rule of thumb for 

visibility of partial dislocations is that a partial dislocation is visible if g·b > 1/3. In this 

case, g = (202)2M,   b= 
6
1

[100]2M, so g·b = 1/3. These partial dislocations do not create 

enough distortion in the lattice to create dislocation contrast.  
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CHAPTER 7: OUTLOOK 

The research presented in this thesis was performed to characterize the twinning 

microstructure of the non-modulated martensite. Twinning dislocations present between 

twin interfaces were studied in terms of their Burgers vectors and step heights; however, 

there is still much work to be done to fully characterize the defect content of the material. 

The defects present at the martensite interfaces should be characterized in terms of 

disclinations. Such a study will be useful for understanding and modeling the motion of 

twins in hierarchically twinned structures. In-situ transmission electron microscopy 

experiments in which hierarchically twinned martensite is strained enough to cause twin-

boundary motion would also be useful in understanding the mechanisms of twin-

boundary motion.  

The non-modulated martensite structure was used to construct the modulated 

structures via branching into nano-twins. While this worked well for the 14M structure, 

the lattice parameters predicted for the 10M structure deviated significantly from those 

seen experimentally. Further research is necessary to understand the relationship between 

the 2M, 14M, and 10M structures and the transformation process from one structure to 

the other. 

The non-modulated structure is known to have significantly higher twinning 

stresses than the modulated structures [8, 45, 51]. In order to understand the reasons for 

higher twinning stresses, a study similar to this should be conducted on both modulated 
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phases that characterize the types of defects present and the stresses associated with twin-

boundary motion in each phase. This will allow more precise engineering control over the 

amount of strain a sample produces in a magnetic field.  
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