
Boise State University Boise State University

ScholarWorks ScholarWorks

Civil Engineering Faculty Publications and
Presentations Department of Civil Engineering

7-2022

A Deep Learning Image Segmentation Model for Agricultural A Deep Learning Image Segmentation Model for Agricultural

Irrigation System Classification Irrigation System Classification

Ehsan Raei
Shiraz University

Ata Akbari Asanjan
Universities Space Research Association (USRA) at NASA Ames Research Center

Mohammad Reza Nikoo
Sultan Qaboos University

Mojtaba Sadegh
Boise State University

Shokoufeh Pourshahabi
Shiraz University

See next page for additional authors

Publication Information Publication Information
Raei, Ehsan; Asanjan, Ata Akbari; Nikoo, Mohammad Reza; Sadegh, Mojtaba; Pourshahabi, Shokoufeh;
and Adamowski, Jan Franklin. (2022). "A Deep Learning Image Segmentation Model for Agricultural
Irrigation System Classification". Computers and Electronics in Agriculture, 198, 106977. https://doi.org/
10.1016/j.compag.2022.106977

This is an author-produced, peer-reviewed version of this article. © 2022, Elsevier. Licensed under the Creative
Commons Attribution-NonCommercial-No Derivative Works 4.0 International license. The final, definitive version of
this document can be found online at Computers and Electronics in Agriculture, https://doi.org/10.1016/
j.compag.2022.106977

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/civileng_facpubs
https://scholarworks.boisestate.edu/civileng_facpubs
https://scholarworks.boisestate.edu/civileng
https://doi.org/10.1016/j.compag.2022.106977
https://doi.org/10.1016/j.compag.2022.106977
https://doi.org/10.1016/j.compag.2022.106977
https://doi.org/10.1016/j.compag.2022.106977

Authors Authors
Ehsan Raei, Ata Akbari Asanjan, Mohammad Reza Nikoo, Mojtaba Sadegh, Shokoufeh Pourshahabi, and
Jan Franklin Adamowski

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/civileng_facpubs/223

https://scholarworks.boisestate.edu/civileng_facpubs/223

1

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

A Deep Learning Image Segmentation Model for Agricultural

Irrigation System Classification

Ehsan Raei

Research Assistant

Department of Civil and Environmental

Engineering

Shiraz University

Shiraz, Iran

and

PhD Student

Department of Bioresource Engineering

McGill University

Saint-Anne-de-Bellevue, QC, Canada

ehsan.raeiezabadi@mail.mcgill.ca

Ata Akbari Asanjan

Research Scientist

Universities Space Research Association (USRA)

NASA Ames Research Center

Mountain View, CA, USA

ata.akbariasanjan@nasa.gov

Mohammad Reza Nikoo

Associate Professor

Department of Civil and Architectural Engineering

Sultan Qaboos University

Muscat, Oman

m.reza@squ.edu.om

Mojtaba Sadegh

Assistant Professor

Department of Civil Engineering

Boise State University

Boise, ID, USA

mojtabasadegh@boisestate.edu

Shokoufeh Pourshahabi

Researcher

Department of Civil and Environmental

Engineering

Shiraz University

Shiraz, Iran

pshahabi@shirazu.ac.ir

Jan Franklin Adamowski

Department of Bioresource Engineering

McGill University

Sainte-Anne-de-Bellevue, QC, Canada

jan.adamowski@mcgill.ca

Abstract

Effective water management requires a large-scale understanding of agricultural irrigation

systems and how they shift in response to various stressors. Here, we leveraged advances in

Machine Learning and availability of very high resolution remote sensing imagery to help

resolve this long-standing issue. To this end, we developed a deep learning model to classify

irrigation systems at a regional scale using remote sensing imagery. After testing different

model architectures, hyper parameters, class weights and image sizes, we selected a U-Net

architecture with a Resnet-34 backbone for this purpose. We applied transfer learning to

increase training efficiency and model performance. We considered four irrigation systems

as well as urban and background areas as land use/cover classes; and applied the model to

8,600 very high resolution (1 meter) images, labeled with ground-truth observations of

irrigation types, in a case study from Idaho, USA. Images were obtained from the US

Department of Agriculture’s National Agriculture Imagery Program. Our model achieved

state-of-the-art performance for segmentation of different classes on the train data (85% to

94%), validation data (72% to 86%), and test data (70% to 86%), which attests to the efficacy

of the model for the segmentation of images based on spatial features. Aside from leveraging

deep learning and remote sensing for resolving the standing real-world problem of multiple

irrigation type segmentation, this study develops and publicly shares labeled data, as well as

a trained deep learning model, for irrigation type segmentation that can be

applied/transferred to other regions globally. Furthermore, this study offers novel

information about the impacts of transfer learning, imbalanced training data, and efficacy of

various model structures for multiple irrigation type segmentation.

Keywords: irrigation systems, remote sensing, deep learning, U-Net architecture, image segmentation

2

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Highlights:

A deep learning model was developed for irrigation type segmentation

High resolution imagery can inform irrigation system classification

Provided labeled training data and model can be transferred to other regions

Irrigation system shifts can be monitored regionally and globally

1. Introduction

Food security is closely tied to the efficiency of freshwater consumption by the agricultural sector in a warming

climate with an ever-increasing dependence on irrigation (Crist et al., 2017; Sadegh et al. 2020). Irrigation systems

modulate agricultural productivity (Tang et al., 2020a), and are associated with significant implications for the

soil, water resources, sustainable development and the environment (Zhang et al., 2018; Torabi Haghighi et al.

2020; de Albuquerque et al., 2021b). Efficient irrigation systems lead to a substantial decrease in labor and water

needs in comparison with traditional surface irrigation methods (Zhang et al., 2018). Hence, mapping farmlands

with different irrigation systems is essential for understanding regional water needs, agricultural production, water

resources consumption and vulnerability to climatic extremes (Tang et al., 2020c; Zhou et al. 2021; Loddo et al.

2021). Detailed information on the distribution of irrigation systems and how they shift in response to socio-

environmental stressors are also essential for water and food planning, water resources allocation, and land

use/cover change investigations (Zhang et al., 2018; Perea et al. 2021; Rad et al. 2022).

Most farmlands are remote and are characterized by different shapes, area, crop types, spatial features, and

irrigation system types, making it infeasible to monitor farmlands at regional to global scales using ground

observation due to excessive costs, especially given the long-term transient nature of farming characteristics

(Islam et al., 2017). Remote sensing allows for cost- and time-effective land use monitoring at local to global

scales (Kamilaris and Prenafeta-Boldú, 2018), especially in the face of advances in cloud computing and

geospatial analysis that have resolved challenges of large data and computational limits (Gorelick et al., 2017;

Rad et al. 2021a,b; Alizadeh et al. 2021).

Availability of very high resolution remote sensing imagery, such as the United States Department of

Agriculture’s (USDA) National Agriculture Imagery Program (NAIP) dataset, as well as the constellation of

commercial very high resolution satellites, offer a great opportunity to efficiently monitor irrigation systems at

large scales. NAIP imagery is free to the public and offers very high resolution (1 meter, although different in

various years) imagery with optical (Red, Green, and Blue) and infrared bands, which is acquired during growing

seasons by aircraft (Powell, 2009). Various studies have leveraged this remotely sensed data for investigations of

cropland and urban areas, such as Patel et al. (2015), Johansen et al. (2015), Dong and et al. (2016), Liu et al.

(2018), Tang et al. (2021b), and Teluguntla et al. (2018). In recent years, advances in deep learning algorithms

have also presented unprecedented opportunities to extract geospatial features more efficiently, precisely and

effectively than ever from remote sensing images. Deep learning has been applied in different fields, including,

for example, land cover/use classification (Scott et al., 2017; Helber et al., 2018; Cheng et al., 2018a; Zhou et al.,

2019; Cerron et al., 2020; and Tong et al., 2020), soil moisture content estimation (Song et al., 2016; Lee et al.

2019), plant disease detection (Ferentinos, 2018; Saleem et al., 2020; Tassis et al. 2021), crop type classification

(Kussul et al., 2017; Wang et al., 2020; Hasan et al. 2021; Li et al., 2020; Zhou et al., 2019; Teimouri et al., 2019;

Crisóstomo et al., 2020), and crop yield estimation (Kuwata and Shibasaki, 2015; Wang et al., 2018; Elavarasan

and Vincent, 2020). Recently, a few studies focused on mapping irrigation systems using deep learning (Zhang et

al., 2018; de Albuquerque et al., 2020; Saraiva et al., 2020; and Tang et al., 2020a), but they mainly investigated

center pivot (CP) irrigation system (Carvalho et al., 2020).

Despite the significant milestones achieved in application of Machine Learning and remote sensing in the field of

agriculture, developing effective and accurate remote sensing-based Machine Learning models to distinguish

various irrigation systems beyond the traditional focus on center pivot irrigation remains a challenge, especially

in areas in which wildland and urban areas intermingle with agricultural fields. The goal of this research was to

develop a novel deep learning model for the segmentation of four agricultural irrigation systems, as well as

background/wildland and urban areas, based on very high resolution remote sensing imagery. The main

contributions of this study are:

1. Leveraging advances in Machine Learning and remote sensing to classify different irrigation types,

beyond merely center pivot, at a large scale.

3

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

2. Developing a machine learning-ready dataset for use in irrigation classification/segmentation

studies. This includes airborne imagery with a 1-meter resolution labeled with four irrigation types

as well as urban and wildland areas.

3. Investigating the role of Transfer Learning, imbalanced training data, and various deep learning

model structures on the efficacy and efficiency of segmentation of different irrigation systems.

The outcomes of this research are essential for policy-makers and agricultural managers in support of land and

water management decisions. In the following, Section 2 introduces the study area and the architecture of the

proposed model. In Section 3, we discuss the results and Section 4 summarizes the concluding remarks.

2. Data and Analytical Steps

In this section we briefly discuss our modeling approach, data and study area. Background information about

neural networks and convolutional models are provided in Sections S1-S2, Table S1 and Figs. S1-S11 in the

Supplementary Information.

2.1. Study Area

The study area is located between 43.45° and 43.81° N latitude, and 62.99° and 63.81° W longitude, in Ada and

Canyon counties in Idaho, USA. We considered six different classes of land use/cover and irrigation types in the

study area (also see Fig. S12 in the Supplementary Information), as follows:

Class 1: Irrigated areas with a Center-Pivot (CP) irrigation system

Class 2: Irrigated areas with a Linear sprinkler Irrigation (LI) system

Class 3: Irrigated areas with a Center Pivot with Swing Arm (CPSA) irrigation system

Class 4: Irrigated areas with a furrow Surface Irrigation (SI) system

Class 5: Urban Area (UA)

Class 6: Wildland/Background area (BG)

2.2. Data Preparation

In this study, we used high resolution (1 meter) imagery from the National Agriculture Imagery Program (NAIP),

which acquires aerial imagery during the agricultural growing seasons in the continental U.S. every three years

(used to be a five-year cycle before 2008). The images contain 4 bands of Red, Green, Blue, and Near-infrared.

To develop a Machine Learning-ready dataset, we first randomly generated more than 8,600 coordinates within

the study region to serve as center points of NAIP image patches. The size of each image patch was set at 400×400

pixels (400x400 meters). We then employed Arcpy under ArcGIS python engine to label each pixel in each image

using geo-referenced shapefiles of irrigation types that were acquired through on-the-ground field investigation

in 2011 by the U.S. Department of Agriculture’s Agricultural Research Service in Boise, ID, U.S. We also used a

2011 version of NAIP imagery from the study area.

We then divided the imagery collection into three sets, with 5,700 images for training (66%), 1,450 images for

validation (17%) and 1,450 images for testing (17%), as presented in Fig. S13 in the Supplementary Information.

The data split was designed to ensure a similar proportion of irrigation classes in the train, validation, and test

datasets. Table 1 enlists the area of each of the six classes. As an example, Fig. S14 in the Supplementary

Information shows four samples of the original images compared to the labeled images.

We discarded all images with missing pixels. We ensured that the overlap between the various images was

minimal (mostly <10 m) to reduce the redundant information. This minimal overlap enabled capturing information

from image edges and it prevents the loss of information for borders (de Albuquerque et al., 2020a). Finally, we

used original channel values (RGB) without preprocessing, noting that the model included a batch normalization

component.

4

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Table 1. Area (m2) of each class in the train, validation, and test datasets

 Area (× 384 × 384 m2) in each class

 BG SI LI CP CPSA UA

Train 1611 1820 300 661 622 709

Validation 458 493 78 150 120 202

Test 340 510 70 141 127 195

2.3. Model Architecture

For the segmentation model, we employed a U-Net architecture proposed by Ronneberger et al. (2015). The model

consists of an encoder and a decoder built by Convolutional blocks. The U-Net architecture offers a unique

property (i.e., skip connections), which sets it apart from other encoder-decoder models. At each spatial resolution

level of the U-Net model, the skip connection copies the activation outputs to the same resolution level in the

decoder (Fig. 1). The skip connections prevent a common problem in image-to-image segmentation called “loss-

of-resolution”, where the input image is encoded to a coarser level and loses important spatial information in the

upsampling process.

We note that increasing the number of layers (deepening the model) increase the number of parameters, i.e.,

degrees of freedom, enabling the model to fit to more complex problems (He et al., 2016). This, however, prompts

a “vanishing gradient” in a gradient-based learning framework after a certain number of layers, and in turn,

impedes the model from learning from the data (Glorot and Bengio, 2010). In such situations, neural network’s

weights that are tuned proportionally to the partial derivative of the loss function cannot be updated effectively

(He et al., 2016). In other words, as the gradient flows are updated from the last layers to the first, their values

diminish. Thus, the earlier layers’ weights do not update, and the model’s performance does not improve by

iteration (He et al., 2016; Pedamonti, 2018). Therefore, it is not possible to deepen a model beyond a certain level,

because it loses its generalization capability. Skip (residual) connection, a solution used in Residual Networks

(Resnet) to deal with the vanishing gradient problem (He et al., 2016), was employed in our model. For more

details, refer to the Supplementary Information, Section S2 and Fig. S11. Finally, the parameters of our network

were tuned using a gradient-based backpropagation algorithm (Section S1 in the Supplementary Information).

We employed Keras and TensorFlow (Abadi et al., 2016) python libraries to implement the deep learning-based

image segmentation model (https://github.com/qubvel/segmentation_models). Fig. 1 presents a schematic view

of the model architecture. First, the model decreased the image size from 384×384 to 192×192 pixels and

increased the depth from 3 to 64. This process was followed by a max-pooling layer to decrease the image size

from 192×192 to 96×96 pixels, keeping the depth at 64. Subsequently, a series of consecutive functions, including

convolution layers, batch normalization, ReLU activation function and zero-padding, were repeated several times

while decreasing the image size by 50 percent and doubling its depth in each step. Each pair of convolution layers

was connected by a skip connection to minimize the vanishing gradient problem. At the end of the encoding path,

the image size reached 12×12 pixels with a depth of 512.

5

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. 1. The U-net architecture used in this study

Several stages follow on the right-side of the U-net for decoding, similar to encoding stages, to return encoded

vectors (12×12×512) to image labels (384×384×6). Each stage consisted of two convolution layers, while

decreasing the image depth by 50 percent and doubling the image size through 2-D convolution layers, batch

normalization and ReLU activation function. At the end of this path, the image size reached 384×384 pixels with

a depth of 16. The process was followed by a convolution and a Softmax activation to decrease the image depth

from 16 to 6, considering the six different classes for image segmentation.

We leveraged adaptive learning and early-stopping techniques to improve learning and avoid overfitting. If the

model performance did not improve after 5 epochs, the learning rate was divided by 10. The maximum epoch

number was set to 50, but the model was terminated after 30 epochs if there was no improvement. We employed

the Adadelta optimization algorithm to tune model weights, as it outperformed Adam and Stochastic Gradient

Descent optimizers (Fig. S15 in the Supplemental Information). The initial and minimum learning rates were set

as 1.0 and 0.00001, respectively. We used categorical cross-entropy for the loss function calculation. Since there

was a higher proportion of BG and SI classes compared to other classes (Table 1), we used a weighting scheme,

with lower weights for BG and SI, to account for the class distribution imbalance in the dataset. Furthermore, we

used a Transfer Learning (TL) method based on a pre-trained model on “ImageNet” (Deng et al. 2009) to improve

the training process of our deep model. ImageNet is a large database that includes more than 1 million images,

including instances of people, animals, plants, and vehicles, among many more. This database has been used to

train different models. Using a pre-trained model leads to a significant reduction in the validation loss (Huh et al.

2016; Chen et al. 2020; Cheng et al. 2018b).

2.4. Methodological Choices

Several factors control the proposed model’s accuracy, including the type of residual network, the image size, and

the class distribution, which are discussed in this section.

Model Selection: We compared our proposed residual network model’s performance to other models such as

Xception, Linknet, PSPNet and Unet with different backbones.

Determining the Most Efficient Residual Network: We compared four types of Residual Networks (Resnet),

including Resnet 18, Resnet 34, Resnet 50, and Resnet 101, which have 8, 16, 16, and 33 skip connections,

respectively. For more information regarding the structure, layers, parameters, and other details refer to He et al.,

2016.

6

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Investigation of the Image Size: Image size had a significant effect on model performance. Increasing image size

enhanced its information content and feature richness, but also increased the computational time, mainly because

the number of parameters in the model increased (de Bem et al., 2020). We compared the model performance for

three different image sizes (128×128, 256×256, and 384×384 pixels). We cropped the original 400×400 pixels

images, rather than resizing them, to preserve the spatial information content of the images.

Controlling for an Imbalanced Dataset: We investigated the effect of assigning different weights to the

background and surface irrigation classes, since they covered larger areas than other classes (table 1) and thereby

deviations in model classification from their original classes resulted in disproportionately larger impacts on the

loss function (Table 2). The weights are applied using “class_weight” parameter in the Keras’ fit function.

Table 2. Six scenarios assigning different weights to Background (BG) and Surface Irrigation (SI) classes

 BG SI LI CP CPSA UA

No. 1 1 1 1 1 1 1

No. 2 0.1 1 1 1 1 1

No. 3 1 0.1 1 1 1 1

No. 4 0.01 1 1 1 1 1

No. 5 1 0.01 1 1 1 1

No. 6 0.1 0.1 1 1 1 1

Investigation of Model Hyperparameters: We compared three optimizers, including Adam, SGD and Adadelta.

Also, we optimized batch sizes, learning rates and momentum for this model through trial and error.

3. Results and Discussion

In this section, we investigate the effect of each factor mentioned in section 2.4. on the model’s performance.

Determining the Most Efficient Residual Network: As shown in Fig. 2, Resnet-34 provided the lowest validation

loss compared to other Resnet models, although it converged more slowly. Fig S15 shows a comparison between

different Resnet structures for two samples, as an example. Table 3 presents four performance metrics, namely

intersection over union (IOU), F1, precision and recall for different Resnet structures. As shown here, Resnet-34

offered best performance metrics in all categories. The results of Resnet 34 are presented in the remainder of this

paper.

7

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. 2. Comparing different Resnet models in the U-Net architecture

Table 3: Comparing four metrics for different Resnet structures

Backbone F1-Score Precision recall IOU

Resnet-18 0.79 0.87 0.78 0.72

Resnet-34 0.82 0.88 0.80 0.74

Resnet-50 0.73 0.85 0.70 0.64

Resnet-101 0.76 0.86 0.74 0.68

Investigation of the Image Size: As shown in Fig. 3, the image size of 384×384 pixels resulted in the lowest

validation loss compared to that of images with 128×128 and 256×256 pixels, and although it had a higher

computational time, it was selected to present the geospatial information needed for the model to perform

accurately. Fig S16 shows a comparison between three image sizes and predictions. By increasing the image size,

the covered area by a single image increases, which informs the model to outperform when dealing with large

farms – specifically by better capturing the information from farm boundaries and corners. Table 4 shows that the

model’s performance improved significantly by increasing image size.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 4 7 10 13 16 19 22 25 28 31

C
a

te
g

o
ri

ca
l

C
ro

ss
-E

n
tr

o
p

y

Epoch Number

Res-Net 18 Res-Net 34 Res-Net 50 Res-Net 101

8

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. 3. Effect of image size on the model performance

Table 4: The effect of image size on the model performance

Input Size F1-Score Precision recall IOU

Size 128x128 0.627 0.76 0.61 0.57

Size 256x256 0.72 0.83 0.7 0.65

Size 384x384 0.82 0.88 0.80 0.74

Controlling for an Imbalanced Dataset: Validation loss obtained a minimum value when we assigned the weight

of 0.1 to SI and 1.0 to all other classes. Fig. 4 compares the confusion matrix in a model that ignored an imbalanced

distribution (i.e., equal weights were assigned to all classes; Fig. 4a), with a model that assigned the weight of 0.1

to the SI class and 1 to all others (Fig. 4b). Each element of the confusion matrix “𝑎𝑖𝑗” presents the percentage of

correct model prediction, where “i” and “j” refer to “the actual class in the image” and “the predicted class by the

model”, respectively. These results represented averaged values from 1,450 images of the test data. A comparison

of the elements on the diagonal of the confusion matrices in Fig. 4, indicated that the best performance of the

model was obtained by assigning a weight of 0.1 to the SI class. As an example, the prediction of the LI class

increased from 64% to 72% after controlling for class distribution by tuning the weights of different classes. Table

5 compares the model performance for different combination of weights.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 4 7 10 13 16 19 22 25 28 31

C
a

te
g

o
ri

ca
l

C
ro

ss
-E

n
tr

o
p

y

Epoch Number

128 256 384

9

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

(a)

(b)

Fig. 4. Confusion matrices for (a) assigning equal weights to all classes (i.e., ignoring the imbalanced

distribution), (b) assigning a weight of 0.1 to the Surface Irrigation (SI) class and 1 to all other classes

Table 5: Comparing the model performance for different combination of weights.

Class Weights F1-Score Precision recall IOU

No. 1 0.80 0.87 0.78 0.72

No. 2 0.80 0.87 0.79 0.73

No. 3 0.82 0.88 0.80 0.74

No. 4 0.8 0.87 0.78 0.73

No. 5 0.77 0.87 0.74 0.68

No. 6 0.80 0.87 0.79 0.73

Fig S17 shows a comparison between three weights of NO. 1, 2, and 3 on four samples.

Investigation of Hyperparameters: A batch size of 25 was selected in this study, based on available GPU’s

memory. For the Adadelta optimizer, a learning rate of 1 was chosen through trial and error. For other optimizers,

the default values of the learning rate and hyperparameters were selected. Table 6 shows model’s performance for

different optimizers. The best results are for the Adadelta optimizer with learning rate of 1 and rho of 0.95. The

model of Unet with Resnet-34 as backbone with Adadelta optimizer is presented in the remainder of this paper.

Fig S18, shows validation loss for different optimizers.

Table 6: Model’s performance for different optimizers.

Optimizer F1-Score Precision recall IOU

SGD 0.69 0.80 0.67 0.59

Adam 0.76 0.85 0.74 0.68

Adadelta (lr=1) 0.82 0.88 0.80 0.74

Comparing Different Models: Table 7 compares four metrics between our proposed model (Unet with Resnet-

34) and other models including Xception, Linknet, PSPNet, and Unet with different backbones. The input image

size (384x384), optimizer (Adadelta), hyperparameters (batch size of 25, learning rate of 1), and class weights are

set to be similar for all models. The Unet structure with Resnet-34 provided similar results to Xception, and they

outperform other models.

10

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Table 7: Comparing performance metrics among different models

Architecture (Backbone) F1-Score Precision recall IOU

Linknet (Resnet-34) 0.79 0.87 0.77 0.71

Linknet (efficientnetb3) 0.77 0.86 0.76 0.70

PSPNet (Resnet-34) 0.75 0.82 0.75 0.66

PSPNet (efficientnetb3) 0.74 0.85 0.73 0.66

DeepLabV3 (Resnet-34)* 0.76 0.86 0.75 0.69

Unet (densenet121) 0.80 0.88 0.78 0.72

Unet (Inception) 0.80 0.87 0.79 0.74

Xception** 0.81 0.88 0.79 0.74

Unet (Resnet-34)*** 0.82 0.88 0.80 0.74

* https://keras.io/examples/vision/deeplabv3_plus/#building-the-deeplabv3-model

** https://www.kaggle.com/code/meaninglesslives/unet-xception-keras-for-pneumothorax-segmentation/notebook

*** The proposed optimized model

Using a Transfer Learning (TL) Approach: Fig. 5 compares the TL-based pre-trained model with a similar model

without pre-training. The TL-based pre-trained model led to a 37.8% reduction in the validation loss (categorical

cross-entropy). Although it converged more slowly, TL-based model was selected for this study.

Fig. 5. Comparing the TL-based pre-trained model with a similar model without pre-training

Performance of the Proposed Modeling Approach: Confusion matrices were developed for the test data in

different stages: during the pre-training stage and after epochs 1, 2, 4, 7, and 13 (Fig. 6). The elements on the

diagonal of the confusion matrices in Fig. 6 indicated that the model performance for the prediction of each class

improved as the training progressed (i.e., epoch number increased). As shown in Fig. 3, the training converged to

an optimum value at epoch 13, and the loss function (cross entropy) in the steps presented in Fig. 6 adopted values

of 1.22, 0.97, 0.88, 0.80, and 0.50, respectively.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

C
a

te
g

o
ri

ca
l

C
ro

ss
-E

n
tr

o
p

y

Epoch Number

Without Pre-training Pre-trained Model

11

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

a) Pre-training stage

b) Epoch 1

c) Epoch 2

d) Epoch 4

e) Epoch 7

f) Epoch 13

Fig. 6. Confusion matrices in different stages based on the test data

12

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

In the pre-training stage, the model recognized almost all features as LI and CPSA classes (the third and the fifth

columns in Fig. 6a). After the first iteration (Fig. 6b), the prediction of BG, SI and UA classes improved

significantly, implying that the model was capable of detecting these classes. However, the model’s ability to

distinguish LI, CP and CPSA classes from the SI class was poor at this stage (Fig. 6b). It started to improve in

subsequent epochs.

Fig. 7 displays the final confusion matrix for the train and validation datasets, corresponding to the same epoch

number (13) as for the test data in Fig. 6f. The developed deep network correctly classified irrigation systems (SI,

LI, CP and CPSA) for at least 92% and 72% of cases in the train and validation data, respectively. Table 8

compares four metrics between train, validation and test datasets.

a) Train dataset

b) Validation dataset

Fig. 7. Final confusion matrix after training the deep learning algorithm

Table 8. Performance metrics for the Resnet 34 irrigation type classification model

 IOU F1 Precision Recall

Train 0.91 0.95 0.95 0.95

Validation 0.82 0.83 0.88 0.82

Test 0.74 0.82 0.88 0.8

Figs. 8-9 show how the model classification evolved in three arbitrarily selected images in epochs 1, 2, 4, 7, and

13 (corresponding to those in Fig. 5). The confusion matrix in Fig. 6e showed that the model could not recognize

the CP class properly until epoch 7 and predicted it as SI and CPSA. Figs. 8c,d,e illustrate this false detection of

CP (blue), which was classified (see field on the left) mostly as SI (red) and CPSA (cyan) until epoch 7 when

detection of CP started to improve, as shown in Fig. 6e and Fig. 8f. Only in epoch 13 (Fig. 8g) did the model

accurately identify boundaries for this class.

13

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

a) True color image b) Observed c) Epoch 1 d) Epoch 2

e) Epoch 4 f) Epoch 7 g) Epoch 13

BG

SI

LI

CP

CPSA

UA

Fig. 8. Evolution of the performance of the Resnet-34 model for the detection of different classes

Fig. 9 shows that the model detected class boundaries very accurately even at epoch 1, and was effective in

detecting the BG class. However, it took until epoch 7, corresponding to the confusion matrix in Fig. 6e, for the

model to learn to correctly detect the LI class (green) (Fig 9f). At this stage, the model was still not able to

distinguish between LI (green) and SI (red) classes. Finally, at epoch 13, the model reached its best performance.

14

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

a) True color image b) Observed c) Epoch 1 d) Epoch 2

e) Epoch 4 f) Epoch 7 g) Epoch 13

BG

SI

LI

CP

CPSA

UA

Fig. 9. Evolution of the performance of the Resnet-34 model for the detection of different classes

Limitations of the Proposed Model: As shown in Fig. 6f, there was some confusion in the model prediction

between BG and UA classes. This was mainly because large portions of both classes included trees, which

confused the model when trying to distinguish the two. However, our purpose was mostly to distinguish irrigation

systems, and differentiating between background and urban areas was not a major focus of this study. If the latter

was important, we would tune class weights to improve this classification. Fig. 10 provides an example of how

UA and BG classes were not accurately distinguished from one another, noting that the model was at least 72%

accurate in detecting various classes.

a) True color

image

b) Observed

labels

c) Predicted

labels

UA

CPSA

BG

Fig. 10. Limitations of the proposed model in differentiating between Background (BG) and Urban Area (UA)

classes

4. Conclusion

In this paper, we developed a deep neural network with a U-Net architecture with Resnet-34 as its backbone to

classify irrigation systems in agricultural fields. We used very high resolution (1 meter) airborne imagery from

the USDA’s National Agriculture Imagery Program (NAIP). Our main goal was to use image segmentation to

distinguish four different irrigation systems as well as Background and Urban Areas in a study region located in

15

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Idaho, USA. We proposed this model as a proof-of-concept to enable regional to global monitoring of irrigation

systems, which have different water consumption footprints. Such information is critical for management and

planning of food and water resources in a warming climate and with an ever-increasing population pressure on

natural resources.

We assessed the impacts of different settings on model performance. We tested various image sizes and selected

a 384x384 pixel (384x384 meters) image size as the most informative. Increasing image size generally improves

model accuracy as more information is provided, but it also increases the computational time due to the amplified

number of model parameters. To decrease the misclassification of classes due to imbalanced train data (i.e.,

disproportionately larger areas covered by furrow Surface Irrigation than by any individual irrigation system), we

applied a reductive weight to the furrow Surface Irrigation class. Additionally, we employed transfer learning

using models trained on the ImageNet dataset, which showed better performance compared to similar models

without the pre-training.

Finally, we observed that even one epoch of training significantly improved detection of several classes, but the

confusion among irrigation classes was minimized in epoch 13. The final model accuracy reached 85%, 94%,

92%, 92%, 94%, and 93% for the train data, 79%, 84%, 75%, 72%, 83%, and 86% for the validation data and

77%, 86%, 72%, 70%, 82%, and 77% for the test data for the Background, furrow Surface Irrigation, Linear

Irrigation, Center Pivot, Center Pivot with Swing Arm, and Urban Area classes, respectively. The proposed deep

segmentation model has the potential to classify multiple irrigation systems and can be applied at regional to

global scales using very high resolution remote sensing imagery, for example from commercial satellites.

5. Data and Code Availability

All data and codes for this study are available at: https://github.com/ehsanraei/Irrigation

6. Competing Interests

The authors declare no competing or conflicting interests.

7. Acknowledgments:

The authors thank Dr. Jodi Brandt of Boise State University for providing the shapefiles of various irrigation

systems and her input to this study. MS appreciates partial financial support from the U.S. Bureau of Reclamation

(award number R21AP10404).

8. References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-

scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Alizadeh, M. R., Abatzoglou, J. T., Luce, C. H., Adamowski, J. F., Farid, A., & Sadegh, M. (2021). Warming

enabled upslope advance in western US forest fires. Proceedings of the National Academy of Sciences,

118(22).

Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding batch normalization. In

Advances in Neural Information Processing Systems (pp. 7694-7705).

Cerron, B., Bazan, C., & Coronado, A. (2020) Detection of housing and agriculture areas on dry-riverbeds for

the evaluation of risk by landslides using low-resolution satellite imagery based on deep learning.

Study zone: Lima, Peru. Published as a conference paper at ICLR 2020, National University of

Engineering.

Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. (2020). Using deep transfer learning for image-

based plant disease identification. Computers and Electronics in Agriculture, 173, 105393.

Cheng, G., Li, Z., Han, J., Yao, X., & Guo, L. (2018a). Exploring hierarchical convolutional features for

hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(11),

6712-6722.

Cheng, G ., Yang, C., Yao, X., Guo, L., & Han, J. (2018b). When deep learning meets metric learning: Remote

sensing image scene classification via learning discriminative CNNs. IEEE transactions on geoscience

and remote sensing, 56(5), 2811-2821.

Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and

biodiversity protection. Science, 356(6335), 260-264.

16

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

De Albuquerque, A. O., de Carvalho Júnior, O. A., Carvalho, O. L. F. D., de Bem, P. P., Ferreira, P. H. G., de

Moura, R. D. S., ... & Fontes Guimarães, R. (2020). Deep semantic segmentation of center pivot

irrigation systems from remotely sensed data. Remote Sensing, 12(13), 2159.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255).

Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., ... & Moore III, B. (2016). Mapping paddy

rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google

Earth Engine. Remote sensing of environment, 185, 142-154.

Elavarasan, D., & Vincent, P. D. (2020). Crop Yield Prediction Using Deep Reinforcement Learning Model for

Sustainable Agrarian Applications. IEEE Access, 8, 86886-86901.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and

Electronics in Agriculture, 145, 311-318.

Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the thirteenth international conference on artificial intelligence and

statistics (pp. 249-256). JMLR Workshop and Conference Proceedings.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine:

Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.

Torabi Haghighi, A., Sadegh, M., Behrooz-Koohenjani, S., Hekmatzadeh, A. A., Karimi, A., & Kløve, B.

(2020). The mirage water concept and an index-based approach to quantify causes of hydrological

changes in semi-arid regions. Hydrological Sciences Journal, 65(2), 311-324.

Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., & Jones, M. G. (2021). A survey of deep learning techniques

for weed detection from images. Computers and Electronics in Agriculture, 184, 106067.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Helber, P., Bischke, B., Dengel, A., & Borth, D. (2018). Introducing eurosat: A novel dataset and deep learning

benchmark for land use and land cover classification. In IGARSS 2018-2018 IEEE International

Geoscience and Remote Sensing Symposium (pp. 204-207). IEEE.

Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?. arXiv preprint

arXiv:1608.08614.

Islam, M., Dinh, A., Wahid, K., & Bhowmik, P. (2017). Detection of potato diseases using image segmentation

and multiclass support vector machine. In 2017 IEEE 30th canadian conference on electrical and

computer engineering (CCECE) (pp. 1-4). IEEE.

Johansen, K., Phinn, S., & Taylor, M. (2015). Mapping woody vegetation clearing in Queensland, Australia

from Landsat imagery using the Google Earth Engine. Remote Sensing Applications: Society and

Environment, 1, 36-49.

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and

electronics in agriculture, 147, 70-90.

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and

crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782.

Kuwata, K., & Shibasaki, R. (2015). Estimating crop yields with deep learning and remotely sensed data. In

2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 858-861). IEEE.

Lee, C. S., Sohn, E., Park, J. D., & Jang, J. D. (2019). Estimation of soil moisture using deep learning based on

satellite data: a case study of South Korea. GIScience & Remote Sensing, 56(1), 43-67.

Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., ... & Wang, S. (2018). High-resolution multi-temporal mapping

of global urban land using Landsat images based on the Google Earth Engine Platform. Remote sensing

of environment, 209, 227-239.

Loddo, A., Loddo, M., & Di Ruberto, C. (2021). A novel deep learning based approach for seed image

classification and retrieval. Computers and Electronics in Agriculture, 187, 106269.

Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., ... & Trianni, G. (2015).

Multitemporal settlement and population mapping from Landsat using Google Earth Engine.

International Journal of Applied Earth Observation and Geoinformation, 35, 199-208.

Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST

classification task. arXiv preprint arXiv:1804.02763.

Perea, R. G., Ballesteros, R., Ortega, J. F., & Moreno, M. Á. (2021). Water and energy demand forecasting in

large-scale water distribution networks for irrigation using open data and machine learning algorithms.

Computers and Electronics in Agriculture, 188, 106327.

Powell, W. G. (2009). Identifying land use/land cover (LULC) using National Agriculture Imagery Program

(NAIP) data as a hydrologic model input for local flood plain management.

Rad, A. M., Kreitler, J., & Sadegh, M. (2021a). Augmented Normalized Difference Water Index for improved

surface water monitoring. Environmental Modelling & Software, 140, 105030.

17

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Rad, A. M., AghaKouchak, A., Navari, M., & Sadegh, M. (2021b). Progress, Challenges, and Opportunities in

Remote Sensing of Drought. Global Drought and Flood: Observation, Modeling, and Prediction, 1-28.

Rad, A. M., Kreitler, J., Abatzoglou, J. T., Fallon, K., Roche, K., & Sadegh, M. (2022). Anthropogenic stressors

compound climate impacts on inland lake dynamics: The case of Hamun Lakes. Science of The Total

Environment, 154419.

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image

segmentation. In International Conference on Medical image computing and computer-assisted

intervention (pp. 234-241). Springer, Cham.

Sadegh, M., AghaKouchak, A., Mallakpour, I., Huning, L. S., Mazdiyasni, O., Niknejad, M., ... & Davis, S. J.

(2020). Data and analysis toolbox for modeling the nexus of food, energy, and water. Sustainable

Cities and Society, 61, 102281.

Saleem, M. H., Potgieter, J., & Arif, K. M. (2020). Plant Disease Classification: A Comparative Evaluation of

Convolutional Neural Networks and Deep Learning Optimizers. Plants, 9(10), 1319.

Saraiva, M., Protas, É., Salgado, M., & Souza Jr, C. (2020). Automatic Mapping of Center Pivot Irrigation

Systems from Satellite Images Using Deep Learning. Remote Sensing, 12(3), 558.

Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., & Davis, C. H. (2017). Training deep convolutional

neural networks for land–cover classification of high-resolution imagery. IEEE Geoscience and Remote

Sensing Letters, 14(4), 549-553.

Sharma, S., & Mehra, R. (2019). Implications of Pooling Strategies in Convolutional Neural Networks: A Deep

Insight. Foundations of Computing and Decision Sciences, 44(3), 303-330.

Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., & Yang, J. (2016). Modeling spatio-temporal distribution of soil

moisture by deep learning-based cellular automata model. Journal of Arid Land, 8(5), 734-748.

Tang, J. W., Arvor, D., Corpetti, T., & Tang, P. (2020a). PVANET-HOUGH: DETECTION AND LOCATION

OF CENTER PIVOT IRRIGATION SYSTEMS FROM SENTINEL-2 IMAGES. ISPRS Annals of

Photogrammetry, Remote Sensing & Spatial Information Sciences, 5(3).

Tassis, L. M., de Souza, J. E. T., & Krohling, R. A. (2021). A deep learning approach combining instance and

semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers

and Electronics in Agriculture, 186, 106191.

Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., ... & Huete, A.

(2018). A 30-m landsat-derived cropland extent product of Australia and China using random forest

machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of

Photogrammetry and Remote Sensing, 144, 325-340.

Tong, X. Y., Xia, G. S., Lu, Q., Shen, H., Li, S., You, S., & Zhang, L. (2020). Land-cover classification with

high-resolution remote sensing images using transferable deep models. Remote Sensing of

Environment, 237, 111322.

Wang, A. X., Tran, C., Desai, N., Lobell, D., & Ermon, S. (2018). Deep transfer learning for crop yield

prediction with remote sensing data. In Proceedings of the 1st ACM SIGCAS Conference on Computing

and Sustainable Societies (pp. 1-5).

Wang, S., Di Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., Strey, R., & Lobell, D. B. (2020). Mapping

crop types in southeast india with smartphone crowdsourcing and deep learning. Remote Sensing,

12(18), 2957.

Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The Influence of the Activation Function in a Convolution

Neural Network Model of Facial Expression Recognition. Applied Sciences, 10(5), 1897.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview

and application in radiology. Insights into imaging, 9(4), 611-629.

Zhang, C., Yue, P., Di, L., & Wu, Z. (2018). Automatic identification of center pivot irrigation systems from

landsat images using convolutional neural networks. Agriculture, 8(10), 147.

Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with

infrared thermal imagery in precision agriculture: A review and future prospects for deep learning

applications. Computers and Electronics in Agriculture, 182, 106019.

Zhou, P., Han, J., Cheng, G., & Zhang, B. (2019). Learning compact and discriminative stacked autoencoder

for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(7),

4823-4833.

18

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

New References

Zhou, Y. N., Luo, J., Feng, L., Yang, Y., Chen, Y., & Wu, W. (2019). Long-short-term-memory-based crop

classification using high-resolution optical images and multi-temporal SAR data. GIScience & Remote

Sensing, 56(8), 1170-1191.

Li, Z., Chen, G., & Zhang, T. (2020). A CNN-transformer hybrid approach for crop classification using

multitemporal multisensor images. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 13, 847-858.

de Albuquerque, A. O., de Carvalho, O. L. F., e Silva, C. R., de Bem, P. P., Gomes, R. A. T., Borges, D. L., ...

& de Carvalho Júnior, O. A. (2021a). Instance segmentation of center pivot irrigation systems using

multi-temporal SENTINEL-1 SAR images. Remote Sensing Applications: Society and Environment,

23, 100537.

de Albuquerque, A. O., de Carvalho, O. L. F., e Silva, C. R., Luiz, A. S., Pablo, P., Gomes, R. A. T., ... & de

Carvalho Júnior, O. A. (2021b). Dealing With Clouds and Seasonal Changes for Center Pivot Irrigation

Systems Detection Using Instance Segmentation in Sentinel-2 Time Series. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 14, 8447-8457.

Carvalho, O. L. F. D., de Carvalho Junior, O. A., Albuquerque, A. O. D., Bem, P. P. D., Silva, C. R., Ferreira, P.

H. G., ... & Borges, D. L. (2020). Instance segmentation for large, multi-channel remote sensing

imagery using mask-RCNN and a mosaicking approach. Remote Sensing, 13(1), 39.

Tang, J., Arvor, D., Corpetti, T., & Tang, P. (2021b). Mapping center pivot irrigation systems in the southern

Amazon from Sentinel-2 images. Water, 13(3), 298.

Tang, J., Zhang, Z., Zhao, L., & Tang, P. (2021c). Increasing shape bias to improve the precision of center pivot

irrigation system detection. Remote Sensing, 13(4), 612.

de Bem, P. P., de Carvalho Júnior, O. A., de Carvalho, O. L. F., Gomes, R. A. T., & Fontes Guimarães, R.

(2020). Performance analysis of deep convolutional autoencoders with different patch sizes for change

detection from burnt areas. Remote Sensing, 12(16), 2576.

Teimouri, N., Dyrmann, M., & Jørgensen, R. N. (2019). A novel spatio-temporal FCN-LSTM network for

recognizing various crop types using multi-temporal radar images. Remote Sensing, 11(8), 990.

Crisóstomo de Castro Filho, H., Abílio de Carvalho Júnior, O., Ferreira de Carvalho, O. L., Pozzobon de Bem,

P., dos Santos de Moura, R., Olino de Albuquerque, A., ... & Trancoso Gomes, R. A. (2020). Rice crop

detection using LSTM, Bi-LSTM, and machine learning models from Sentinel-1 time series. Remote

Sensing, 12(16), 2655.

19

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Supplementary Information for: A Deep Learning-Based Image

Segmentation Model for Agricultural Irrigation System

Classification

S1. How Does a Neural Network Work?

A neural network aims to find the best values of model parameters (weights and biases) so as to have the closest

prediction(s) to the observed value(s). In this process, the input(s) are transformed to the output(s) using a matrix

of weights in each layer. This path is called the forward propagation process.

First, these weights are randomly assigned initial values, then the output(s) is/are calculated by a forward

propagation process, and finally, the loss value is computed by comparing the output with the observed value(s).

Depending on the loss value, an optimizer algorithm will change the values of parameters (weights and biases)

slightly and perform the forward propagation process again to see if the loss decreases or not. This path in which

parameters are modified is named the backpropagation process (Wang et al., 2020). Depending on the problem, a

neural network can change from a simple neural network (with only one hidden layer) to a deep one (with many

layers). Fig. S1 shows a simple neural network with four input variables (
iX), one hidden layer with two neurons,

and two outputs (io).

As shown in Fig. S1, the input variables pass through hidden layers, neurons, and activation functions, and result

in predicted values. This process is called the forward propagation path (blue arrows in Fig. S1). In the opposite

direction, the path moving from the outputs towards the weights and biases is called the backpropagation process

(red arrows in Fig. S1). Mathematically, the relationships between the input variables (
iX), weights (W), and

biases (b) are as follows:

4
1 1 1

1

n i in

i

Z X W b
=

= + (S1)

()1

n nf Z= (S2)

Fig. S1. Schematic view of a simple neural network.

The forward propagation process is shown by blue arrows and the backpropagation process by red arrows.

20

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

where, is a nonlinear activation function, and 𝑛 is the neuron index. As an example, the sigmoid activation

function (Eq. S3) and its derivative are displayed in Fig. S2. In Eq. S3, e and x are the exponential constant

and the input values, respectively.

1
()

1 x
x

e

−
=

+
 (S3)

Fig. S2. Sigmoid function and its derivative

The output values (io) are obtained as follows:

𝑜𝑖 = 𝜎(𝑍𝑛
2) (S4)

𝑍𝑛
2 = ∑ 𝑓𝑖 × 𝑊𝑖𝑛

2 + 𝑏2

2

𝑖=1

 (S5)

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑜1 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑜1(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2
+

1

2
(𝑜2 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑜2 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2
 (S6)

In Eq. S6, 𝐸𝑡𝑜𝑡𝑎𝑙 is the error or the loss value that shows the difference between the predicted values of the network

outputs and the actual (observed) values. In the backpropagation process, the model will try to minimize the loss

value by moving in the opposite direction of the forward propagation path and modifying the network’s weights

and biases. The level of adjustment is determined by calculating the gradients of the loss function for those

parameters (weights and biases) through the chain rule, which multiply all derivatives one by one (Eq. S7 and Eq.

S11). The gradient value shows how much the parameter needs to change (in a positive or negative direction) to

minimize the loss. The backpropagation process is calculated by the following equations (Eq. S7 to Eq. S10) (Sibi

et al., 2013).

As an example,
2

11W (Fig. S1) is optimized as follows:

2

1 1

2 2 2

11 1 1 11

total totalE E o Z

W o Z W

=

 (S7)

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜1
= 2 ×

1

2
(𝑜1 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑜1(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2−1
× −1 + 0 (S8)

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

σ
(x

)
,
σ
'(

x
)

xsigmoid derivative

21

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

()1

2

1

o
x

Z

=

= derivation of the sigmoid function (S9)

()2 22
1 11 2 211

12 2

11 11

f W f WZ
f

W W

 +
= =

 (S10)

And for modifying
1

11W :

2 2 1

1 1 2 2 1 1

1 2 2 1 1

11 1 1 1 2 2 1 1 11

total total totalE E Eo Z o Z f Z

W o Z f o Z f Z W

= +

 (S11)

()1

1

1

f
x

Z

=

 (S12)

1 1 1 11

1 11 2 21 3 31 4 411
11 1

11 11

X W X W X W X WZ
X

W W

 + + +
= =

 (S13)

Example

In this example, we consider a simple neural network, as shown in Fig. S1. The values of the input variables (

1 2 3 4, , ,X X X X) are assumed to be 1, 2, 3, and 4, respectively. The observed values of the outputs (1 2,o o) are

1 and 0.22. Considering these values and the sigmoid activation function, Table S1 shows the model parameters

(weights and biases) and the obtained loss values in 100 training epochs. Epoch No. 0 presents the values initially

assigned to the model parameters and the corresponding loss values. The gray row in epoch No. 0 displays the

gradient value of the model’s error corresponding to each parameter. In the next epoch (No. 1), the model

parameters (weights and biases) are obtained by subtracting the former values of weights and biases in epoch No.

0 and the corresponding gradient of each parameter. In this example, for simplicity, we consider the learning rate

to be 1. As shown in Table S1, the initial model’s loss value is 0.217. After 10 training epochs, the loss value

reaches 0.03. Finally, in epoch No. 99, the predicted values will be 0.9508 and 0.2252, corresponding to the

observed ones (1 and 0.22), and the loss value reaches 0.001. Fig. S3 shows the python code in PyTorch for model

implementation in this example.

22

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Computers and Electronics in Agriculture, published by Elsevier. Copyright

restrictions may apply. https://doi.org/10.1016/j.compag.2022.106977.

Table S1. Model parameters (weights and biases) and the loss values in 100 training epochs for the example above

E
p
o
ch

1

11W

1

12W 1

21W 1

22W 1

31W 1

32W 1

41W 1

42W 2

11W

2

12W 2

21W 2

22W 1b 2b loss

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.8 0.7 0.6 0.5 0.5

0.217
2.0E-4 5.51E-5 4.0E-04 1.1E-04 6.0E-04 1.65E-4 8.0E-04 2.2E-04 -1.06E-2 7.34E-02 -1.07E-2 7.36E-2 2.55E-4 6.3E-2

1
0.1 0.2 0.3 0.4 0.499 0.6 0.699 0.8 0.911 0.727 0.711 0.526 0.437 0.437

0.201
2.14E-4 5.62E-5 4.28E-4 1.12E-4 6.42E-4 1.69E-4 8.57E-4 2.25E-4 -1.14E-2 8.19E-02 -1.15E-2 8.21E-2 2.7E-04 7.08E-2

2
0.1 0.2 0.299 0.4 0.499 0.6 0.698 0.8 0.922 0.645 0.722 0.444 0.366 0.366

0.181
2.21E-4 5.39E-5 4.41E-4 1.08E-4 6.62E-4 1.62E-4 8.83E-4 2.16E-4 -1.24E-2 9.03E-02 -1.24E-2 9.06E-2 2.75E-4 7.83E-2

3
0.099 0.2 0.299 0.4 0.498 0.6 0.697 0.799 0.934 0.554 0.735 0.354 0.287 0.287

0.157
2.12E-4 4.58E-5 4.23E-4 9.16E-5 6.35E-4 1.37E-4 8.47E-4 1.83E-4 -1.35E-2 9.73E-02 -1.36E-2 9.76E-2 2.57E-4 8.42E-2

4
0.099 0.2 0.298 0.4 0.497 0.599 0.697 0.799 0.948 0.457 0.748 0.256 0.203 0.203

0.13
1.78E-4 2.98E-5 3.57E-4 5.95E-5 5.35E-4 8.93E-5 7.14E-4 1.19E-4 -1.48E-2 1.0E-01 -1.49E-2 1.01E-1 2.08E-4 8.60E-2

5
0.099 0.2 0.298 0.4 0.497 0.599 0.696 0.799 0.963 0.357 0.763 0.155 0.116 0.116

0.103
1.17E-4 6.09E-6 2.35E-4 1.22E-5 3.52E-4 1.83E-5 4.70E-4 2.43E-5 -1.62E-2 9.74E-02 -1.63E-2 9.78E-2 1.23E-4 8.16E-2

6
0.099 0.2 0.298 0.4 0.497 0.599 0.695 0.799 0.979 0.259 0.779 0.058 0.035 0.035

0.078
3.81E-5 -2.08E-5 7.62E-5 -4.16E-5 1.14E-4 -6.24E-5 1.52E-4 -8.32E-5 -1.76E-2 8.83E-02 -1.76E-2 8.87E-2 1.73E-5 7.12E-2

7
0.099 0.2 0.298 0.4 0.496 0.599 0.695 0.799 0.997 0.171 0.797 -0.031 -0.037 -0.037

0.058
-4.03E-5 -4.45E-5 -8.05E-5 -8.91E-5 -1.21E-4 -1.34E-4 -1.61E-4 -1.78E-4 -1.86E-2 7.56E-02 -1.87E-2 7.60E-2 -8.48E-5 5.75E-2

8
0.099 0.2 0.298 0.4 0.497 0.599 0.695 0.799 1.015 0.095 0.816 -0.107 -0.094 -0.094

0.044
-1.03E-4 -6.14E-5 -2.05E-4 -1.23E-4 -3.08E-4 -1.84E-4 -4.11E-4 -2.46E-4 -1.92E-2 6.27E-02 -1.93E-2 6.30E-2 -1.64E-4 4.39E-2

9
0.099 0.2 0.298 0.4 0.497 0.6 0.696 0.8 1.034 0.033 0.835 -0.17 -0.138 -0.138

0.034
-1.45E-4 -7.14E-5 -2.90E-4 -1.43E-4 -4.36E-4 -2.14E-4 -5.81E-4 -2.85E-4 -1.94E-2 5.15E-02 -1.95E-2 5.18E-2 -2.17E-4 3.24E-2

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝

99
0.106 0.202 0.311 0.405 0.517 0.607 0.722 0.810 1.617 -0.486 1.421 -0.691 -0.064 -0.064

0.001
-2.50E-5 -9.54E-6 -5.00E-5 -1.91E-5 -7.50E-5 -2.86E-5 -1.00E-4 -3.82E-5 -2.29E-3 9.03E-04 -2.30E-3 9.07E-4 -3.45E-5 -1.39E-3

23

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. S3. The python code for model implementation in PyTorch for the example above

24

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

S2. Convolutional Block

One of the main building blocks of a Convolutional Neural Network (CNN) model is the convolution layer, which

consists of several functions (Yamashita et al., 2018) explained below:

Activation Function: A neural network is the sum of products between inputs and their corresponding weights (W)

(Eq. S1, S5). The output of each layer is the input of the subsequent one linked to the other neurons of the next layers

through weighted connections and multiplications between them. We can summarize all these multiplications as a

simple linear function by condensing multiple transformations into a single one (Equations. S1 to S6 can be simplified

by discarding Eq. S2 and Eq. S4 or assuming them to be linear). However, this simplification makes the multi-layer

network less effective (Wang et al., 2020) and causes the following two main problems:

1) The model can only perform a linear regression. As a result, it cannot learn complex functions because

it is a one-degree of freedom model. Fig. S4 shows a classification example with different linear lines to

classify two classes. As shown in this figure, none of the linear black lines can separate red circles and

blue rectangles, except a non-linear green curve (Nwankpa et al., 2018).

2) A neural network must be able to optimize the weights and biases and minimize the loss value in order

to learn. This learning process is done by derivation of the loss function relative to each parameter (the

backpropagation process) (Eq. S7 and Eq. S11). Therefore, the loss function should be differentiable.

Since the power of the linear multiplication is one, its derivative will be a constant value. Thus, the

gradient has no relationship with the parameters, and consequently, the model parameters will not change

in the backpropagation process (Goodfellow et al., 2016; Nwankpa et al., 2018).

Based on the above issues, a model needs to have non-linear properties using the activation function to solve complex

problems (Fig. S2). In addition to introducing the non-linear properties to the network, most of the activation functions

can transfer values between [,]− + into a smaller range (as an example, the sigmoid function (Fig. S2) will transfer

all inputs to [0, 1]). Two of the most famous non-linear activation functions are Softmax (Eq. S14) and Rectified

Linear Unit (RELU) functions (Eq. S15).

Fig. S4. The role of a non-linear activation function in problems with more than one degree of freedom

1

()
i

j

Z

i k
z

j

e
z

e

=

=

(S14)

25

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

RELU=
0

0 0

x x

x

 (S15)

The Softmax activation function performs well in classification problems. It is usually applied in the last layer of the

network for the classification of more than two classes. It determines the probability that the input relates to a particular

class by transferring the values into the range of [0, 1].

As mentioned, the model parameters are optimized through the backpropagation process based on the chain rule. This

means that when a network has an appropriate number of hidden layers (almost deep), more derivation multiplications

are happening for earlier layers rather than the last ones based on the chain rule. Therefore, the gradients tend to get

smaller and smaller as if moving backward. Since the gradient values in the earlier layers become very small, the

neurons in these layers will learn very slowly compared to those in the last layers. This problem is called a vanishing

gradient and usually happens in the Tanh and Sigmoid activation functions. In contrast, an exploding gradient problem

will happen when the gradient value is more than one. (Pedamonti, 2018).

RELU is a non-linear activation function and its derivation is equal to one (for inputs more than zero) or zero (for

inputs less than or equal to zero) (Nair and Hinton, 2010), as shown in Fig. S5 and Eq. S15. The RELU activation

function is used for the prevention of vanishing/exploding gradient issues in deep networks. It also needs less

computation time compared to other activation functions, and therefore is not time-consuming in deep networks.

As mentioned, the RELU activation function will filter all negative values and transform them into zero. These weights

will not adjust during the backpropagation process because the derivations are zero. Therefore, these neurons will not

have any role in the model performance. This is called dying RELU, which can cause problems in some models (Maas

et al., 2013; Pedamonti, 2018).

Fig. S5. RELU activation function

Kernel: In the convolution layer, a matrix multiplication is performed between a small matrix named a kernel (filter)

and the matrix of the input of each layer and the resulted summation is transferred to the features' map. Features of an

image are simple or complex. For example, in an image containing a cat, there are both simple features like lines and

edges, and complex features like whiskers, nose, leather, and tail. Simple features like lines and edges are learned at

earlier layers while complex features are learned at deeper layers (Zeiler and Fergus, 2014). The kernel is responsible

for the identification of features that distinguish the objects from each other (such as the edges from the lines) in the

input of each layer. As shown in Fig. S6, by sliding a 4x4 kernel (the pink matrix in Fig. S6 (b)) through the image

and multiplying between them (red, green, and blue matrices), a matrix of features is produced (Fig. S6 (c)), which is

the input of the next layer. The large black matrix is one channel of the image or the input of the current layer.

-1

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

σ
(x

)
,
σ
'

(x
)

x

RELU Activation Derivative

26

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

a) Sliding a 4x4 kernel through the image

b) A 4x4 kernel

c) Result

Fig. S6. A convolutional layer with a 4x4 kernel

Fig. S7 presents the application of the horizontal and vertical 3x3 kernels (Eq. S16 and Eq. S17) on an image. These

kernels are responsible for the extraction of the horizontal and vertical lines from the image and help the model to

identify different features.

[
−1 −2 −1
 0 0 0
 1 2 1

] Horizontal kernel (S16)

[
 1 0 − 1
 2 0 −2
 1 0 −1

] Vertical kernel (S17)

a) Image b) horizontal kernel c) Vertical kernel

Fig. S7. Extraction of the horizontal and vertical lines using kernels

27

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Max-Pooling: Pooling is a process that will downsample the input while keeping the majority of information. This

process will reduce the computation time by decreasing both the image size and the number of parameters of the model

and will diminish the over-fitting problem as well (Sharma and Mehra, 2019). The most common form of Pooling is

the max-pooling method that applies a max filter to non-overlapping subregions. Fig. S8 shows the application of a

max-pooling with a size of 2x2 and a stride size of 2.

Fig. S8. A max-pooling with a size of 2x2 and a stride size of 2

Fig. S9 shows the application of two max-pooling functions with different sizes (2×2 and 4×4) on an image size of

400×400 pixels. As shown, the original image size will be decreased by 50% and 75%, respectively, while keeping

most of the features.

Fig. S9. Application of two max-pooling functions on an image

Learning Rate: The value of the learning rate shows the size of the steps taken to reach a local minimum. In other

words, the learning rate determines the percentage of the gradient of the Error (E) with respect to the parameters

(weights and biases) that should be applied in the next epoch. In the following equations,
1tW +

 is the weight at iteration

t+1, is the learning rate, and
tg is the gradient of the error with respect to

tW . In Table S1, we consider the learning

rate to be equal to one, which means the whole value of the gradient is used in the next epoch.

1t tW W x+ = + (S18)

tx g = − (S19)

In Fig. S10, arrows show the effect of learning rate value on finding the optimized weights. When the value of the

learning rate is too large, the error (E(w)) will fluctuate around the minimum and it cannot converge (red arrows in

Fig. S10), or will even diverge. On the other hand, when this value is too small (green arrows in Fig. S10), it will

minimize the error (E(w)) continuously but in a slow convergence.

28

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. S10. Effect of learning rate value on finding the optimized weights.

Batch Normalization: Batch normalization is a method that normalizes the input values of each layer so that their

mean and variance will be zero and one, respectively. By normalization (Ioffe and Szegedy, 2015):

1. The model accuracy and processing speed will increase (Bjorck et al., 2018).

2. The model can use higher values of learning rate because it will transfer the numbers in a range near

zero (Bjorck et al., 2018).

3. The need for dropout and chance of overfitting is reduced (Garbin and Marques, 2020).

4. The model will be less dependent on initial parameters because the subsequent layers will use the normalized

values (Bjorck et al., 2018).

Batch normalization will work better with numbers close to zero in some activation functions like Sigmoid and Tanh

(as shown in Fig. S2, the change of the activation function is almost neglectable for values more than “5” and less

than “-5”). Batch normalization can prevent dying out during training (exploding gradient problem) in the RELU

activation function (Bjorck et al., 2018) and can also standardize input variables with different scales because the

weights related to some inputs will be modified much faster than others.

Skip Connection: In an ordinary neural network (shallow network), the output of a layer (𝑓(𝑥)) is the input of the

next layer (𝑓(𝑥) = 𝑥, Fig. S11). A skip connection will skip multiple layers and add information directly from

previous layers (𝐻(𝑥) = 𝑓(𝑥) + 𝑥). Therefore, when 𝑓(𝑥) = 0, there is still some value and a zero gradient is avoided,

as shown in Fig. S11.

Fig. S11. A skip connection

29

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

S3. Data and Different Land Use/Cover and Irrigation Type Classes

(a) Center Pivot (CP)

(b) Linear sprinkler

Irrigation (LI)

(c) Center Pivot with

Swing Arm (CPSA)

(d) furrow Surface

Irrigation (SI)

(e) Urban areas (UA)

(f) Wildland/Background

area (Background)

Fig. S12. One sample from each class in the study area

30

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. S13. Distribution of the training data (blue points), the validation data (red points) and the testing data (green

points) across the study area

31

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

SI

LI

CP

UA

CPSA

BG

Fig. S14. Generating labels corresponding to different classes using ArcPy

Resnet-18 Resnet-34 Resnet-50 Resnet-101 Observed

Fig S15. Comparison between different Res-Net structures

32

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

b) Size 128x128 c) Size 256x256

a) True color image-Blue Border (b) 128x128,

Green (c) is 256x256 and red (d) 384x384

meters d) Size 384x38 e) Observed (384x384)

Fig S16. the effect of image size on area coverage and model performance.

33

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

 Sample #1 Sample #2 Sample #3 Sample #4
N

O
.1

,
A

ll
 W

ei
g

h
ts

 1

N
O

.2
,

B
G

 W
ei

g
h

t
0

.1

N
O

.3
,

S
I

w
ei

g
h

t
0
.1

O
b

se
rv

ed

Fig S17. Comparison between different class weights

34

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at

Computers and Electronics in Agriculture, published by Elsevier. Copyright restrictions may apply.

https://doi.org/10.1016/j.compag.2022.106977.

Fig. S18. Evolution of categorical cross-entropy for different gradient-based optimizers

S4. References

Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study of their impact to

deep learning. Multimedia Tools and Applications, 1-39.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, p. 2). Cambridge: MIT press

[Online]. Available: http://www.deeplearningbook.org.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models.

In Proc. ICML (Vol. 30, No. 1, p. 3)

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In ICML.

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in

practice and research for deep learning. arXiv preprint arXiv:1811.03378.

Sibi, P., Jones, S. A., & Siddarth, P. (2013). Analysis of different activation functions using back propagation neural

networks. Journal of theoretical and applied information technology, 47(3), 1264-1268.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference

on computer vision (pp. 818-833). Springer, Cham.

	A Deep Learning Image Segmentation Model for Agricultural Irrigation System Classification
	Publication Information
	Authors

	A deep learning image segmentation model for agricultural irrigation system classification

