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A ROBUST HYPERVISCOSITY FORMULATION FOR STABLE
RBF-FD DISCRETIZATIONS OF

ADVECTION-DIFFUSION-REACTION EQUATIONS ON
MANIFOLDS\ast 

VARUN SHANKAR\dagger , GRADY B. WRIGHT\ddagger , AND AKIL NARAYAN\S 

Abstract. We present a new hyperviscosity formulation for stabilizing radial basis function-finite
difference (RBF-FD) discretizations of advection-diffusion-reaction equations on manifolds \BbbM \subset \BbbR 3

of codimension 1. Our technique involves automatic addition of artificial hyperviscosity to damp
out spurious modes in the differentiation matrices corresponding to surface gradients, in the process
overcoming a technical limitation of a recently developed Euclidean formulation. Like the Euclidean
formulation, the manifold formulation relies on von Neumann stability analysis performed on auxil-
iary differential operators that mimic the spurious solution growth induced by RBF-FD differentiation
matrices. We demonstrate high-order convergence rates on problems involving surface advection and
surface advection-diffusion. Finally, we demonstrate the applicability of our formulation to advection-
diffusion-reaction equations on manifolds described purely as point clouds. Our surface discretiza-
tions use the recently developed RBF-least orthogonal interpolation method and, with the addition
of hyperviscosity, are now empirically high-order accurate, stable, and free of stagnation errors.

Key words. radial basis functions, high-order methods, manifolds, transport, advection-
diffusion
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1. Introduction. Radial basis functions (RBFs) are a powerful and flexible tool
for generating numerical methods for the solution of partial differential equations
(PDEs). RBF collocation methods are easily applied to solving PDEs on irregular
domains using scattered node layouts [5, 7, 44]. RBF-based methods also generalize
naturally to the solution of PDEs on manifolds \BbbM \subset \BbbR 3 using only the Euclidean
distance measure in the embedding space and Cartesian coordinates; see, for exam-
ple, [1, 12, 13, 14, 16, 20, 22, 30, 31, 38, 39, 40]. We focus exclusively on polynomially
augmented RBF-finite difference (RBF-FD) methods for their ability to harness the
best features of both polynomial and RBF approximation.

It is natural to consider two types of (linear) stability in the context of RBF-
FD methods: local stability and global stability. Local stability refers to stability
in the procedure of computing RBF-FD weights on each stencil. Global stability,
on the other hand, refers to eigenvalue characterizations of differentiation matrices
in RBF-FD discretizations of time-dependent PDEs: A globally stable discretization
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for hyperbolic or elliptic operators would imply the absence of eigenvalues with pos-
itive real parts. Historically, RBF-FD methods have been locally unstable due to
ill-conditioning in the RBF interpolation matrix [8, 42], manifesting as stagnation in
errors as the number of nodes is increased. Fortunately, work in the past two decades
has helped overcome this on Euclidean domains, either by changing the RBF ba-
sis [9, 15, 17, 18], by using rational approximations in the complex plane [19, 45], or
by augmenting RBFs with high-degree polynomials [4, 10, 11]. On manifolds the local
stability problem has been addressed by using tangent plane projections on meshes to
convert the problem to a Euclidean one [32, 33, 34]; least squares [28]; the closest-point
method, which extends the problem to ambient space [29]; or a careful restriction of
multivariate polynomials to the manifold [38].

In the context of global stability, the augmenting of polyharmonic spline (PHS)
RBFs with polynomials also appears to enhance global stability for elliptic opera-
tors on Euclidean domains [3], though this appears to depend on the node sets used
(see [35, 36] for evidence to the contrary of [3]). However, the global stability problems
in discretizations of hyperbolic operators are a topic of ongoing research. Unfortu-
nately, while the RBF-least orthogonal interpolation (LOI) method presented in [38]
appears to be both locally and globally stable for elliptic operators on manifolds, it
(like all RBF-FD methods) is not globally stable for hyperbolic operators. On the
sphere (and in Euclidean domains), the current state of the art is to add a stabiliz-
ing artificial hyperviscosity term of the form \gamma 1\Delta 

\gamma 2 , \gamma 1 \in \BbbR , \gamma 2 \in \BbbN , an approach
that was first used in the spectral methods literature under the title ``spectral (super)
viscosity"" [23, 24, 41]. This was introduced to the RBF-FD context in [16], with
empirical formulas for \gamma 1 and \gamma 2 provided in [12]. However, until recently, selecting
\gamma 1 varied across applications [10].

In recent work [36], the first author derived the first closed-form quasi-analytic
formula for \gamma 1 and adapted a fully analytic formula from [23, 24] for \gamma 2 on Euclidean
domains (applied to linear PDEs). These formulas generalize the spectral super-
viscosity formulas [23, 24, 41] to scattered nodes and RBF-FD discretizations and
eliminate the need for parameter hand-tuning. The key contribution of that work was
to use a 1D von Neumann analysis on a mathematical model of the spurious growth
modes of RBF-FD operators via so-called auxiliary derivatives and auxiliary PDEs.
This approach allowed the author to derive quasi-analytic hyperviscosity formulas for
stabilizing gradients and Laplacians on Euclidean domains of arbitrary dimension.

The goal of this article is to extend the Euclidean analysis of [36] to manifolds
\BbbM \subset \BbbR 3, thereby developing a robust quasi-analytic hyperviscosity formulation for
RBF-FD discretizations on manifolds. When combined with the recently developed
RBF-LOI method, the resulting numerical method is free of stagnation errors and is
empirically both locally and globally stable for the examples we have investigated.
To the best of our knowledge, this is the first globally stable polynomially augmented
RBF-FD method of projection type for hyperbolic problems on manifolds other than
the sphere. In addition, the use of the overlapped RBF-FD formulation [21, 35, 36, 38]
makes the assembly of differentiation matrices efficient, especially for higher-order
methods. Our hyperviscosity formulation is independent of RBF-LOI and can be used
straightforwardly with other RBF-FD methods based on the projection approach [38,
40], the closest-point approach [28, 29], or the orthogonal gradients method [30, 31].

The remainder of this paper is organized as follows. In the next section, we
review the RBF-LOI method on manifolds. In section 3, we review the Euclidean
hyperviscosity formulation from [36] and use it to motivate our new quasi-analytic
hyperviscosity formulation for manifolds; we verify that our formulation is valid for
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important classes of multistage and multistep time integration schemes. We validate
our methods on advection and advection-diffusion problems in section 4 by measuring
errors and convergence rates. In section 5, we present applications of our method to
solving nonlinear advection-diffusion-reaction equations on manifolds other than the
sphere and torus. We conclude with a summary of our results and a discussion of
future work in section 6.

2. RBF-LOI on surfaces. This section explains our spatial discretization
methodology, which is based upon three main ideas:

\bullet Section 2.1: Polynomially augmented RBF-FD is used as the fundamental
approximation [4, 36, 44].

\bullet Section 2.2: The choice of basis for the polynomials is made through the LOI
procedure to ensure polynomial unisolvency for nodes on manifolds [38].

\bullet Section 2.3: Overlapping is used to reduce the number of local stencil ap-
proximations that must be computed [21, 35, 36, 38].

We refer to our algorithm, which is the combination of these ingredients, as RBF-LOI
on surfaces.

2.1. RBF-FD on surfaces. Let X = \{ \bfitx k\} Nk=1 be a set of nodes on \BbbM \subset \BbbR 3.
Given a fixed k \in \{ 1, 2, . . . , N\} , we will describe RBF approximations to surface
differential operators over a local stencil of n << N nodes for each \bfitx k. To denote
the stencil nodes we use index sets as follows: For each \bfitx k, let Pk consist of \bfitx k and
its n  - 1 nearest neighbors (measured using the standard Euclidean distance), and
let the set \{ \scrI k

1 , . . . , \scrI k
n\} denote the indices into the global node set X of the nodes in

Pk, with \scrI k
1 = k. We refer to Pk as the local stencil for \bfitx k. The standard RBF-FD

approach constructs such a stencil for each k = 1, . . . , N , while the overlapped RBF-
FD approach can use the same stencil for more than one node in X, thus reducing
the total number of stencils and substantially reducing the computational cost of
constructing the RBF-FD differentiation matrices (see section 2.3). For simplicity in
the remainder of this discussion, we work with stencil k = 1; hence, all our quantities
will feature sub/superscripts ``1"" that can be replaced by ``k"" to apply to a general
stencil.

Suppose we wish to approximate the surface gradient \nabla \BbbM , defined in Cartesian
coordinates, as

\nabla \BbbM = (I  - \bfitn \bfitn T )\nabla =: [\scrG x,\scrG y,\scrG z]T ,(1)

where \bfitn is the unit outward normal to the surface and \nabla is the \BbbR 3 gradient. We will
focus our discussion on the surface gradient; the surface Laplacian is then computed
from the surface gradient in an iterated fashion as in [38, 40].

Focusing on the \scrG x component of \nabla \BbbM , the overlapped RBF-FD weights for every
node in the stencil P1 are computed using a family of polynomially augmented local
RBF interpolants on P1 parametrized by variables \bfitx and \bfity ,

s1(\bfitx ,\bfity ) =
n\sum 

j=1

(wx)j(\bfity )\| \bfitx  - \bfitx \scrI 1
j
\| m +

M\sum 
i=1

\lambda i(\bfity )h
1
i (\bfitx ),(2)

where all superscripts ``1"" refer to the stencil index, \| \cdot \| denotes the two norm, m

is odd and corresponds to the order of the PHS RBF, and
\bigl\{ 
h1i (\cdot )

\bigr\} M

i=1
is a basis for

trivariate polynomials of degree \ell . In 3D Euclidean domains, a standard choice for
the polynomial basis would be M monomials corresponding to the total-degree \ell of
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the trivariate polynomial subspace. On a (locally) algebraic manifold, this choice
typically results in a numerical lack of polynomial unisolvency on the local stencil.
The RBF-LOI augmentation described in section 2.2 mitigates this issue. Regardless,
the polynomial coefficients \lambda i(\bfity ) serve as Lagrange multipliers that enforce polynomial
reproduction on the RBF-FD weights; this is discussed further below.

Here \bfitx refers to the nodes used to compute the weights, while \bfity refers to the loca-
tion at which the weights (wx)j(\bfity ) are computed. In other words, each interpolant in
the family is given by varying \bfity , with the n RBF-FD weights for that interpolant given
by (wx)j(\bfity ).

1 In the standard RBF-FD method, \bfity \equiv \bfitx 1 (the stencil center), which
allows us to omit the \bfity parameter altogether; in the overlapped RBF-FD method, \bfity 
allows for computation of weights in some radius around the stencil center (see section
2.3).

The overlapped RBF-FD weights for the operators \scrG x,\scrG y, and \scrG z at all stencil
points \bfitx \scrI 1

j
(every point \bfity \in P1) are computed by imposing certain conditions on an

appropriate version of (2); e.g., for \scrG y we replace (wx) in (2) with (wy). Considering
the operator \scrG x without loss of generality, we impose the following two (sets of)
conditions on the interpolants (2):

s1(\bfitx \scrI 1
j
,\bfitx \scrI 1

i
) =

\Bigl( 
\scrG x\| \bfitx  - \bfitx \scrI 1

j
\| m

\Bigr) \bigm| \bigm| \bigm| 
\bfitx =\bfitx \scrI 1

i

, i = 1, . . . , n, j = 1, . . . , n,(3a)

n\sum 
j=1

(wx)1j (\bfitx \scrI 1
k
)h1i (\bfitx \scrI 1

j
) =

\bigl( 
\scrG xh1i (\bfitx )

\bigr) \bigm| \bigm| 
\bfitx =\bfitx \scrI 1

k

, k = 1, . . . , n, i = 1, . . . ,M.

(3b)

The first set of conditions enforces that s1(\bfitx ,\bfity ) interpolate the derivatives of the
PHS RBF at all the points in P1. The second set of conditions enforces polynomial
reproduction/exactness on all the overlapped RBF-FD weights using the polynomial
coefficients \lambda i(\bfity ). If a degree-\ell polynomial space is employed for h1(\bfitx ), then M =\bigl( 
\ell +d
d

\bigr) 
; we discuss choosing \ell further below. The (family of) interpolants (2) and the

two conditions (3a)--(3b) can be collected into the following block linear system:\biggl[ 
A1 H1

HT
1 O

\biggr] \biggl[ 
Gx

1

\Lambda 1

\biggr] 
=

\biggl[ 
BA1

BH1

\biggr] 
,(4)

where

(A1)ij = \| \bfitx \scrI 1
i
 - \bfitx \scrI 1

j
\| m, i, j = 1, . . . , n,(5)

(H1)ij = h1j (\bfitx \scrI 1
i
), i = 1, . . . , n, j = 1, . . . ,M,(6)

(BA1)ij = \scrG x\| \bfitx  - \bfitx \scrI 1
j
\| m

\bigm| \bigm| \bigm| 
\bfitx =\bfitx \scrI 1

i

, i, j = 1, . . . , n,(7)

(BH1
)ij = \scrG xh1j (\bfitx )

\bigm| \bigm| 
\bfitx =\bfitx \scrI 1

j

, i = 1, . . . ,M, j = 1, . . . , n,(8)

Oij = 0, i, j = 1, . . . ,M.(9)

Gx
1 is the n\times n local matrix of overlapped RBF-FD weights for the operator \scrG x, with

each column containing the RBF-FD weights for a point \bfity \in P1. AssumingH1 has full
column rank, the linear system (4) has a unique solution. The above procedure can be

1One could also (equivalently) describe the procedure for computing (wx)j(\bfity ) as interpolation
of some function at the nodes \bfitx , followed by evaluation at the nodes \bfity [40].
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repeated with the operators \scrG y and \scrG z to obtain the local differentiation matrices Gy
1

and Gz
1. By construction, the columns of Gx

1 and its counterparts populate the rows
of the global differentiation matrices Gx, Gy, and Gz; for an assembly algorithm, see
Algorithm 1 in [36]. As described above, the RBF-FD surface gradient weights are
computed for every point in the stencil. This allows one to compute RBF-FD weights
for the local surface Laplacian as

L1 =
\Bigl( 
Gx

1
\~Gx
1

\Bigr) T

+
\Bigl( 
Gy

1
\~Gy
1

\Bigr) T

+
\Bigl( 
Gz

1
\~Gz
1

\Bigr) T

,(10)

where \~Gx
1 ,

\~Gy
1, and

\~Gz
1 contain only the columns of Gx

1 , G
y
1, and G

z
1 corresponding to

the nodes at which weights are desired (some small neighborhood around the stencil
center) [38].

The local stencil size n, the polyharmonic spline order m, the polynomial degree
\ell , and the corresponding polynomial space dimension M are not specified above. Our
selection for these parameters is done mostly as in [36, 38]. We set m = 2\ell + 1 and
set \ell to \ell = \xi + \theta  - 1, where \theta is the order of the differential operator and \xi is the
desired order of approximation. Once \ell is computed, we use M =

\bigl( 
\ell +d
d

\bigr) 
, where d is

the dimension of the ambient space. Next, the stencil size is chosen to be n = 2M +1
for advection problems [38] and n = 2M + \lfloor log(2M)\rfloor for mixed PDEs [36], with d
the dimension of the ambient space (in this paper, d = 3).

The entire procedure above must be performed for each stencil; two practical
issues that arise in such a procedure are that (a) the columns of H1 may not be
linearly independent and result in lack of uniqueness for the system (4) and that (b)
computing the weights by looping over each stencil can be quite expensive even if only
performed once (despite its formal O(N) computational complexity). The next two
sections make modifications to the above procedure that mitigate these two issues.

2.2. The LOI-generated polynomial basis. Standard RBF-FD discretiza-
tions on manifolds can result in matrices H1 in (4) that are rank-deficient, making (4)
a noninvertible system. The cause of this issue is that if X lies on a manifold, then
local stencils often lie on an approximate algebraic variety, which destroys polynomial
unisolvency on that stencil.

The RBF-LOI procedure in [38] circumvents this issue by numerically constructing
a tailored polynomial space on each stencil in a way that ensures unisolvency. The
main idea is to start with the total polynomial space of degree \ell described in the
previous section and then perform adaptation on this space by identifying (numerical)
rank deficiencies. These numerical rank deficiencies are eliminated to within a tunable
tolerance \tau by removing or adding certain basis elements. We give precise choices
for \tau in section 5 detailing our numerical results and in Algorithm 1.

We refer the reader to [26, 38] for a more complete algorithm description. In
brief, the algorithm takes as input a local stencil (e.g., P1) and an a priori determined
orthonormal polynomial basis and outputs a polynomial space (along with new basis
functions) ensuring unisolvency. The main workhorse is the LOI algorithm [26], which
involves only standard numerical linear algebraic factorization operations and detects
rank deficiency via the parameter \tau . The input orthonormal basis is chosen as the
tensor-product Chebyshev polynomials on the Euclidean bounding box of stencil P1.
The LOI algorithm outputs the basis functions \{ h1j (\cdot )\} Mj=1, which are subsequently
used in (2) and (4). We have observed that use of this procedure eliminates solvability
issues for (4).
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2.3. Overlapped RBF-FD. Computing standard RBF-FD weights for each
stencil k, k = 1, . . . , N , can be very computationally expensive. An overlap strategy
pioneered in [35] substantially reduces this heavy computational cost. We briefly
review this strategy here. As with section 2.1, we specialize our discussion and our
notation to stencil k = 1 and note that generalizations can be performed by replacing
various sub/superscripts ``1"" with ``k"".

Let \delta \in (0, 1] denote the overlap parameter, and define the stencil retention dis-
tance as

\rho 1 = (1 - \delta ) max
j=1,...,n

\| \bfitx \scrI 1
1
 - \bfitx \scrI 1

j
\| ,(11)

where \| \cdot \| is the Euclidean norm in \BbbR 3. The parameter \rho 1 defines the radius of the
ball \BbbB 1 centered at the node \bfitx \scrI 1

1
. Let r1 denote the number of nodes in P1 that lie

in \BbbB 1 and R1 contain the set of global indices of these r1 nodes from P1. Then the
overlapped RBF-FD method involves computing RBF-FD weights for all the nodes
whose indices are in R1. Note that we use R1 to determine the columns of G1

x, G
1
y,

and G1
z to use to form \~Gx

1 ,
\~Gy
1, and

\~Gz
1 in (10).

The overlapped RBF-FD method makes one important modification to the stan-
dard RBF-FD method: To avoid computing multiple sets of RBF-FD weights for a
node \bfitx k, we also require that weights computed for some node \bfitx k never be recom-
puted by some other stencil Pi, i \not = k. Let N\delta denote the total number of stencils.
For a quasi-uniform node set X, N\delta = N

p , where p = max
\bigl( 
(1 - \delta )dn, 1

\bigr) 
and d is the

dimension (in the above discussion, d = 3). If \delta = 1, then this gives us N\delta = N ,
recovering the standard RBF-FD method. However, if \delta < 1, then N\delta \ll N , giving
a significant speedup over the standard RBF-FD method. For a more detailed com-
plexity analysis, see [35]. Given the polynomial degree \ell described in section 2.1, we
choose the overlap parameter \delta as follows:

\delta =

\left\{  
 
0.7 if \ell \leq 4,

0.5 if 4 < \ell \leq 6,

0.4 if \ell > 6.

(12)

We find that these values of \delta result in stable differentiation matrices while also
facilitating the rapid assembly of these matrices.

3. Hyperviscosity formulations on manifolds. This section describes our
new hyperviscosity formulation for manifolds. First, we review our Euclidean formu-
lation in section 3.1. Next, we present our new manifold hyperviscosity formulation
for the surface advection equation (section 3.2) and the surface advection-diffusion
equation (section 3.3). We then discuss computing growth exponents for our model of
spurious growth in section 3.5. Finally, we conclude by discussing both the selection
of \gamma 2 in the \gamma 1\Delta 

\gamma 2

\BbbM hyperviscosity term (section 3.6) and the numerical approximation
of the operator itself (section 3.7). Our methodology is summarized in Algorithm 1,
which uses the surface advection-diffusion equation as an example but also specifies
choices for pure surface advection. In Algorithm 1, an underlined quantity (such as C
or Ux) refers to an evaluation of the corresponding scalar field on a node set X, result-
ing in a vector (an array) of length N . In addition, Algorithm 1 uses the \circ notation
to denote the elementwise (or Hadamard) product between underlined quantities.

3.1. Review of Euclidean hyperviscosity formulations. We now review
the hyperviscosity formulation for Euclidean domains \Omega \in \BbbR d developed in [36]. Let
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Algorithm 1 Hyperviscosity-stabilized RBF-FD discretizations on manifolds

Given: X = \{ \bfitx j\} Nj=1, a set of nodes on the manifold.
Given: h, the average separation distance between nodes.
Given: \xi , the desired order of approximation of the numerical method.
Given: \nu , the surface diffusion coefficient.
Given: \bfitu , a velocity field tangent to the surface at every point.
Given: c0(\bfitx ) = c(\bfitx , 0), an initial condition.
Generate: C \approx c(\bfitx , t)| X , the numerical solution to \partial c

\partial t +\nabla \BbbM \cdot (c\bfitu ) = \nu \Delta \BbbM c.
1: Set the polynomial degree to \ell = \xi + 1 if \nu \not = 0, otherwise use \ell = \xi .
2: Set the PHS RBF exponent to m = 2\ell + 1.
3: Let M =

\bigl( 
\ell +d
d

\bigr) 
, where d is the spatial dimension.

4: Set the stencil size to n = 2M + \lfloor ln 2M\rfloor if \nu \not = 0, otherwise set n = 2M + 1.
5: Set the hyperviscosity exponent to \gamma 2 = \lfloor lnn\rfloor if solution is smooth, otherwise set
\gamma 2 = 2.

6: if \nu \not = 0 then
7: Set the LOI tolerance to \tau = 10 - 3 if \ell \leq 4, else set \tau = 10 - 4.
8: else
9: Set the LOI tolerance to \tau = 0.05 if \ell < 4, \tau = 10 - 3 if \ell \in [4, 5], or \tau = 10 - 4

if \ell > 5.
10: end if
11: Set the overlap parameter \delta according to (12).
12: Compute local differentiation matrices Gx

j , G
y
j , and G

z
j using (4) and its counter-

parts.
13: Compute local differentiation matrices Lj using (10).
14: Assemble local differentiation matrices into (sparse) global differentiation matrices

Gx, Gy, Gz, and L using Algorithm 1 from [36].
15: Compute (sparse) global differentiation matrix for hyperviscosity operator as H =

L\gamma 2 .
16: Estimate \tau x, \tau y, and \tau z, the real parts of eigenvalues with largest real parts for

Gx, Gy, and Gz, respectively, as described in section 3.5.
17: Estimate growth exponents qx, qy, and qz using (52) and its counterparts.
18: Estimate \eta (\bfitx ) using (34), then estimate \=\eta using (36).
19: Evaluate components of \bfitu (ux, uy, and uz) on X to obtain Ux, Uy, and Uz.
20: Compute hyperviscosity coefficient \gamma 1 using (35) if \nabla \BbbM \cdot \bfitu = 0, else use (48).
21: Solve

\partial C

\partial t
+Gx (Ux \circ C) +Gy (Uy \circ C) +Gz (Uz \circ C) = \nu LC + \gamma 1HC(13)

using a suitable time integration scheme (typically an IMEX method [2]).

c(x, t) be a scalar field satisfying the linear advection equation

\partial c

\partial t
+ u

\partial c

\partial x
= 0.(14)

Let c(x, t) = \^c(t)ei
\^kx, where \^k is the wavenumber. In addition, let cn+1 = c(tn+1, x)

and cn = c(tn, x). Using the traditional von Neumann analysis framework, we write
cn+1 = \varrho cn, where \varrho is an amplification/growth factor and | \varrho | \leq 1 is necessary for time
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stability. Consider a forward Euler2 discretization of (14), with the above relations
substituted in. This yields

\varrho  - 1

\bigtriangleup t
+ ui\^k = 0.(15)

This equation of course shows that | \varrho | > 1 for forward Euler, indicating the need for
stabilization or alternative time discretizations. However, the problem can actually
be more severe after spatial discretization. In the case of RBF-FD discretizations,
the numerical gradient typically introduces a spurious growth mode into the solution.
Consider the auxiliary derivative (an analytical analogue to the numerical gradient)
by its action on plane waves as

\~\partial c

\partial x
= (i\^k  - \tau x\^k

qx)ei
\^kx,

which assumes that u > 0. Here, \tau x \in \BbbR can be thought of as the real part of the
eigenvalue with the largest real part in the spectrum of the RBF-FD differentiation
matrix. We focus on the case where \tau x > 0 since \tau x \leq 0 does not correspond to spuri-
ous growth. The quantity qx is a growth exponent that can be estimated analytically
when \tau x is known. Consequently, in the fully discretized setting, (15) is transformed
into

\varrho  - 1

\bigtriangleup t
+ ui\^k = u\tau x\^k

qx .(16)

Our goal now is to eliminate the right-hand side of (16) to nullify the spurious growth
mode. This can be done by adding a constant times the power of the Laplacian
to the right-hand side of (14), i.e., \gamma 1\Delta 

\gamma 2 . Substituting plane waves into the mod-
ified equation and dividing out the exponential gives the following equation for the
amplification factor

\varrho  - 1

\bigtriangleup t
+ ui\^k = u\tau x\^k

qx + \gamma 1( - 1)\gamma 2\^k2\gamma 2 .(17)

From this, one obtains a formula for \gamma 1:

\gamma 1 = ( - 1)1 - \gamma 2u\tau x\^k
qx - 2\gamma 2 .

On a given node set of spacing h, the largest wavenumber that can be represented is
\^k = 2h - 1. This substitution yields a simple formula for \gamma 1:

\gamma 1 = ( - 1)1 - \gamma 2u\tau x2
qx - 2\gamma 2h2\gamma 2 - qx .

For Euclidean domains \Omega \subset \BbbR 3, the advection equation is given by

\partial c

\partial t
+ \bfitu \cdot \nabla c = 0,(18)

assuming that \nabla \cdot \bfitu = 0. We now have three differentiation matrices for the gradient
(Gx, Gy, and Gz respectively). Each of these has its own spurious growth factor \tau x, \tau y,

2The reader may find it odd that the discussion uses forward Euler, which is unstable on (14)
even in the absence of spurious growth modes. However, this was chosen purely for simplicity of
analysis and to demonstrate how one would cancel the spurious growth modes. In section 3.2, we
extend the analysis to more commonly used time integrators.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYPERVISCOSITY FOR STABLE TRANSPORT ON MANIFOLDS A2379

and \tau z respectively, and the corresponding growth exponents qx, qy, and qz. Taking
into account these generalizations, we obtain a new formula for \gamma 1:

\gamma 1 = ( - 1)1 - \gamma 23 - \gamma 2
\bigl( 
ux\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + uy\tau y2
qy - 2\gamma 2h2\gamma 2 - qy + uz\tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.

(19)

If one desires a precomputed/fixed formula for \gamma 1, it may be convenient to approximate
the above formula by

\gamma 1 \approx ( - 1)1 - \gamma 23 - \gamma 2\| \bfitu \| 
\bigl( 
\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + \tau y2
qy - 2\gamma 2h2\gamma 2 - qy + \tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.

(20)

The above formula assumes that the node spacing h is uniform along all the spatial
directions, but this restriction can easily be removed. For quasi-uniform nodes on
some domain \Omega \subset \BbbR d, we set h = N - 1/d, where N is the number of nodes used for
discretization. On the other hand, if the nodes are instead scattered, we set h to be
the smallest distance between all pairs of nodes. This formula is slightly more general
than the formula given in [36], but as outlined in that work, the exponents qx, qy, and
qz can be estimated analytically on a given node once the spurious eigenvalues have
been estimated. This analysis carries over to a wide class of explicit, implicit, and
implicit-explicit time integrators. Unfortunately, it does not necessarily carry over to
manifolds.

3.2. Hyperviscosity for the surface advection equation. We turn our at-
tention to the surface advection equation,

\partial c

\partial t
+ \bfitu \cdot \nabla \BbbM c = 0,(21)

where we assume for simplicity of analysis that \nabla \BbbM \cdot \bfitu = 0. We discuss the case of
\nabla \BbbM \cdot \bfitu \not = 0 in section 3.4.2. Once again, the RBF-FD discretization of the surface
gradient operator can be modeled by the following auxiliary PDE :

\partial c

\partial t
+ \bfitu \cdot \~\nabla \BbbM c = 0,(22)

where the auxiliary surface gradient \~\nabla \BbbM is defined by its action on c(\bfitx , t) as

\~\nabla \BbbM = [ \~\scrG x, \~\scrG y, \~\scrG z]T ,

which can be written out componentwise as

\~\scrG xc = (\scrG x  - \tau x\^k
qx
x )c, \~\scrG yc = (\scrG y  - \tau y\^k

qy
y )c, \~\scrG zc = (\scrG z  - \tau z\^k

qz
z )c.(23)

Here, \^kx, \^ky, and \^kz are wavenumbers. Substituting this definition of the auxiliary
surface gradient into (22) gives

\partial c

\partial t
+ \bfitu \cdot \nabla \BbbM c = (\bfitu \cdot \bfittau )c, \bfittau := [\tau x\^k

qx , \tau y\^k
qy , \tau z\^k

qz ]T .(24)

Our approach to cancel out the spurious term on the right is to use artificial hy-
perviscosity based on the surface Laplacian \Delta \BbbM since the RBF-FD discretization of
this operator appears to be globally stable on quasi-uniform node sets (empirically
speaking) [22, 38, 40]. This gives the following PDE:

\partial c

\partial t
+ \bfitu \cdot \nabla \BbbM c = (\bfitu \cdot \bfittau )c+ \gamma 1(\bfitx )\Delta 

\gamma 2

\BbbM c,(25)

where \gamma 1(\bfitx ) is some undetermined function which will eventually be reduced to a
single constant \gamma 1.
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3.2.1. Explicit Runge--Kutta (RK) methods. We will now present a hyper-
viscosity formulation applicable to all explicit s-stage RK methods. The growth factor
\varrho for an explicit s-stage RK method takes the form of the degree-s Taylor polynomial

\varrho (z) =
s\sum 

j=0

zj

j!
.

The value of z depends on the equation being solved. To see this, we will first examine
the forward Euler method applied to (25). First, we observe that the growth factor
\varrho (z) for forward Euler (RK1) is given by

\varrho (z) = 1 + z.(26)

We now substitute a plane wave of the form ei
\^\bfk \cdot \bfitx into (25), where \^k = [\^kx, \^ky, \^kz]

T is
the vector of wavenumbers, and use the growth factor for forward Euler. This gives
us an equation of the form

\varrho  - 1

\bigtriangleup t
\^cei

\^\bfk \cdot \bfitx + \bfitu n \cdot \nabla \BbbM \^cei
\^\bfk \cdot \bfitx = (\bfitu n \cdot \bfittau )\^cei\^\bfk \cdot \bfitx + \gamma 1(\bfitx )\Delta 

\gamma 2

\BbbM \^cei
\^\bfk \cdot \bfitx .(27)

To solve the above equation for \varrho , we first need to simplify the \bfitu n \cdot \nabla \BbbM \^cei
\^\bfk \cdot \bfitx term.

This can be written as

\bfitu n \cdot \nabla \BbbM \^cei
\^\bfk \cdot \bfitx = \bfitu n \cdot i

\left[  (1 - n2x)kx  - nxnyky  - nxnzkz
 - nynxkx + (1 - n2y)ky  - nynzkz
 - nznxkx  - nznyky + (1 - n2z)kz

\right]  \^cei
\^\bfk \cdot \bfitx = (\bfitu \cdot Pik)\^cei\^\bfk \cdot \bfitx .

(28)

This simplification gives us

\varrho  - 1

\bigtriangleup t
\^cei

\^\bfk \cdot \bfitx + (\bfitu n \cdot Pik)\^cei\^\bfk \cdot \bfitx = (\bfitu n \cdot \bfittau )\^cei\^\bfk \cdot \bfitx + \gamma 1(\bfitx )\Delta 
\gamma 2

\BbbM \^cei
\^\bfk \cdot \bfitx .(29)

In the Euclidean case \BbbM \equiv \BbbR d, we could now divide out the plane wave ei
\^\bfk \cdot \bfitx to obtain

an expression for \gamma 1 since the plane wave is an eigenfunction of the \BbbR d Laplacian.
Unfortunately, for submanifolds \BbbM \subset \BbbR d, plane waves are not eigenfunctions of the
surface Laplacian \Delta \BbbM . If we were to instead use the \BbbR 3 Laplacian \Delta in place of
\Delta \BbbM , we could simply use (20). However, it may in general be difficult to compute a
reasonable discretization of \Delta when the only points available to us are on the manifold
\BbbM . While this has been attempted for nonpolynomially augmented RBF-FD [12, 16],
our attempt at doing so using the RBF-LOI procedure in section 2 resulted in an
approximation to \Delta on the manifold that had positive real eigenvalues.

Our proposed approach to solving for \gamma 1(\bfitx ) is to approximate the action of \Delta \gamma 2

\BbbM 
on plane waves as a function of the action of \Delta \gamma 2 . More specifically, we write

\Delta \gamma 2

\BbbM e
i\^\bfk \cdot \bfitx \approx \eta (\bfitx )\Delta \gamma 2ei

\^\bfk \cdot \bfitx = \eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

ei
\^\bfk \cdot \bfitx ,(30)

where \eta (\bfitx ) is some unknown function. This approach allows us to treat plane waves as
eigenfunctions of the surface Laplacian, overcoming the primary hurdle in computing
\gamma 1(\bfitx ). We can now use (30) to solve for \varrho in (29), giving

\varrho \approx 1 - \bigtriangleup t(\bfitu n \cdot Pi\^k) +\bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.
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Comparing the above to (26) gives us an expression for z:

z =  - \bigtriangleup t(\bfitu n \cdot Pi\^k) +\bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.

For an s-stage explicit RK method, we therefore have

\varrho (z) =
s\sum 

j=0

1

j!

\Bigl( 
 - \bigtriangleup t(\bfitu n \cdot Pi\^k) +\bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2
\Bigr) j

.

(31)

We now split z into two components, z = z1+z2, each associated with different terms
in the PDE:

z1 :=  - \bigtriangleup t(\bfitu n \cdot Pi\^k), z2 := \bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.

The term z1 is that obtained for the semidiscrete surface advection equation without
growth or hyperviscosity, while z2 captures the growth and hyperviscosity terms. In
the absence of spurious growth and hyperviscosity, we have the following identity:

\varrho (z) = \varrho (z1) =
s\sum 

j=0

zj1
j!

=
ez1\Gamma (s+ 1, z1)

s!
,(32)

where \Gamma (a, b) is the upper incomplete gamma function. However, if we allow growth
and hyperviscosity, we have

\varrho (z) = \varrho (z1, z2) =
s\sum 

j=0

(z1 + z2)
j

j!
=
ez1+z2\Gamma (s+ 1, z1 + z2)

s!
.(33)

Subtracting (32) from (33) defines a term \~\varrho :

\~\varrho := \varrho (z1, z2) - \varrho (z1) =
ez1 (ez2\Gamma (s+ 1, z1 + z2) - \Gamma (s+ 1, z1))

s!
.

Clearly \~\varrho is the contribution of growth and hyperviscosity to the growth factor \varrho (z).
If \~\varrho \equiv 0, we would recover the growth factor for the explicit s-stage RK method on the
pure semidiscrete surface advection equation. \~\varrho can be zeroed out by setting z2 = 0,
which in turn implies

\bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

= 0,

=\Rightarrow \gamma 1(\bfitx ) =
( - 1)1 - \gamma 2\bfitu \cdot \bfittau 

\eta (\bfitx )
\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2
.

Using the definition of \bfittau in (24) and making the simplifying assumption \^k = \^kx =
\^ky = \^kz = 2h - 1 yields

\gamma 1(\bfitx )

=
( - 1)1 - \gamma 23 - \gamma 2

\eta (\bfitx )

\bigl( 
ux\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + uy\tau y2
qy - 2\gamma 2h2\gamma 2 - qy + uz\tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.
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To allow for precomputation, we once again use the 2-norm instead:

\gamma 1(\bfitx ) \approx 
( - 1)1 - \gamma 23 - \gamma 2\| \bfitu \| 

\eta (\bfitx )

\bigl( 
\tau x2

qx - 2\gamma 2h2\gamma 2 - qx +\tau y2
qy - 2\gamma 2h2\gamma 2 - qy +\tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.

The function \eta (\bfitx ) is in general not known exactly, but it can be approximated on a
given node set X on the manifold \BbbM as follows: Let L be the approximation to the
surface Laplacian computed as in section 2. Then we can write

\eta (\bfitx j) =

\Bigl( 
L\gamma 2 ei

\^\bfk \cdot \bfitx 
\bigm| \bigm| \bigm| 
X

\Bigr) 
j\Bigl( 

( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

ei\^\bfk \cdot \bfitx 
\bigm| \bigm| \bigm| 
X

\Bigr) 
j

, j = 1, . . . , N,(34)

where N is the total number of nodes. Here, \^kx, \^ky, and \^kz each are set to 2h - 1. If
the nodes are quasi-uniform, we set h = N - 1/2 for manifolds \BbbM \subset \BbbR d of codimension
1. Finally, we define a single constant \gamma 1 as

\gamma 1 = \BbbE X (\gamma 1(\bfitx )) ,

which is to be read as the ``real-valued expectation/mean of \gamma 1(\bfitx ) over the node set
X."" This can in turn be written as

\gamma 1 =
( - 1)1 - \gamma 23 - \gamma 2\| \bfitu \| 

\=\eta 

\bigl( 
\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + \tau y2
qy - 2\gamma 2h2\gamma 2 - qy + \tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
,

(35)

where \=\eta is designed to be real-valued and positive, given explicitly by

\=\eta =
1

N

N\sum 
j=1

(| Re(\eta (\bfitx j))| ) .(36)

Though we have made a series of simplifying assumptions, we now have a simple and
computable formula for \gamma 1 using (35) (and (36)). As we have shown, this formula is
applicable to all s-stage--explicit RK methods and any linear methods whose growth
factor is expressible as the series (3.2.1).

3.2.2. Explicit linear multistep methods. Explicit linear multistep methods
(LMMs) are a popular class of methods for solving time-dependent problems. While
their stability regions are not as large as the corresponding explicit RK methods,
explicit LMMs are still competitive from the computational cost standpoint due to
fewer function evaluations. We will now verify the hyperviscosity formulation in the
context of these methods.

Before proceeding, we remark that (35) (derived for RK methods) could be ob-
tained if we had directly set the approximation for \Delta \gamma 2

\BbbM to be

\Delta \gamma 2

\BbbM e
i\^\bfk \cdot \bfitx \approx \=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

ei
\^\bfk \cdot \bfitx .(37)

It is also useful to define an analogous map for the surface Laplacian itself,

\Delta \BbbM e
i\^\bfk \cdot \bfitx \approx  - \=\omega 

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) 
ei

\^\bfk \cdot \bfitx ,(38)
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where \=\omega is computed analogously to \=\eta . We use both these new maps going forward.
Unlike the explicit RK methods, deriving the growth factor for explicit LMMs is a
slightly more elaborate procedure. the generic ODE

\partial c

\partial t
= \mu c.

The s-step--explicit LMM (the Adams--Bashforth method of order s) applied to this
ODE gives

cn+1 = cn +\bigtriangleup t
s - 1\sum 
j=0

\alpha j\mu c
n - j ,

where \alpha j are some real-valued coefficients. Now, let cn - s+1 = \^cei
\^k\cdot \bfitx and cn - s+2 =

\varrho cn - s+1, where \varrho is the growth factor. Substituting into the s-step Adams--Bashforth
method, we obtain a polynomial equation for the growth factor G:

\varrho s  - \varrho s - 1 (1 + \alpha 0\bigtriangleup t\mu ) - \varrho s - 2\alpha 1\bigtriangleup t\mu  - \varrho s - 3\alpha 2\bigtriangleup t\mu  - \cdot \cdot \cdot  - \alpha s - 1\bigtriangleup t\mu = 0.(39)

In the context of the surface advection equation with spurious growth and hypervis-
cosity, we have

\bigtriangleup t\mu = z1 + z2,

z1 =  - \bigtriangleup t(\bfitu n \cdot Pk),

z2 = \bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.

Substituting the above equations into (39) gives

\varrho s  - \varrho s - 1 (1 + \alpha 0z1 + \alpha 0z2)

 - \varrho s - 2\alpha 1(z1 + z2) - \varrho s - 3\alpha 2(z1 + z2) - \cdot \cdot \cdot  - \alpha s - 1(z1 + z2) = 0.

We can collect all the z1 and z2 terms separately to yield\bigl[ 
\varrho s  - \varrho s - 1 (1 + \alpha 0z1) - \varrho s - 2\alpha 1z1  - \cdot \cdot \cdot  - \alpha s - 1z1

\bigr] 
 - z2

\bigl[ 
\varrho s - 1\alpha 0 + \varrho s - 2\alpha 1 + \cdot \cdot \cdot + \alpha s - 1

\bigr] 
= 0.

The first bracketed term above is the equation for the growth factor \varrho on the pure
semidiscrete surface advection equation, while the second bracketed term accounts
for growth and hyperviscosity. To cancel out the latter, we either require the growth
factor \varrho to satisfy the polynomial \varrho s - 1\alpha 0 + \varrho s - 2\alpha 1 + \cdot \cdot \cdot +\alpha s - 1 = 0 or can simply set
z2 = 0. Doing the latter yields

\bigtriangleup t(\bfitu n \cdot \bfittau ) +\bigtriangleup t\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

= 0,

which results in the same expression for \gamma 1 as in the case of explicit RK methods,
once again matching (35).

3.3. Hyperviscosity for the surface advection-diffusion equation. We
now consider the surface advection-diffusion equation defined as

\partial c

\partial t
+ \bfitu \cdot \nabla \BbbM c = \nu \Delta \BbbM c.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2384 VARUN SHANKAR, GRADY B. WRIGHT, AND AKIL NARAYAN

This is a PDE of mixed character, with the ratio \| \bfitu \| 
\nu determining whether the trans-

port of c is dominated by advection or diffusion (over some characteristic length
scale). In regimes where both advection and diffusion play an important role in the
transport, numerical solution of the advection-diffusion equation is often done via an
implicit-explicit (IMEX) method [2]. These methods allow us to advance the stiff
diffusion term implicitly in time while advancing the advection term explicitly. When
considering the stabilized auxiliary surface advection-diffusion equation,

\partial c

\partial t
+ \bfitu \cdot \~\nabla \BbbM c = \nu \Delta \BbbM c+ \gamma 1\Delta 

\gamma 2

\BbbM c,

we must now decide whether to treat the hyperviscosity term explicitly or implicitly
in time. If the problem contains enough diffusion to impact transport but insufficient
diffusion to stabilize the auxiliary surface gradient, it may be reasonable to add a
hyperviscosity term and treat it implicitly along with the stiff diffusion term (for
efficiency and stability). While our formula for \gamma 1 is appropriate for the explicit
treatment of the hyperviscosity term, we have yet to show whether this formula is
sufficient for stability if the hyperviscosity term is treated implicitly. We will focus
on a popular IMEX time integrator: the semi-implicit backward difference formula of
order 2 (SBDF2) [2]. First, consider a generic ODE of the form

dc

dt
= \mu 1c+ \mu 2c.

If we decide to treat the \mu 1 term explicitly and the \mu 2 term implicitly, the SBDF2
discretization of this ODE is

3cn+1  - 4cn + cn - 1

2\bigtriangleup t
= 2\mu 1c

n  - \mu 1c
n - 1 + \mu 2c

n+1.

Substituting in a plane wave expression and using von Neumann analysis, we get a
quadratic equation for the growth factor \varrho :\biggl( 

1 - 2

3
\mu 2\bigtriangleup t

\biggr) 
\varrho 2  - 4

3
\varrho (1 +\bigtriangleup t\mu 1) +

1

3
(1 + 2\bigtriangleup t\mu 1) = 0.(40)

In the context of the surface advection-diffusion equation, \mu 1 represents the action
of the surface advection and spurious growth operators on plane waves and can be
written using (28) as

\mu 1 =  - \bfitu \cdot Pi\^k+ \bfitu \cdot \bfittau ,(41)

where we now assume for simplicity that the velocity \bfitu is constant in time. \mu 2

represents the action of the surface Laplacian and surface hyperviscosity operators
on plane waves. To derive an expression for \mu 2, we now also need the approximation
(38), which allows us to write \mu 2 as

\mu 2 =  - \nu \=\omega 
\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) 
+ \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.(42)

Substituting (41) and (42) into (40), collecting the surface advection and diffusion
terms into a term t1, and collecting the spurious growth and hyperviscosity terms
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into the term t2, we have

t1 =

\biggl( 
1 +

2

3
\nu \bigtriangleup t\=\omega 

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \biggr) 
\varrho 2  - 4

3
\varrho 
\Bigl( 
1 - \bfitu \cdot Pi\^k

\Bigr) 
+

1

3

\Bigl( 
1 - 2\bfitu \cdot Pi\^k

\Bigr) 
,

t2 =  - 2

3
\bigtriangleup t\varrho 2\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

+
2

3
\bigtriangleup t\bfitu \cdot \bfittau (1 - 2\varrho ),

t1 + t2 = 0.

Here, t1 is obtained when discretizing the surface advection-diffusion equation, while
t2 contains all additional terms. We thus require that t2 = 0, i.e.,

 - \varrho 2\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

+ \bfitu \cdot \bfittau (1 - 2\varrho ) = 0.

The roots of this quadratic equation are given by

\varrho =  - \bfitu \cdot \bfittau 

\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2
\pm 

\sqrt{} 
(\bfitu \cdot \bfittau )

\Bigl( 
\bfitu \cdot \bfittau + \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2
\Bigr) 

\gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2
.

For time stability, we require that | \varrho | \leq 1. In addition to the CFL condition, this can
be achieved if

\bfitu \cdot \bfittau + \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

= 0.

This results in the following expression for \gamma 1 after substituting in the definition of \bfittau ,
using the wavenumber-h relationship, and pulling out the magnitude of the velocity:

\gamma 1 =
( - 1)1 - \gamma 23 - \gamma 2\| \bfitu \| 

\=\eta 

\bigl( 
\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + \tau y2
qy - 2\gamma 2h2\gamma 2 - qy + \tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.

Once again, this is identical to (35). We have thus demonstrated that our formula
is applicable for both explicit and implicit discretizations of the hyperviscosity op-
erator. The above analysis carries over to higher-order SBDF methods, though it is
more tedious and requires computing the roots of cubic and higher-degree polynomial
equations in \varrho .

3.4. Additional considerations.

3.4.1. On stabilization from model diffusion. In the setting of the surface
advection-diffusion equation, it is reasonable to wonder how much model diffusion
is required to cancel out the spurious growth modes in the discretized advection
operator. Fortunately, our framework for computing \gamma 1 also allows us to estimate
a lower bound on the required amount of stabilizing model diffusion. Consider the
auxiliary surface advection-diffusion equation given by

\partial c

\partial t
+ \bfitu \cdot \~\nabla \BbbM c = \nu \Delta \BbbM c.

The goal is to estimate a lower bound on \nu that allows us to cancel out spurious
growth modes. Proceeding with the von Neumann analysis for SBDF2 as before, now
using the map (38), and requiring that | G| \leq 1, we obtain

\nu =
 - \| \bfitu \| 
3\=\omega 

\bigl( 
\tau x2

qx - 2h2 - qx + \tau y2
qy - 2h2 - qy + \tau z2

qz - 2h2 - qz
\bigr) 
.(43)
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We illustrate the utility of this formula with an example. Assume that all quantities
except \nu and \=\omega are O(1). Then \nu \approx h

6\=\omega . In this setting, for a coarse node set on the
sphere (N = 2562 icosahedral nodes), experiments show that \=\omega \approx 0.03, which implies
that \nu \gtrsim 5N - 1/2 is the least amount of model diffusion required to cancel spurious
growth modes. In other words, if \nu \gtrsim 5h and \| \bfitu \| = O(1), no hyperviscosity is required
for stabilization. A careful analysis of the model diffusion using our technique may
obviate the need for numerical hyperviscosity. However, in this work, we primarily
focus on parameter regimes requiring hyperviscosity.

3.4.2. On divergent velocity fields. Our analysis thus far assumed that \nabla \BbbM \cdot 
\bfitu = 0. We now deal with the more general case of a divergent velocity field. Consider
now the auxiliary divergent surface advection equation (with added hyperviscosity)

\partial c

\partial t
+ \bfitu \cdot \~\nabla \BbbM c =  - c \~\nabla \BbbM \cdot \bfitu + \gamma 1\Delta 

\gamma 2

\BbbM c.(44)

Once again using the forward Euler discretization for simplicity, standard von Neu-
mann analysis for the variable c (together with (37)) gives us

\varrho  - 1

\bigtriangleup t
+ \bfitu n \cdot Pik =  - \~\nabla \BbbM \cdot \bfitu n + \bfitu n \cdot \bfittau + \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.(45)

The first term in the right-hand side can be expanded using the definition of the
growth model, giving us

\varrho  - 1

\bigtriangleup t
+ \bfitu n \cdot Pik =  - \nabla \BbbM \cdot \bfitu n + 2\bfitu n \cdot \bfittau + \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

.(46)

Note the factor of 2 in front of the \bfitu n term. We now want \gamma 1 so that

2\bfitu n \cdot \bfittau + \gamma 1\=\eta ( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

= 0.(47)

This in turn implies that \gamma 1 is given as

\gamma 1 =
2( - 1)1 - \gamma 23 - \gamma 2

\=\eta \bigl( 
ux\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + uy\tau y2
qy - 2\gamma 2h2\gamma 2 - qy + uz\tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
,

which can be made amenable to precomputation by setting

\gamma 1 =
2( - 1)1 - \gamma 23 - \gamma 2\| \bfitu \| 

\=\eta 

\bigl( 
\tau x2

qx - 2\gamma 2h2\gamma 2 - qx + \tau y2
qy - 2\gamma 2h2\gamma 2 - qy + \tau z2

qz - 2\gamma 2h2\gamma 2 - qz
\bigr) 
.

(48)

It is straightforward to show that this analysis applies to all explicit RK and multistep
methods and the SBDF2 method for the surface advection-diffusion equation. Though
we focus on divergence-free fields in this article, our experiments have shown that the
above formula works well to stabilize the surface advection equation when divergent
velocity fields are used.

3.5. Computing growth exponents. We now discuss how to compute the
growth exponents qx, qy, and qz. While this is similar to the Euclidean case from [36],
the presence of a manifold adds certain complications. Let X = \{ xj\} Nj=1 be a set of
nodes on the manifold where we wish to compute the discrete differentiation matrices
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Gx, Gy, and Gz. Consider the function f(\bfitx ) = ei
\^\bfk \cdot \bfitx . Its analytical surface gradient

is given by

g(\bfitx ) = \nabla \BbbM f(\bfitx ) = Pi\^kf(\bfitx ) = [gx(\bfitx ), gy(\bfitx ), gz(\bfitx )]T .(49)

Let f , gx, gy, and gz be the evaluations of f(\bfitx ), gx(\bfitx ), gy(\bfitx ), and gz(\bfitx ) on the
node set X. The approximate surface gradient of f(\bfitx ) on the node set X is given
componentwise by matrix-multiplication with the differentiation matrices:

\~gx = Gxf, \~gy = Gyf, \~gz = Gzf.(50)

From our growth model, we know thatGx, Gy, andGz are represented by the auxiliary
differential operators \~\scrG x, \~\scrG y, and \~\scrG z respectively. Consequently, ignoring truncation
errors, the growth model gives us

\~gx = gx  - \tau x\^k
qx
x f, \~gy = gy  - \tau y\^k

qy
y f, \~gz = gz  - \tau z\^k

qz
z f.(51)

Focusing momentarily on the x-component without loss of generality, this allows us
to write

\| gx  - \~gx\| = \tau x\^k
qx\| f\| ,

with similar expressions for the y and z components. Since \tau x\| f\| \not = 0, we divide
through by this quantity, take natural logarithms, and rearrange to obtain

qx =
ln
\bigl( 
\| gx  - \~gx\| 

\bigr) 
 - ln

\bigl( 
\tau x\| f\| 

\bigr) 
ln \^k

,(52)

with similar expressions for qy and qz. The usual substitution of \^k = 2h - 1 gives us
specific values of qx, qy, and qz for a given node set once the \tau x, \tau y, and \tau z have been
computed. As mentioned previously, these represent the real part of the eigenvalue
with the largest real part in the spectrum of Gx, Gy, and Gz, respectively. Notice that
if we over- or underestimate these quantities, the formula (52) and its counterparts
automatically under- or overestimate qx, qy, and qz. This makes the formula for \gamma 1
robust to loose tolerances used in estimating \tau x, \tau y, and \tau z. In our experiments, we
use the following iterative procedure to estimate these spurious eigenvalues:

1. attempt to estimate \tau x, \tau y, and \tau z using an implicitly restart Arnoldi method
with a loose tolerance of 10 - 3, looking for the eigenvalue with the largest real
part;

2. if no eigenvalues are found to this tolerance, double the tolerance until one
can be found.

3.6. Selecting \bfitgamma \bftwo . In the spectral methods literature, Ma recommends that
\gamma 2 in \gamma 1\Delta 

\gamma 2 be chosen according to the relation \gamma 2 \leq O(lnN), where N is the total
number of points used in the discretization [23, 24]. In [36], our Euclidean formulation
used a version of this scaling law so that \gamma 2 = \lfloor 1.5 lnn\rfloor , where n is the RBF-FD stencil
size.

On manifolds, we set \gamma 2 = \lfloor lnn\rfloor if the solution is smooth. This allows \gamma 1\Delta 
\gamma 2 to

approach the spectral case as n\rightarrow N and filters higher frequencies as the stencil size is
increased. If the solution is not smooth, we set \gamma 2 = 2 and do not scale with increasing
n. In our experiments, we discovered undesirable oscillations when using \gamma 2 > 3 for
test cases with nonsmooth solutions. The rationale is simple: If the solution c is not
sufficiently smooth, \gamma 1\Delta 

\gamma 2c may not even be continuous if \gamma 2 is large. In general, if
the smoothness of the solution is not known, it may be possible to use the native space
norm as a smoothness indicator [6] and set \gamma 2 accordingly. We leave this approach
for future work.
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3.7. RBF approximation to \bfitgamma \bfone \Delta 
\bfitgamma \bftwo 

\BbbM . Following the procedure outlined in sec-
tion 2, we compute \Delta \gamma 2

\BbbM by using RBF-LOI to obtain the local surface Laplacian Lj on
each stencil. We then assemble the local Lj matrices into a global sparse matrix L for
the surface Laplacian and compute the differentiation matrix for the hyperviscosity
operator as H = L\gamma 2 . This approach proved successful since the spectrum of L was
always well behaved in our experiments (no eigenvalues with positive real parts).3

This is in contrast to our Euclidean formulation, where we approximated \Delta \gamma 2 directly
on each stencil [36]. The advantage of the new approach is that it obviates the need
to separately approximate the H matrix. At first glance, the observant reader may
notice that this approximation to H is potentially a very low order one (possibly
only first-order accurate if \gamma 2 is large enough). However, since \gamma 1 = O(h2\gamma 2), the
scaling with \gamma 1 makes \gamma 1H a reasonable approximation to \gamma 1\Delta 

\gamma 2

\BbbM in the sense that
\gamma 1H possess similar spectral properties. We leave the tackling of potential spurious
eigenvalues in L (and therefore H) to future work but note that we did not encounter
this problem for any of the test cases in this article.

4. Role of node sets and parameters. Though our hyperviscosity formula-
tion is automatic, the actual magnitude of the parameter \gamma 1 on a given node set is
dictated by the behavior of the function \eta (\bfitx ) and the largest wavenumber \^k \approx 2h - 1.
In the case of \eta (\bfitx ), we advocated computing a real-valued average \=\eta ; in the case of
\^k, we approximated as 2h - 1, where h was chosen as 1\surd 

N
, an average measure of node

spacing. We now explore the impact of these choices on stability and accuracy.

4.1. Stability on nonuniform node sets. We now explore the effect of these
choices on the spectrum of the combined discrete differentiation matrix GH =  - Gx - 
Gy - Gz+\gamma 1H, assuming that the velocity is constant spatially. Ideally, the spectrum
of this combined differential operator should have no eigenvalues with positive real
parts. While the node sets used in section 5 are all quasi-uniform, it is instructive to
see the influence of nonuniformity on the value of \gamma 1 and hence the spectrum of GH .
First, we define three different quantities:

1. \=h = 1\surd 
N
, which we call the average node spacing ;

2. hq, the separation radius, defined as the minimal distance between any pair
of points in the node set X;4

3. h\rho , the mesh norm or the fill distance, defined as the radius of the largest
ball that can be fit between any pair of nodes.

In our formulas for \gamma 1, all three of these quantities are candidates for the variable h.
For N = 2400 (quasi-uniform) staggered nodes on a torus with inner radius 1/3 and
outer radius 1, for instance, we have \=h = 0.0204, hq = 0.0629, and h\rho = 0.0871. On
the other hand, when we select a random subset of size N = 1800 from these staggered
nodes, the nodes are nonuniform, and h\rho = 0.1043. Essentially, we expect hq and h\rho 
to be more different on nonuniform nodes. We set \xi = 4 and use Algorithm 1 to
compute the different differentiation matrices. Finally, we compute the matrix GH

and show its eigenvalues when each of the measures of node spacing are used above.
The results are shown in Figure 1. These results show that while all three measures
of h seem reasonable, the h = \=h (Figure 1 (left)) is the best choice if the goal is to

3We also explored approximating the hyperviscosity operator locally on each stencil and then
assembling the local operators, but this approach failed for larger k due to spurious positive real
eigenvalues in the spectrum of the resulting differentiation matrix.

4hq is referred to by the symbol q in the RBF literature and is often defined as half the value
used in this work.
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Fig. 1. Spectrum of GH for N = 1800 nonuniform nodes on the torus when using \=h (left), hq

(middle), and h\rho (right) in the formula for \gamma 1.

Fig. 2. Spectrum of GH for N = 2400 quasi-uniform nodes on the torus when using min(\eta (\bfitx ))
(left), \=\eta (middle), and max(\eta (\bfitx )) (right) in the formula for \gamma 1.

guarantee the absence of an eigenvalue with any positive real part in the spectrum of
GH . Though it is hard to see, Figure 1 (middle) shows that using h = hq actually
results in an eigenvalue with a very small real part, and Figure 1 (right) shows that
using h = h\rho results in an even larger real part. On a quasi-uniform node set, we
have found that any of these measures of node spacing are appropriate since they are
all closer to each other. When solving PDEs, nonuniform node sets may arise in the
context of h-refinement. Such nonuniform node sets are still more uniform than the
node sets used in this experiment, so our experiment represents an extreme case. For
the remainder of this article, we restrict our attention to quasi-uniform node sets and
use h = \=h.

4.2. Influence of \bfiteta (\bfitx ) on stability. The formula for \gamma 1 contains the term \=\eta ,
which is the real-valued expectation of the function \eta (\bfitx ). However, this choice was
made simply to reduce \eta (\bfitx ) to a single positive number for computational convenience.
It is possible to use other quantities, such as the maximum or minimum values. We
now explore the influence of this choice on the spectrum of GH . Once again, we
set \xi = 4 and use N = 2400 quasi-uniform nodes on the torus. The results of the
experiment are shown in Figure 2. The results are quite interesting. Using min(\eta (\bfitx ))
as in Figure 2 (left) scatters the eigenvalues of GH very far into the left half of the
complex plane, both along the real and the imaginary axes (note the scale). While
this differential operator is globally stable in the eigenvalue sense, our experiments
indicate it is unusable for practical simulations, as it significantly reduces the accuracy
of our method. Figure 2 (middle) shows that using \=\eta results in a much smaller scatter
and has successfully shifted over eigenvalues with positive real parts. Finally, Figure
2 (right) shows that using max(\eta (\bfitx )) in fact produces the least scatter (again, note
the scale) but produces an eigenvalue with a small positive real part (in this case,
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\approx 1.5). While \=\eta is clearly the safe choice, this indicates that max(\eta (\bfitx )) can also be
used in simulations if the time step \Delta t is such that any small positive eigenvalue falls
within the stability region of the time integrator.

4.3. Effect of the analytic approximation to the eigenvalues of \Delta \bfitgamma \bftwo 

\BbbM . Our
technique for deriving an analytic expression for \gamma 1 relied on analytically approximat-
ing the action of \Delta \gamma 2

\BbbM on plane waves as a function of the action of \Delta \gamma 2 . This was
expressed through (30), which we repeat here for convenience:

\Delta \gamma 2

\BbbM e
i\^\bfk \cdot \bfitx \approx \eta (\bfitx )\Delta \gamma 2ei

\^\bfk \cdot \bfitx = \eta (\bfitx )( - 1)\gamma 2

\Bigl( 
\^k2x + \^k2y +

\^k2z

\Bigr) \gamma 2

ei
\^\bfk \cdot \bfitx .

Here, \eta (\bfitx ) is computed numerically on a given node set X by (34). Our goal is to
study the effect of this approximation when the eigenvalues of \Delta \gamma 2

\BbbM are known. Let

f(\bfitx ) = ei
\^\bfk \cdot \bfitx . To test this, we set \gamma 2 = 1 and compare \=\Delta \BbbM f = \=\eta (\^k2x + \^k2y + \^k2z)f

with Lf , where L is the differentiation matrix that corresponds to \Delta \BbbM . Once again,
we used staggered nodes on the torus for this experiment, with node sets of size
N = 2400, 5400, 9600, 21600, and 38400, setting \xi = 2, 4, 6. We then measured the
quantity \| 

\bigl( 
\=\Delta \BbbM f

\bigr) 
X

 - Lf\| /\| Lf\| . We found that this was approximately constant
(\approx 0.44) under both spatial refinement and order refinement with a magnitude that
increased as \gamma 2 was increased. In fact, the quantity \=\Delta \gamma 2

\BbbM f appears to consistently
overestimate L\gamma 2f = Hf , indicating that our formulation for \gamma 1 is likely overly strict,
especially as \gamma 2 is increased. While this is reassuring for our time stability estimates
for RK and IMEX methods, we plan in future work to explore spatially variable
hyperviscosity formulations and analytic derivations for \gamma 2 to further automate these
parameter choices. In addition, since the true surface Laplacian of f can be written

as \Delta \BbbM f = \Delta f  - 2H \partial f
\partial \bfitn  - \partial 2f

\partial \bfitn 2 , where H is the mean curvature, we also plan to explore
spatially variable hyperviscosity formulations that take into account the curvature H.

5. Results.

5.1. Surface advection. We now investigate the convergence properties of our
stabilized RBF-FD methods on the surface advection equation. To the best of our
knowledge, this is the first instance of a high-order RBF-FD method for transport
on surfaces other than the sphere. On the sphere, we use two test cases: solid-
body rotation of a cosine bell [43] and deformational flow of two Gaussians [25]. On
the torus, we measure the transport of both cosine bells and Gaussians in a time-
independent, spatially varying flow field. In all cases, the velocity fields return the
initial conditions to their original spatial locations on the sphere and torus, allowing
us to measure convergence rates. Our main focus is on convergence rates measured
in the relative \ell 2-norm, measured by testing our methods on quasi-uniform node sets
of increasing sizes. We use icosahedral nodes on the sphere and staggered nodes on
the torus, both as used in [22, 38, 40]. In all cases, we set \xi , the desired order of
accuracy for the spatial derivatives, equal to \ell (since a first-order differential operator
is being approximated) and use \xi = 2, 4, 6. All subsequent parameters (including the
overlap parameter \delta ) were set using Algorithm 1. For both tests, we use the classical
third-order explicit Runge--Kutta method (RK3). We chose RK3 instead of the more
popular explicit RK4 to demonstrate that our hyperviscosity formulation does not
rely on the larger stability region of explicit RK4.

5.1.1. Advection on the sphere. We focus on two test cases for advection on
the sphere. In both test cases, for a node set with N nodes, we set the time step to
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Fig. 3. Convergence on the sphere for the surface advection equation of a cosine bell in a steady
flow (left) and Gaussian in a deformational flow (right). The figure shows relative \ell 2-error as a
function of

\surd 
N for different values of stencil n and polynomial degree \ell . The dashed lines indicate

lines of best fit, and their slopes are indicated in the legend as a measure of convergence rates.

\bigtriangleup t = 0.3\surd 
N
, which roughly corresponds to a Courant number of 0.3. This time step

was chosen to approximately allow spatial errors to dominate over temporal errors.
Solid body rotation of a cosine bell. Our first test on the sphere is the solid body

rotation test case from [43], which involves advection of a cosine bell in a steady
velocity field. The components of the steady velocity field for this test case in spherical
coordinates ( - \pi \leq \lambda \leq \pi ,  - \pi /2 \leq \theta \leq \pi /2) are given by

u(\lambda , \theta ) = sin(\theta ) sin(\lambda ) sin(\alpha ) - cos(\theta ) cos(\alpha ), v(\lambda , \theta ) = cos(\lambda ) sin(\alpha ),(53)

where \alpha is the angle of rotation with respect to the equator. We set \alpha = \pi /2 to advect
the initial condition over the poles and use a change of basis to obtain the velocity
field in these coordinates. The initial condition is a compactly supported cosine bell
centered at (1, 0, 0),

c(\bfitx , 0) =

\Biggl\{ 
1
2

\Bigl( 
1 + cos

\Bigl( 
\pi r
Rb

\Bigr) \Bigr) 
if r < Rb,

0 if r \geq Rb,

where \bfitx = (x, y, z), r = arccos(x), and Rb = 1/3. This initial condition is C1(\BbbS 2), and
one full revolution of the initial condition over the sphere requires simulation up to
time T = 2\pi . The results of this simulation are shown in Figure 3 (left), which shows
that increasing the polynomial degree \ell does not increase convergence rates when
advecting the cosine bell, simply due to the limited smoothness of the cosine bell.
However, as has been observed in the literature [12, 39], increasing \ell does improve
the accuracy.

Deformational flow of Gaussian bells. The second test case involves advecting
two Gaussian bells defined by

c(\bfitx , 0) = 0.95
\Bigl( 
e - 5\| \bfitx  - \bfp 1\| 2

2 + e - 5\| \bfitx  - \bfp 2\| 2
2

\Bigr) 
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Fig. 4. Cosine bell initial condition for the torus test together with the path the solution advects
over (according to (54)) superimposed on top in blue.

in a time-dependent deformational velocity field [25] whose components in spherical
components are

u(\lambda , \theta , t) =
10

T
cos

\biggl( 
\pi t

T

\biggr) 
sin2

\biggl( 
\lambda  - 2\pi t

T

\biggr) 
sin (2\theta ) +

2\pi 

T
cos (\theta ) ,

v(\lambda , \theta , t) =
10

T
cos

\biggl( 
\pi t

T

\biggr) 
sin

\biggl( 
2\lambda  - 2\pi t

T

\biggr) 
cos (\theta ) .

Here, p1 =
\bigl( \surd 

3/2, 1/2, 0
\bigr) 
and p2 =

\bigl( \surd 
3/2, - 1/2, 0

\bigr) 
. The flow field returns the

solution to its initial position at final time T = 5. This solution is C\infty (\BbbS 2) and is
ideal for measuring convergence rates. The convergence results in the \ell 2-norm are
shown in Figure 3, which shows that increasing \ell gives close to predicted convergence
rates when advecting the Gaussian bells despite the complexity of the deformational
flow test case.

5.1.2. Advection on the torus. For advection on the torus, we use the same
velocity field for both tests. For a given set of points on the torus with inner radius 1

3
and outer radius 1 in Cartesian coordinates (x, y, z), we define the following parametric
coordinates:

\rho =
\sqrt{} 
x2 + y2, \phi =

1

3
tan - 1

\Bigl( y
x

\Bigr) 
, \theta = \phi  - 1

2
tan - 1

\biggl( 
z

1 - r

\biggr) 
,

\rho 1 = 1 +
1

3
cos (2 (\phi  - \theta )) , \rho 2 =  - 2r1 sin (2 (\phi  - \theta )) .

Using these value, we then define the following time-independent tangential velocity
field \bfitu = (u, v, w)T on the torus with respect to the Cartesian basis:

(54)

u(\phi , \theta ) = \rho 1 cos (3\phi ) - \rho 2 (3 sin (3\phi )) ,

v(\phi , \theta ) = \rho 1 sin (3\phi ) + \rho 2 (3 cos (3\phi )) ,

w(\phi , \theta ) =  - 2

3
cos (2 (\phi  - \theta )) .

For a particle placed at the initial position (x0, y0, z0) on the torus, this velocity field
will advect the particle around a (3, 2) torus knot, returning the particle back to its
initial position at T = 2\pi time units. See Figure 4 for an illustration of the solution
path.

We advect two different bell-type initial conditions, similar to the sphere, in
this velocity field. The centers of these initial conditions are at the locations \bfitp 1 =
(1 + 1/3, 0, 0) and \bfitp 2 =  - \bfitp 1. In both test cases, for a node set with N nodes, we
set the time step to \bigtriangleup t = 0.3

umax

\surd 
N
, which roughly corresponds to a Courant number
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Fig. 5. Convergence on the torus for the surface advection equation of two cosine bells in a
steady flow (left) and two Gaussian bells in the same flow (right). The figure shows relative \ell 2-error
as a function of

\surd 
N for different values of stencil n and polynomial degree \ell . The dashed lines

indicate lines of best fit, and their slopes are indicated in the legend as a measure of convergence
rates.

of 0.3; here, umax = 4.1 is the maximum pointwise magnitude of the velocity field
over space. Again, this time step was chosen to approximately allow spatial errors to
dominate over temporal errors introduced by RK3 integration.

Cosine bells. The first test case is the advection of a pair of compactly supported
cosine bells given by the following initial condition:

c(\bfitx , 0) = 0.1 + 0.9(q1 + q2),

where q1 and q2 are compactly supported functions given by

q1,2 =

\Biggl\{ 
1
2 (1 + cos (2\pi r1,2(\bfitx ))) if r1,2(\bfitx ) < 0.5,

0 if r1,2(\bfitx ) \geq 0.5,

and r1,2(\bfitx ) = \| \bfitx  - \bfitp 1,2\| . As on the sphere, the solution has only one continuous
derivative. The convergence results for advecting the cosine bells are shown in Figure
5 (left), which clearly shows that increasing the polynomial degree \ell does not increase
convergence rates when advecting the cosine bell but again does improve the accuracy
(as on the sphere).

Gaussian bells. The second test case involves advecting a pair of Gaussian bells
given by the following initial condition:

c(x, y, z, 0) = e - a(x+(1+1/3))2+y2 - 1.5az2

+ e - a(x - (1+1/3))2+y2 - 1.5az2

,

where a = 20. This centers two Gaussians at the same locations as the cosine bells
from the first test case, with the rapid falloff ensuring locality without destroying
smoothness. The convergence results in the \ell 2-norm are shown in Figure 5 (right),
which again shows that increasing \ell gives close to predicted convergence rates when
the solution is smooth.
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5.2. Surface advection-diffusion. Next, we investigate the convergence prop-
erties of our stabilized RBF-FD method on the surface advection-diffusion equation.
Once again, we focus on the sphere and the torus, using the same node sets as in
the pure advection case. In this set of tests, we simply check convergence against a
manufactured solution on both surfaces. However, since we are now approximating
both first- and second-order differential operators, we set \ell = \xi +1, use \xi = 2, 3, 4, and
set all other parameters according to Algorithm 1. All time-stepping was done using
the semi-implicit backward differentiation formula of order 4 (SBDF4) [2], which is
an IMEX method. While this is nowhere near optimal for high Peclet numbers, we
use it to illustrate that our hyperviscosity formulation can be stepped implicitly for
efficiency. In this set of tests, we use Peclet numbers of 1 and 100 to study the stability
and convergence of our method in different parameter regimes, mimicking similar tests
for Euclidean domains from [36]. For these tests, we select the smaller time step be-
tween one that corresponds to a Courant number of 0.3 and one that attempts to keep
the temporal error below the spatial error. In other words, the time step\bigtriangleup t is given by

\bigtriangleup t = min
\Bigl( 
0.3N - 1

2 , N - \xi 
8

\Bigr) 
,

where N is the number of nodes, \xi is the desired spatial order of convergence, and
the factor of \xi /8 comes from the fourth-order convergence of SBDF4 scheme. Here,

we assume the nodes are quasi-uniform with a spacing of approximately N - 1
2 .

5.2.1. Advection-diffusion on the sphere. For this test, we prescribe a so-
lution and then manufacture a forcing term that makes the solution hold true. Our
prescribed/manufactured solution is generated using the Y 3

4 real-valued spherical har-
monic; more specifically, we shift it and multiply it by a time-dependent term. This
is given by

c(x, y, z, t) = 1 +
3

4

\sqrt{} 
35

2\pi 

\bigl( 
x2  - 3y2

\bigr) 
xz sin(t).

The forcing term is computed analytically as

f =
\partial c

\partial t
+ \bfitu \cdot \nabla \BbbS 2c - \nu \Delta \BbbS 2c,

where \Delta \BbbS 2c =  - 20(c  - 1); the initial condition is shown at time t = 10 - 3 in Figure
6 (left). It is important to note that the forcing term does not contain the hypervis-
cosity operator. This allows us to correctly verify the impact of the hyperviscosity
formulation on convergence to the manufactured solution. The velocity field \bfitu is the
same as the steady velocity field from (53), with \alpha = \pi /2. We ran the simulation
out to final time T = 2\pi (one full period). The results are shown in Figure 7. Going
from left to right across Figure 7, we see that convergence rates increase as the Peclet
number is increased. This occurs due to our choice of \ell = \xi + 1. As we increase the
Peclet number, the influence of the advection operator on transport increases relative
to that of the diffusion operator. Since the advection operator is a first-order differ-
ential operator, this leads to an extra order of accuracy for the mixed character PDE
since approximating the advection operator only requires a choice of \ell = \xi (as seen
in the previous subsection).

5.2.2. Advection-diffusion on the torus. We again prescribe a solution and
then manufacture a forcing term that makes the solution hold true. Our prescribed/
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(a) (b)

Fig. 6. Manufactured solutions at time t = 10 - 3 for surface advection-diffusion tests: (a)
sphere and (b) torus.
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Fig. 7. Convergence on the sphere for the surface advection-diffusion equation at Peclet num-
bers Pe = 1 (left) and Pe = 100 (right). The figure shows relative \ell 2-error as a function of

\surd 
N for

different values of stencil n and polynomial degree \ell . The dashed lines indicate lines of best fit, and
their slopes are indicated in the legend as a measure of convergence rates.

manufactured solution is given by the following smooth function:

c(x, y, z, t) = 1 +
1

8
x
\bigl( 
x4  - 10x2y2 + 5y4

\bigr) \bigl( 
x2 + y2  - 60z2

\bigr) 
sin(t).

This initial condition is shown in Figure 6 (right). The forcing term is computed
analytically as

f =
\partial c

\partial t
+ \bfitu \cdot \nabla \BbbT c - \nu \Delta \BbbT c,

where \BbbT represents the torus. Setting \rho =
\sqrt{} 
x2 + y2, the surface Laplacian of the

manufactured solution is

\Delta \BbbT c =
 - 3

8\rho 2
x
\bigl( 
x4  - 10x2y2 + 5y4

\bigr) \bigl( 
10248\rho 4  - 34335\rho 3 + 41359\rho 2  - 21320\rho + 4000

\bigr) 
sin(t).

(55)
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Fig. 8. Convergence on the torus for the surface advection-diffusion equation at Peclet numbers
Pe = 1 (left) and Pe = 100 (right). The figure shows relative \ell 2-error as a function of

\surd 
N for

different values of stencil n and polynomial degree \ell . The dashed lines indicate lines of best fit, and
their slopes are indicated in the legend as a measure of convergence rates.

Again, the forcing term does not account for the hyperviscosity operator. The velocity
field \bfitu is the same as the steady velocity field given by (54). The simulation was run
out to final time T = \pi . The results are shown in Figure 8. Going from left to
right across Figure 8, we once again see that convergence rates increase as the Peclet
number is increased, though they appear to be higher than predicted even at low
Peclet number. This illustrates that our method is stable under spatial and order
refinement and that the hyperviscosity term vanishes appropriately, thereby allowing
us to recover the manufactured solution. Note that the implicit time-stepping of the
hyperviscosity operator was done purely for illustrative purposes at the higher Peclet
numbers. For sufficiently high Peclet numbers, it would likely suffice to use fully
explicit time-stepping of all terms in the PDE with the RK4 method.

6. Applications. We now present applications of our hyperviscosity model to
advection-diffusion-reaction systems on two surfaces: the red blood cell surface [20, 38,
40] and Dupin's cyclide [20, 40]. In all cases, we advance our simulations in time using
the SBDF2 method [2] with a time step of \bigtriangleup t = 10 - 3. For the spatial discretization,
we use \xi = 4 and once again set all other parameters according to Algorithm 1.
Node sets on the cyclide were generated using the software Distmesh [27], and the
algorithms from [37] were used to generate node sets on the red blood cell. In the
latter case, these consist of generalized spiral nodes on the sphere mapped to the red
blood cell, with supersampling and decimation ensuring quasi uniformity on the red
blood cell.

6.1. Advective Cahn--Hilliard on Dupin's cyclide. We simulate an advec-
tive version of the Cahn--Hilliard equation on Dupin's cyclide. This is a nonlinear
PDE governing phase separation with applications to both engineering and biology.
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Fig. 9. Solution of the advective Cahn--Hilliard equation (56) on Dupin's cyclide. The top left
shows the initial condition, the bottom right shows the final solution at time t = 10, and the other
figures are intermediate snapshots.

The PDE (with artificial hyperviscosity) is given by

\partial c

\partial t
+\nabla \BbbM \cdot (c\bfitu ) = \nu \Delta \BbbM c

3  - \nu \Delta \BbbM c - \nu \beta \Delta 2
\BbbM c+ \gamma 1\Delta 

\gamma 2

\BbbM c,(56)

where \Delta 2
\BbbM is the surface bi-Laplacian and the \gamma 1\Delta 

\gamma 2 term is added solely to cancel
the spurious growth in \nabla \BbbM \cdot (c\bfitu ). The velocity field \bfitu is computed as the surface curl
of a streamfunction \psi whose gradient is given by

\nabla \psi =  - 10 cos
\Bigl( \pi 
2
t
\Bigr) 
[1, 0, 0]

T
,(57)

\bfitu = \bfitn \times \nabla \psi .(58)

Since the velocity field \bfitu is surface-incompressible (\nabla \BbbM \cdot \bfitu = 0) by construction, the
solutions c = 1 and c =  - 1 are critical points of the advection-diffusion-reaction
system, causing the initial condition to separate over time into these two phases. We
simulate (56) on Dupin's cyclide to time t = 10 using a random initial condition
(Figure 9(a)), with \nu = 0.5 and \beta = 0.02. As in [38], we approximate the surface bi-
Laplacian as B = L2, where L is the differentiation matrix for the surface Laplacian.
To balance stability and efficiency, we step the nonlinear terms \nabla \BbbM \cdot (c\bfitu ) and \Delta \BbbM c

3

explicitly in time and step all other terms implicitly. The results for N = 8266 nodes
are shown in Figure 9. While the advection term causes the phases to occasionally
remix, they separate unless forced to remix by the advection term. However, we
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Fig. 10. Conservation error in the numerical solution to the advective Cahn--Hilliard equation
(56) on Dupin's cyclide as a function of time.

observed that the phases remained separated without remixing for a sufficiently large
final time. We also compute the conservation errors in the numerical solution as a
function of time. If c is the numerical solution and c0 is its initial value at time t = 0,
the conservation error is given as | 

\int 
\BbbM (c - c0) | . The integral over the surface \BbbM is

computed using an eighth-order--accurate RBF-based quadrature technique from [34].
The conservation error is shown as a function of time in Figure 10. The figure shows
that the conservation error grows in time. However, we have observed that increasing
the order \xi or the number of nodes N significantly improves these errors, as seen
in [39]. If necessary, the time-stepping can be modified to ensure conservation [28],
but such an experiment is beyond the scope of this work.

6.2. Turing spots with advection on the red blood cell. Finally, we solve a
(reaction-)coupled advection-diffusion-reaction system on an idealized red blood cell.
Specifically, we simulate the pattern-generating Turing system given by

\partial c1
\partial t

+\nabla \BbbM \cdot (c1w) = \delta 1\Delta \BbbM c1 + \alpha c1
\bigl( 
1 - \tau 1c

2
2

\bigr) 
+ c2 (1 - \tau 2c1) + \gamma 1\Delta 

\gamma 2

\BbbM c1,(59)

\partial c2
\partial t

+\nabla \BbbM \cdot (c2w) = \delta 2\Delta \BbbM c2 + \beta c2

\biggl( 
1 +

\alpha \tau 1
\beta 
c1c2

\biggr) 
+ c1 (\eta 1 + \tau 2c2) + \gamma 1\Delta 

\gamma 2

\BbbM c2,(60)

where the hyperviscosity terms are only added to cancel spurious growth modes in the
surface gradient terms. We use the parameters \delta 1 = 0.0011, \delta 2 = 0.0021, \tau 1 = 0.02,
\tau 2 = 0.2, \alpha = 0.899, \beta =  - 0.91, and \eta 1 =  - \alpha , with the initial condition as shown in
Figure 11(a). This set of parameter choices promotes spot formation in the absence
of advection [38, 40]. The velocity field w is simply a scaled version of (57)--(58);
i.e., we set w = 0.1\bfitu . We chose this scaling because the Turing patterns (specifically,
spots) are sensitive to the choice of the velocity field, with a very fast velocity field
inhibiting spot formation. As before, the advection and reaction terms were stepped
explicitly in time, while the hyperviscosity and diffusion terms are stepped implicitly.
The simulations were run out to a final time of t = 800, and the results N = 2553
nodes are shown in Figure 11. We see both the formation of spots from the initial
condition in Figure 11(b) and their motion due to the velocity field (going from Figure
11(b) to Figure 11(c)).

7. Summary and future work. We have presented a novel, automatic proce-
dure for stabilizing discretizations of linear advection and advection-diffusion equa-
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Fig. 11. Solution of the advective Turing equations (59)--(60) on an idealized red blood cell.
The top left shows the initial condition, the bottom right the final solution at time t = 800, and the
other figures are intermediate snapshots. A brighter color indicates a higher concentration of c1,
and a darker color indicates a lower concentration.

tions on manifolds. In particular, we have investigated the procedure in the con-
text of overlapping RBF-LOI discretizations. The geometric, high-order flexibility of
RBF-LOI discretizations when paired with automatically parameterized hyperviscos-
ity yields a numerical algorithm that is efficient, accurate, and locally and globally
stable for all examples we have investigated. We have tested our algorithm on surface
advection and surface advection-diffusion problems on manifolds of codimension 1 em-
bedded in \BbbR 3. The automated choice of hyperviscosity essentially eliminates tedious
and expensive hand-tuning of stabilization parameters when applying our RBF-LOI
algorithm across variegated PDEs and geometries.

The mathematical strategy we have developed for automated tuning of the hy-
perviscosity term provides general guidance for stabilizing both linear and linearized
PDEs on manifolds, can be easily applied to non-RBF--type discretizations, and is
easily generalized to manifolds embedded in arbitrary Euclidean dimensions. Our
analysis also provides diagnostic guidance for determining when discretized advection-
diffusion systems possess sufficient diffusion to obviate the need for stabilizing hyper-
viscosity terms.
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