
Boise State University Boise State University

ScholarWorks ScholarWorks

Physics Faculty Publications and Presentations Department of Physics

3-2019

Implementation of the Bin Hierarchy Method for Restoring a Implementation of the Bin Hierarchy Method for Restoring a

Smooth Function from a Sampled Histogram Smooth Function from a Sampled Histogram

Olga Goulko
Boise State University

Alexander Gaenko
University of Michigan

Emanuel Gull
University of Michigan

Nikolay Prokof'ev
University of Massachusetts

Boris Svistunov
University of Massachusetts

Publication Information Publication Information
Goulko, Olga; Gaenko, Alexander; Gull, Emanuel; Prokof'ev, Nikolay; and Svistunov, Boris. (2019).
"Implementation of the Bin Hierarchy Method for Restoring a Smooth Function from a Sampled
Histogram". Computer Physics Communications, 236, 205-213. http://dx.doi.org/10.1016/
j.cpc.2018.09.019

This is an author-produced, peer-reviewed version of this article. © 2019, Elsevier. Licensed under the Creative
Commons Attribution-NonCommercial-No Derivatives 4.0 license. The final, definitive version of this document can
be found online at Computer Physics Communications, doi: 10.1016/j.cpc.2018.09.019

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/physics_facpubs
https://scholarworks.boisestate.edu/physics
http://dx.doi.org/10.1016/j.cpc.2018.09.019
http://dx.doi.org/10.1016/j.cpc.2018.09.019
http://dx.doi.org/10.1016/j.cpc.2018.09.019

Implementation of the Bin Hierarchy Method for restoring a smooth
function from a sampled histogram

Olga Goulkoa,b,∗

∗Corresponding author.
E-mail address: goulko@umass.edu

, Alexander Gaenkoc, Emanuel Gullc, Nikolay Prokof’eva,d, Boris Svistunova,d,e

aDepartment of Physics, University of Massachusetts, Amherst, MA 01003, USA

bPresent address: Raymond and Beverly Sackler School of Chemistry and School Physics and Astronomy, Tel Aviv

University, Tel Aviv 6997801, Israel

cDepartment of Physics, University of Michigan, Ann Arbor, MI 48109, USA

dNational Research Center “Kurchatov Institute,” 123182 Moscow, Russia

eWilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University,

Shanghai 200240, China

Abstract

We present BHM, a tool for restoring a smooth function from a sampled histogram using the bin hierarchy
method. The theoretical background of the method is presented in [1]. The code automatically
generates a smooth polynomial spline with the minimal acceptable number of knots from the input
data. It works universally for any sufficiently regular shaped distribution and any level of data quality,
requiring almost no external parameter specification. It is particularly useful for large-scale numerical
data analysis. This paper explains the details of the implementation and the use of the program.

PROGRAM SUMMARY
Manuscript Title: Implementation of the Bin
Hierarchy Method for restoring a smooth function
from a sampled histogram
Authors: Olga Goulko, Alexander Gaenko, Emanuel
Gull, Nikolay Prokof’ev, Boris Svistunov
Program Title: BHM
Journal Reference:
Catalogue identifier:
Licensing provisions: GPLv3
Programming language: C++
Operating system: Tested on Linux
RAM: 1–5 MB
Keywords: Data analysis, Function restoration,
Spline fitting, Histogram, Smoothing
Classification: 4.9
External routines/libraries: CMake, GSL
Nature of problem: Restoring a smooth function
from a sampled histogram in an efficient, reliable
and automatized way is crucial for numerical and

experimental data analysis.
Solution method: To make use of all information
contained in the sampled data, the BHM algorithm
generates a hierarchy of overlapping bins of different
sizes from the initially supplied fine histogram. The
bin hierarchy is fitted to a polynomial spline with the
minimal acceptable number of knots, the positions
of which are determined automatically. The output
is a smooth function with error band.
Running time: Typically less than a second

1. Introduction

Numerical approaches to problems in con
densed matter and quantum many-body physics
often involve generating data points according
to an unknown probability density f(x), which
needs to be restored from the sampled data. The
amount of data generated in large-scale quantum
Monte Carlo simulations is usually so large that it
is impossible (or at least impractical) to store the
complete list of sampled data points xi, in order to

Preprint submitted to Computer Physics Communications November 15, 2017

mailto:goulko@umass.edu

use density estimation protocols [2–4] to recover
f(x). Instead, data points are typically collected
into a histogram, the histogram bins represent
ing integrals over the sampled distribution. This
does not involve any significant loss of informa
tion, as long as the bins are sufficiently small to
resolve the features of the distribution (which is
always possible provided that f(x) is sufficiently
smooth). More sophisticated sampling methods
exist, which retain more information about the
individual points, but these are in general less ef
ficient and require a case-dependent implementa
tion. We provide a universal and efficient program
to restore a smooth distribution, which uses the
standard histogram as input.
BHM is an implementation of the bin hierarchy

method, introduced in [1]. It is

1.	 unbiased:

•	 utilizes all relevant information con
tained in the data;

•	 non-parametric fit automatically ad
justs to data quality;

•	 provides maximally featureless solu
tion (least acceptable number of spline
knots);

2. efficient:

•	 based on regular histogram, which is ef
ficient to sample;

•	 fast analysis;

3. automatic:

•	 very little user input;

•	 no adjustment for different types of
sampled functions;

•	 no adjustment with simulation time as
more data is collected.

The paper is organized as follows. The general
problem setup is presented in Sec. 2. In Sec. 3,
we give an overview of the algorithm. We explain
how to use the program in Sec. 4, giving a detailed
explanation of the input and output formats, as
well as possible parameter specifications. Several
examples are presented in Sec. 5.

2. Problem setup

The central object in BHM is a smooth function
f(x) defined on a bounded domain D. Statisti
cal sampling with a probability density p(x) is
performed to generate samples for f(x) accord
ing to fj = f(xj)/p(xj) with p-distributed xj . In
the simplest case, when f(x) itself is a normal
ized probability distribution, p(x) = f(x) can be
chosen, implying fj = 1. The samples are binned
into a histogram with 2K bins. We are interested
in restoring a smooth function f̃(x) from this his
togram.
Each histogram bin i with bin boundaries xi,min

and xi,max represents the stochastic integral xi,max

Ii = f(x)dx
xi,min

(1)

through the following relations:

Ni¯Ii = fi ,	
N

(2)

Ni(N − Ni)
f̄ 2M2(Ii) = M2(fi) + i ,

N
(3)

M2(Ii)
Var(Ii) = ,	

N 1
(4)

Var(Ii)
δIi = ,	

N

−
(5)

where the “scaled variance” M2(fi) = (Ni −
1)Var(fi) is the sum of squares of differences from
the mean, Ni is the number of samples in bin i
and N the total number of samples. Note that in
the simplest case p(x) = f(x) the above quantities
are determined through Ni and N alone.
The goal is to find a function f̃(x) whose inte

grals over different parts of the domain D agree
with the sampled integrals. Working with inte
grals rather than interpolated function values al
lows us to include combinations of histogram bins
into the fitting. Rebinning data to larger bin sizes
leads to a reduction of statistical noise, while re
taining small bins results in a higher resolution
due to smaller discretization errors.
The resulting fit f̃(x) is a polynomial spline

of order m, where m is the highest power with
non-zero coefficient. The spline function and its
derivatives up to order m − 1 are continuous, to
account for the smoothness of the original f(x).

2

3. Overview of the algorithm

In this section we give a brief overview of the
algorithm. More details on the theoretical back
ground of the method can be found in [1]. A
flowchart of the algorithm is shown in Fig. 1.

•	 The algorithm starts from a list of 2K his
togram bins supplied in an input file (for a
detailed format description, see Sec. 4). Typ
ical values of K are 7 – 15. It should be
noted that the bins are not required to have
the same size; however, in practice there is
no need to have variable size bins. The bins
must not overlap or leave gaps.

•	 From this input the code generates a hier
archy of histogram bins of increasing size.
Combining two neighboring bins of the 2K

initial bins leads to 2K−1 larger bins with,
on average, twice as many entries. Succes
sive repetitions of this rebinning result in a
hierarchy of levels with 2K−2 , . . . , 2, 1 bins
on each level, respectively, where the final
level consists of one bin over the entire do
main containing an average over all sampled
data. Bins that do not contain enough data
for meaningful statistic, i.e. when the bin
counter Ni is smaller than a user defined min
imal value, are excluded from the fitting pro
cess. Likewise, levels that do not contain
enough usable bins (the minimal fraction can
be defined by the user) are also excluded.
This implies that in general fitting starts with
a level K ' > K so that the original binning
can be chosen to be very fine without intro
ducing noise into the final fit. For bins that
will be used for fitting, the bin integrals and
their errors are computed via Eqs. (2),(3), (4)
and (5).

•	 The code checks if the data is compatible
with zero on the whole domain. There is an
option not to proceed with the fit if this is
the case. This feature is particularly useful
for data suffering from a severe sign problem.

•	 The next step is fitting a spline of order m on
the given spline interval division. The start

ing point is one spline interval, which means
that one polynomial is fitted on the whole
domain. The fit minimizes

K χ2
n ,

2n
n=0

(6)

where χ2
n is defined for bins on hierarchy level

n in the usual way.

•	 Afterwards the goodness of fit is evaluated on
each hierarchy level individually. The crite
rion is

χ2
n 2 ≤ 1 + T ,
ñ ñ

(7)

where T is the fit acceptance threshold (input
parameter) and ñ the number of bins on level
nnthat were used for fitting. The expression

2/ñ corresponds to one standard deviation
of the χ2-distribution.

•	 If at least one level fails the global goodness-
of-fit check, the goodness-of-fit is then evalu
ated on each spline interval separately (again
level by level). Spline intervals on which the
fit was acceptable remain unchanged, while
the others are split into two parts, by intro
ducing a spline knot in the middle (“number
of bins”-wise).

•	 If any of the resulting intervals is too small,
meaning that there is not enough data to fit
on that interval, the code exits without hav
ing produced an acceptable spline. Otherwise
the BHM fit is repeated on the new interval
division.

•	 Once an acceptable spline has been found,
there is an option to refit the data on the
same interval division with an additional con
straint that aims to minimize the jump in the
highest derivative.

•	 The resulting BHM spline is output (spline
coefficients and error coefficients). In addi
tion, the spline values can be output evalu
ated on a grid.

3

input sampled data:

histogram with 2K bins

generate bin hierarchy;

start with 1 spline interval

fit BHM spline on

current interval division

output BHM spline

all levels pass

refit with constraint

if desired

check goodness of fit

on each hierarchy level

check goodness of fit on all

spline intervals separately

enough data to

continue fitting?

split intervals that failed

the goodness-of-fit check

no acceptable BHM spline

at least one

level fails

yes

no

Figure 1: Flowchart of the algorithm

4. Input and output

4.1. Running the program

Instructions for compiling the program and ex
ecuting unit tests can be found in the README
file.
The program executable requires 1 argument,

the name of the parameter file, e.g.:

$./bhm in.param

In particular, the parameter file determines the
name of the input file with the histogram data
and the name of the output file for the BHM spline
(see below).
As a special case, if the parameter file name is

an empty string, the default parameters will be
used which are suitable for most applications:

$./bhm "" <histogram.dat >spline.dat

In this case, the histogram data input is expected
to be provided at the standard input, and the re
sults will be printed to the standard output. In

the example above, the standard input is redi
rected from file histogram.dat, and the standard
output is redirected to file spline.dat.
Without an argument, the program prints a

short help message and exits.

4.2. Histogram input format

The input histogram data is text-based, line-
oriented, and has the following format:

A Nexc 1

x1,min N1 f̄1 M2(f1) 2

x2,min N2 f̄2 M2(f2) 3

.... 4

xi,min Ni f̄i M2(fi) 5

.... 6

xmax 7

where the first line specifies an overall normal
ization factor A and the number Nexc of samples
outside of the histogram bounds. The normaliza
tion step is omitted if either A = 1 or A = 0.

¯Otherwise, all values fi and M2(fi) are divided

4

by A and A2, respectively, before constructing the
BHM fit. The value Nexc is used to calculate the c
total number of samples N = Nexc + i Ni, which
is needed for Eqns. (2–5). Nexc can be zero.
Starting from the second line, each line, except

the last one, contains 2 or 4 blank-separated val
ues, specifying the left bin boundary, the number
of samples in the bin, and, optionally, mean value
and scaled variance. For example, line 5 of the
listing corresponds to a bin i with the left bound

¯ary xi,min, number of samples Ni, mean value fi
and scaled variance M2(fi) (see Eqns. 2–5). If the
mean value and the scaled variance are both omit

¯ted, they are assumed to be fi = 1 and M2(fi) =
0, which corresponds to only ever adding 1 to bin
counters, or in other words p(x) = f(x). The last
line of the file (line 7 of the listing) must contain
a single entry xmax, the right boundary of the last
bin.
The numbers x1,min . . . < xi,min . . . < xmax must

form a strictly monotonically increasing sequence,
corresponding to non-overlapping, finite-size bins
with no gaps. In the current implementation, the
number of bins must be a power of 2 (in the later
versions we may remove this limitation).
It is important to note that all sampled data

and variances are assumed to be uncorrelated. If
correlations are present, they have to be removed
prior to the BHM fit, for example through appro
priate blocking analysis or by scaling the variances
with the estimated correlation factor.

4.3. Input parameter format

The input parameter file is a text-based, line-
oriented file that has a key = value format. An
example input is shown in Fig. 2. The keys are
case-insensitive; the string values may be enclosed
in quotes; the # symbol starts a comment which
is ignored until the end of the line. The meaning
of each parameter is indicated in the figure in the
corresponding comment. Below we provide more
detailed explanations for some of the parameters.

DataPointsMin in line 1 specifies the minimal
number of data points that a bin must contain
in order to be used for fitting. Bins that contain

fewer sampled points are ignored (but still con
tribute in combination with other bins at higher
hierarchy levels). DataPointsMin must be at
least 10, in order to ensure that meaningful statis
tics can be made from the data. The default
value is 100. If a hierarchy level does not contain
enough usable bins (the minimal number is given
by the parameter UsableBinFraction in line 7,
times the total number of bins on that level) then
this level and all subsequent levels are completely
omitted from the fitting.
The maximal possible number of interval divi

sions is determined by the parameter MinLevel
in line 3. For example, if there are 2K elemen
tary bins, MinLevel=2 means that the smallest
possible spline intervals coincide with the bins on
hierarchy level K − 2. MinLevel must be at least
2 (corresponding to a total of at least 1+2+4=7
bins per interval); moreover, MinLevel must be
large enough to ensure that the fit is underdeter
mined for each interval.
The fit acceptance threshold T (lines 4-6) can

be either set to a fixed value, or to a range of
values between Threshold and ThresholdMax.
In the latter case, a BHM fit is first attempted
with the smallest value Threshold. If no accept
able fit is found, the threshold value is succes
sively increased in ThresholdSteps equidistant
steps, until either an acceptable fit is produced or
ThresholdMax is reached. Setting ThresholdMax
to be smaller or equal to Threshold and/or set
ting ThresholdSteps=0 corresponds to only us
ing one fixed value of T . Note that threshold
values that are too low can result in overfitting
(too many spline pieces) or the failure to produce
an acceptable fit. Values that are too high can
result in underfitting (too few spline pieces and a
poor fit with underestimated error bars). These
issues are illustrated in Example 5.2. The value
T = 2.0 is good generic choice. Specifying a range
of threshold values reduces the statistical chance
that there is no acceptable BHM fit with a given
threshold, even though the data quality is ade
quate. The default range between T = 2.0 and
T = 4.0 is suitable for most data sets.
Generally, the default parameter values in the

example file are suitable for all types of sampled

5

functions, and hence there is no need to change
any of the parameters unless specifically desired.

Parameter File in.param

DataPointsMin=100
SplineOrder=3
MinLevel=2
Threshold=2.0
ThresholdMax=4.0
ThresholdSteps=4
UsableBinFraction=0.25
JumpSuppression=false
Verbose=true
PrintFitInfo=true
FailOnBadFit=true
FailOnZeroFit=true
Data="histogram.dat"
OutputName="spline.dat"
GridOutput="spline_plot.dat"
GridPoints=1024

#minimal number of data points per bin 1

#spline order 2

#minimal number of levels per interval 3

#minimal goodness of fit threshold 4

#maximal goodness of fit threshold 5

#number of steps to take from Threshold to ThresholdMax 6

#minimal proportion of good bins for a level to be used 7

#suppress highest order derivative (the error is unreliable) 8

#verbose output 9

#print the fit info 10

#do not proceed if the fit is bad 11

#do not proceed if the data is consistent with zero 12

#location of histogram input data 13

#location of the output file 14

#location of the spline-on-a-grid output 15

#number of points for spline-on-a-grid output 16

Figure 2: Sample parameter file

4.4. Output format

The default verbose output is printed to stan
dard error and contains auxiliary information
such as values of the input parameters, a brief
description of the input histogram, and the log
of the fitting process. The fitting log is de
scribed in detail in Example 5.1. If requested by
the PrintFitInfo input parameter, information
about the final fit is also printed to the standard
output.
The output of the program is both human

and machine-readable, and has the following text-
based, line-oriented, blank-separated format:

Arbitrary comments 1

... 2

m s 3

x1 x2 ... xs 4

spline piece 1 5

a0 a1 a2 ... am 6

ε0 ε1 ε2... ε2m 7

... 8

spline piece i 9

a0 a1 a2 ... am 10

ε0 ε1 ε2 ... ε2m 11

spline piece (i + 1) 12

... 13

Any lines at the beginning of the file that start
with # are considered comments and are ignored.
The first significant line of the file (line 3 of the
listing) specifies the spline polynomial order m
and the number of splines pieces s; the next line
(line 4 of the listing) lists all (s + 1) spline piece
boundaries x1, . . . , xs+1. The following lines form
s sections describing each spline piece f̃

i, for i =
1 . . . s. Each section (lines 5–7, 9–11 of the listing)
consists of 3 lines:

1. Header (starts with	 #) specifying the spline
piece number (i),

2. (m + 1) numbers specifying the spline piece c ma0 . . . am (f̃
i(x) = k=0 akx

k), coefficients

3. (2m+1) numbers ε0 . . . ε2m specifying the ers c
ror bar 2m kEi(x) = k=0 εkx .

4.5. Plotting the resulting spline

The simplest way to plot the resulting
spline is to use the provided Python3 script
bhm_spline.py, as follows:

$ python3 bhm_spline.py spline.dat

6

http:bhm_spline.py
http:bhm_spline.py
http:UsableBinFraction=0.25

On the other hand, it may be convenient to cus
tomize the plot and/or compare it with a known
function, or plot it interactively (e.g., from a
Jupyter notebook). For this purpose the script
can be imported as a module that provides a BHM
Spline class. The following listing demonstrates a
possible way of using the module.

import numpy as np 1

import matplotlib.pyplot as plt 2

from bhm_spline import BHMSpline 3

4

spline=BHMSpline("spline.dat") 5

x=np.linspace(*spline.domain()) 6

reference function: 7

def fn(x): return (x**4-0.8*x*x) 8

/0.171964
plot the spline and the reference: 9

plt.plot(x,spline(x), x,fn(x)) 10

plot the errorbar: 11

plt.plot(x,spline.errorbar(x)) 12

plot the spline with errorbars: 13

spline.plot() 14

plot the spline and a reference: 15

spline.plot(fn) 16

plot difference between spline and 17

reference with error bar:
spline.plot_difference(fn) 18

In line 3 the class BHMSpline is imported; line 5
creates the object representing the spline. In
line 6 an interval of x-values is created corre
sponding to the domain of the spline. Line 8
defines a reference function to compare with the
spline. In line 10 the spline and the reference
function are plotted using the Matplotlib plot
ting library; in line 12 the error bar E(x) is plot
ted. The class also provides a convenience plot
ting method: when called without arguments (as
on line 14), the spline is plotted along with the
error bars; when a function is passed as an argu
ment (line 16), its graph is plotted also. It is also
possible to plot the difference between the spline
and the reference function with error bar (line 18).

4.6. Grid output

If the GridOutput parameter in the parameter
file is set to a non-empty filename, the program

also outputs to the specified file the values and
the error bars of the spline computed on a one-
dimensional grid of points. A plotting program,
such as gnuplot, can then be used to plot the gen
erated function and the error bars and to compare
them with a reference function; for example:

$ gnuplot 1

gnuplot> quartic(x)=(x**4-0.8*x*x) 2

/0.171964
gnuplot> plot "spline_plot.dat" with 3

errors
gnuplot> replot quartic(x) 4

In this example, line 1 of the listing starts the
gnuplot program; line 2 defines a reference func
tion (quartic polynomial); line 3 plots the grid
output file generated by BHM; and line 4 plots the
reference function on the same graph.

5. Examples

In this section we present three detailed exam
ples of the features of BHM illustrated on different
distributions f(x). We provide a program to gen
erate the input data for these examples (as well
as for several additional test functions). Calling
the program without arguments:

$./generator

prints a brief help message, which includes a list
of the functions supported by the program.
Calling the program with a single file argument:

$./generator generator.param

generates the histogram data for a given analyt
ical function according to the parameters listed
in the generator.param file. For all examples
discussed below, the parameters are the same as
shown in the example generator parameter file
shown in Fig. 3 (including the random number
generator seed), except when stated otherwise.
Calling the program as:

$./generator -python name

(where name is the name of the function, possibly
abbreviated) prints the Python code that corre
sponds to the function, which is convenient for

7

plotting the analytical function against the ap
proximating spline in an interactive Python envi
ronment (as has been discussed in subsection 4.5).
If the GridOutput parameter in the parameter

file is set to a non-empty filename, the program
also outputs the values of the function computed
on a one-dimensional grid to the specified file; a
plotting program, such as gnuplot, can then be
used to plot the generated function; for example:

$ gnuplot 1

gnuplot> plot "function.dat" with lines 2

gnuplot> replot "spline_plot.dat" with 3

errors

In this example, line 1 of the listing starts the
gnuplot program; line 2 plots the generated
function; and line 3 plots the content of the
spline_plot.dat generated by BHM as discussed
in subsection 4.6.

Parameter File generator.param

SampleSize=10000 #total number of points sampled 1

Function=exponential #name of test function 2

PowerBins=10 #generates uniform histogram with 2^PowerBins bins 3

RandomSeed=956475 #specify random seed (0 means random initialization) 4

Output="histogram.dat" #histogram output file (missing means "standard output") 5

GridOutput="function.dat" #output test function on a grid into this file (if provided) 6

GridPoints=1024 #number of grid points for test function output 7

Figure 3: Sample parameter file to generate example input

5.1. Example 1

This example demonstrates BHM fits for differ
ent choices of spline order m.
The original function is a quartic polynomial

(Function=quartic polynomial):

f(x) = α(x 4 − 0.8x 2). (8)

Because f(x) changes sign, sampling on the in
terval [−1, 1] is performed with the probability
density p(x) = |f(x)| and α = 0.171964 is chosen
to ensure normalization of p(x) on this interval.
The histogram data is fitted with BHM using

the default parameters, with the exception of
SplineOrder which is set to 3, 4, and 5 respec
tively. The fit results are shown in Fig. 4. From

the output files "spline.dat" it can be seen that
the cubic spline has four spline pieces; the quar
tic spline has one spline piece, as expected; the
quintic spline also has one spline piece, its coeffi
cients up to quartic order are similar to the ones
obtained via quartic fit, and its highest spline co
efficient is small.

We explain in detail the verbose output for the
cubic fit m = 3. At the beginning of the output,
the fit parameters are listed, as well as general in
formation about the input histogram. Then fol
lows information about the goodness-of-fit at the
different fitting stages:

... 1

BHM fit: 2

Begin BHM fitting with threshold T = 2 3

Checking separate chi_n^2/n in spline fit 4

level n chi_n^2/n max chi_n^2/n 5

0 1 9.7585 3.8284 6

1 2 2.7736 3.0000 7

2 4 1.7636 2.4142 8

3 8 832.1519 2.0000 9

4 14 539.3412 1.7559 10

5 24 210.2518 1.5774 11

6 41 118.5452 1.4417 12

7 54 67.7739 1.3849 13

Checking interval 0 (order: 0, number: 0) 14

0 1 9.7585 3.8284 15

This interval fit is not good 16

Checking separate chi_n^2/n in spline fit 17

level n chi_n^2/n max chi_n^2/n 18

0 1 0.0020 3.8284 19

1 2 0.0006 3.0000 20

2 4 1.6409 2.4142 21

3 8 7.0923 2.0000 22

4 14 7.8734 1.7559 23

8

1+T 2/ñ

5 24 5.2920 1.5774 24

6 41 3.3034 1.4417 25

7 54 2.0987 1.3849 26

Checking interval 0 (order: 1, number: 0) 27

1 1 0.0005 3.8284 28

2 2 1.7172 3.0000 29

3 4 6.3727 2.4142 30

This interval fit is not good 31

Checking interval 1 (order: 1, number: 1) 32

1 1 0.0006 3.8284 33

2 2 1.5645 3.0000 34

3 4 7.8119 2.4142 35

This interval fit is not good 36

Checking separate chi_n^2/n in spline fit 37

level n chi_n^2/n max chi_n^2/n 38

0 1 0.0001 3.8284 39

1 2 0.0002 3.0000 40

2 4 0.0055 2.4142 41

3 8 0.0519 2.0000 42

4 14 0.3837 1.7559 43

5 24 0.8437 1.5774 44

6 41 0.8378 1.4417 45

7 54 0.8693 1.3849 46

Good spline found with threshold T = 2 47

... 48

First a fit is attempted with one spline piece
on the whole domain (lines 4-13). This fit is
not acceptable because χn

2 /ñ (third column in
the output) exceeds the maximally allowed value n

(fourth column in the output) for most
of the levels. The second column lists ñ, the num

ber of available bins at each level. This number
is in general smaller than 2n, because some bins
do not contain enough data to be used for fitting.
Also, hierarchy levels below n = 7 were omitted
because the fraction of usable bins on these levels
was below the set UsableBinFraction value.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

f(
x
)

1.0 0.5 0.0 0.5 1.0
x

0.10

0.05

0.00

0.05

0.10

f̃(
x
)−
f(
x
)

m=3
m=4
m=5

˜Figure 4: Quartic polynomial test function (left panel). Difference between BHM fit f(x) with different spline orders m
and the test function f(x) (right panel).

Since the first fit was unsuccessful, χ2 is evalu
ated on each spline interval separately (lines 14
16). In this case, this yields no new information,
since only one interval is present. As soon as a
level is found where the fit is unacceptable (level 0
in this case), this check stops without proceeding
to lower levels, since this is enough to identify a
bad interval.
After the interval is divided, another BHM fit is

attempted on two intervals (lines 17-26). This fit
already has smaller χ2

n/ñ values than the previous
one, but still fails the threshold on several levels.
Both spline intervals are then again checked sep
arately (lines 27-31 and 32-36, respectively) and
both fail the goodness-of-fit check on level 3. Note
that level 0 is not present in the individual inter
val checks, because the bin on this level is larger
than each of the spline intervals.
The intervals are numbered consecutively, but

additional information is provided so that their
location can be recovered (see e.g. lines 27 and
32). The boundaries of an interval always coincide
with the boundaries of a bin on a certain hierarchy
level (denoted by “order”) and “number” denotes

9

the number of this bin.
After the intervals are again divided, the result

ing BHM fit (lines 38-47) is acceptable. No sepa
rate interval checks need to be performed and the
code exits with the fit result. If PrintFitInfo is
requested, the goodness-of-fit information of the
final result is output again at the end. This in
cludes the χ2 /ñn values on each level n, the unit n
standard deviation of the corresponding
χ

2/ñ
2-distribution, as well as the number of standard

deviations by which χ2
n/ñ exceeds 1 on each level

(last column). If χ2
n/ñ 1≤ the latter value is 0.

5.2. Example 2

This example demonstrates BHM fits for
different choices of the threshold T . The
sampled distribution is a decaying exponential
(Function=exponential),

f(x) = α exp(3x), − (9)

normalized on the interval [1, 3], which implies
α = 3e9/(e6 1−). The function is sampled on the
interval [1, 2.8], so that there is a finite number
of values Nexc sampled outside of the histogram
bounds. The total number of sampled points in
this example is SampleSize=100000.
The histogram data is fitted with BHM using

the default parameters, with the exception of the
parameters defining the fit acceptance threshold,
which is set to be fixed at T = 0, 2, and 8, re
spectively. This can be achieved by either set
ting the value of ThresholdMax to be equal or
less than the value of Threshold, or by setting
ThresholdSteps=0. The fit results are shown in
Fig. 5.
For all threshold values an acceptable fit ex

ists, but with different interval divisions. The ex
tremely low threshold value T = 0 (which means
that only fits with χ2

n/ñ 1≤ are accepted) yields
an overfitted spline with 12 spline pieces. The
value T = 2 produces a suitable fit with 3 spline
pieces that captures the shape of the test func
tion well. The very high value T = 8 yields an
underfitted spline with only 2 pieces. This spline
deviates strongly from the true function and the
error on the spline is severely underestimated.

5.3. Example 3

This example demonstrates that BHM works for
both uniform and non-uniform input histograms.
The sampled distribution,

f(x) = 0.2G(0, 0.2) + 0.4[G(2, 1) + G(2, 1)], −
(10)

is a linear combination of three Gaussians
G(µ, σ) with mean µ and standard deviation σ
(Function=triple gaussian). It has several dis
tinct features and resembles a physically relevant
case.
We sample SampleSize=1000000 data points

on the interval [−5, 5] into a uniform and a non
uniform histogram, both with 28 bins. Note
that the non-uniform histogram binning is pre
defined and cannot be adjusted by changing the
PowerBins entry. The non-uniform histogram
bins are smaller in the center of the domain
(where the sampled function has a sharp fea
ture) and increase exponentially in size towards
the domain boundaries. The smallest bin size is
equal to the domain length divided by 212 . The
non-uniform histogram is always collected in ad
dition to the customizable uniform histogram if
Function=triple gaussian is chosen and is out
put into the file nonuniform histogram.dat.
The fit results are shown in Fig. 6. Both his

togram divisions produce fits of similar quality
that reproduce the tested distribution well. Since
BHM automatically considers combinations of ele
mentary bins, there is no need for a case-specific
implementation of a non-uniform histogram grid.
Note that sampling the same data in a uniform
histogram with 212 bins produces nearly the same
fit as when using 28 uniform bins in this example.

6. Acknowledgments

This work was supported by the Simons Col
laboration on the Many Electron Problem and by
the National Science Foundation under the grants
PHY-1314735 (O.G., N.P., and B.S.) and DMR
1720465 (N.P. and B.S.). O.G. also acknowledges
support by the US-Israel Binational Science Foun
dation (Grants 2014262 and 2016087).

10

1.0 1.6 2.2 2.8
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(
x
)

f(x)

1.0 1.6 2.2 2.8
x

0.10

0.05

0.00

0.05

0.10

f̃(
x
)−
f(
x
)

T=0
T=2
T=8

Figure 5: Decaying exponential test function (left panel). BHM fits of the test function with different goodness-of-fit
thresholds (right panel).

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

f(
x
)

−4 −2 0 2 4

x

−0.010

−0.005

0.000

0.005

0.010

f̃
(x

)
−
f

(x
)

uniform histogram
non-uniform histogram

Figure 6: Triple Gaussian test function (left panel). BHM fits of the test function based on a uniform histogram and a
histogram with bins of different size (right panel).

References

[1]	 O. Goulko, N. Prokof’ev, B. Svistunov, Restoring a
smooth function from its noisy integralsarXiv:1707.
07625.

[2]	 I. Narsky, F. C. Porter, Statistical Analysis Techniques
in Particle Physics, John Wiley & Sons, 2013.

[3]	 D. W. Scott, Multivariate Density Estimation, John
Wiley & Sons, 2015.

[4]	 B. W. Silverman, Density estimation for statistics and
data analysis, London: Chapman and Hall, 1986.

11

http://arxiv.org/abs/1707.07625
http://arxiv.org/abs/1707.07625

	Implementation of the Bin Hierarchy Method for Restoring a Smooth Function from a Sampled Histogram
	Publication Information

	1 Introduction
	2 Problem setup
	3 Overview of the algorithm
	4 Input and output
	4.1 Running the program
	4.2 Histogram input format
	4.3 Input parameter format
	4.4 Output format
	4.5 Plotting the resulting spline
	4.6 Grid output

	5 Examples
	5.1 Example 1
	5.2 Example 2
	5.3 Example 3

	6 Acknowledgments

