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Abstract

As RNNs find its applications in medical and automotive
fields, they became a part of critical systems, which tradition-
ally require thorough verification processes. In this work we
present how RNNs behaviors can be modeled as labeled tran-
sition systems and formally define a set of state and temporal
safety properties for such models. To verify those properties
we propose to use the Monte Carlo approach and evaluate its
effectiveness for different type of properties. We perform em-
pirical evaluation on two RNN models to determine to what
extent they satisfy the properties and how many the samples
of Monte Carlo required to provide accurate results. Our ex-
periments show that our models satisfy better state properties
than temporal properties. In addition, we show that Monte
Carlo sampling is quite effective for state property verifica-
tion, which commonly requires a small fraction of RNN’s
model to be explored. However, for verification of temporal
properties Monte Carlo needs to analyze up to 20% of com-
putations.

1 Introduction
Recurrent Neural Networks (RNNs) have become central
components in many ubiquitous applications such as vehi-
cle trajectory estimation (Kim et al. 2017), speech recogni-
tion (Graves, Mohamed, and Hinton 2013), machine trans-
lation and many others whose computations depend on a
sequence of previously processed inputs. With proven suc-
cesses in those areas, now RNNs become more prevalent in
critical applications such as prediction of medical care path-
ways (Choi et al. 2016), human action recognition (Jain et
al. 2016) and medical surgeries (Mayer et al. 2006). There-
fore, as important components of safety critical applications,
RNNs should undergo a verification process to ensure their
safe behavior.

Current research on verifying machine learning mod-
els mainly focuses on verification of Feed Forward Deep
Neural Networks (DNNs). For example, researches com-
monly use SMT solvers to verify some safety properties
of neural networks (Katz et al. 2017; Huang et al. 2017;
Pulina and Tacchella 2012; Kuper et al. 2018). However,
DNNs are inherently different from RNNs, an RNN is ar-
chitected to process a sequence of inputs so that the next
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element in the sequence is processed starting from the con-
figuration resulted from the processing the input’s predeces-
sor. Therefore, while valuable, previous work on DNN ver-
ification might not be fully applicable to RNNs, and does
not address all verification scenarios of RNNs. For instance,
ReluPlex (Katz et al. 2017) can formally verify safety char-
acteristics of neural networks using piecewise linearity prop-
erty of ReLu function for systems without loops. Moreover,
majority of properties defined in previous work were devel-
oped by academic researchers and not necessary practition-
ers, which might hinder their adaptation by industry practi-
tioners.

In this work we focus on defining and formalizing new
state and temporal properties that are specific to RNNs.
Moreover, we also formalize previously defined practical
properties that are applicable to NNs. In particular, we iden-
tify and formalize four state safety properties: high con-
fidence, decisiveness, robustness and coverage, which de-
scribe desirable RNN configurations. Also, we introduce and
formalize two temporal safety properties: long-term rela-
tionship and memorization, which characterize permissible
series of the RNN’s configurations as they appear after pro-
cessing each element in the input sequence.

We define the properties in the context of a model that de-
scribes how an RNN processes an input sequence. We chose
to model RNNs behaviors as a labeled state transitions sys-
tem where a state represents values of RNN’s inner nodes
after processing a single symbol and transitions are labeled
with input symbol values. Therefore, two states have a tran-
sition labeled with an input symbol if after processing this
input symbol the RNN’s inner node values described by the
first state change to the values of the second state. In this
preliminary work the proposed RNN model has no abstrac-
tion, hence it represents the concrete behavior of an RNN on
all possible input sequences.

To verify the proposed properties on RNN models, we use
Monte Carlo sampling since without abstraction the model
has a large state space and its full verification is equivalent to
exhaustive testing. Monte Carlo Sampling provides a more
widely applicable and scalable alternative to property veri-
fication of stochastic systems using numerical and symbolic
methods.
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Monte Carlo Model Checking techniques have been suc-
cessfully applied to analyze systems with large state spaces
in areas such as computer networking, security, and systems
biology (Grosu and Smolka 2005; Donaldson and Gilbert
2008; Nghiem et al. 2010).

In our paper, we would like to investigate whether Monte
Carlo sampling is a suitable approach to verifying RNN
models by investigating the percentage of state space sam-
pling required to achieve the ground truth results. In our ex-
periments we compute the ground truth by exhaustively ex-
ploring the entire state space of an RNN model.

We perform experiments on two large RNN systems, that
we model as labeled transition systems. Next, we determine
ground truth for six properties and evaluate applicability of
Monte Carlo Model Checking. We use the evaluation results
to answer the following research questions:

1. Do the proposed properties hold for our RNN models?

2. How efficient is Monte Carlo Model Checking for those
models?

3. Does the Monte Carlo Model Checking’s efficiency de-
pend on the type of property?

The results show that not all states in RNN models have
state properties, which suggest the weakness of our RNNs.
Moreover, long term temporal properties have even lower
satisfiability rate. This implies that the future evaluation
should be performed on more complex RNNs. Our findings
also indicate that Monte Carlo Model Checking can be quite
efficient for verifying state properties, however, it requires
more samples to converge to the ground truth for temporal
properties. In addition to answering to the above research
questions, our work makes the following contributions:

• It formally defines sate and temporal safety properties of
RNNs.

• It implements the RNN models for two RNN systems.

• It applies Monte Carlo Model Checking to verify proper-
ties of the RNN models.

The rest of the paper is organized as follows. In Section 2,
we describe the representation of an RNN as a labeled tran-
sition system. In Section 3, we describe the details of the
proposed formalization of state and temporal safety proper-
ties. In section 4, we briefly introduce Monte Carlo Model
Checking for the verification of the proposed representation.
In Section 5, the experimental results are provided. Section 6
describes the related work, and we conclude the paper by
outlining plans for future work.

2 Modeling Behavior of Recurrent Neural

Networks

The first step in verification of a system process is to de-
cide how to model the system’s behavior in a way that is
suitable to verify its properties. Commonly behavior of sys-
tem is modeled as a state transition system. In this work we
chose to model RNN behavior as a Labeled Transition Sys-
tem (LTS) (Tretmans 1996). An LTS consists of states and
labeled transitions among these states, where labels identify
some action performed on the system. The LTS formalism is

used for modeling the behavior of processes, and it serves as
a semantic model for various formal specification languages.
Below we present the definition of LTS and then describe
how we model an RNN behavior with this transition system.

A Labeled Transition System (Tretmans 1996) is a four-
tuple (S,L, T, S0) where:

1. S is a countable, non-empty set of states

2. L is countable set of labels

3. T ⊆ S × (L ∪ {τ}) × S is a transition relation, where
L represents observable interactions, and a special label
τ /∈ L used to model internal transitions.

4. S0 ⊆ S is the set of initial states.

We need to use LTS to model an RNN, which accepts in-
puts (x1, . . . , xt), and has hidden states (hl

1, . . . , h
l
t), and

produces outputs (y1, . . . , yt), where xt ∈ ✶σ is one-hot en-
coded vector of a character from the training set alphabet Σ
of size σ = |Σ|, yt ∈ ❘σ , hl

t ∈ ❘m, where l is the indicator
of a hidden layer, and m is the dimension of a hidden vector.
In our presentation we use n to denote the input sequence
length, and R to describe the number of layers.

Figure 1: An example of the intuition behind state represen-
tation of an RNN with three layers (a) and corresponding
RNN representation as a labeled state transitions system (b).

Similar to previous work (Du et al. 2018), an LTS state
represents a configuration of an RNN. We use the tuple
(H,Y ) to describe such configuration, where H is the
RNN’s hidden state vector and Y is the output. For ex-
ample (H1, Y1) is the state where H1 = (hl

1, 0̄n−1)l∈R

and Y1 = (y1, 0̄n−1) after processing a single symbol
X1 = (x1, 0̄n−1). We use 0̄n−1notation to represent a zero
value row vector of size n − 1. Then, on the next input
character X2 = (x1, x2, 0̄n−2), the model transitions to
another state (H2, Y2) with H2 = (hl

1, h
l
2, 0̄n−2)l∈R and

Y2 = (y1, y2, 0̄n−2). Fig.1 shows how an LTS models an
RNN behavior on the input sequence (X1, X2, X3).

Formally, an LTS for an RNN can be defined as following:

Definition 2.1. RNN behavioral model M = (S,L, T, S0),
where



• S = {(H,Y )i}i∈N is a set of states that defined as tu-
ple of hidden state and the corresponding output value
(H,Y )i, where N is the number of states.

• L = {Xi}i∈N is a finite set of labels that is based on the
input vectors Xi

• T ⊆ S × X × S is a transition, i.e. every transition has
an input vector Xi on it. Transitions in RNN are orga-
nized through the hidden vectors, so that output yt at time
step t becomes a function of all input vectors up to t,
{x1, . . . , xt}. The recurrence (hl

t−1, h
l−1
t ) → hl

t is de-
fined by the RNN system.

• S0 = (H0, Y0) is the initial state H0 = ❖m×n×R, and
Y0 = ❖σ×n, where ❖σ×n is zero matrix of size σ by n.

In such transition system we can define predicate func-
tions that can reason about H and Y state components.
Moreover, we can define a trace tr, which is a sequence
of states (S0, S1, S2, . . . , Sn) where (Si, Si+1) ∈ T, ∀i ∈
(0, . . . , n− 1).

3 Properties of Recurrent Neural Networks

In formal verification, properties of a model are defined as
formulas over atomic propositions, which are state predicate
functions. Therefore, before we formalize state and temporal
properties of RNNs, we need to define state predicates. To
express desired properties below, we define four state predi-
cates: Hi, Lo, Ro, and Cov.

In addition to Definition 2.1 we also use the following
notations:

• P̄ (.) is an estimate of the confidence with which an RNN
performs prediction of Y . Often the softmax function is
used for that purpose, however softmax is not a reliable
approximation of confidence (Gal 2016) since it tends to
provide more optimistic estimation.

• a, b, c, d, e, r,K, z ∈ R
+ are positive constants that are

used for predicate parametrization, i.e., thresholds.

Definition 3.1. State predicates are the following functions
over a state S = (H,Y )

1. Hi(a) - the high confidence state predicate

Hi(a) : P̄ (Y ) ≥ a

2. Lo(b) - the low confidence state predicate

Lo(b) : P̄ (Y ) ≤ b

3. Ro(r,K) - the robustness state predicate

Ro(r,K) : ‖Yj − Yi‖ ≤ K‖r‖,
where ∀Si, transitions: (S,Xi, Si) ∈ T , (S,Xj , Sj) ∈ T ,
where Xj = Xi + r, and r > 0 - number of changed
characters, refer to Fig.2

4. Cov(c, z) - the coverage state predicate

Cov(c, z) :
‖H > z‖
dim(H)

≥ c,

where z is a threshold for a neuron to be considered acti-
vated (global for the whole network)

To define properties over a transition system, we use Lin-
ear Temporal Logic(LTL) (Pnueli 1981), which formalized
reasoning about behaviors in finite-state systems. In a finite-
state system LTL describes a desired behavior of a set of sin-
gle computations of the tree. LTL is a powerful formalism,
however, in our work we use only its fragment for which we
provide a brief explanation.

LTL formulas are of the form Af , where Af is a path
quantifier meaning that all computation paths from a given
state have property f , and f is a LTL path formula that
contains only atomic propositions and formally defined as
(Clarke Jr et al. 2018):

1. If p ∈ AP , then p is an LTL path formula.

2. If f is an LTL path formula, then ¬f,Xf,F f , and Gf
are LTL path formulas.

3. If f and g are LTL path formulas, then f ∧g and f ∨g are
LTL path formulas.

Here X is read as “next time”, F is read as “eventually”,
G is read as “always”.

Now using these four predicates and the above logic as
building blocks, we can define both state safety properties
and temporal safety properties, where the former are de-
fined on a state and the latter defined over traces, i.e., the se-
quences of state in an RNN behavioral model. Safety proper-
ties assert that observed behavior of the system always stays
within some allowed set of finite behaviors, in which noth-
ing bad happens. Intuitively, a property φ is a safety property
if every violation of φ occurs after a finite execution of the
system. In this paper we not only define them, but also pro-
vide explanations why we were motivated to include them
in this work.

In all the properties below it is implied that they are of the
form Af , and therefore A is omitted in all the properties
below.

3.1 Safety State Properties

High-Confidence With more reliance on machine learn-
ing technologies to partially automate complex decisions,
the demand for high confidence prediction has grown. For
example, in the case of an air traffic control application,
when an AI-powered video systems is confident, it can
better monitor runways, taxiways and gate areas compare
to humans. However, when this system is not confident it
transfers control to an air traffic operator. High confidence
model requires less involvement from an operator. To de-
scribe such desired behavior, we define the High Confidence
property that ensures that an RNN provides high-confidence
responses on any possible input sequence.

Definition 3.2. High Confidence property: We say that M
is high confidence if for the whole system the property Hi
holds for all the paths globally, therefore

GHi(a) (1)

is the formula for the verification of the whole system.



Decisiveness While the high-confidence property might
not be achievable for all RNN behaviors, in those cases an
RNN should provide low confidence decision to indicate the
need of a human intervention. Researchers discovered that
the softmax layer in a neural network tends to be “too confi-
dent” (Gal 2016; Guo et al. 2017). The estimated predicted
probabilities by a softmax layer cannot always be reliably
used as a confidence factor, and identifying biases towards
higher confidence is critical for safe behaviors of systems.

We define the Decisiveness property as an evaluation of a
given model to provide low-confidence output, when it can-
not provide high-confidence output.

Definition 3.3. Decisiveness property: We say that M is de-
cisive if for the whole system the property Lo holds when
Hi does not hold for all paths globally, therefore

G(¬Hi(a) ∧ Lo(b)) (2)

is the formula for the verification of the whole system.

Robustness Previous work shows that simple gradient
methods can be susceptible to small modifications of the in-
puts, which results in changes to the output class (Szegedy
et al. 2013). Even though the properties of neural networks
related to robustness are well studied in the literature, for
completeness we define them in our RNN behavioral model.

In order for an RNN to be robust to adversarial attacks, it
should have internal diverse representation of hidden layers,
i.e. the small perturbations in visible space r generates a ro-
bust perturbation in the latent space, and therefore produces
responses {Yj}j∈J that is close to non-perturbed response
Yi Fig.2.

Definition 3.4. Robustness property: We say that M is ro-
bust if for the whole system the property Ro(r,K) holds for
all paths globally, therefore

GRo(r,K) (3)

is the formula for the verification of the whole system.

Figure 2: An example of a robust transition for the predicate
Ro(r,K).

Coverage Neuron coverage property is commonly used to
test neural networks (Pei et al. 2017; Tian et al. 2018), but
it has not been yet formally defined for verification. The
coverage property is a safety property since it validates that
the system response to all possible input by activating all
the neurons. High coverage with removal of “dead” neu-
rons is also a functional property, which is not discussed
in our work, related to compression of neural networks via

pruning, Huffman codes, representational precision reduc-
tion and quantization (Han, Mao, and Dally 2015).

We define the Coverage property as the evaluation of a
given model to activate high percentage of the neurons on
any possible input sequence.

Definition 3.5. Coverage property: We say that M pro-
vides adequate coverage if for the whole system the property
Cov(c, z) holds for all paths globally, therefore

GCov(c, z) (4)

is the formula for the verification of the whole system.

3.2 Temporal Safety Properties

While state safety properties can be used for any NNs, tem-
poral properties are specific for RNNs since they describe
a desirable pattern of states in the traces of an RNN behav-
ioral model. We express such patterns as regular expressions
over state predicates. Similar to the state safety properties
we first argue that there is a need for each temporal property
and then formally define it.

Long-term Relationship One of the critical properties of
RNN-based systems is the ability to capture a long-term re-
lationship in an input sequence. A good RNN should have
good predication not only on a trained length of sequences
but also on longer ones. Such property is important for an
RNN since for application such as a vehicle trajectory pre-
diction (Kim et al. 2017) an RNN-based architecture is used
to effectively predict the future coordinates of the surround-
ing vehicles, called occupancy grid. Estimation of the ve-
hicle’s occupancy grid is naturally a recurrent process, and
therefore the ability to leverage long-term past actions of the
surrounding vehicles is critical for vehicle safety.

We present a long-term relationship property as the eval-
uation of model’s confidence on longer sequences in com-
parison to confidence on sequences it was trained on. For
example, if model was trained on the sequences of length n,
it is evaluated on the sequences of length n + ρ(n), where
ρ(n) > 0 is a linear function of n.

Formally, a long-term property is evaluated on a trace
trn+ρ(n) = (S1, · · · , Sn, Sn+1, · · · , Sn+ρ(n)) = trntrρ(n)
to check whether this model provides u confident pre-
dictions on a trace trn, and on the adjacent trace trρ(n)
the model’s confidence did not decrease significantly, and
still provided v confident predictions, where |trn| = n,
|trρ(n)| = ρ(n).

Definition 3.6. Long-term Relationship property: We say
that M satisfies Long-term Relationship property if for the
whole system the property Hi(a) holds at least u times on a
trace trn, and property Hi(d) holds v times on the adjacent
trace trρ(n) for all paths globally, i.e. :

Gη(u, v, a, d)

η : ηn(u, a) ∧ ηρ(n)(v, b)

ηn(u,a) : (Hi(a)(¬Hi(a))∗)u

ηρ(n)(v, d) : (Hi(d)(¬Hi(d))∗)v

(5)

where d is a constant threshold for property Hi on a longer
sequence, such that d ≤ a.



Memorization Memorization property of RNN-based
systems was presented in literature mostly in relation to data
privacy issues. In particular, with RNN models there is a risk
that rare or unique training-data sequences are unintention-
ally memorized when such a model is trained on sensitive
user data (Carlini et al. 2018).

Several methods to test the memorization property were
investigated such as memory exposure measurement (Car-
lini et al. 2018) and inspection of gradient magnitudes in
long-term context (Madsen 2019).

In terms of our representation, we define memorization
property as situations when a model gives exact answer with
the absolute confidence to some subsequence of states in a
trace.

Definition 3.7. Memorization property: We say that M sat-
isfies Memorization property if for the whole system the
property Hi holds on all the paths globally with a very high
threshold e = 1−ǫ , for a small value of ǫ > 0. This property
can be summarized as the following regular expression:

Gµ(q, e)

µ : ((¬Hi(e))∗Hi(e)(¬Hi(e))∗)q
(6)

where q < n is the number of memorization cases on a given
trace path.

However, memorization property is not desirable, so we
are checking an RNN systems for the lack of memorization
G¬µ(q, e).

We now present a verification method that is used for eval-
uating these properties.

4 Verification of RNNs Behavioral Models

When a system under verification has a large state space,
verifying it with a traditional model checking techniques
becomes infeasible. Some techniques investigate various
heuristics to guide a model checker through a large state
state space (Henriques et al. 2012). Another promising ap-
proach deals with state space explosion through random
sampling of the state space and then applying the proba-
bility theory to reason about the overall correctness of the
model (Grosu and Smolka 2005). In such randomized sam-
pling approach a model is executed repeatedly using dis-
crete event simulations (Monte Carlo experiments) without
the need for an explicit representation. The path formula
φ is checked on each trace generated by the simulation. A
checked trace provides a sample point of a Bernoulli ran-
dom variable, which is 1 if φ holds and 0 otherwise. The
model is simulated finitely many times and if a sampling
finds a violation of a property then it is reported, otherwise a
probability of the model to violate a property is calculated.

However, for this work we expect our systems have many
paths where properties are violated. Thus the traditional
Monte Carlo Model-Checking that stops on at the first prop-
erty violation trace would not give us complete description
of the model. In order to estimate how many the degree to
which properties hold for our models, we perform sampling
based on posteriori probability evaluations.

4.1 Posteriori Probability Evaluations

The idea of Monte Carlo sampling is to sample traces tr
from the representation model in i.i.d. fashion. We can
model Pr(φ) ∼ Bernoulli(ρ) using Bernoulli distribution
and apply the sampled trajectories to statistically estimate
the Bernoulli success parameter ρ.

As we mentioned before, comparing to the traditional
Monte Carlo-Model checking (Grosu and Smolka 2005), our
Monte Carlo simulation continues sampling even in a pres-
ence of a counter-example. Therefore, for the correct evalu-
ation of a success parameter ρ, we need to evaluate a poste-
riori probability on traces tr:

Pr (ρ|tr) = Pr(tr|ρ)Pr(ρ)
Pr(tr) =

ρ
∑

tri (1−ρ)n−

∑
triPr(ρ)

Pr(tr)

(7)

Out of total number of traces n sampled so far, we denote
k to be the number of traces tr that satisfy property φ. The
conjugate prior of a Bernoulli distribution Pr(ρ) is the Beta
distribution 1

Beta(α,β)ρ
α−1(1 − ρ)β−1, where α and β are

shape parameters of Beta distribution. Using
∑

tri = k, we
can re-write the a posteriori equation (7) in the following
form:

Pr (ρ|tr) = ρ
∑

tri+α−1(1−ρ)n−

∑
tri+β−1Pr(ρ)

Pr(tr)

∼ Beta(α+ k, β + n− k)
(8)

Since posteriori is distributed by Beta with new parame-
ters given in (8), the estimated probability of having a tra-
jectory satisfying property φ is given via estimated mean ρ̂
and variance ν̂ below as:

Pr(φ) = ρ̂±
√
ν̂ =

k+α
α+β+n

±
√

(α+k)(n−k+β)
(α+n+β)2(α+n+β+1)

(9)

For each property φ, we will use the convergence of the
corresponding estimated probability ρ̂(n) with the number
of samples n to decide when to stop sampling. From our
empirical evaluations we compute the value of the conver-
gence rate when ρ’s values are close to the ground truth. We
define ρ-convergence as a following:

W
∑

i=1

| ρ̂(i)− ρ̂(i− 1) | /W

where W is the sampling window over which we compute
the average between values of estimated probabilities.

5 Experiments

The goal of the evaluations is to answer the following re-
search questions:

1. Do the proposed properties hold for our RNN models?

2. How efficient is Monte Carlo sampling for those models?

3. Does the Monte Carlo sampling efficiency depend on
property types?

In this section we first describe the experiments set up,
their results and the answers for the above research ques-
tions.



Table 1: The ground truth values for the ratio of properties satisfaction and the number of Monte Carlo samples required to
achieve the same rate values.

Property Notation Params Ground Truth Samples ρ̂ convergence

M1 M2 M1 M2 M1 M2

High Confidence GHi(a) a = 0.7 29.2 20.6 5,371(0.9%) 3,055(0.5%) 8.2e-05 1.1e-04

Decisiveness G(¬Hi(a) ∧ Lo(b)) b = 0.2 22.8 26.0 5,343(0.9%) 3,833(0.6%) 5.8e-05 1.1e-04

Robustness GRo(r,K) r = 2 39.0 40.2 2,409(0.5%) 4,655(0.8%) 2.1e-04 1.0e-04

Coverage GCov(c, z) c = 0.5 90.2 95.7 1,530(0.2%) 1,564(0.3%) 1.0e-04 5.1e-05

Long-term Relation Gη(u, v, a, d) d = 0.65 9.7 5.0 5,459(0.9%) 45,487(7.8%) 2.5e-05 1.9e-06

No memorization G¬µ(q, e) e = 0.99 98.1 99.6 104,467(18.0%) 8,577(1.5%) 1.8e-07 4.2e-07

5.1 Experiment Setup

We use a character-level language model as an interpretable
test for analyzing the performance of Monte Carlo Model
Checking for verifying the safety properties of RNNs.

RNN Systems Without the loss of generality we consider
RNN with Long-Short Term Memory (LSTM) cell (Hochre-
iter and Schmidhuber 1997). In the experiment, we use the
next character prediction model character-RNN. When ap-
plied to the character sequence, a character-RNN predict a
next character in this sequence.

We evaluate performance of two RNN systems M1 and
M2, as well as their behavioral models representations.
These systems have different numbers of hidden layers and
different dimensions of hidden spaces. Table. 2 presents the
summaries of the models’ key parameters. We use two mod-
els in order to evaluate properties across RNNs with dif-
ferent number of parameters and different loss values. In
particular M1 was trained to get higher accuracy, whereas
the M2’s large number of parameters suggests its potentially
learning capacity.

Table 2: LSTMs and their Abstraction Models
M1 M2

Hidden Layers 1 4

Hidden State Dimension, dim(hl
t) 80 60

Total Parameters 43,884 115,964

Training Loss 1.70 1.84
Validation Loss 1.45 1.58

Abstraction States 580,741 580,741

Data and Verification Setup These next character RNNs
are trained on Nietzsche dataset with the alphabet of size
σ = |Σ| = 44, number of training examples N = 580, 741,
and sequence length n = 50. In order to evaluate the proper-
ties of the behavioral models for both systems M1 and M2,
we first computed a ground truth. Next, we verify these mod-
els with our variation of Monte Carlo Model-Checking.

The ground truth values are computed by exhaustively
evaluating all the properties on all of the states possible us-
ing for both RNN systems M1 and M2. The Monte Carlo
simulations are performed by sampling test examples, and

by running the simulation till a property satisfaction rate is
within 0.1ρ100 % of the ground truth, where ρ100 is an av-
erage of the first hundred values of ρ which is defined in
(9). We use ρ100 since rare properties need to have a tighter
bound. The list of properties, notation and properties’ pa-
rameters is presented in the first three columns of Table 1.

5.2 Results and Discussions

We evaluate properties satisfaction on TLS using our vari-
ation of the Monte Carlo Model-Checking and compare
the results with the ground truth. Table 1 shows the re-
sults of properties verification with our Monte Carlo Model-
Checking.

The property satisfaction ratios for the ground truth val-
ues are shown in the fourth column of Table 1. For exam-
ple, M1 only has 29.2% of states that satisfy the high con-
fidence property. Property satisfaction ratios for High Con-
fidence, Decisiveness, and Robustness are in the range of
(20%, 40%). These values are low, but expected, since M1

and M2 are simple RNNs. In addition, both models demon-
strate a low satisfiability rate for the Long-term relationship
property.

Even though the model M1 has lower validation loss com-
paring to M2 (Table 2), from the properties point of view,
the benefit of M1 over M2 is ambivalent. Indeed, model M1

has only 90% of coverage, which is an indicator of a signif-
icant number of “dead” neurons. Moreover, the model M1

has almost 2% of memorization, which is inadequate, i.e.,
too high, to be considered safe.

Thus, we can answer our first research question that
property satisfaction rates for both models are not sufficient
to be considered safe, although M2 performed well on cover-
age and had low memorization. One of the reason that cover-
age and memorization properties are better supported by the
models is because there were accounted during the design of
those models.

It is also interesting to see that temporal safety properties
are significantly more computationally expensive compare
to state safety properties. Indeed, the “Samples” columns of
Table 1 shows the number of Monte Carlo samples needed to
reach the ground truth. For temporal properties, one would
need to sample up to 18% of all possible traces to get close
to the ground truth. High verification complexity of temporal



properties is intuitive due to temporal events like memoriza-
tion are applied to an entire trace and not to every state.

Thus, we can answer the second research questions that
comparing to the entire state space Monte Carlo sampling
is efficient for estimating properties of RNN models. The
answer for the third research question is that of the state
safety properties are more efficiently checked than the tem-
poral safety properties. The difference ranges from two to
four orders of magnitude required samples.

Note that Monte Carlo simulations are performed by sam-
pling test examples, and by running the simulation until a
property satisfaction rate is within 0.1ρ100 % of the ground
truth. However, computing ground truth is not always com-
putationally feasible. Monitoring the convergence of values
of ρ̂(n) is an alternative to the ground truth calculations.
From Table 1 we can see that state safety properties require
convergence of order e-05, and temporal safety properties
require convergence of order e-07. We can use those num-
bers to obtain sufficient amount of samples for evaluating
property satisfaction rates of RNNs models.

6 Related Work

There have been several papers addressing the challenge
of verification of the Recurrent Neural Networks. In recent
work (Musau and Johnson 2018) the authors presented ver-
ification of continuous time RNNs based on reachability
methods for nonlinear ordinary differential equation. An-
other work (Wang et al. 2018) abstracts an RNN as a Deter-
ministic Finite Automaton in order to check a single prop-
erty — the robustness of RNNs to adversarial attacks.

Another method for the robustness property analysis
of RNNs is Propagated output Quantified Robustness for
RNNs( POPQORN) (Ko et al. 2019). The robustness was
estimated by computing two linear bounds on the output
generated by a perturbed input sequence to the RNN. This
method can be applied to diverse RNN structures including
LSTMs and GRUs.

DeepStellar approach (Du et al. 2019) uses Markov Chain
Representation of states of RNN, which limits the scale of
the models due to state space explosion, probabilistic nature,
and focuses on coverage metrics and traces similarity.

Critical safety properties of Deep Neural Nets (DNN)
such as robustness and safety were introduced and discussed
in literature (Canziani, Paszke, and Culurciello 2016). How-
ever, unlike the work presented here, those properties were
neither formally defined nor verified on actual RNNs.

In the most recent work (Akintunde et al. 2019) the au-
thors present a theoretical framework for verification of
recurrent neural agent-environment systems (RNN-AES),
which is an extension of the neural agent-environment sys-
tems (MAS) defined on feed-forward neural networks. This
framework was practically applied in (Akintunde et al.
2018) for the analysis of reachability problem of the multi
agent systems that are critical in control consensus problems
and in reinforcement learning applications (Wooldridge
2009; Vengertsev et al. 2015; Brockman et al. 2016).

7 Conclusion and Future Work

In this paper, we defined the labeled state transition abstrac-
tion derived from a Recurrent Neural Network, we intro-
duce four new safety properties and formalized six critical
properties defined on the state space: high-confidence, deci-
siveness, coverage, robustness, long-term relationship, and
memorization.

We applied the Monte Carlo Model Checking approach
for verification of the proposed properties, and demonstrated
that temporal safety properties require longer Monte Carlo
verification compare to the state safety properties.

In future work, we will explore the approaches to improve
verification of the temporal safety properties to achieve bet-
ter verification performance. In order to achieve it we will
develop a more sophisticated abstraction of the RNN system
designed specifically for the safety temporal properties, and
evaluate it on more sophisticated RNN model.
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