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Abstract 

Blind image deblurring is a challenging ill-posed problem. It would have an infinite 
number of solutions even in cases when an observed image contains no noise. In 
reality, however, observed images almost always contain noise. The presence of noise 
would make the image deblurring problem even more challenging because the noise 
can cause numerical instability in many existing image deblurring procedures. In this 
paper, a novel blind image deblurring approach is proposed, which can remove both 
pointwise noise and spatial blur efficiently without imposing restrictive assumptions 
on either the point spread function (psf) or the true image. It even allows the psf to 
be location dependent. In the proposed approach, a local pixel clustering procedure 
is used to handle the challenging task of restoring complicated edge structures that 
are tapered by blur, and a nonparametric regression procedure is used for removing 
noise at the same time. Numerical examples show that our proposed method can 
effectively handle a wide variety of blur and it works well in applications. 

Keywords: Blind image deblurring; Clustering; Deconvolution; Denoising; Edges; Image 
reconstruction; Smoothing; Surface estimation; Nonparametric regression. 
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1 Introduction 

Observed images are not always faithful representations of the scenes that we see. As a 

matter of fact, some sort of degradation often arises when recording a digital image. For 

instance, in astronomical imaging, the incoming light in the telescope is often bent by at­

mospheric turbulence. In aerial reconnaissance, the optical system in camera lens could 

be out of focus. In our daily life, image distortion often arises in cases when there is a 

relative motion between a camera and an object. Environmental effects such as scattered 

and reflected light also degrade images. Other sources of degradations include device noise 

(e.g., charge-coupled device sensor and circuitry) and quantization noise. See Bates and 

McDonnell (1989) and Gonzalez and Woods (2008) for a detailed discussion about forma­

tion and description of various degradations. Classically, image degradation is modeled 

as the result of two phenomena (Aubert and Kornprobst, 2006). The first one is related 

to the image acquisition (e.g., blur created by motion). The second one is random and 

corresponds to the noise coming from signal transmission. 

In the literature, a commonly used model for describing the relationship between the 

true image f and its degraded version Z is as follows. 

Z(x, y) = G{f}(x, y) + ε(x, y), for (x, y) ∈ Ω, (1) 

  
where G{f}(x, y) = R2 g(u, v; x, y)f(x − u, y − v) dudv denotes the convolution between 

a 2-D point spread function (psf) g and a true image intensity function f , ε(x, y) is the 

pointwise noise at (x, y), and Ω is the design space of the image. In model (1), it is assumed 

that the true image f is degraded spatially by g and pointwise by ε, the spatial blur is 

linear, and the pointwise noise is additive. In most references, it is further assumed that 

the psf g, which describes the blurring mechanism, is location (or spatially) invariant. That 

is, g(u, v; x, y) does not depend on (x, y). 

Blind image deblurring (BID) is for estimating f from Z when the psf g is not completely 

specified. This problem is ill-posed in nature because only Z is observed in (1), all g, f 

and ε are unobservable, and it is impossible to distinguish (g, f) from (ag, a−1f) based 

on the observed image Z alone, for any constant a  0.= This ill-posed nature would get 

even worse in cases when g changes over location. In the literature, some image deblurring 
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procedures have been developed under the assumption that the psf g is completely known. 

Such procedures are often referred to be non-blind. The main difficulty in non-blind image 

deblurring lies behind the removal of blur in presence of noise (cf., Qiu (2005), Chapter 7). 

To overcome this difficulty, a number of image deblurring techniques have been proposed 

using the regularization framework (e.g., Chan and Wong (1998), Figueiredo and Nowak 

(2003), Oliveira et al. (2009), Rudin et al. (1992), You and Kaveh (1996)). In practice, 

however, it is hard to specify the psf g completely. In cases when the assumed psf is different 

from the true psf, it has been shown that the deblurred image could be seriously distorted 

(cf., Qiu (2005), Chapter 7). To avoid such limitations, a number of BID methods have 

been developed in the literature. Some of them assume that g follows a parametric model 

with one or more unknown parameters, and these parameters are estimated together with 

the true image f by certain algorithms (e.g., Carasso (2001), Carasso (2003), Hall and Qiu 

(2007b), Joshi and Chaudhuri (2005), Katsaggelos and Lay (1990)). Some others assume 

that the true image f has one or more regions with certain known edge structures or the 

image’s edge structures can be estimated reasonably well (e.g., Hall and Qiu (2007a), Kang 

and Qiu (2014), Kundur and Hatzinakos (1998), Qiu (2008), Qiu and Kang (2015), Yang 

et al. (1994)). Some BID methods adopt the Bayesian framework to make the originally 

ill-posed BID problem well-posed by imposing some prior information on the psf or on the 

true image (e.g., Fergus et al. (2006), Miskin and MacKay (2000), Skilling (1989)). Some 

other BID methods estimate both g and f in an alternating fashion, using the iterative 

Richardson-Lucy scheme (e.g., Biggs and Andrews (1997), Jansson (1997)). 

This paper proposes an alternative approach to the BID problem based on the obser­

vation that spatial blur alters the image structure most dramatically around step edges and 

least dramatically at places where the true image intensity surface is straight. Based on 

this observation, our proposed approach focuses on deblurring around step edges. More 

specifically, it works as follows. In a neighborhood of a given pixel, if we conclude based 

on a data-driven criterion that there could be step edges in the neighborhood, then all 

pixels are clustered into two groups. In such cases, the image intensity at the given pixel 

is estimated by a weighted average of all image intensities in the group that the given 

pixel belongs to. If we conclude that there are no step edges in the neighborhood, then 
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the image intensity at the given pixel is estimated by a weighted average of all image in­

tensities in the entire neighborhood. One major feature of this approach is that it does 

not require any restrictive assumptions on either g or f . It even allows g to vary over 

location. Numerical comparisons with some representatives of the state-of-the-art image 

deblurring methods show that the proposed method is capable of handling a wide variety of 

blur and it works well in various applications. The proposed method can be accomplished 

by the functions surfaceCluster() and surfaceCluster bandwidth() in the R-package DRIP 

(https://cran.r-project.org/web/packages/DRIP/). The test images used in Section 

3 are also included in the package. 

The rest part of the paper is organized as follows. Our proposed methodology is de­

scribed in detail in Section 2. Some numerical examples are presented in Section 3. Several 

remarks conclude the paper in Section 4. 

2 Methodology 

We describe our proposed BID method in two parts. In Subsection 2.1, our new method is 

described in detail. In Subsection 2.2, selection of procedure parameters is discussed. 

2.1 Proposed BID Method 

Assume that an observed image follows the discretized version of model (1) 

Zij = G{f} (i, j) + εij, for i, j = 1, 2, . . . , n, 

where (i, j) denote the (i, j)-th equally spaced pixel (i.e., the pixel located at (i/n, j/n)) in 

the design space Ω = [0, 1] × [0, 1], {Zij , i, j = 1, 2, . . . , n} are observed image intensities, 

and {εij , i, j = 1, 2, . . . , n} are independent and identically distributed (i.i.d.) random 

errors with mean 0 and unknown variance σ2 . It is further assumed that f is continuous 

in Ω except on some edge curves (see Qiu (1998) for a mathematical definition of edge 

curves). 

For the (x, y)-th pixel, let us consider its circular neighborhood 
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where the positive integer k ≤ n is a bandwidth parameter and (x, y) denotes the two-

dimensional index of the design point (we will also refer to the pixel or its location as (x, y) 

and its meaning should be no ambiguity from the context ). In this neighborhood, a local 

plane is fitted by the following local linear kernel (LLK) smoothing procedure (cf., Fan and 

Gijbels (1996)): � 
n n   2   � tt b c i − x j − y

min Zij − a − (i − x) − (j − y) K , , 
a,b,c n n k k

i=1 j=1

(2) 

where K is a circularly symmetric bivariate density kernel function with its support on the 

unit disk. The above LLK smoothing procedure approximates the image intensity surface 

locally by a plane and uses the kernel function K to control the weights in the weighted least 

squares procedure (2). Usually, K is chosen such that pixels closer to (x, y) receive more 

weights, which is intuitively reasonable because pixels closer to (x, y) should provide more 

information about the image intensity at (x, y). Let (ban(x, y),bbn(x, y), bcn(x, y)) denote the 
solution to the minimization problem (2). The mathematical expressions are shown in (12) 

- (14) in the appendix. Then, ban(x, y) in (12) is the LLK estimator of f(x, y), and bbn(x, y) 
and bcn(x, y) are the LLK estimators of the x and y derivatives of f at (x, y), respectively, 

in cases when such derivatives exist. 

The LLK estimator removes noise but also blurs edges at the same time. Center 

weighted median (CWM) filtering is a useful method in image processing and it can pre­

serve edges to some extent (Ko and Lee, 1991; Sun et al., 1994). Next, a CWM filter with 

center weight W0,0 is applied to O(x, y; k, n) and the filter output at (x, y) is denoted by 

ãn(x, y). The residual at (x, y) is defined by 

en(x, y) = ban(x, y) − ãn(x, y). (3) 

If (x, y) is in the continuity region of f , then the image structure within O(x, y; k, n) should bbe approximated well by the local plane described by (ban(x, y), bn(x, y), bcn(x, y)). Thus, 
en(x, y) should be relatively small. On the other hand, if O(x, y; k, n) contains edge curves, 

then the fitted local plane cannot well describe the image structure within O(x, y; k, n). 

Consequently, the value of e(x, y) should be relatively large. Therefore, en(x, y) can be 

used to judge whether the neighborhood O(x, y; k, n) contains any edge curves. More 
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specifically, if
 

|en(x, y)| > un, (4) 

then we can conclude that there are edge curves in O(x, y; k, n), where un is a threshold 

value. In such a case, we can cluster the pixels in O(x, y; k, n) into two groups based on 

their CWM outputs. Intuitively, pixels on the same side of an edge curve have similar 

CWM outputs. So, they can be put in the same group. Pixels on different sides of the edge 

curve have quite different CWM outputs, and they should be put in different groups. Of 

course, it is not easy to specify the exact position of the edge curve within O(x, y; k, n) and 

define the two groups of pixels accordingly. But, an informative pixel clustering procedure 

can generate groups such that pixels within a group are similar in their CWM outputs 

and pixels in different groups have quite different CWM outputs. Such a pixel clustering 

procedure can reflect the local edge structure well without imposing restrictive conditions 

on the smoothness or shape of the edge curve. In this paper, we suggest a simple but 

effective pixel clustering procedure which uses a cut-off constant c to define the two clusters 

in O(x, y; k, n). More specifically, the two clusters are defined to be 

O1(x, y; k, n, c) = {(i, j) ∈ O(x, y; k, n) : ãn (i, j) ≤ c} , 

O2(x, y; k, n, c) = {(i, j) ∈ O(x, y; k, n) : ãn (i, j) > c} , 

where c ∈ R(x, y; k, n), and R(x, y; k, n) is the range of the image intensity values in 

O(x, y; k, n) defined to be 

R(x, y; k, n) = min ãn (i, j) , max ãn (i, j) . 
O(x,y;k,n) O(x,y;k,n) 

So, it is obvious that both O1(x, y; k, n, c) and O2(x, y; k, n, c) are non-empty sets for 

any constant c ∈ R(x, y; k, n), O(x, y; k, n, c) = O1(x, y; k, n, c) ∪ O2(x, y; k, n, c), and 

O1(x, y; k, n, c) ∩ O2(x, y; k, n, c) = ∅. Let c0 be the maximizer to the following maxi­

mization problem: 

(5) 
|O1(x, y; k, n, c)|(η1 − η)2 + |O2(x, y; k, n, c)|(η2 − η)2 

max t t , 
c∈R(x,y;k,n) (ãn (i, j) − η1)

2 + (ãn (i, j) − η2)
2 

O1(x,y;k,n,c) O2(x,y;hn,c) 

where |A| denotes the number of elements in the pointset A, η denotes the sample mean s 

of the CWM outputs within Os(x, y; k, n, c), for s = 1, 2, and η denotes the sample mean 
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of the CWM outputs within O(x, y; k, n). In (5), the numerator measures the dissimilarity 

between the two groups, and the denominator measures the dissimilarity within each of 

the two groups. Thus, it is reasonable to cluster the pixels in O(x, y; k, n, c) by maximizing 

their ratio. It can be checked that (5) is actually the one dimensional version of the well-

known clustering criterion proposed by Friedman and Rubin (1967). Note that there are 

only finitely many cut-off constants that can result in different partitions. Namely, it is 

sufficient to evaluate (5) on the finite set of {ãn(i, j) : (i, j) ∈ O(x, y; k, n)}. Therefore, the 

maximization problem can be solved by exhaustive search. 

Without loss of generality, assume that (x, y) ∈ O1(x, y; k, n, c0). Then, a weighted 

average of observations in O1(x, y; k, n, c0) should provide a good estimate for f(x, y) when 

there is no blurring involved, as discussed in the image denoising literature (cf., Qiu 1998). 

In cases when the observed image contains blur, if the intensity value of a pixel is closer 

to the cut-off constant c0, then it should receive less weight in the weighted average since 

it is more likely that that pixel has blur involved. To address this issue related to the 

image blur, besides a bivariate kernel function used in the conventional kernel smoothing 

procedure to assign more weights to pixels closer to (x, y), a univariate kernel function is 

used to assign less weights to pixels whose intensity values are closer to c0. Then, our 

proposed BID estimator fbn(x, y) is defined to be the solution to a0 in the following local 

constant kernel (LCK) smoothing procedure: 

(6) 
t 

2 i − x j − y |ãn (i, j) − c0|
min (Zij − a0) K , L 

(1) 
, 

a0∈R k k |˜ − c0|O1(x,y;k,n,c0) 
amin 

(1)
where L is a univariate increasing density kernel function with the support [0, 1], and ãmin bdenotes the minimum CWM output in O1(x, y; k, n, c0). It is easy to check that fn(x, y) 

has the following expression: 

  
   

i−x j−y |ãn(i,j)−c0|, LO1(x,y;k,n,c0) 
Zij K k k |ã(1) −c0|b min

fn(x, y) = .    
i−x j−y |ãn(i,j)−c0|

O1(x,y;hn,c0) 
K

k , L 
|˜(1) −c0|k amin

(7)

bIn cases when (x, y) ∈ O2(x, y; k, n, c0), fn(x, y) can be defined in the same way except 
(1) (2)

that O1(x, y; k, n, c0) and ãmin in (7) should be replaced by O2(x, y; k, n, c0) and ãmax, 
(2)

respectively, where ãmax denotes the maximum CWM output in O2(x, y; k, n, c0). 
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To demonstrate the efficacy of the image deblurring procedure (7), a cross section of an
 

image around a step edge, a blurred version, a blurred-and-noisy version, and the deblurred 

version by (7) when K and L are chosen to be the ones used in Section 3 are shown in 

plots (a)-(d) of Figure 1, respectively. From plot (d), it can be seen that (7) can restore 

the blurred edge structure to some extent while removing the noise at the same time. 

Figure 1: (a): A cross section of an image intensity surface around a step edge; (b): A 

blurred version of (a); (c): A blurred-and-noisy version of (a); (d): The deblurred version 

from (c) by the BID procedure (7). 

In cases when (4) is not satisfied, it is likely that the pixel (x, y) is in a continuity 

region of f . In such cases, the spatial blur would not alter the image intensity surface 

much, as discussed in Section 1. So, we suggest estimating f(x, y) by the conventional 

LLK estimator ban(x, y) defined in (12). There are two benefits of doing this. First, it has 

been well demonstrated in the literature that the LLK estimator has less bias compared 

to the LCK estimator in continuity regions of f (cf., Fan and Gijbels (1996)). Second, 
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since ban(x, y) has already been computed before we compute fbn(x, y) in (10), it saves much 

computation. 

2.2 Parameter Selection 

In the proposed BID procedure (5)–(7), there are two parameters to choose, including the 

threshold value un in (4) and the bandwidth parameter k in (2). To choose a reasonable 

value for un, we need to derive the asymptotic distribution of en(x, y) defined in (3). Based 

on (3), we have the following proposition. 

Proposition 1. Let Ψ(·) and ψ(·) denote the cumulative distribution function (cdf) and 

the probability density function of ε11, respectively. Under the regularity conditions (B1) – 

(B5) in Appendix B and assume that (x, y) is a continuity point, then ⎡⎛   ⎞⎤    ⎞⎞ 

k ⎣⎝ban(x, y)⎠ − ⎝G{f}(x, y)⎠⎦ d→ N ⎝⎝0⎠ , ⎝Σ11 Σ12⎠⎠ , 
ãn(x, y) G{f}(x, y) 0 Σ21 Σ22 

⎞ ⎛ ⎛⎛ ⎞ ⎛

where � � 
Σ11 = σ2 K(x, y)2 dxdy, 

x2+y2≤1 

E|ε11|
Σ12 = Σ21 = ,

2πψ(0)
1 

Σ22 = ,
4πψ(0)2 

 
d

and → denotes convergence in distribution as n → ∞. 

The proof of Proposition 1 is provided in Appendix B. If (x, y) is a continuity point, it 

follows from Proposition 1 that 

d
k (ban(x, y) − ãn(x, y)) → N(0, Σ11 + Σ22 − 2Σ12). 

So a reasonable choice for the threshold in (4) would be 

un = Z1−α/2(Σ11 + Σ22 − 2Σ12)/k, (8) 

where Z1−α/2 denotes the 1 − α/2 percentile of the standard normal distribution and α 

is the significance level. There are still three unknown quantities in (8), ψ(0), σ2, and 
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E|ε11|, to be estimated. We suggest applying a surface estimator (e.g., Qiu 2009) to obtain 

residuals {εb11, · · · , εbnn}. Then ψ(0), σ2, and E|ε11| can be estimated by

(9) 
t t t1 εbij − 0 1 1 n

, σb2 = 
n b -

n

|bψ(0) = K1 2 
εij 
2 , E|ε11| = 

2 
εij |, 

n2hn hn n n
i,j=1 i,j=1 i,j=1 

where K1(·) is the one-dimensional Gaussian kernel and hn = 1.06bσn−2/5 (Wand and Jones 

1994, Chapter 2). 

Next, we discuss the selection of the bandwidth parameter k. In numerical simulations, 

the true image is often known. In such cases, k can be chosen by minimizing 

(10) 
t   2 

MSE(f, fb; k) = 
1 
2 

n

f (i, j) − fbn (i, j) , 
n

i,j=1

where fbn is the deblurred image. In practice, f is usually unknown. In such cases, the cross 

validation (CV) approach is natural to consider (cf., Qiu 2005, Chapter 2). In the image 

deblurring problem, however, the mean response is G{f}, instead of f . In such cases, the 

CV approach is inappropriate to use because the chosen parameter is for approximating 

G{f}. To overcome this limitation of the conventional CV approach, we propose the 

following modified cross validation (MCV) approach. 

(11)
t   2 t   2w 1 − w 

MCV (k) = Zij − fb−Zij (i, j) + Z̃ij − fb−Z̃ij 
(i, j) , 

|Ω \ J | |J |
Ω\J J

where w ∈ [0, 1] is a constant, J = {(i, j) : |en(i, j)| > un}, fb−Zij (x, y) denotes the proposed 

the BID estimate at (x, y) with the observation Zij held out, and Z̃ij is the image intensity 
(1) (2)

whose CWM output equal to ã in (7) or ã in (7)’s alternative form in the cases when min max 

(i, j) ∈ O2(i, j; k, n, c0). The rationale behind (11) is again based on our key observation 

that spatial blur alters image most dramatically around step edges and least dramatically 

at places where the true image intensity surface is straight. More specifically, the intensities 

of the pixels in the continuity region are not altered much by blur. Thus the first term 

in (11) uses the conventional leave-one-out CV approach. As for the pixels around step 

edges, their observed image intensities are no longer representative of f . We approximate 

them with a nearby pixel’s image intensity that is not affected dramatically by blur (i.e., 

Z̃ij in the second term of (11)). MCV is a weighted average of the two and w represents 

the relative importance of the first term. It needs to be specified by the user. 
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By taking into account all these considerations, our proposed BID procedure is sum­

marized below. 

Proposed Blind Image Deblurring Procedure 

1. For a given pixel (x, y), solve the minimization problem (2) and compute its solution 

by (12)-(14). 

2. Apply CWM filter and obtain ãn(x, y) 

3. Compute the residual en(x, y) in (3). 

4. If (4) holds, then execute the local clustering procedure by solving the maximization 

problem (5), and estimate f(x, y) by (7). Otherwise, estimate f(x, y) by (12). 

3 Numerical Study 

In this section, we discuss several numerical examples concerning the performance of the 

proposed BID procedure and the MCV bandwidth selection procedure. Throughout this 

section, the center weight W0,0 in the CWM filter is chosen to be 3, the significance level α is 

chosen to be 0.001, the relative weight in (11) is 0.5, the two dimensional kernel function K 

used in (2) and (7) is chosen to be (2/π)(1−x2 −y2)I(x2 +y2 ≤ 1), and the one dimensional 

kernel function L used in (7) is chosen to be (1/1.194958) exp(x2/2)I(0 ≤ x ≤ 1). We 

choose these two kernel functions because the former is the Epanechnikov kernel function, 

which is a standard choice in the statistical literature, and the latter is a truncated Gaussian 

kernel function, which is commonly used in the computer science literature. 

3.1 Numerical Experiment with Lena Image 

We denote the proposed BID procedure as NEW and compare it with three other popular 

methods. The first existing method considered here is the one accomplished by the MAT­

LAB blind deconvolution routine deconvblind, which is based on the method discussed by 

Biggs and Andrews (1997) and Jansson (1997) under the framework of Richardson-Lucy 

(RL) algorithm. The second existing method is the total variation (TV) image deblurring 
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method proposed by Oliveira et al. (2009). The third existing method is the blind image 

deconvolution procedure developed under the Bayesian framework by Fergus et al. (2006). 

These three existing methods are denoted as RL, TV and Bayes, respectively. It should 

be pointed out that both RL and Bayes are blind image deblurring schemes, but TV is 

designed for non-blind image deblurring. Two versions of TV, denoted as TV1 and TV2, 

distinguished by how the psf g is specified, are considered. The specific description of TV1 

and TV2 will be given later. The bandwidth k used in (2) is chosen by minimizing (10). 

The Lena test image has 512 × 512 pixels. The following two psf’s are considered: ⎧
g1(u, v; x, y) = 

g2(u, v; x, y) = 

⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩
 

1 +v 2 + vexp{−u2 2 }I(u 2 ≤ 0.012) if y > 0.5,
C1(x,y) 2 

δ0(u)δ0(v) otherwise; 

1 I(|u| ≤ 0.01)δ0(v) if |x − 0.5| ≤ 0.3 and |y − 0.5| ≤ 0.3,
C2(x,y) 

1 δ0(u)I(|v| ≤ 0.1) otherwise,
C2(x,y) 

where Cj (x, y) is the standardization constant such that R2 gj (u, v; x, y) dudv = 1, for 

any (x, y) ∈ Ω and j = 1, 2, and δ0(·) is the delta function with the point mass at 0. The 

random noise is generated from the normal distribution N(0, σ2), and two different noise 

levels σ = 5 and 10 are considered. From the above expression, we can see that g1 is a 

truncated Gaussian blur for the upper half of the image and there is no blur for the lower 

half; g2 is a horizontal motion blur for the central part of the image and is a vertical motion 

blur for the rest part of the image. In the case when psf is g1, TV1 and TV2 denotes the TV 

method when the psf is specified as the Gaussian blur of g1 and the delta function (i.e., no 

blur) of g1, respectively. In the case when psf is g2, TV1 and TV2 denotes the TV method 

when the psf is specified as the horizontal motion blur of g2 and the vertical motion blur 

of g2, respectively. 

Figure 2(a)-(c) present the original Lena image, its blurred version with g2, and its 

blurred-and-noisy version with g2 and σ = 10, respectively. Figure 2(d)–(h) present the 

deblurred images by NEW, RL, TV1, TV2 and Bayes, respectively. It should be pointed 

out that the support of the psf needs to be specified when using RL and the true support 

of g2 is used in this example to show its best performance, and a subregion defined by the 

coordinates [86/512, 214/512] × [293/512, 421/512] is prespecified for Bayes, as suggested 
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in Fergus et al. (2006) that their algorithm would perform better and run faster if a smaller
 

patch, rich in edge structure, is manually selected. From Figure 2, it can be seen that (i) 

NEW removes noise and the blur well, (ii) there are many artifacts in the deblurred image 

of RL and the noise has not been reduced much, and (iii) TV generates many artifacts at 

places where the psf is misspecified. 

Figure 2: (a)–(c): Original Lena image, its blurred version and its blurred-and-noisy ver­

sion, respectively. The RMSE of (c) and (d) is 15.12 and 12.51, respectively. (d)–(h): 

Deblurred images by NEW, RL, TV1, TV2 and Bayes, respectively. 

Next, we compare the five methods quantitatively. Table 1 presents the values of the 

root mean squared error (RMSE) defined to be n RMSE= [f(i, j) − fbn(i, j)]2/n2 ofi,j=1

the five methods for each case considered based on 100 replicated simulations. The number 

in each parenthesis represents the standard error of the corresponding RMSE. From Table 

1, it can be seen that NEW outperforms all the other four methods. 
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Table 1: Estimated values of RMSE of the five image deblurring methods in the Lena 

image example based on 100 replicated simulations. The numbers in the parentheses are 

the standard errors of RMSE. 

Methods 

g1 

σ = 5 σ = 10 

g2 

σ = 5 σ = 10 

New 11.06 (0.02) 11.47 (0.02) 12.28 (0.02) 12.53 (0.02) 

RL 19.80 (0.03) 30.73 (0.05) 26.61 (0.04) 29.67 (0.08) 

TV1 15.83 (0.10) 16.33 (0.27) 24.21 (0.16) 26.31 (0.39) 

TV2 12.25 (0.09) 12.61 (0.02) 13.00 (0.04) 13.89 (0.15) 

Bayes 26.43 (1.54) 38.11 (1.08) 27.93 (1.11) 40.91 (1.95) 

3.2 Numerical Experiment with Peppers Image 

Next, we discuss the second numerical example, in which the test image of peppers with 

256 × 256 pixels is used. The psf g considered has the expression:  
g(u, v; x, y) = 

3 
πr2(x, y) 

1 − u2 

r2(x, y) 
+ 

v2 

r2(x, y) 
I(u 2 + v 2 ≤ r 2(x, y)), 

where r(x, y) > 0 may change over location and it is the radius of the circular support of 

g. In this paper, r(x, y) is called the blur extent function. Three blur extent functions, 

r1(x, y) = 0.03(1 − (x − 0.5)2 − (y − 0.5)2), r2(x, y) = 0.03x, r3(x, y) = 0.02, and two noise 

levels, σ = 5, σ = 10, are considered. Clearly, r1(x, y) and r2(x, y), are location variant., 

and r3(x, y) is location invariant. In the case with r3(x, y), the blur described by g(u, v; x, y) 

is homogeneous across the entire image, which is the case discussed by most references. As 

in the previous example, the noise is generated from the distribution N(0, σ2). Regarding 

the four image deblurring methods, we would like to make the following remarks. (i) RL 

requires the blur extent function to be constant (i.e., location invariant) and completely 

specified. So, in this example, we searched the value of r to achieve the minimum RMSE 

such that RL performs the best. (ii) TV requires the psf g to be completely specified 

and the blur extent function needs to be constant as well. In this example the value of 

r is searched to achieve the minimum RMSE values for TV, for which the parametric 
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form of g is correctly specified. (iii) The prespecified subregion for Bayes is chosen to be 

[78/256, 206/256] × [42/256, 170/256]. 

The results in the same setup as Figure 2 are shown in Figure 3, where the blur extent 

function r2(x, y) and σ = 10 are considered. From the figure, it can be seen that (i) 

the blur gets more severe when moving from the left side of the image to the right side 

(cf., plot(b)), (ii) NEW deblurs the image and removes the noise well, (iii) RL performs 

poorly, (iv) the middle part of the deblurred image by TV looks good but the places near 

the boundary contain many artifacts because TV cannot handle location variant blur, (v) 

Bayes performs poorly in this example. It is worth noting that the RMSE of the deblurred 

image is larger than that of the observed image. The reason is as follows. The blur extent 

changes rapidly as the pixel location moving from the left to the right. At the places 

close to the left boundary of the image, where there is little blur involved, our deblurring 

procedure is still carried out nonetheless. And it results in large RMSE in those areas. It 

can be seen from
  n RMSE(f, fbn)|x<0.25 = (f(i, j) − fbn(i, j))2/(n2/4) = 20.75i<n/4 j=1

and RMSE(f, Z)|x<0.25 = 10.37. On the other hand, at the places where the blur is severe 

(i.e., close to the right boundary of the image), our deblurring procedure does improve on 

the observed image with RMSE(f, fbn)|x>0.75 = 21.64 and RMSE(f, Z)|x>0.75 = 22.02. This 

reveals a limitation of the proposed deblurring method that it is nonadaptive in the sense 

that it does not adjust for different blur extents at different pixel locations. 

In cases when r3(x, y) (i.e., blur is location invariant) and σ = 10 are considered, the 

results are shown in Figure 4. In this case, TV method makes full use of the completely 

specified blurring mechanism and thus can be considered as the gold standard. From Figure 

4, we can see that (i) both RL and Bayes perform poorly, (ii) TV performs well as expected 

and (iii) NEW still gives a comparable performance to TV despite it uses much less prior 

information. 

The quantitative performance measures of these methods in the same setup as that of 

Table 1 are presented in Table 2. It can be seen from Table 2 that (i) NEW works stably 

as the blur extent function and noise level change, (ii) TV, which requires the parametric 

form of the psf is correctly specified, works slightly better than NEW in a few cases , (iii) in 

the cases when the blur extent function is location varying r1(x, y), TV is still performing 
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Figure 3: (a)–(b): Original peppers image and its blurred-and-noisy version, respectively. 

The RMSE of (b) and (c) is 16.99 and 19.43, respectively. (c)–(f): Deblurred images by 

NEW , RL, TV, and Bayes, respectively. 

because r1(x, y) changes slowly across the image, whereas its performance deteriorates 

significantly as the blur function changes a little more rapidly (i.e.,, when the blur function 

is r2(x, y)), and (iii) RL and Bayes both perform poorly. 

3.3 Numerical Experiment with Brain Image 

Next, we consider an example with a brain test image. Figure 5(a) shows an observed brain 

image with 217 × 217 pixels which seems to have some blur involved. Its noisy version is 

shown in Figure 5(b), where the noise is generated from N(0, 72). Figure 5(c)–(f) present 

the deblurred images by NEW, RL, TV and Bayes, respectively. The bandwidth in NEW 

is chosen to be 4/217. The support of the psf for RL is chosen to give its best visual 

impression. For TV, the psf is specified as a horizontal motion blur and the blur extent is 

chosen to give the best visual impression. We also tried several other forms of psf for TV 

but they did not provide significant improvements. The prespecified subregion required by 
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Figure 4: (a)–(b) Blurred peppers image and its blurred-and-noisy version in the case when 

the blur extent function is r3(x, y) and σ = 10. The RMSE of (b) and (c) is 19.69 and 

19.21, respectively. (c)–(f): Deblurred images by NEW, RL, TV and Bayes, respectively. 

Bayes is chosen to be [84/217, 138/217] × [22/217, 76/217]. It can be seen from Figure 5 

that (i) NEW sharpens the image and removes the noise efficiently, (ii) both RL and Bayes 

generate many artifacts in their deblurred images around edges, and (iii) the deblurred 

image by TV does not seem to be improved much compared to the observed image. 

3.4	 Bandwidth Selection and Comparison with Wavelet Based 

Image Deblurring 

Wavelet based image deblurring methods are well received in the literature. In this sub­

section, we compare the numerical performance of our BID method with the wavelet based 

method proposed by Beck and Teboulle (2009) (denoted as WAV) using a simulated exam­

ple. In the simulation, the proposed bandwidth selection procedure is evaluated as well. 
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Table 2: Estimated values of RMSE of the four image deblurring methods in the Peppers 

image example based on 100 replicated simulations. The numbers in the parentheses are 

the standard errors of RMSE. 

Methods 

r1(x, y) 

σ = 5 σ = 10 

r2(x, y) 

σ = 5 σ = 10 

r3(x, y) 

σ = 5 σ = 10 

New 19.69 (0.03) 20.66 (0.04) 19.12 (0.03) 19.43 (0.05) 18.00 (0.03) 19.18 (0.05) 

RL 27.03 (0.06) 34.73 (0.12) 42.79 (1.46) 47.16 (0.69) 37.91 (0.10) 40.15 (0.18) 

TV 19.49 (0.03) 19.52 (0.08) 45.52 (0.78) 46.27 (0.87) 17.39 (0.03) 17.44 (0.06) 

Bayes 29.19 (6.75) 45.05 (3.89) 34.80 (9.00) 43.48 (7.07) 28.28 (10.00) 42.89 (7.68) 

The true image intensity has the following expression (its image is shown in Figure 6(a)):
 ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

3 , if (x − 0.25)2 + (y − 0.75)2 ≤ 0.152 and y ≥ x. 

2 , if (x − 0.25)2 + (y − 0.75)2 > 0.152 and y ≥ x. 
f(x, y) = 

1 , if (x − 0.75)2 + (y − 0.25)2 ≤ 0.152 and y < x. 

0 , if (x − 0.75)2 + (y − 0.25)2 > 0.152 and y < x. 

Throughout this subsection, we consider Gaussian blur with a location invariant blur 

extent r(x, y) = 0.02. The blurred image is shown in Figure 6(b). The comparison results 

are reported in Table 3, which includes the cases when n = 256, 512 and σ = 0.015, 

0.05, and 0.1. Let k0 and bk0 denote the optimal bandwidth parameter that minimizes the 

MSE and the bandwidth selected by the proposed MCV procedure, respectively. Thus, 

|k0 − bk0|/n measures the performance of our bandwidth selection procedure. The values of 

MSE of NEW and WAV are shown for each combination of sample size n and noise level 

σ. The numbers in the parentheses are the standard error for the corresponding MSE. 

From Table 3, it can be seen that (i) NEW works stably and outperforms WAV, (ii) WAV 

works reasonably well when the noise level is low but its performance deteriorates rapidly 

as the noise level increases, and (iii) the MCV bandwidth selection procedure selects the 

bandwidth parameter close to k0. 

The first row in Figure 7 shows the observed images when the noise level is 0.015, 0.05, 

and 0.1. The second and third row shows the corresponding deblurred images by NEW 
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Figure 5: (a): A brain image with some blurring involved. (b): A noisy version of (a). 

(c)–(f): Deblurred images by NEW, RL, TV and Bayes, respectively. 

and WAV, respectively. It can be seen that WAV does a decent job when the noise level 

is low but start to introduce artifacts as the observed image gets noisier. In comparison, 

NEW works well across different noise levels. This is consistent with the results in Table 

3. 

4 Concluding Remarks 

We have proposed a blind image deblurring method which simultaneously removes spatial 

blur and pointwise noise from an observed image without imposing restrictive assumptions 

on the blurring mechanism. It even allows the psf to vary over location. This method is 

based on our observation that spatial blur alters the image structure significantly around 

step edges, but it does not change the image structure much in continuity regions of the im­

age intensity surface. The challenging task of restoring complicated edge structures tapered 

by blur is accomplished by a local clustering procedure and by a weighted local smoothing. 

A data-driven bandwidth selection procedure is proposed along the BID method as well. 
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(a) (b)

Figure 6: (a): The original image of the simulated example; (b): The blurred image by 

Gaussian blur with blur extent r(x, y) = 0.02. 

Table 3: Comparison with WAV and numerical study of the proposed bandwidth selection 

procedure based on 100 replicated simulations. k0 and bk0 denote the bandwidth that 

minimizes the MSE and the bandwidth selected by MCV, respectively. The values of MSE 

are shown for each combination of n and σ and the numbers in the parentheses are the 

standard error for its corresponding MSE. All numbers except those under column k0−kk0 
n 

are in the unit of 10−3 . 

n σ = 0.015 σ = 0.05 σ = 0.1 
|k0−kk0|

n NEW WAV |k0−kk0|
n NEW WAV |k0−kk0|

n NEW WAV 

256 
3.00 
256 

5.49 

(0.08) 

9.30 

(0.16) 

1.99 
256 

7.22 

(0.25) 

58.20 

(1.20) 

1.68 
256 

8.77 

(0.48) 

165.9 

(4.80) 

512 
3.00 
512 

5.68 

(0.06) 

10.10 

(0.08) 

5.90 
512 

6.67 

(0.14) 

46.40 

(0.68) 

2.59 
512 

7.62 

(0.22) 

151.5 

(2.60) 
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Figure 7: (a) – (c): Blurred-noisy images with noise level σ = 0.015, 0.05 and 0.1, respec­

tively. (d) – (f): Deblurred image by NEW when the observed image is (a), (b) and (c), 

respectively. (g) – (i): Deblurred image by WAV when the observed image is (a), (b) and 

(c), respectively. 
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Numerical comparison with some state-of-the-art image deblurring methods shows that our 

proposed procedure can do a better job in removing a wide variety of different blur and in 

removing noise at different levels as well. 

There is much room for improvement of our proposed method. First, this paper fo­

cuses on removing blur around step edges because those places dominate human visual 

perception. In other words, our proposed method only removes noise and does not at­

tempt to deblur in the continuity regions. However, features in the continuity regions (e.g., 

roof/valley edges, peaks, etc.) ought to be restored even though they are less visually 

dominant. A natural improvement is to properly deblur the observed image to recover 

these features too. Second, we used a single bandwidth for local smoothing in the current 

method. The idea of multilevel smoothing that uses variable bandwidths can be incorpo­

rated into the proposed method. Third, the proposed bandwidth selection procedure works 

well in our simulation studies. Some theoretical justification for the asymptotic properties 

of the selected bandwidth would be another improvement of the current method. Finally, 

as seen in the numerical example with the Peppers image, our method carries out the de­

blurring procedure even in places where there is little blur involved and that could result 

in relatively large RMSE. Having the deblurring method adaptive to the blur extent would 

be an interesting theme for future research. 
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Appendix 

A Local Linear Kernel Estimates 

By standard algebraic manipulations, the solution to (2) is as follows. 

(12)  n n (1)
wi=1 j=1 ij (x, y)Zijban(x, y) = , 

n n (1)
w (x, y)i=1 j=1 ij 

(13)

 

  n n (2)
w (x, y)Ziji=1 j=1 ijbbn(x, y) = , 

n n (2)
w (x, y)i=1 j=1 ij 

(14)

25
 

  n n (3)
wi=1 j=1 ij (x, y)Zijbcn(x, y) = , 

n n (3)
w (x, y)i=1 j=1 ij 
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where
 

        
        

      

i x j y i − x j − y 
w

(1)
(x, y) = A11(x, y) + A12(x, y) − + A13(x, y) − K , ,ij n n n n k k 

(2) i x j y i − x j − y 
wij (x, y) = A21(x, y) + A22(x, y) − + A23(x, y) − K , , 

n n n n k k 

(3) i x j y i − x j − y 
wij (x, y) = A31(x, y) + A32(x, y) − + A33(x, y) − K , , 

n n n n k k
 
A11(x, y) = r20(x, y)r02(x, y) − r11(x, y)r11(x, y),
 

A12(x, y) = r01(x, y)r11(x, y) − r10(x, y)r02(x, y),
 

A13(x, y) = r10(x, y)r11(x, y) − r01(x, y)r20(x, y),
 

A21(x, y) = r01(x, y)r11(x, y) − r10(x, y)r02(x, y),
 

A22(x, y) = r00(x, y)r02(x, y) − r01(x, y)r01(x, y),
 

A23(x, y) = r01(x, y)r10(x, y) − r00(x, y)r11(x, y),
 

A31(x, y) = r10(x, y)r11(x, y) − r20(x, y)r01(x, y),
 

A32(x, y) = r01(x, y)r10(x, y) − r00(x, y)r11(x, y),
 

A33(x, y) = r00(x, y)r20(x, y) − r10(x, y)r10(x, y),
 
s1 s2ttn n

i x j y i − x j − y 
rs1,s2 (x, y) = − − K , , for s1, s2 = 0, 1, 2. 

n n n n k k 
i=1 j=1 

B Technical Details 

In this section, we provide the proof of Proposition 1. First, let us introduce the following 

notations. Let γ(·|x, y) denote the pdf of Z with respect to the (x, y)-th pixel, with corre­

sponding cdf Γ(·|x, y). Let ξp(x0, y0) be the p-quantile of Z with respect to the (x0, y0)-th 

pixel. Since p = 1/2 and (x0, y0) will remain fixed throughout our discussion, we shall write 

ξp(x0, y0) = ξ. Let 

γ (· |i + x0, j + y0) = γn,ij (·), Γ (· |i + x0, j + y0) = Γn,ij (·) t t 
γnk(·) = wnk,ij γn,ij (·), Γnk(·) = wnk,ij Γn,ij (·), 

i2+j2≤k2 i2+j2≤k2 

(15) 

where wnk,ij are positive numbers representing the weights in the weighted median filter 

and i2+j2≤k2 wnk,ij = 1. The kernel empirical cdf of Z (with respect to (x0, y0)) is defined 
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as
 t 
Γbnk(z) = wnk,ij 1(Z ∗ ≤ z),	 n,ij 

i2+j2≤k2 

(16)

where Zn,ij 
∗ = Znx0+i,ny0+j and 1(A) denotes the indicator of the event A. The weighted 

median filter output (i.e., the kernel estimator of ξ) can be expressed as the p-quantile of bΓnk, i.e., 

bξnk = inf{z : Γbnk(z) ≥ p}.	 (17) 

Then ξnk, which is the target of ξbnk, is given by 

(18) Γnk(ξnk) = p = Γ(ξ),	 

where Γ(ξ) = Γ(ξ|x0, y0). Also let γ(ξ) = γ(ξ|x0, y0). 

Next, the following regularity conditions are assumed. 

(B1)	 γ(ξ) > 0 and Γ(ξ) = p. 

(B2) The partial derivatives γz(z|x, y), γxx(z|x, y), and γyy(z|x, y) of γ(z|x) and Γxx(z|x, y) 

and Γyy(z|x, y) of Γ(z|x, y) exist in a neighborhood of (x0, y0, ξ), N(x0, y0, ξ). And 

there exists M < ∞ such that any (x, y, z) ∈ N(x0, y0, ξ), we have 

|γz(z|x, y)| ≤ M, |γx(z|x0, y0)| ≤ M, |γy(z|x0, y0)| ≤ M, 

|γxx(z|x0, y0)| ≤ M, |γyy(z|x0, y0)| ≤ M, 

|γxx(z|x, y) − γxx(z|x0, y0)| ≤ M(|x − x0| + |y − y0|), 

|γxx(z|x, y) − γxx(z|x0, y0)| ≤ M(|x − x0| + |y − y0|). 

(B3)	 f is piecewise continuous and has continuous second order derivatives in each closed 

set of the design space. {εij , i, j = 1, · · · n} are i.i.d. random variables with mean 0, 

median 0 and variance σ2 . 

(B4)	 K is a Lipschitz-1 continuous and radially symmetric bivariate density function on 

the unit disk. 

(B5) The bandwidth parameter k satisfies that c1 ≤ k/nα ≤ c2, where c1 and c2 are some 

positive constants and α ∈ (0, 1/3). 
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Lemma 1. There exists a positive constant C such that
 

k2 

|ξnk − ξ| ≤ C . 
2n

Proof. First, for δn > 0, we have the following equivalent conditions: 

|ξnk − ξ| ≤ δn ⇐⇒ Γnk(ξ − δn) ≤ Γ(ξnk) = Γ(ξ) & Γnk(ξ + δn) ≥ Γ(ξnk) = Γ(ξ) 

Next, we do Taylor expansion on Γnk(ξ + δn). 

 
   

  
  

Γnk(ξ + δn) t i2i j 1 
=Γ(ξ + δn) + wnk,ij Γx(ξ + δn) + Γy(ξ + δn) + 

2 
Γxx(ξ + δn) 

n n 2 n
i2+j2≤k2 

1 j2 ij k3 

+ Γyy(ξ + δn) + Γxy(ξ + δn) + O 
2 2 32 n n n

k2
 

=Γ(ξ + δn) + O 
2
n


1 k2
 

≥Γ(ξ) + γ(ξ)δn + O 
2 n2 

Therefore, there exists a positive constant C such that 

k2 1 k2 

δn = C , γ(ξ)δn + O ≥ 0. 
n2 2 n2 

Similarly, we can show that 

Γnk(ξ − δn) ≤ Γ(ξ). 

And the proof is completed. 

Lemma 2.   �     
P  ξbnk − ξnk > Ck−1 log n log log n, i.o. = 0, 

where C is some positive constant. 

Proof. Let an = k−1 
√ 
log n log log n. If ξbnk − ξnk < −an, then 

bΓnk (ξnk − an) ≥ p. 
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Then,
 

  
    

t 
wnk,ij [1(Zij ≤ ξnk − an) − Γn,ij (ξnk − an)] 

i2+j2≤k2 

≥ p − Γnk(ξnk − an) 

= Γnk(ξnk) − Γnk(ξnk − an) t k2 

= wnk,ij [Γ(ξnk) − Γ(ξnk − an)] + O 
n2 

i2+j2≤k2 

k2 

= γ(ξ)an + O a 2 + On n2 

1 ≥ γ(ξ)an when n is large enough. 
2 

Lemma 1 was used in the second last line. By Theorem 2 in Hoeffding (1963), we have ⎛ ⎞ t 
P ⎝ 1 

k2 wnk,ij [1(Zij ≤ ξnk − an) − Γn,ij (ξnk − an)] ≥ 
1 
γ(ξ)an ⎠ 

k2 2 
i2+j2≤k2 

−Ck2a2 
n≤ e 

−C log log n = n , 

where C is some positive constant. And this completes the proof. 

Lemma 3. 

    P Γbnk(ξbnk) − b − Γnk(b > Ck−(1+δ)(log n) 4
3 
(log log n) 4

1 
, i.o. = 0,Γ(ξnk) ξnk) − Γnk(ξnk) 

where δ ∈ (0, 1/2] and C is some positive constant. 

Proof. Let 
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Hnk(z) = Γbnk(b Γ(ξnk) Γnk(ξbnk) − Γnk(ξnk)ξnk) − b − t 
= wnk,ij [(1(Zij ≤ z) − 1(Zij ≤ ξnk) − (Γn,ij (z) − Γn,ij (ξnk))] 

i2+j2≤k2 t 
= wnk,ij (Unk,ij − µnk,ij ), 

i2+j2≤k2 
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  � �

where Unk,ij = 1(Zij ≤ z) − 1(Zij ≤ ξnk and µnk,ij = Γn,ij (z) − Γn,ij (ξnk). Next, we have 

    
µnk,ij = γn,ij (θnk,ij )(z − ξnk)
 

γ�
= nk,ij )(θnk,ij − ξ) + γn,ij (ξ) − γ(ξ) + γ(ξ) (z − ξnk) 

k 
nk,ij (θ 

∗ 

= γ(ξ)(z − ξnk) + (z − ξnk) · O |z − ξnk| + |ξnk − ξ| + 
n 

Choosing b z = ξnk, by Lemma 2,  �  
|µnk,ij| = O k−1 log n log log n . 

For Mnk > 0, by Bernstein Inequality, we have ⎛ ⎞ t        �  �
� �

 ⎝ ⎠P |Hnk(ξbnk)| > Mnk = P wnk,ij (Unk,ij − µnk,ij ) > Mnk
 

i2+j2≤k2
 

1 M2 

≤ 2 exp − 
2

2 nk 

|µnk,ij |(1 − |µnk,ij |) + C 1 Mnki2+j2≤k2 wnk,ij k2 

1 M2 

≤ 2 exp − √ 2 nk ,
k−1 log n log log n · k−2C1 + C2k−2Mnk 

where C, C1 and C2 are positive constants. Let Mnk = k−(1+δ)(log n)3/4(log log n)1/4M , 

where δ ∈ (0, 1/2] and M is some positive constant to be determined later. Then, 

Mnk√ → 0, as n → ∞. 
k−1 log n log log n 

Hence, 

1 M21 
P |Hnk(ξbnk)| > Mnk ≤ 2 exp − · √ 2 nk 

2 k−3 log n log log nC1   
= 2 exp −C ∗ M2k1−2δ log n

≤ 2 exp {−2 log n} = 2n −2 , 

where M is chosen such that M · C∗ > 2 in the case when δ = 1/2. Then Lemma 3 follows 

immediately. 
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Proof of Proposition 1. 

      
    
    

  
    �   

  
 �  �    �  

p − Γbnk(ξnk) b b= Hnk ξnk + Γnk ξnk − Γnk (ξnk) t 
= Hnk ξbnk + ξbnk − ξnk γnk,ij (znk,ij )wnk,ij 

i2+j2≤k2 t 
= Hnk ξbnk + ξbnk − ξnk (γnk,ij (znk,ij ) − γnk,ij (ξ) + γnk,ij (ξ) − γ(ξ) + γ(ξ)) wnk,ij 

i2+j2≤k2 

4= k−(1+δ)(log n) 4
3 
(log log n) 

1 
+ γ(ξ) ξbnk − ξnk t k2 b k−1+ ξnk − ξnk O log n log log n + + γnk,ij (ξ) − γ(ξ) wnk,ij 2n

i2+j2≤k2 

3 1 b4= k−(1+δ)(log n) 4 (log log n) + γ(ξ) ξnk − ξnk 

k2 k2 

k−1 k−1 k−1+ O log n log log n log n log log n + + O log n log log n . 
2 2n n

Then, �k 1 
4ξbnk − ξnk = O k−(1+δ)(log n) 4

3 
(log log n) 

1 
+ O log n log log n + p − Γbnk(ξnk) . 

n2 γ(ξ) 

  �k2 k 
4ξbnk − ξ = O + O k−(1+δ)(log n) 4

3 
(log log n) 

1 
+ O log n log log n 

n2 n2 t1 
+ wnk,ij (p − 1(Zij ≤ ξnk)) . 
γ(ξ) 

i2+j2≤k2 

By Lemma 1, we have 

(19)

Next, let Zij 
∗ = Γ−1 ◦ Γn,ij (Zij ). Then, t t   

 
 

wnk,ij (p − 1(Zij ≤ ξnk)) − wnk,ij Γ(ξ) − 1(Z ∗ ≤ ξ)ij
 

i2+j2≤k2 i2+j2≤k2
 t t 
= wnk,ij (Γn,ij (ξnk) − 1 (Zij ≤ ξnk)) − wnk,ij Γ(ξ) − 1(Z ∗ ≤ ξ)ij 

i2+j2≤k2 i2+j2≤k2 t    
= wnk,ij 1(Zij 

∗ ≤ ξ) − 1(Zij ≤ ξnk) − (Γ(ξ) − Γn,ij (ξnk)) . 
i2+j2≤k2 

Since |Γ(ξ) − Γn,ij (ξnk)| ≤ |Γ(ξ) − Γ(ξnk)| + |Γ(ξnk) − Γn,ij (ξnk)| = O(k2/n2 + k/n), we have 
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�   �

  �  �

(by Bernstein inequality), for Ank > 0, 
 

 

                �  �
� �

⎛ ⎞t 
P ⎝ wnk,ij 1(Z ∗ ≤ ξ) − 1(Zij ≤ ξnk) − (Γ(ξ) − Γn,ij (ξnk)) > Ank

⎠
ij
 

i2+j2≤k2
 

1 A2 

≤ 2 exp − 2 nk 
2 k 

i2+j2≤k2 wnk,ij C1 n + C2k−2Ank 

1 A2 

= 2 exp − 2 nk . 
C1k−2 k 

n + C2k−2Ank 
(20)

Choose Ank = (k/n)1−η(log n)1/2M , where η = (1 − 3α)/(2 − 2α) and M is some positive 

constant to be determined later. Then, 

  
1 n

k 2−2η 
(log n)M2 

(20) ≤ 2 exp − 
4 C1k−1n−1 

= 2 exp −C ∗ M2 log n , 

where C∗ is a positive constant and M is chosen such that C∗M2 ≥ 2. Then, 

  
  

        
  

k2 k 1−η 
3 1 1 

4 2ξbnk − ξ = O 
2 

+ O k−(1+δ)(log n) 4 (log log n) + O (log n) 
n n t1 

+ wnk,ij (Γ(ξ) − 1(Zij 
∗ ≤ ξ)) . 

γ(ξ) 
i2+j2≤k2 

k3 k2−η 
3 1 1
 

k b = O + O k−δ(log n) 4 (log log n) + O (log n)
4 2ξnk − ξ 
2 1−ηn ntk 

+ wnk,ij (Γ(ξ) − 1(Zij 
∗ ≤ ξ)) . 

γ(ξ) 
i2+j2≤k2 

−(1−α)2k2−η/n1−η = n .Note that  So,   tk 
k ξbnk − ξ = wnk,ij [1(εij ≤ 0) − (1 − p)] + op(1). 

γ(ξ) 
i2+j2≤k2 

(21)

Thus, the joint asymptotic normality in Proposition 1 follows from (21) and (12). 
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