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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES

JOHN CLEMENS, SAMUEL COSKEY, AND STEPHANIE POTTER

ABSTRACT. We consider the classification problem for several classes of countable struc-
tures which are “vertex-transitive”, meaning that the automorphism group acts transitively
on the elements. (This is sometimes called homogeneous.) We show that the classification
of countable vertex-transitive digraphs and partial orders are Borel complete. We identify
the complexity of the classification of countable vertex-transitive linear orders. Finally we
show that the classification of vertex-transitive countable tournaments is properly above
E0 in complexity.

§1. INTRODUCTION

In this article we study countable structures A with the property that the automorphism
group Aut(A) acts transitively on A. We will say that such structures are vertex-transitive,
or VT. In [Cle09], Clemens showed that the classification of countable vertex-transitive
graphs is just as complex as the classification of arbitrary countable graphs. Since the
classification of countable graphs is known to be of maximal complexity among classes
of countable structures, the same is true of countable vertex-transitive graphs. We will
extend Clemens’ investigation to include the cases of countable directed graphs, partial
orders, linear orders, and tournaments.

In order to describe our results, we briefly introduce Borel complexity theory, an area
of logic which provides a framework to compare relative complexities of classification
problems. In this theory we regard a classification problem as an equivalence relation on
a standard Borel space. For a general class of examples, let L be a countable relational lan-
guage and consider the classification of countable L-structures up to isomorphism. The
underlying standard Borel space is Mod(L), consisting of the L-structures with underly-
ing set N, and the classification problem may be identified with the isomorphism equiva-
lence relation ∼= on Mod(L). For a particular example, to study the classification of count-
able graphs we take L to consist of a single binary relation symbol. Then Mod(L) = 2N2

,
and the space of countable graphs is the Borel subset X consisting of just the symmetric,
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 2

reflexive binary relations. The classification of countable graphs may be identified with
the isomorphism equivalence relation restricted to X.

In order to compare complexities of various classification problems, we will make use
of the notion of Borel reducibility. Here, given two equivalence relations E and F on
standard Borel spaces X and Y respectively, one says that E is Borel reducible to F, denoted
E ≤B F, if there exists a Borel function f : X → Y such that for all x, x′ ∈ X we have x E x′

if and only if f (x) F f (x′). When this is the case, we say intuitively that the classification
up to E-equivalence is no more complex than the classification up to F-equivalence.

There is a maximum possible complexity among isomorphism equivalence relations on
classes of countable structures. We say that an equivalence relation E is Borel complete if
and only if for every every countable language L, the isomorphism equivalence relation
∼= on Mod(L) is Borel reducible to E. For example, the isomorphism equivalence relation
on the class of countable connected graphs is Borel complete. The result from [Cle09]
mentioned above states that the isomorphism relation on countable connected vertex-
transitive graphs is Borel complete as well.

We should note that the class of countable vertex-transitive graphs is not a Borel subset
of 2N2

, and in fact it is not a standard Borel space. While this means the classification
of countable vertex-transitive graphs does not fit within the classical Borel complexity
theory, it is still possible to ask which equivalence relations are reducible to it, and there-
fore whether it is Borel complete. We will also briefly consider the use of absolutely Δ1

2

reduction functions, and in this context it is sufficient to work with a Σ1
1 domain.

In the next section, we will use Clemens’ reasoning to extend his result and show that
isomorphism of countable directed vertex-transitive graphs is Borel complete, and iso-
morphism of countable vertex-transitive partial orders is Borel complete. In the third sec-
tion, we classify the countable vertex-transitive linear orders, and in particular show that
there are just ω1 many isomorphism classes of such orders. We also use our classification
to provide a lower bound on the complexity of the isomorphism relation on such linear
orders. In the last section, we study the isomorphism classification problem for countable
vertex-transitive tournaments. We show that the complexity of this classification is prop-
erly more complex than E0, the eventual equality relation on 2ω. However, the question
of whether or not it is Borel complete remains open.

We remark that some authors refer to vertex-transitive structures as “homogeneous”,
but we avoid the term since it is also often used to mean ultrahomogeneous. Without go-
ing into detail, ultrahomogeneity is a very strong property: the classification of countable
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 3

ultrahomogeneous structures is always smooth (reducible to the equality relation on 2ω),
and hence not interesting from the point of view of Borel reducibility theory.

Acknowledgement. This work represents a portion of the third author’s master’s thesis
[Pot17]. The thesis was completed at Boise State University under the supervision of the
second author, with significant input from the first author.

§2. GRAPHS AND PARTIAL ORDERS

In this section we revisit the result of Clemens in [Cle09] which states that the isomor-
phism relation on the class of countable vertex-transitive graphs is Borel complete. We
will use the details of the proof of this theorem to show that the isomorphism relations on
the classes of countable vertex-transitive directed graphs and countable vertex-transitive
partial orders are Borel complete too.

In this article, a directed graph will always mean an oriented simple graph, so that there
are no duplicate edges and no self-edges. We say that a directed graph is weakly connected
if the corresponding unoriented graph is connected.

Theorem 2.1. The isomorphism relation on countable weakly-connected vertex-transitive directed
graphs is Borel complete.

Proof. We will show that there exists a Borel reduction from countable graphs to countable
weakly-connected vertex-transitive directed graphs. We will provide key details of the
construction of the reduction function here, since we will need these details in the rest of
the section. We will omit the proof that the construction yields a Borel reduction, instead
describing how it may be extracted from [Cle09].

Let G be a given countable graph and denote its vertices 〈vi〉i∈N. We let H be the group
generated freely by the vertices of G with the stipulation that adjacent vertices commute.
That is, if Fω denotes the free group on generators gi, we let N be the normal subgroup of
Fω generated by {gigjg−1

i g−1
j | vi ∼G vj} and define H = Fω/N.

Finally we form Γ, the directed Cayley graph of H with generators 〈gi〉i∈N. The vertices
of Γ are left cosets of N in Fω. We put a directed edge from w1N to w2N in Γ if giw1N =

w2N for some i. Then Γ is vertex-transitive because it is the Cayley graph of a group.
We remark that given the graph G, it is possible to produce a code for the directed graph

Γ in a Borel fashion. This completes the construction of the reduction function G 	→ Γ. As
we noted previously, it remains to verify that G1

∼= G2 if and only if Γ1
∼= Γ2. This is

similar to [Cle09, Theorem 3.2], with the simplification that in the directed case we have
no need for an extensionality hypothesis on the graphs G. The details may be found in
[Pot17]. �
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 4

In the next result we will use the above construction to show that the class of countable
vertex-transitive partial orders is Borel complete. For this we recall that if Γ is a directed
graph, then its transitive closure C(Γ) is the directed graph obtained from Γ by adding an
edge x → y whenever there exists a directed path from x to y in Γ. The following fact
is standard, though we remind the reader that in this article our directed graphs have no
self-edges x → x nor bidirectional edges x → y → x.

Proposition 2.2. If Γ is a directed graph with no directed cycles, then C(Γ) is a partial order with
respect to the relation x < y iff x → y in C(Γ).

We now arrive at the following result concerning vertex-transitive partial orders.

Theorem 2.3. The isomorphism relation on countable vertex-transitive partial orders is Borel
complete.

Proof. We again show that there is a Borel reduction from countable graphs to countable
vertex-transitive partial orders. Given a countable graph G, we begin by constructing the
directed graph Γ from the proof of Theorem 2.1.

We first claim that Γ has no directed cycles. Indeed, recall that Γ is the directed Cayley
graph of a group H = Fω/N, where N is generated by commutators of generators of Fω.
This implies that every word w in N has the property that the sum of the exponents of
the generators appearing in w is equal to 0. On the other hand if Γ contained a directed
cycle, one would be able to find a word w ∈ N such that the sum of the exponents of the
generators in w is positive. This establishes the claim.

It follows from Proposition 2.2 that the transitive closure P = C(Γ) of Γ is a partial
order. This completes the construction of the desired reduction function G 	→ P.

As we already argued, if G1
∼= G2, then Γ1

∼= Γ2. Since the transitive closure is isomor-
phism invariant, it follows that C(Γ1) ∼= C(Γ2) and hence that P1

∼= P2.
For the converse, we first claim that given a graph P = C(Γ) as constructed above, it

is possible to recover the set of b ∈ Γ such that N → b in Γ, where N denotes the vertex
corresponding to the identity element of the Cayley graph.

For this claim, we show that the out-neighbors of N are exactly the b ∈ Γ such that
N → b in C(Γ), and there does not exist a directed path of length greater than one from
N to b in C(Γ). Indeed, if N → b and there additionally exists a directed path from N to b
of length greater than one, then we would have b = gjN and b = gi1 . . . gin N, and so in H
we would have gi1 . . . gin g−1

j = 1. This contradicts the fact that words in N must have the
sum of the exponents of all generators equal to 0, and completes the claim.
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 5

Now if P1
∼= P2, then by definition C(Γ1) ∼= C(Γ2). Then it follows from the last claim

that Γ1
∼= Γ2. As we previously noted, the latter implies that G1

∼= G2. This concludes
the proof that G 	→ P is a reduction from countable graphs to countable vertex-transitive
partial orders. �

§3. LINEAR ORDERS

In this section we give a complete characterization of the vertex-transitive linear orders.
We then use this characterization to help describe the Borel complexity of the classification
of countable vertex-transitive linear orders. We refer the reader to [Ros82] for some of the
basic linear order theory that will be used in this section.

We begin by introducing a key notion from linear order theory. If L is any linear order-
ing and x ∈ L, we define the condensation class of x in L by

c(x) = { y ∈ L | there are finitely many elements of L between x and y } .

The sets c(x) are convex and form an equivalence relation ∼ on L. The quotient linear
ordering L′ = L/∼ is called the condensation of L.

The condensation procedure can be iterated in a natural way. If α = β + 1 and L(β) has
been constructed, we define

cα(x) =
{

y ∈ L | there are finitely many elements of L(β) between cβ(x) and cβ(y)
}

.

If α is a limit ordinal, we define
cα(x) =

⋃

β<α

cβ(x)

In either case, we may again define the corresponding equivalence relation ∼α, and then
define the quotient ordering L(α) = L/∼α.

We will use the terminology that a point x in a linear order L is left dense if there exists
a sequence in L converging to x from below, and left discrete otherwise. The next two
lemmas collect some of the information we will need to characterize the vertex-transitive
linear orders.

Lemma 3.1. Let L be a countable vertex-transitive linear ordering.

(i) If any point of L is left or right dense, then L ∼= Q.
(ii) If any point of L is left or right discrete, then either L = 1 or else every condensation class of

L is a copy of Z.

Proof. (i) Assume without loss of generality that some point is left dense. Since L is vertex-
transitive, every point is left dense. Now let a < b be given. Then there is an increasing
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 6

sequence {bn}n∈N such that sup(bn) = b, and for some n large enough we have a < bn <

b. We have thus shown that L is a dense linear order, and hence isomorphic to either Q,
Q ∪ {∞}, {−∞} ∪ Q, or {−∞} ∪ Q ∪ {∞}. Since L is vertex-transitive, it must be the case
that L ∼= Q.

(ii) Assume without loss of generality that some point is left discrete. Since L is vertex-
transitive, every point is left discrete. Additionally assume that L �= 1. Then by vertex-
transitivity, L has no least element. The last two statements imply that every condensation
class of L is nontrivial. Thus every condensation class is either finite and of size at least
two, a copy of ω, a copy of ω∗, or a copy of Z. Using vertex-transitivity one last time, no
nontrivial condensation class may have a least or greatest element. It follows that every
condensation class is a copy of Z. �

We will say that a linear order L is a condensation fixed point if c(x) = {x} for all x ∈ L.
Of course if L is vertex-transitive, then it is equivalent to say that c(x) = {x} for some
x ∈ L.

Lemma 3.2. Let L be a countable vertex-transitive linear order. If L is a condensation fixed point,
then either L = 1 or L ∼= Q.

Proof. By Lemma 3.1, the only possibilities are L = 1, L ∼= Q, or every condensation class
is a copy of Z. In either of the first two cases, we are done. In the third case, we would
clearly have that that c(x) �= {x} for every x ∈ L, which is contrary to the assumption
that L is a condensation fixed point. �

Next we will need the following very special class of linear orderings, the lexicographic
powers of Z.

Definition 3.3. For any ordinal α, we define the set

Zα = {s : α → Z | {β < α : s(β) �= 0} is finite}
We equip Zα with the reverse lexicographic ordering defined as follows. Given s, t ∈ Zα

such that s �= t, let μ be the greatest ordinal such that s(μ) �= t(μ), and let s < t iff
s(μ) < t(μ).

The powers of Z have the following recursive characterization. If α is any ordinal, then
Zα+1 ∼= Zα · Z, that is, Z many copies of Zα. And if λ is any limit ordinal, then

Zλ ∼= (∑α<λ Zα · ω)∗ + 1 + ∑α<λ Zα · ω.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 7

In other words, to the right of the middle 1 we see ω, followed by ω many copies of Z,
followed by ω many copies of Z2, and so on. And to the left of the middle 1 we see the
same thing backwards.

We are finally ready to state the characterization of the vertex-transitive linear orders.

Theorem 3.4. If L is a vertex-transitive linear order, then there exists an ordinal α such that L is
isomorphic to either Zα or Zα · Q.

Proof. If L is a condensation fixed point, we are done by Lemma 3.2. Otherwise, L has
nontrivial condensation classes, and Lemma 3.1 implies that every condensation class is a
copy of Z. Using this, it is easy to build an isomorphism L ∼= Z · L′.

Now L′ is again vertex-transitive, and so we may iterate the observation. Formally, by
[Ros82, Theorem 5.9], if L is a linear order of cardinality κ, there exists an ordinal α < κ+

such that L(α) is a condensation fixed point. We may further assume that α is the least such
ordinal. This means that for every β < α, the ordering L(β) has nontrivial condensation
classes. Using the reasoning of the previous paragraph inductively, we can conclude that
L ∼= Zα · L(α).

Finally, since L(α) is a condensation fixed point, Lemma 3.2 implies that either L(α) = 1
or L(α) ∼= Q. It follows that either L ∼= Zα or L ∼= Zα · Q, as desired. �

It follows that the isomorphism relation on countable vertex-transitive linear orders
has just ω1 many classes in any forcing extension, and so it is not Borel complete (in the
sense that no Borel complete equivalence relation is Borel reducible to it). On the other
hand we can use the above characterization to provide some additional information on
the complexity of the classification of countable vertex-transitive linear orders. First we
recall several definitions from descriptive set theory.

As we have mentioned, the set of countable vertex-transitive linear orders is not Borel.
Thus in order to compare it with another well-studied equivalence relation, we use a more
general notion than Borel reducibility. We say that a function is absolutely Δ1

2 if it admits
Π1

2 and Σ1
2 definitions which are equivalent in all forcing extensions.

The equivalence relation with which we will be comparing is equivalence of codes for
countable ordinals. That is, we let Eω1 denote the isomorphism equivalence relation on
the set of well-ordered binary relations on N.

Theorem 3.5. There exists an absolutely Δ1
2 reduction from Eω1 to the isomorphism relation on

the set of countable vertex-transitive linear orders.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 8

Proof. It suffices to show that there exists an absolutely Δ1
2 function which maps a code

for an ordinal α to a code for the linear ordering Zα. This can be done by a recursive
construction with the property that each step in the recursion is Borel.

In detail, fix any binary relation <1 with order type Z. Given a code <β for the order
type Zβ, we can construct a code for Zβ+1 = Zβ · Z using the standard product construc-
tion. (Given natural numbers n, m, we write n = 〈n0, n1〉 and m = 〈m0, m1〉, where 〈·, ·〉
is a pairing function. We then define n <β+1 m if and only if n0 <β m0 or n0 = m0 and
n1 <β m1.)

Next, given a code for a limit ordinal λ, together with a λ-sequence of codes for Zβ,
β < λ, we can produce a code for Zλ. For this we use the previously mentioned property
that Zλ ∼= (∑α<λ Zα · ω)∗ + 1 + ∑α<λ Zα · ω, together with the natural constructions of
ordinal-length products and sums.

It is not difficult to see that both the successor step and the limit step described above
may be carried out in a Borel fashion. It follows from this that one can construct the
desired map in an absolutely Δ1

2 fashion. For example, an infinite time Turing machine
(ITTM) can easily be programmed to carry out the recursive construction, and ITTM-
computable mappings are always absolutely Δ1

2. (For the definition of ITTM and the
statement of this fact, see [HL00].) �

As we will discuss further in the next section, it follows from this result that there is no
absolutely Δ1

2 reduction from the isomorphism relation for vertex-transitive linear orders
to any Borel equivalence relation.

§4. TOURNAMENTS

In this section we study the classification of countable vertex-transitive tournaments.
Recall that a tournament is a directed graph with the property that for every pair x, y of
distinct vertices, there is either an edge x → y or an edge y → x and not both. In other
words, a tournament is an oriented complete graph.

Since every linear order is a tournament with the edge relation x → y iff x < y, and
every tournament is a directed graph, the work of the previous sections give lower and
upper bounds on the complexity of the classification of countable vertex-transitive tour-
naments. The main result of this section gives an improvement on the lower bound.

Recall that E0 is the equivalence relation defined on 2ω by x E0 y iff for all but finitely
many n, x(n) = y(n). We note that in the Borel reducibility hierarchy, E0 lies properly
above the equality relation = on 2ω, but “just” above in the sense that for any Borel equiv-
alence relation E, either E ≤B = or else E0 ≤B E (see [HKL90]).

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 9

The equivalence relation E0 has several other natural presentations which are equiv-
alent up to Borel bireducibility. In particular we will use the equivalence relation EZ

defined on 2Z by x EZ y iff there exists k such that x(n + k) = y(n) for all n.

Proposition 4.1. For any comeager Borel subset C of 2Z, the restriction EZ � C is Borel bire-
ducible with E0.

Proof. It follows from [DJK94, Theorem 5.1] that any equivalence relation which is given
by the orbits of a Z-action is Borel reducible to E0. Thus EZ � C is Borel reducible to E0.

Conversely, first note that EZ has a dense orbit. It follows from [Gao09, Proposi-
tion 6.1.9] that EZ is generically ergodic, meaning that every invariant Borel set is meager or
comeager. Clearly, this implies EZ � C is generically ergodic as well. By [Gao09, Proposi-
tion 6.1.10], together with the fact that all equivalence classes of EZ are meager, we obtain
that EZ � C is not smooth. By the Glimm–Effros dichotomy [Gao09, Theorem 6.3.1], we
conclude that E0 is Borel reducible to EZ � C. �

We are now ready to prove the main result of this section.

Theorem 4.2. There exists a Borel reduction from E0 to the isomorphism relation on countable
vertex-transitive tournaments.

Proof. By the proposition, it is sufficient to find a comeager subset C ⊂ 2Z and a Borel
mapping x 	→ Tx from C to countable vertex-transitive tournaments such that x EZ x′ iff
Tx ∼= Tx′ . We will begin by defining the mapping x 	→ Tx from 2Z to countable tourna-
ments, and will define the appropriate comeager set C midway through the proof.

Given an element x ∈ 2Z, we define a tournament Tx on the vertex set Z × Z as fol-
lows. Given distinct vertices at positions (m, n) and (m′, n′) where m, n, m′, n′ ∈ Z, we let
(m, n) → (m′, n′) iff:

◦ m = m′ and n > n′; or
◦ m′ = m + 1 and x(n′ − n) = 1; or
◦ m′ ≥ m + 2.

In all other cases we put an edge (m′, n′) → (m, n). Thus the digits of x are coded into the
edges between every pair of adjacent columns. See Figure 1 for an illustration.

It is not difficult to verify that the map (a, b) 	→ (a + m, b + n) preserves the definition
of the edge relation in Tx given above, and therefore Tx is vertex-transitive. We now begin
our verification that x EZ x′ iff Tx ∼= Tx′ , though as noted above, this will only be true on
a comeager set C to be defined.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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...

(0, 0)

...

...

(1, 2)
(1, 1)
(1, 0)
(1,−1)
(1,−2)

...

FIGURE 1. Coding the digits of x into the edges between adjacent columns.
In this figure we show just five edges between (0, 0) and the column to its
right. Here we have x(−2) = 1, x(−1) = 1, x(0) = 0, x(1) = 0, and
x(2) = 1.

First, suppose that x EZ x′. That is, there exists some k ∈ Z such that, for every
n ∈ Z, x(n) = x′(n + k). Then it is routine to verify using the definition that the map
ϕ(m, n) = (m, n + km) carries the edges of Tx to the edges of Tx′ , and hence witnesses that
Tx ∼= Tx′ .

For the other direction, we need to show that Tx ∼= Tx′ implies x EZ x′. Intuitively, we
should be able to recover the shift-equivalence class of x from the isomorphism class of
Tx. To do so, we require x and x′ have sufficiently many 0 and 1 values. To be precise, we
let C be the set consisting of all z ∈ 2Z satisfying the conditions:

(i) For every n �= 0 there exists some k < n such that z(k − n) = 1 and z(k) = 0
(ii) For every n there exists some k such that z(−k) = 0 and z(k − n) = 0

Note that both of these conditions are Gδ and dense in 2Z, and it follows that C is comea-
ger. Moreover if z ∈ C, then we can recover a number of properties of Tz just from its
isomorphism equivalence class. For instance, let v be a vertex of Tz, and let Sv be the set
consisting of the column of v together with the two columns to the left and two columns
to the right of v.

We claim that Sv may be identified as the set of vertices that are involved in a three-
cycle with v. To see this, suppose without loss of generality that v = (0, 0), and consider
a second vertex w. In the case that w = (0, n) is in the same column as v with n < 0
then condition (i) ensures that there is a vertex u = (1, k) such that w → u and u → v. If
n > 0 we can exchange the roles of v and w to obtain the same conclusion. Condition (i)
can similarly be used if w = (−1, n) or w = (1, n), for n ∈ Z. On the other hand, if

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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ON THE CLASSIFICATION OF VERTEX-TRANSITIVE STRUCTURES 11

w = (−2, n) or w = (2, n) then condition (ii) ensures that there exists a third vertex u such
that w → u and u → v.

On the other hand if w /∈ Sv then w cannot possibly be involved in a three-cycle with
v. This follows from the fact that if an edge points “left” (i.e., from a higher-indexed
column to a lower-indexed column) then its source and target are just one column apart.
Thus if w is at least three columns to the right of v, then one can have neither w → v nor
w → u → v. And if w is at least three columns to the left of v then one can have neither
v → w nor v → u → w. In each case w is not involved in a three-cycle with v, completing
the claim.

Next, we can recover each of the five columns within Sv. Letting Ci,v denote the column
i units to the right of v, we have:

◦ C0,v (the column of v) consists of all w ∈ Sv such that Sw = Sv;
◦ C−2,v consists of all w ∈ Sv such that there is no edge from v to any element in C0,w;
◦ C2,v consists of all w ∈ Sv such that v is in C−2,w;
◦ C−1,v consists of all w ∈ Sv such that w �∈ C−2,v and every u ∈ C2,v is not in Sw;
◦ C1,v consists of all vertices w ∈ Sv such v ∈ C−1,w.

Now from an isomorphic copy of Tz, we can recover z up to shift equivalence as follows.
Fix any v and identify the column C1,v. Then the → relation on C1,v is a linear order with
order type Z. We can thus identify z up to shift equivalence simply by reading the edges
between v and the vertices w ∈ C1,v.

To conclude, suppose that Tx ∼= Tx′ . As outlined above, we may assume that both
x, x′ ∈ C. Let ϕ be an isomorphism from Tx to Tx′ and fix the vertex v = (0, 0). Using
vertex-transitivity we may assume that ϕ(v) = v. Then using the fifth bullet point above,
we have that ϕ maps C1,v to C1,v. Moreover, ϕ preserves the Z-order structure inherited
from →, and thus is simply a shift of C1,v. Thus the edges from v to vertices in C1,v in Tx

are a shift of the edges from ϕ(v) to vertices in C1,ϕ(v) in Tx′ . Since the digits of x and x′

used to construct Tx and Tx′ can be read from these edges, it must be the case that x is a
shift of x′. Thus we have x EZ x′, as desired. �

Using the theorem together with the results of the previous section, we obtain the fol-
lowing.

Corollary 4.3. The isomorphism relation on countable vertex-transitive tournaments is strictly
above E0 in complexity.

Proof. First, recall the existence of an absolutely Δ1
2 reduction from Eω1 to the isomorphism

relation on vertex-transitive linear orders. Since linear orders are tournaments, it follows
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that there is an absolutely Δ1
2 reduction from Eω1 to the isomorphism relation on vertex-

transitive tournaments.
However, there is no absolutely Δ1

2 reduction from Eω1 to any Borel equivalence rela-
tion. Indeed, if there were such a reduction f , then it would be possible to find an abso-
lutely Δ1

2 injection F from codes for ordinals to codes for sets of reals of bounded Borel
rank. (In fact one can take F(x) to be a code for [ f (x)]E.) However, this contradicts the
remark at the end of [Hjo98, §3], which states that no such mapping exists.

It follows from this that the isomorphism relation for vertex-transitive graphs is prop-
erly above E0 in complexity, as claimed. �

We close with the question of whether there exists a Borel reduction from a Borel com-
plete equivalence relation to the isomorphism relation on countable vertex-transitive tour-
naments.
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