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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY

JOHN CLEMENS, SAMUEL COSKEY, AND SAMUEL DWORETZKY

ABSTRACT. We study the complexity of the classification problem for countable models of
set theory (ZFC). We prove that the classification of arbitrary countable models of ZFC is
Borel complete, meaning that it is as complex as it can conceivably be. We then give partial
results concerning the classification of countable well-founded models of ZFC.

§1. INTRODUCTION

In set theory we have a number of fundamental methods to construct models of ZFC:
ultrapower constructions, forcing constructions, model-theoretic constructions using com-
pactness, and so on. With such powerful and versatile methods of building models, it is
natural to expect that the classification of models of ZFC is a very complex problem. In
this article we examine the classification problem for countable models of ZFC from the
point of view of Borel complexity theory, which we will describe shortly.

Our first result will be to confirm the above intuition and show that, assuming ZFC has
any models, the classification of countable models of ZFC is “Borel complete”. This level
of complexity will be defined below, but for the moment we note that it is the maximum
conceivable complexity for this problem. Stronger, we will show that for any consistent
theory T extending ZFC, the classification of countable models of T is Borel complete.

The proof of this fact will make use of the close analogy between models of ZFC and
models of PA, together with the fact that the analogous result has already been established
for countable models of PA in [CK10]. In that article, the authors used a construction due
to Gaifman called a “canonical I-model” to establish that for any completion T of PA, the
classification of countable models of T is Borel complete. In the present article, we will
show how Gaifman’s construction may be used to build models of ZFC, and how the
argument of [CK10] thus gives the desired conclusion for models of ZFC.

Of course, Gaifman’s construction produces nonstandard (meaning ill-founded) models
of PA. Our modified construction produces nonstandard models of ZFC as well. Thus it
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 2

is natural to ask what is the complexity of the classification of countable standard (mean-
ing well-founded) models of ZFC. Here the answer must be somewhat more subtle than
before since, for instance, the complexity of countable standard models of T will depend
on the particular completion T of ZFC that one studies. Even the number of countable
standard models depends on T. In fact, Enayat has shown in [Ena02] that the number of
countable standard models of T up to isomorphism may be any cardinal ≤ ℵ1 or contin-
uum.

While we do not identify the precise complexity of the classification of countable stan-
dard models, we will provide several partial results on the subject. For instance, we show
that the complexity of the classification of standard models of ZFC lies somewhat below
the level of a Borel complete classification problem. Additionally, for several particu-
lar completions T of ZFC, we identify bounds on the complexity of the classification of
countable standard models of T.

In order to discuss these results formally, we will need to describe the Borel complexity
theory of classification problems. First, ifL is any countable first-order relational language
then we may form the standard Borel space of all countable L-structures:

XL = ∏
R∈L

2ωa(R)
,

where a(R) denotes the arity of the logical symbol R. If T is any L-theory we study the
Borel subset consisting of just the models of T:

XT = {M ∈ XL | M |= T}.

We then identify the classification problem for countable models of T with the isomor-
phism equivalence relation ∼=T on XT.

In order to compare the complexity of two classification problems, we use the notion
of Borel reducibility. Generally, if X, Y are standard Borel spaces and E, F are equivalence
relations on X, Y respectively, then we say E is Borel reducible to F (denoted E ≤B F) if
there is a Borel function f : X → Y such that

x E x′ ⇐⇒ f (x) F f (x′) .

Intuitively, if E is Borel reducible to F, then we say that the classification problem for
elements of Y up to F-equivalence is at least as complex as the classification problem for
elements of X up to E-equivalence.
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 3

The study of Borel reducibility has provided a series of benchmark equivalence rela-
tions with which to compare a given classification problem. One of the simplest equiva-
lence relations is the equality relation = on 2ω. By the Silver dichotomy, = is the minimum
among all Borel equivalence relations with uncountably many equivalence classes. Just
above = is the almost equality relation E0 on 2ω defined by x E0 x′ iff x(n) = x′(n) for
all but finitely many n. By the Glimm–Effros dichotomy [HKL90], any Borel equivalence
relation is either Borel reducible to = or else E0 is Borel reducible to it.

At the higher end of the complexity spectrum, there is a maximum possible complex-
ity among isomorphism classification problems for classes of countable structures. First,
we say that an equivalence relation E is classifiable by countable structures if E is Borel re-
ducible to ∼=T for some theory T. Then, we say that E is Borel complete if for any first-order
theory T there is a Borel reduction from ∼=T to E. Some well-known examples of Borel
complete classifications include the isomorphism equivalence relations on countable con-
nected graphs and on countable linear orders.

In the next section, we review the argument that the isomorphism relation on the class
of countable models of PA is Borel complete. We then show how to modify the details of
the argument to show that the isomorphism relation on countable models of ZFC is Borel
complete too. In the third section, we study just the standard models of ZFC. We show in
an appropriate sense that the classification of countable standard models is strictly lower
than Borel complete. We also show that if T is a theory of Cohen forcing models, then the
classification of countable standard models of T lies at or above E0 in complexity. Finally,
we show that under a mild hypothesis, if T is the theory of Lω1 then the classification of
countable models of T is not Borel reducible to a Borel equivalence relation.

Acknowledgement. This work represents a portion of the third author’s master’s thesis
[Dwo17]. The thesis was written at Boise State University under the supervision of the
second author, with significant input from the first author. We would like to thank Ali
Enayat and Iian Smythe for a number of helpful communications on the subject.

§2. ARBITRARY MODELS OF ZFC

In this section we show that the classification of countable models of ZFC is Borel com-
plete by adapting the proof of the PA case from [CK10]. We begin by reviewing the key
elements of the proof of the PA version.

As we have said, the argument relies on the details of a construction due to Gaifman
called a canonical I-model of PA. The construction begins with the following definition.
Let M |= PA and let p(v) be a type (of arity 1) over M. Then p is said to be minimal if it is:
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 4

◦ unbounded: for all a ∈ M we have (a < v) ∈ p(v); and
◦ indiscernible: if M ≺ N and a1 < · · · < an and b1 < · · · < bn are two sequences of

realizations of p(v) in N, then N(a) ≡ N(b).

Gaifman showed that every model M |= PA admits a minimal type.
Next if M |= PA and I is a given linear ordering, the canonical I-model M(I), constructed

with respect to some fixed minimal type p over M, is generated by M together with an
I-ordered sequence of realizations of p. Canonical I-models have many useful properties,
but for our purposes it is enough to know the following two facts:

(a) The realizations of p in M(I) form a sequence of order indiscernibles; and
(b) The ordertype I can be recovered from any isomorphic copy of M(I). (Specifically

I will be the ordertype of the set of gaps in M(I), which we will define and see
below.)

It follows from property (a) that I ∼= I′ implies M(I) ∼= M(I′), and from property (b) that
M(I) ∼= M(I′) implies I ∼= I′. Thus Coskey–Kossak were able to conclude that there exists
a Borel reduction from the class of countable linear orders to the class of countable models
of PA which carries I 7→ M(I).

We now aim to adapt this construction to the case of models of set theory. We begin
with the appropriate analog of the notion of a minimal type. First, if M |= ZFC and p(v)
is a type with parameters from M, we will say p(v) is an ω-type over M if (v < ω) ∈ p(v).

Definition 2.1. Let M |= ZFC and let p(v) be an ω-type over M. We say that p(v) is
ω-minimal if it is:

◦ ω-unbounded: for all α ∈ ωM we have (α < v) ∈ p(v); and
◦ indiscernible: if M ≺ N and α0 < · · · < αn and β0 < · · · < βn are two sequences

of realizations of p(v) in N then N(ᾱ) ≡ N(β̄).

The following is the analog of Gaifman’s theorem, and the proof is a straightforward
adaptation of the classical version. Here we summarize [KS06, Thoerem 3.1.2]; alterna-
tively see [Gai76] or [Won14, Proposition 11.4].

Proposition 2.2. For any M |= ZFC, M admits an ω-minimal type.

Proof. Let ϕi(x̄) be an enumeration of the formulas. We inductively construct a sequence
of formulas θi(v) satisfying:

(a) θi+1(v)→ θi(v);
(b) for all α ∈ ωM there exists β ∈ ωM such that α < β and θi+1(β), and;
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 5

(c) θi(v) “settles” ϕi in the sense that M satisfies for all increasing x̄ ∈ ω we have∧
j θi(xj)→ ϕi(x̄), or else for all increasing x̄ ∈ ω we have

∧
j θi(xj)→ ¬ϕi(x̄).

To do so we use Ramsey’s theorem, as formalized in ZFC, repeatedly. That is, given θi(v),
regard it as an unbounded subset of ωM. The formalized Ramsey theorem then implies
it has an unbounded subset, definable by some θi+1(v), which is homogeneous for the
partition determined by ϕi(x̄).

Now let p(v) be the deductive closure of the θi(v) and α < v for α ∈ ωM. Then p(v)
is consistent and ω-unbounded by (a),(b), and it is not difficult to confirm that p(v) is
indiscernible by (c). Thus p(v) is ω-minimal. �

We will also need the fact that ω-minimal types are ω-strongly definable: for every for-
mula ϕ(v, z) ∈ LM there exists a formula θ(v) ∈ p(v) such that

M |= ∀z ∈ ω [∀∞v ∈ ω(θ(v)→ ϕ(v, z)) ∨ ∀∞v ∈ ω(θ(v)→ ¬ϕ(v, z))]

Here, ∀∞v ∈ ω means “for all v outside a bounded subset of ω.” Once again, the
proof is a straightforward adaptation of the classical version, we follow Exercise 3.6.5
and Lemma 3.1.13 of [KS06].

Proposition 2.3. If M |= ZFC and p(v) is an ω-minimal type over M, then p(v) is ω-strongly
definable.

Proof. Let ϕ(v, z) be given. By indiscernibility, we can find a formula θ(v) ∈ p(v) such
that

M |= ∀x∀y∀v [(θ(x) ∧ θ(y) ∧ θ(v) ∧ x < y < v)→ (∀z ≤ x(ϕ(y, z)↔ φ(v, z)))]

Now given z ∈ ωM, suppose that M |= ¬∀∞v ∈ ω(θ(v) → φ(v, z)). Then we can find
x, y ∈ ωM such that z ≤ x ≤ y, and θ(x), θ(y), ¬φ(y, z) are true in M. By the choice of θ,
if v ∈ ωM is such that y < v and θ(v) is true in M, then ¬φ(v, z) is true in M too. Thus we
have M |= ∀∞v ∈ ω(θ(v)→ ¬φ(v, z)), as desired. �

In order to construct the models M(I), we will assume M is a model of ZFGC, that is,
ZF together with the global choice axiom. This means M is a structure in the expanded
language with an additional function symbol F, and F is interpreted as a function with the
property that for all nonempty x ∈ M we have M |= F(x) ∈ x. The global choice axiom
helps us mimic the PA arguments because the theory ZFGC has built-in Skolem functions.

The next definition, which we promised earlier, is the key to recovering the order type
of I from the isomorphism type of M(I).

Definition 2.4. Let M |= ZFGC, and let β ∈ ωM. We define the following sets:
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 6

◦ Let Mω(β) = {α ∈ ωM : for some Skolem function t, t(β) ∈ ωM ∧ α < t(β)}.
◦ Let Mω[β] = {α ∈ ωM : for any Skolem function t, if t(α) ∈ ωM then t(α) < β}.

We then define the ω-gap of β as gapω(β) = Mω(β)r Mω[β].

The following result shows how minimal types and gaps are related; see also [KS06,
Lemma 3.1.18].

Proposition 2.5. Let M |= ZFGC and let p(v) be an ω-minimal type over M. Then p(v) is
rare, which means that if M ≺ N and α, β ∈ ωN are distinct witnesses of p(v), then α and β lie
in distinct ω-gaps.

Proof. Assume α < β, and let N′ be an elementary extension of N with some γ ∈ ωN′ such
that β lies below gapω(γ). Then for any Skolem function t, we have t(β) < γ. Since p(v)
is indiscernible, we have t(α) < β too. Thus α, β lie in distinct ω-gaps. �

Before we construct the models M(I) along a linear order I, we first consider the case
of adjoining a single new witness for p to a model M. Let M |= ZFGC and let p(v) be an
ω-minimal type over M. In the following result we will let M({γ}) denote the elementary
extension of M obtained by adjoining a single witness γ for p(v). That is, M({γ}) is the
prime model of the elementary diagram of M together with the sentences p(γ). The prime
model exists thanks to the built-in Skolem functions of ZFGC.

The following proposition is a straightforward analog of [Gai76, Proposition 4.8]; we
follow the proof in [Won14, Proposition 10.4].

Lemma 2.6. Let M |= ZFGC, p(v) be an ω-minimal type over M, and let M({γ}) be as above.
Then, ωM({γ}) = ωM ∪ gapω(γ).

Proof. Let β ∈ ωM({γ}), and write β = t(γ) for some Skolem term t. By ω-strong defin-
ability, we can find θ(v) ∈ p(v) such that

M |= ∀z ∈ ω [(∀∞v ∈ ω(θ(v)→ z = t(v))) ∨ (∀∞v ∈ ω(θ(v)→ z 6= t(v)))]

First suppose M satisfies ∀z ∈ ω(∀∞v ∈ ω(θ(v) → z 6= t(v))). Then M({γ}) satisfies
the same sentence. Let s(z) be the least v such that θ(v) → z 6= t(v). Since it is true in
M({γ}) that θ(γ) → β = t(γ), we must have that s(β) > γ. Thus s is a Skolem function
witnessing that β ∈ gapω(γ).

Next suppose that M satisfies ∃z ∈ ω(∀∞v ∈ ω(θ(v) → z = t(v))). Then we can find
m0, m ∈ M such that M satisfies ∀v(v ≥ m0 ∧ θ(v) → m = t(v)). It follows that M({γ})
satisfies the same sentence, and we conclude that β = t(γ) = m ∈ M, completing the
proof. �
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 7

We remark that the lemma implies M({γ}) is an ω-end extension of M, meaning for any
α ∈ ωM and any β ∈ ωM({γ}) r ωM we have α < β.

The following result describes the construction of the model M(I). It also asserts the
key property which will allow us to recover the ordertype of I from the isomorphism type
of the model M(I).

Theorem 2.7. Let M |= ZFGC and p(v) be an ω-minimal type over M. Let (I,<) be a linearly
ordered set. Then there is an ω-end extension M ≺ N generated over M by a set X = {αi | i ∈
I} ⊂ N such that αi < αj for all i < j and ωN = ωM ∪⋃

i∈I gapω(αi).

Proof. We first construct the extension N. We form the theory

T = Diagel(M) ∪
⋃
i∈I

p(αi) ∪ {αi ∈ αj | i < j ∧ i, j ∈ I}

where each αi is a new constant symbol. We then let N be the prime model of T, that is,
the Skolem hull of X = {αi | i ∈ I} in any model of T. By the argument of Lemma 2.6, we
have that N is an ω-end extension of M.

It remains to show that ωN = ωM ∪ ⋃
i∈I gapω(αi). For this, let β ∈ ωN . Since N is

a Skolem hull, we can find a formula η in the language of set theory and αi1 , ..., αin ∈ X
such that β = η(αi1 , ..., αin). Now, let N0 denote the Skolem hull of M ∪ {αi1 , . . . , αin}. By
Proposition 2.5, the gaps of αi0 , . . . αin are disjoint. So, we have that gapN0

(αi1) < · · · <
gapN0

(αin). Using Lemma 2.6 inductively, we conclude that ωN0 = ωM ∪⋃
j≤n gapN0

(αij).
Now, it follows that β is an element of ωM or one of the gaps gapN0

(αij) for some
j ≤ n. To finish the proof, we note that N0 and N have the same Skolem functions. So, we
conclude that β ∈ ωM or β ∈ gapN(αi) for some i ∈ I. Thus ωN = ωM ∪ ⋃

i∈I gapω(αi).
�

As in the PA case, we will use M(I) to denote elementary extension N constructed in
Theorem 2.7. We now use the construction of M(I) to obtain a Borel reduction from the
isomorphism relation on the class of countable linear orders to the isomorphism relation
on the class of countable models of set theory. In particular, this will show that the iso-
morphism relation on the class of countable models of set theory is Borel complete.

Theorem 2.8. Let T be a consistent completion of ZFGC. Then isomorphism relation on countable
models of T is Borel complete.

Proof. Any consistent completion of ZFGC has a prime model M. We need to show that:

(a) The construction of M(I) is Borel;
(b) I ∼= I′ ⇒ M(I) ∼= M(I′), and;
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 8

(c) M(I) ∼= M(I′)⇒ I ∼= I′.

For item (a), we observe that the construction of M(I) can be carried out as a Henkin
construction followed by taking a Skolem hull. It is not difficult to see that both of these
procedures may be carried out in a Borel fashion.

For item (b) we note that the generating set {αi} of M(I) over M is a set of order in-
discernibles. It is a well-known property of order indiscernibles that order isomorphisms
between sequences of order-indiscernibles extend to isomorphisms between the models
they generate (see for instance [Mar02, Lemma 5.2.6]).

Finally, item (c) follows from the gap information provided in Theorem 2.7. To begin,
note that an isomorphism α : M(I) ∼= M(I′) induces an order-preserving isomorphism
from the set of ω-gaps of M(I) to the set of ω-gaps of M(I′). Since ω-minimal types are
rare, we know that there is just one witness for p(v) in each nontrivial ω-gap of M(I) or
M(I′). Since the witnesses of p(v) are of ordertypes I and I′ respectively, α induces an
order-preserving isomorphism I ∼= I′.

We have thus established that there is a Borel reduction ∼=LO ≤B ∼=T, and in particular
that ∼=T is Borel complete. �

Since the consistency of ZFC implies the consistency of ZFGC, it is a consequence of
the theorem that if ZFC is consistent then the classification of all models of ZFC is Borel
complete. Of course, it is natural to ask whether Theorem 2.8 holds for an arbitrary com-
pletion T of ZFC which does not necessarily entail global choice. We can certainly say that
there are other hypotheses on T which will suffice. For example if T has a prime model
or a model with just a finite number of ω-gaps, then the above proof will go through with
minor modifications.

§3. WELL-FOUNDED MODELS OF ZFC

In this section we study the classification of well-founded models of ZFC. If T is a
completion of ZFC and T possesses well-founded models, we let WFT denote the set of
codes for well-founded models of T, and∼=WFT denote the isomorphism relation restricted
to WFT.

We remark that WFT is not a Borel subset of the space of countable models of T, and
so we must be careful how we study ∼=WFT with respect to Borel reducibility. While the
domain of a Borel reduction function should always be a standard Borel space, the range
may be contained in any subset such as WFT. This means it still makes good sense to ask
questions about lower bounds. For instance we can ask whether ∼=WFT is Borel complete
in the sense that some Borel complete equivalence relation is Borel reducible to it. On
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 9

the other hand, in order to ask questions about upper bounds it is usual to use a some-
what broader class of reduction functions than just the Borel reductions. We will use the
absolutely ∆1

2 functions, described below.
Our first result establishes that the classification of well-founded countable models of

set theory is properly less complex than the classification of arbitrary countable models.

Proposition 3.1. If T is any completion of ZFC, then ∼=WFT is not Borel complete.

Proof. We first note that the set WFT of well-founded countable models of T is a Π1
1 set,

with rank function inherited from the usual rank function for well-founded binary rela-
tions. In fact, the rank function is simply M 7→ o(M), the ordertype of the ordinals of
M.

Now suppose towards a contradiction that ∼=WFT is Borel complete. Then there is, for
instance, a Borel reduction f from the isomorphism relation∼= on the set 2ω×ω of all count-
able binary relations to ∼=WFT. The range f (X) is a Σ1

1 subset of WFT. By the bounded-
ness theorem [Kec95, Theorem 31.2], it follows that the rank function restricted to f (X) is
bounded by some ordinal α.

The set WFTα of models of T of rank bounded by α is a Borel set, and we claim the
isomorphism relation on WFTα is Borel reducible to the isomorphism relation on codes
for countable well-founded trees of rank α. For this, given an element M ∈ WFTα we can
produce in a Borel way a code for a tree TM which represents the model M in a standard
way. Thus the root node of TM represents M itself, the children of the root represent the
elements of M, and so on, and all leaves of TM represent the empty set. The tree TM has
the same ordinal rank as that of M. Moreover, models M and M′ are isomorphic if and
only if the codes for the corresponding trees TM and TM′ are isomorphic. This establishes
the claim.

Now it is well-known that the isomorphism relation on well-founded trees of any fixed
countable rank is Borel (these equivalence relations are studied in [FS89]). It follows from
the claim that the isomorphism relation on WFTα is Borel as well. Thus we conclude
that the Borel complete equivalence relation ∼= is Borel reducible to a Borel equivalence
relation. But this contradicts the well-known fact from [FS89] that any Borel complete
equivalence relation is not itself Borel. �

In the article [Ena02], the author shows that the number of isomorphism equivalence
classes in WFT can have several values, such as 0, finite, countable, ℵ1, and continuum. In
the rest of this section we consider the question of what is the Borel complexity of ∼=WFT

for several special theories T.
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THE CLASSIFICATION OF COUNTABLE MODELS OF SET THEORY 10

Recall that E0 denotes the equivalence relation defined on 2ω by x E0 x′ if and only
if x(n) = x′(n) for all but finitely many n. As stated in the introduction, the Glimm-
Effros dichotomy states that for any Borel equivalence relation E, either E is smooth (Borel
reducible to =) or else E0 is Borel reducible to E.

Theorem 3.2. Assume M is a countable well-founded model of ZFC, let g be Cohen generic over
M, and let T = Th(M[g]). Then there is a Borel reduction from E0 to ∼=WFT.

Proof. Let X ⊂ 2ω be the set of reals of V which are Cohen generic over M. Define the
equivalence relation E on X by

g1 E g2 ⇔ M[g1] = M[g2].

Since the forcing relation is definable in M, and since g1 E g2 iff g1 ∈ M[g2] and g2 ∈
M[g1], one can conclude that E is arithmetic as a set of pairs and in particular E is a Borel
equivalence relation. (Alternatively, see [Gri75, Theorem 3.5.1].) In fact E is a countable
Borel equivalence relation, meaning each of its equivalence classes is countable.

We first show that E0 ≤B E. For this, if g1, g2 ∈ X and g1 E0 g2, then g1 and g2 are
definable from one another and it follows that M[g1] = M[g2]. This implies that the re-
striction E0 � X is a subrelation of E. Using some basic facts about E0 and countable Borel
equivalence relations (note that X is comeager and see [Gao09, Propositions 6.1.9, 6.1.10]),
we can conclude that E is not smooth. It then follows from the Glimm–Effros dichotomy
that E0 ≤B E.

Next we show that E ≤B ∼=WFT. Consider the map g 7→ x carrying a Cohen generic
real g over M to a code x ∈ 2ω×ω for M[g]. The mapping is Borel; here we use a code for
M as a parameter, together with the definability of the forcing relation. Clearly we have
g E g′ =⇒ M[g] ∼= M[g′]; conversely if M[g] ∼= M[g′], then since the structures are
transitive, we have M[g] = M[g′] and so g E g′. Thus we have shown E ≤B ∼=WFT.

Putting the results of the last two paragraphs together, we conclude that E0 ≤B ∼=WFT.
�

We now turn to the study of a second theory T. In this case ∼=WFT will be compared
with the equivalence relation Eω1 . The relation Eω1 is equivalence of codes for count-
able ordinals, that is, the isomorphism equivalence relation on the set of countable well-
ordered relations. The domains of both ∼=WFT and Eω1 are non-Borel sets, so we shall
need to compare them with respect to absolutely ∆1

2 reduction functions. Here a function
is absolutely ∆1

2 if it possesses Σ1
2 and Π1

2 definitions which are equivalent in all forcing
extensions.
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Theorem 3.3. Assume 0] exists, and let T = Th(Lω1). Then T is a completion of ZFC, and there
exists an absolutely ∆1

2 reduction from Eω1 to ∼=WFT.

Proof. By [Jec03, Corollary 18.3], the existence of 0] implies that ωV
1 is inaccessible in L. It

follows that T is a completion of ZFC.
For the reduction we first show that there is a continuous mapping g with the property

that if x is a code for a countable ordinal α, then g(x) is a code for a countable ordinal β

such that α ≤ β and Lβ |= T. In order to do so, let G be the game in which Players I and II
alternate playing digits to construct x, y ∈ 2ω. Player II wins if either x /∈ WO, or; x, y are
codes for ordinals α, β, α ≤ β, and Lβ |= T. We claim that Player II has a winning strategy
for G. Admitting this claim, we let g be the continuous mapping which takes a play x of
Player I to the corresponding play y of Player II according to the strategy.

To establish that Player II has a winning strategy, first observe that the winning condi-
tion for G is a Boolean combination of lightface analytic sets. It follows from the existence
of 0] together with a result of Martin [Kan03, Theorem 31.4] that G is determined. Hence
it is enough to show that Player I does not have a winning strategy for G. To see this, first
note that by a simple reflection argument there are unboundedly many β < ω1 such that
Lβ |= T. Now suppose Player I does have a winning strategy for G and let S ⊂WO be the
set of all reals x constructed according to the strategy. Then S is a Σ1

1 subset of WO and
so the boundedness theorem [Kec95, Theorem 31.2] implies S is bounded in ω1. This is a
contradiction, since Player II can now defeat the strategy by playing a code y for some β

above S such that Lβ |= T.
Next we will show that there exists an absolutely ∆1

2 function f such that if x is a code
for an ordinal α, then f (x) is a code for Lβ, where β is the αth ordinal such that Lβ |= T. It
is clear that such a function f serves as the desired reduction.

In order to define such an f in an absolutely ∆1
2 way, we will use the infinite time Turing

machine model. Briefly, an infinite time Turing machine is an extension of the classical
Turing machine, with finitely many states, and tapes for input, output, scratch, and an
oracle. At stage ω the machine is not considered to have diverged but continues running.
In fact at any limit stage, the machine is put in a special limit state, the tape pointers are
reset to the left, and the tape cells are replaced with the limit superior of their values so far.
We refer the reader to [HL00] for other background on infinite time Turing computation.
By [CH11, Theorem 2.6], any function which may be computed by an oracle infinite time
Turing machine is absolutely ∆1

2.
Let M be an infinite time Turing machine which runs as follows. Let x be a given input

and assume x is a code for an ordinal α. The machine M will recursively construct for
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each i ≤ α a code yi for an ordinal βi. If the yi have been constructed for i < j, construct
a code z for supi<j βi and evaluate g(z) (M can evaluate a continuous function by [CH11,
Theorem 2.1]). For each ordinal β between supi<j βi and the value of g(z), M constructs
a code for Lβ (M can construct such a code by [HMSW08, Theorem 7]). Furthermore M
checks whether Lβ |= T (M can evaluate arithmetic expressions by [HL00, Theorem 2.1]).
By the construction of g, the answer is guaranteed to be Yes for some β, and the first time
this happens we let yj = the code for that β. When the final code yα for βα has been
calculated, M outputs a code for Lβα

. The construction guarantees that the output is a
code for Lβ where β is the αth ordinal such that Lβ |= T, as desired. �

The next result uses the above lower bound to provide a further consequence for the
complexity of the classification of well-founded models of T.

Theorem 3.4. Assume 0] exists, and let T = Th(Lω1). Then∼=WFT is not absolutely ∆1
2 reducible

to any Borel equivalence relation E.

Proof. By the previous theorem it is sufficient to show that there is no absolutely ∆1
2 re-

duction from Eω1 to a Borel equivalence relation. Indeed, if there were such a reduction
f , then it would be possible to find an absolutely ∆1

2 injection F from codes for ordinals
to codes for sets of reals of bounded Borel rank. (In fact one can take F(x) to be a code
for [ f (x)]E.) However, this contradicts the remark in the last paragraph of Section 3 of
[Hjo98], which states that no such mapping exists. �
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