
DESIGNING RELIABLE HIGH-PERFORMANCE

STORAGE SYSTEMS FOR HPC ENVIRONMENTS

by

Lucas Scott Hindman

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2011



c© 2011
Lucas Scott Hindman

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Lucas Scott Hindman

Thesis Title: Designing Reliable High-Performance Storage Systems for HPC Envi-
ronments

Date of Final Oral Examination: 06 August 2011

The following individuals read and discussed the thesis submitted by student Lucas
Scott Hindman, and they evaluated his presentation and response to questions dur-
ing the final oral examination. They found that the student passed the final oral
examination.

Amit Jain, Ph.D. Chair, Supervisory Committee

Tim Andersen, Ph.D. Member, Supervisory Committee

Murali Medidi, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Amit Jain, Ph.D., Chair,
Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.



Dedicated to my beautiful wife, Annie, whose love and encouragement made this work possible

iii



ACKNOWLEDGMENTS

I would like to thank Dr. Amit Jain and Dr. Tim Andersen for the countless

hours they spent reviewing draft after draft of this thesis as well as their patience and

support in allowing me to pursue this topic of research. Thanks go to Nathan Schmidt

and Casey Bullock for teaching me that designs on the whiteboard don’t always work

so well in production. And a special thanks to Shane Panter whose friendship and

support have helped to keep me sane these last two years.

This work has been supported in part by the Boise State University Computer

Science department.

Research funded by the Defense Threat Reduction Agency under contract number

W81XWH-07-1-000, DNA Safeguard.

iv



AUTOBIOGRAPHICAL SKETCH

Lucas Hindman has more than fifteen years of experience working in computer

technology. These years include a variety of IT roles where he learned the importance

of customer service. In 2003, Lucas enrolled in the Computer Science program at

Boise State University. While at Boise State, Lucas was heavily involved in the

High Performance Computing (HPC) lab, including the design, construction, and

administration of the lab’s 120 processor Linux Beowulf cluster. From 2003 until he

graduated in 2007, Lucas worked with several research groups wishing to leverage the

computational power of the Beowulf cluster. These projects included atmospheric

modeling, multiple genome/bio-informatics projects, and a material science project

focusing on the development of a 2D/3D micro-structural model. Lucas presented his

work on the 2D/3D micro-structural model at the NASA Undergraduate Research

Conference held at the University of Idaho, fall of 2007.

After graduation, Lucas was hired as a senior system engineer by Balihoo, a

multi-million dollar Internet-based marketing company, to manage their data center.

This position at Balihoo required wearing multiple hats with responsibilities that

included software development, system engineering, and customer support. While at

Balihoo, Lucas managed the complete redesign of Balihoo’s production infrastructure

to address application changes and scalability issues.

In 2009, Lucas returned to Boise State University to complete a Master of Science

in Computer Science. Lucas currently works as a research assistant on the DNASafe-

guard project (a Department of Defense funded research grant).

v



ABSTRACT

Advances in processing capability have far outpaced advances in I/O throughput

and latency. Distributed file system based storage systems help to address this per-

formance discrepancy in high performance computing (HPC) environments; however,

they can be difficult to deploy and challenging to maintain. This thesis explores

the design considerations as well as the pitfalls faced when deploying high perfor-

mance storage systems. It includes best practices in identifying system requirements,

techniques for generating I/O profiles of applications, and recommendations for disk

subsystem configuration and maintenance based upon a number of recent papers

addressing latent sector and unrecoverable read errors.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Mercury project was started in October 1958, and fewer than 4 years later

NASA had placed John Glenn in orbit around the earth. The level of planning and

technological achievement required to make that happen was phenomenal. Now, 52

years later, we owe much of our modern technology to these efforts. During the

Mercury project, multiple IBM 709 computer systems were used to assist in the data

processing effort [31]. The IBM 709 was capable of up to 12 kiloflops or 12,000

floating-point operations per second [25]. In comparison, the Intel i7 processor in my

personal desktop system is capable of 40 gigaflops or 40,000,000,000 floating-point

operations per second [26].

Unfortunately, processor performance improvements have far outpaced perfor-

mance improvements in I/O throughput and latency. Modern super-computing clus-

ters have reached petaflops of processing power but rely upon traditional hard disk

drives for I/O. In order to provide users and their applications with high-performance

I/O, distributed file systems are employed. These distributed file systems run on stor-

age clusters with 1000s of disks distributed across 100s of storage nodes. These storage

nodes are interconnected with the processing nodes via dedicated high-performance

network interconnects.
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Many issues are involved in the design and construction of these high-performance

storage systems. Individuals looking to deploy such a system must make design

decisions based upon requirements for throughput, latency, redundancy, availability,

capacity, scalability, number of processing clients, power, and cooling. The diagram in

Figure 1.1 gives a high-level look at the different components that must be considered

in the design of a high-performance storage system.

Customer’s Application

Storage Node

Disk

Subsystem

CPU

Memory

Storage Node

Disk

Subsystem

CPU

Memory

Storage Node

Disk

Subsystem

CPU

Memory

Storage Node

Disk

Subsystem

CPU

Memory

Network Interconnect

Distributed File System

Processing Nodes

Figure 1.1: Anatomy of a high-performance storage system
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1.2 Commercial Storage Solutions

There are a number of options to consider when looking to deploy a high-performance

storage system. Will it be a home-grown system with custom-built hardware and

open source software? Or will it be a commercial, turn-key solution with proprietary

software? Two popular proprietary options are provided by Panasas and OneFS. The

underlying questions of hardware selection, disk subsystem reliability, and distributed

file system selection are addressed by engineers from the respective companies. There

are also commercial, open source, options provided by Penguin Computing and

Microway that allow for customized storage solutions but that are still essentially

turn-key.

Regardless of who provides the storage solution, it is important to understand

how it will be used to ensure that it is configured properly. These include issues of

usable capacity, redundancy of data, throughput and latency, as well as how data

will flow through the system and be archived. Additional criteria include whether an

organization has adequate facilities with space, cooling, and power. There may also

be policies or contract requirements for vendors to provide maintenance agreements

with specific service levels, such as having a technician on-site within four hours.

A vendor’s sales engineer may be able to assist with answering these questions, but

they are trying to sell their solution, not necessarily the best solution. Understanding

the requirements of a storage system up front can save a lot of frustration later on.

1.3 Problem Statement

High-performance storage systems are complicated, requiring expert-level knowledge

to design and maintain them. Unfortunately, documentation on the key area of
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storage system design is incomplete and scattered across a number of sources. In

addition, the knowledge that comes from the experience of working directly with these

systems is localized within corporations and national laboratories and not generally

available except in mailing lists and user forums.

This thesis addresses four areas in storage system design. Each of these areas was

a pain point during the construction and maintenance of GeneSIS, a Beowulf style

Linux cluster with 84TB of storage located in the HPC lab at Boise State University,

requiring months of research and experimentation to understand and incorporate

back into the design of GeneSIS. Each of the following questions addresses one of

these areas.

1. What questions should be asked when determining storage system design re-

quirements?

2. What techniques for designing disk subsystems best protect data against latent

sector errors and infant disk mortality?

3. Which distributed file system will best meet the performance and scalability

requirements of the storage system?

4. How can I determine the performance constraints and I/O characteristics of a

given application?

The answers to these questions are not cut and dry and require a solid un-

derstanding of the underlying hardware and software components before educated

design decisions can be made. This thesis documents the design considerations and

potential pitfalls faced when deploying reliable, high-performance storage systems.

This documentation includes critical design details that have been gleaned from
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research papers, user guides, mailing lists, SC2009 conference presentations, and the

lessons learned from the design and maintenance of GeneSIS. The above questions

are not specific to GeneSIS and are not entirely unique to high-performance storage

system design. As a result, the information provided in this thesis will be valuable

long after the current technology has been consigned to the scrap heap.

1.4 Thesis Overview

There is a lot more to designing a storage system than simply purchasing a bunch of

cheap, fast disks, putting them in servers, and installing some open source software.

Chapter 2 discusses the questions to answer when designing a storage system. It is

presented from the perspective of a storage consultant designing a storage system for

a customer, but in reality the information presented applies to anyone considering

the deployment of a high-performance storage system.

Storage systems are made up of hundreds or thousands of disks grouped together

by RAID or some other mechanism into disk subsystems and these disk subsystems

are the building blocks for a reliable, high-performance storage system. Chapter 3

takes a close look at how to design reliable disk subsystems in the presence of the

well-published issues of latent sector errors and infant disk mortality.

The “high-performance” in a high-performance storage system comes from the

ability to aggregate the performance and storage capabilities of multiple servers into

a single unified file system. These types of file systems are a specialized type of

distributed file system known as a parallel distributed file system. Chapter 4 provides

a survey of several popular, general purpose, parallel distributed file systems, focusing

on configuration options, performance, and scalability.



6

The client applications running on the storage system have as much influence upon

whether the storage system is high performance as any other component in the storage

system. Some applications are well suited to run on parallel distributed file systems,

while others are not. On one end of the spectrum, there are applications that process

large data files in large (1MB or more) sequential operations. These applications are

ideal for use with parallel distributed file systems. On the other end of the spectrum

are applications that perform small (8KB or less) random I/O operations. In between

is a world of grey where most user applications reside. Chapter 5 presents a technique

for identifying application I/O characteristics and performance constraints.
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CHAPTER 2

UNDERSTANDING STORAGE SYSTEM

REQUIREMENTS

2.1 Overview

Before disk drives and RAID volumes, before interconnects and file systems, before

thinking about tower vs rack cases, a storage engineer must carefully consider the

system requirements when designing a new storage system. In the words of Sherlock

Holmes, “It is a capital mistake to theorize before one has data. Insensibly one begins

to twist facts to suit theories, instead of theories to suit facts.” [5] This quote, taken

from “A Scandal in Bohemia,” applies remarkably well to storage engineering. Invest

time in gathering the facts, then design a storage system to fit the facts. Remember,

the storage engineer’s job is to help the customer solve a problem, not create a new

one.

It is easy to design a poor-performing storage system. Even a storage system with

average performance can be designed by someone with little or no storage experience

and a credit card. Designing a high-performance storage system requires knowledge

of the various types of storage systems and the performance characteristics of each.

It also requires quality components. But most importantly, it requires a thorough

understanding of how the system will be used. Imagine that an engineer is consulted
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with to design and build a bridge across a river. He spends two years on the project,

and when he is finished he has constructed a beautiful foot bridge, complete with

solar-powered LED lighting system and dedicated bike lanes. When the customer

returns to inspect the work, he is shocked. How is he supposed to join two six-lane

freeways together with a simple foot bridge?

In the bridge example, the customer knows his needs: type of traffic, number

of lanes, weight requirements, etc. These are physical. In the early design phases,

the customer would see the plans that the engineer was drafting and realize, before

construction began, that the foot bridge would not meet his needs. The requirements

for storage systems, on the other hand, are more abstract, making it difficult for

customers to know their needs. The customer typically understands the problem he

is trying to solve but not what it will take to solve it. This is where the storage

engineer must be a good listener and part psychic. Helping the customer probe these

issues enables the storage engineer to design a storage system that will meet the

customer’s needs without excessive cost and complexity.

A storage configuration worksheet is provided in Appendix A to assist in the design

of a high-performance storage system. The customer may not be able to answer most

of the questions directly; however, the storage engineer should be able to answer the

questions after talking with the customer. Each topic covered in the worksheet is

discussed in the following sections, including how the information requested on the

worksheet directly affects storage design decisions.
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2.2 Background

Why is the customer considering a high-performance storage system? This is a good

opportunity to learn about the particular problems the customer is attempting to

solve. Chances are that there is an existing storage solution in place, either in a

production or a development environment. What aspects of the existing solution

are currently meeting the customer’s needs? What are the actual and perceived

limitations of the existing solution?

Managers, application developers, and system engineers can have drastically dif-

ferent concerns from a storage perspective. Managers are concerned with maintenance

cost and return on investment. Managers like fixed, known costs and they care about

the big picture. Application developers want to quickly store and retrieve data in the

form of streams, objects, or flat files. Application developers like simple, configurable

interfaces for I/O operations. Application developers resist changing code to improve

performance, preferring to push for faster hardware. System engineers care about ease

of management, scalability, performance, backups, data integrity, disaster recovery,

and maintenance agreements. If the managers, application developers, and end-users

are happy, then the system engineer is happy.

2.3 Storage Capacity and Growth

One aspect to consider when designing a storage system is the amount of usable

storage capacity the customer would like to have available. This amount does not

directly translate to the number of disks required in the storage system because the

storage engineer must take into account data redundancy configurations, both at the

file system and block device level. An example is a customer who requires 20TB of
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usable capacity for his application. After considering the critical nature of the data,

it is decided that 2x replication should be used at the file system level and RAID10

should be used at the disk level; the resulting raw capacity requirements are in fact

80TB.

Another aspect of storing data is how quickly the data will grow. How much

storage capacity will be required over the next two to three years? This is a difficult

question to answer, but it is important to consider as it affects many of the storage

system design decisions. Planning for growth often increases the initial system cost

but can significantly decrease the cost to scale the system, especially in installations

where floor space / rack space comes at a premium.

For instance, a 48U rack can comfortably hold ten 4U storage nodes. If the storage

system is configured with storage nodes that can hold eight 1TB hot-swap SATA

disks, there is a raw storage capacity of approximately 80TB per rack. Increasing the

capacity of the storage system would require a second storage rack and purchasing

new storage nodes. If this equipment is housed at a co-location facility, the cost of

a second rack will come at a premium. An alternative would be to configure the

original system with 4U storage nodes that can support up to 16 hot-swap SATA

disks, but use only five nodes instead of ten. In this configuration, the raw capacity

of the storage system can be doubled in the future without requiring a second rack.

This example can be taken one step further. In the initial system configuration, 2TB

disks could be purchased instead of the 1TB disks. Using 2TB disks would require

only eight of the sixteen hot-swap slots in each storage node to reach 80TB of raw

storage capacity. At the time I’m writing this thesis, the cost of the upgraded case,

RAID controller, and disks increases the cost of each storage node by 20 to 30% but

allows for growth up to four times the raw capacity in the same footprint. This can
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be a bargain when it comes time to expand the capacity of the storage system.

Another benefit of designing a system for scalable growth is that it leverages the

trend for decreasing hardware costs over time. An example of how this trend can be

leveraged is by purchasing raw disk capacity to meet the customer’s initial storage

needs plus 20% extra for growth. Several months later, as the customer’s storage

needs increase and the price of disk storage has dropped, the storage capacity can

be increased by purchasing additional (and possibly larger) storage disks. The idea

for this approach is that the customer is not paying a premium for storage that is

not needed yet. This strategy can be modified to account for the growth rate of the

customer’s data as well as the customer’s policies for disk drive replacement.

An important item to consider when planning for growth is vendor support for

hardware upgrades. Our research lab purchased an EMC AX150 in 2007, configured

with twelve 500GB SATA disk drives. In 2010, we wanted to upgrade this unit with

1TB SATA disk drives, but EMC customer support stated that the unit would only

support up to 750GB capacity disk drives. To top it off, only hard drives purchased

directly from EMC would work in the unit, and those drives cost six times more

than retail. This was a limitation enforced in the device firmware, and the solution

recommended by EMC customer support was to purchase the latest model of chassis.

2.4 Storage Client Details

Both the number of storage clients and the client operating system will have a

significant impact on the overall design of a high-performance storage system. Linux

clients provide the greatest amount of flexibility in the design of the storage system

while Windows clients provide the least. The reason for this is that the majority of
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shared disk and parallel distributed file systems are developed specifically for Linux

environments. Several of these file systems have native clients that work on MacOS

and Unix, but not Windows. Connecting a Windows client requires the use of a

gateway node. Gateway nodes can be used as a cost-effective method of providing

clients access to the storage system, but they can easily become a performance

bottleneck. For that reason, it is preferable for client systems to use native file system

clients.

High 

Performance 

Storage System

Native 

Storage Client

Figure 2.1: Native file system client communicating directly with storage nodes over
a dedicated private interconnect such as Infiniband

High 

Performance 

Storage System

Storage Client 

Gateway

CIFS/NFS 

Storage Client

Figure 2.2: CIFS/NFS client communicating with a storage gateway over a worksta-
tion network such as gigabit Ethernet

The number of client machines helps to influence type and configuration of the

storage interconnect as well as the number of storage nodes that should be present

in the storage system. A large number of active clients can easily overwhelm a small

number of storage nodes, while a small number of clients will not fully utilize a large

number of storage nodes. Unfortunately, there is no “golden-ratio” specifying the

ideal number of clients to the number of storage nodes.
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As the number of clients increases, the load on the storage system will increase.

Increasing the aggregate throughput of the storage system requires either an upgrade

to the storage interconnect, the addition of more storage nodes, or both. Knowing that

the number of clients is going to increase can mean using an Infiniband interconnect,

rather than gigabit Ethernet, to increase the throughput each storage node is able

to provide. The local disk subsystems on the storage nodes will also need to be

configured to supply data at the increased throughput levels.

2.5 Data Details

2.5.1 Data Classification

A good source of information for helping with storage system design decisions is the

actual data that will be stored on the system. Quite often, data is thought of as simply

information stored on hard disks and retrieved by various applications. However, a

good understanding of the data can reveal a lot about how the storage system should

be designed.

For instance, large video files are processed sequentially, either as a stream or

in chunks. Video files typically support concurrent client access, which can lead

to a performance bottleneck. Distributing a video file across multiple nodes using

striping can improve performance. Because the files are processed sequentially, they

can benefit from read-ahead caches, which can help hide interconnect and file system

latency.

On the flip side, applications that store data in a database format primarily

perform non-sequential I/O operations that often do not benefit from large caches.

The size of the database I/O operations are often in small block in the range 512B
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up to 128KB [47]. As a result, interconnect latency and file system overhead can

severely limit the throughput performance.

Appendix B contains a general list of data classes and some of the characteristics

of each. These classifications should not be used as firm, fixed rules, but rather as

guidelines to help a storage engineer begin thinking about how the data can influence

system design. In the end, it is the application that determines how the data is

accessed, but looking at the type of data is a good place to start.

2.5.2 Storage Zones

It is a rare storage system that stores a single type of data. The result is that there are

mixtures of large and small files. Some data types are primarily read-only while others

are read-write. In addition, there are questions of data redundancy and backup, as

well as performance requirements that may be different depending upon the type of

data. Unfortunately, there is not a one-size-fits-all solution that will meet all of a

customer’s data storage and processing requirements.

To address these issues in data management, storage zones can be defined to group

data based upon type, client-access requirements, and data redundancy and backup

policies. Storage zones can also have policies defined for data lifetime to prevent stale

data from wasting space on the storage system. Multiple storage zones can be defined

on a storage system. Storage zones are only guidelines for managing data on a storage

system and are not enforced by the storage system.

This concept of storage zones describes how data moves into and out of the

storage system. Figures 2.3 – 2.9 show an example of how data might flow in a

storage system designed for video rendering. Table 2.1 defines the policies for each

storage zone. Understanding how data moves through the storage system can help
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the storage engineer understand the throughput requirements of each client. From the

example, the clients transferring media to the storage system do not require 10 gigabit

Infiniband interconnects since the throughput will be limited by the source devices.

The clients processing the digital photos in Figure 2.5 also do not require high levels

of throughput. For these clients, accessing a gateway node using CIFS or NFS over

gigabit Ethernet will be more than sufficient. The clients in Figures 2.6 and 2.7 will

be doing work that is CPU intensive. However, if the application is multithreaded and

the client systems have a lot of processing power, clients performing these operations

could benefit from a high throughput interconnect such as Infiniband.

Table 2.1: Storage zone policy definitions

Zone Name Throughput Data Distribution Backups
A Med Simple Nightly Full
B Med Striped Weekly Full with Nightly

Incremental
C High Striped None

Zone C

Photos

(10 - 20 MB/s)

Zone B

Zone A

Figure 2.3: Digital pictures are downloaded from a camera to storage zone A via USB

When dealing with large volumes of data, especially when there are a variety of

data types, have policies in place to ensure appropriate use of each storage zone. Some

of these policies may be enforced at the system level, but in the end the storage system

will depend upon its users to make appropriate decisions where data should be stored.
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Zone C

Video Content

(60 - 80 MB/s)

Zone B

Zone A

Figure 2.4: Video content is downloaded from a video camera to storage zone B via
Firewire

Zone C

Zone B

Zone A

Photos

Edited Photos

Figure 2.5: Digital pictures are touched up and stored back in storage zone A

Zone C

Zone B

Zone A

Photos

Video Content

Uncompressed 

Hi-Def Video

(80 – 160MB/s)

Figure 2.6: Movie is rendered from source material in zones A and B and written to
zone C

Zone C

Zone B

Zone A

Compressed

Hi-Def Video

(5 MB/s)

MPEG-4

Uncompressed 

Hi-Def Video

(80 – 160MB/s)

Figure 2.7: Hi-def version is compressed and written to zone B

This process requires good communication between the application developers and

the system engineers. Along these lines, it is important to know who will manage

the storage zones, clean up stale data, perform backups, and monitor the storage
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Zone C

Zone B

Zone A

Compressed 

Video

(5 - 40 MB/s)

Figure 2.8: Hi-def version is written to Blu-ray disks

Zone C

Zone B

Zone A

Cleanup Intermediate 

Video Files

Figure 2.9: Intermediate movie files in zone C are removed from the storage system

system. Storage systems that are not managed effectively can quickly go from high

performance systems to poor performing ones.

2.6 Applications Details

The data can give part of the picture, but achieving high performance for customer

applications requires a solid understanding of the flow of data and of how the ap-

plications interact with the storage system. To begin, the system engineer needs to

have a list of applications that will interact with the storage system. This is where it

is helpful to sit down with application developers, system engineers, and end-users.

Discuss how they use the storage system, work out their process flows, and compose

a list of applications. This is also a good chance to discuss performance issues.

For each application on the list, specify the data that the application accesses and

whether those I/O operations are read-only or read-write. It is also beneficial to profile

these applications while they are running to get an idea of the I/O characteristics.
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Chapter 5 provides an in-depth discussion of tools that are available to assist with this

process. These profiling techniques can identify whether an application is I/O bound,

memory bound, or CPU bound. They can also provide information on the current

read and write throughput as well as the percent read vs percent write operations.

This information is useful because it can help the storage engineer understand the

throughput requirements of an application, but it can also help gauge expectations

of application performance. If an application is CPU bound, moving the data to

the fastest storage system in the world will not improve the performance of the

application. [47]

2.7 Disaster Recovery

Questions of uptime and high availability (HA) all relate to how much redundancy is

built into the system. There are two different aspects to this topic. The first is data

redundancy, focusing on replication and backups. The second is system availability,

focusing on building levels of redundancy into the storage nodes and interconnect to

ensure that the system can remain functional in the event of hardware failures.

In many cases, there is a trade-off between performance and redundancy. Most

high performance parallel distributed file systems do not provide built-in functionality

for HA or data replication; instead, they rely on the underlying systems to implement

this functionality. File systems that do provide replication typically sacrifice some

write performance. Understanding the customer’s need for performance vs redun-

dancy is imperative when designing a storage system.

Is the data on the storage system critical to business operations? If so, connect the

storage system to an Uninterruptible Power Supply (UPS) with sufficient run-time
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to allow the storage system to shut down cleanly or transition to backup power

generators. Storage systems use several layers of caching to improve performance. To

prevent loss of data, the write caches must be flushed to disk. Design the system so

that data is not lost in the event that a single disk or even an entire storage node

fails. Xin et al. writes in “Reliability Mechanisms for Very Large Storage Systems”:

“Based on our data, we believe that two-way mirroring should be sufficient for most

large storage systems. For those that need very high reliability, we recommend either

three-way mirroring or mirroring combined with RAID” [57]. A high level of reliability

for business critical data can be achieved using a layered approach. First, configure

the RAID subsystem in the storage nodes to ensure that a single (or multiple) disk

failure will not result in data loss. Second, replicate data across multiple storage

nodes, ensuring that no data is lost in the event of a complete node failure. And of

course, perform regular backups of critical data to external disks or tape.

Is access to the storage system critical to business operation? If so, the system

should employ file replication or shared block devices with HA fail-over. There should

also be redundant storage interconnects and any gateway nodes should be configured

for HA. Storage nodes can be configured with dual power supplies, redundant memory,

and even an internal Fibre Channel loop with dual controllers. The key here is to

balance the level and expense of redundancy against the risk of failure and the cost

of downtime.

2.8 Facility

Knowing where the storage system will be installed helps for determining the density

of the storage system. At a co-location facility, there is a monthly cost per storage rack
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as well as a fixed amount of power available in each rack. In co-location environments,

maximize the amount of storage per rack while staying within the available power

limits. A benefit of co-location facilities is that most provide site-wide UPS systems

with automatic fail-over to backup generators in the event of power failure.

2.8.1 Power Requirements

If the system is installed at the customer’s site, ensure that the facilities have sufficient

power and cooling. It would be unfortunate to design and build a beautiful four-rack

storage system but only have a single 20amp circuit to power it. A rough estimate

of the storage system power requirements can be obtained by examining the input

voltage and amp requirements for each storage node. This can be found printed on

a label on the back of the power supply or in the documentation included with the

storage node. This number will be a max power level. To obtain a more “real-world”

value, attach an amp meter to a storage node and run a series of tests to simulate

peak load on CPU cores and disk drives. Assuming that all the storage nodes require

the same input voltage, multiply both the max amps and the real-world amps by the

number of storage nodes. The result is the max and real-world amperage requirements

for the storage system at the required input voltage.

The power required for the storage nodes will dominate the overall power require-

ments of the storage system, but it is a good idea to check the power requirements of

interconnect devices (switches, routers, etc.) as well as plan for growth of the storage

system. These values for max and real-world amperage can be used to calculate VA

and Watt values for UPS specification. Remember to plan for power for the cooling

system as well.

VA = voltage * amperage
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Watts = voltage * amperage * pf

Sizing a UPS system is not a trivial task. An important fact that many people

overlook is that UPS systems have ratings for capacity in terms of Volt-Amps(VA)

and Watts. Volt-Amps are used to measure the “apparent” power usages while Watts

measure the actual power usage [35]. Volt-Amp capacity measurements are used for

marketing, but the nasty little secret in the UPS industry is that many UPS systems

have a power factor(pf) as low as 0.66 [2]. This means that a 1000VA UPS system

will only be able to power a load of 660 watts. Unlike UPS manufactures, who often

calculate wattage capacity assuming a power factor in the range of 0.66 to 0.90, most

modern computer systems have a power factor approaching 1.0 (unity) [2]. Many UPS

manufactures provide capacity planning tools to match UPS systems to site-specific

load and run-time requirements.

2.8.2 Cooling Requirements

An estimate of the cooling requirements for the storage system can be calculated

from the above power requirements. Due to the fact that essentially all of the power

consumed by the storage system is converted to heat, the thermal output of the

storage system is the same as the power input [36]. Heat generated by the storage

system is equivalent to the max and real-world wattage values calculated above. These

values can be converted to BTUs or Tons using the following formulas: [36].

BTU per Hour = 3.41 * Watts

Tons = 0.000283 * Watts

These values are estimates on the cooling requirements for the storage system

itself. When specifying the cooling requirements for a particular environment, one
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must consider all the possible heat sources. These include IT Equipment, UPS with

Battery, Power Distribution, Lighting, and People [36]. In addition, care must be

taken in planning for growth of the storage system. It is strongly recommended to

consult with an HVAC engineer experienced with data-center cooling systems once

the power requirements have been identified.

2.9 Budget

The customer’s budget is the single most influential factor in the storage system

design. Sections 2.1 through 2.8 deal with identifying what the customer needs from

the storage system design. The budget determines what the customer can afford to

buy. Ideally, the customer can afford what he or she needs, but too often this is not

the case. In such an event, compromise becomes the order of the day. High-capacity,

high-performance, high-reliability, and low cost lie in the four corners of the magic

square of storage system design, unfortunately storage engineers can only choose up

to three of these to include as priorities in the storage system design.

In addition to the initial funds required to purchase and configure a high-performance

storage system, there are costs for operation and maintenance. These include recur-

ring costs for power and cooling, if the system is installed at the customer’s location,

or a facility charge if the system is housed at a co-location facility. If the components

of the storage system were purchased from a vendor such as Dell or IBM, the storage

nodes will most likely include a three-year maintenance agreement, covering the costs

of any hardware failures. Storage systems that are custom built will still include

warranty agreements on components but may require funds to ship defective parts

for replacement.
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When a component in a storage system fails, the time required to replace the

failed component is referred to as the window of vulnerability. A large window of

vulnerability increases the probability of data loss, so it is critical to have processes

in place to quickly replace failed components [57]. To minimize the window of

vulnerability, budget for spare components or purchase a maintenance agreement

with four-hour or next-day on-site service.

Finally, budget time for an engineer to maintain the storage system. A storage

system will require monitoring to detect potential issues as well as someone to replace

components when they fail. Components will fail. “In petabyte-scale file systems,

disk failures will be a daily (if not more frequently) occurrence” [57]. The amount

of time to budget for an engineer will vary depending upon the size of the storage

system.

2.10 Conclusion

Storage systems are diverse creatures with a multitude of design choices and config-

uration options. A thorough investigation of the storage system requirements will

enable the design of a storage system that will meet the customer’s needs without

excessive cost or complexity. Listen carefully to the problem the customer is trying to

solve and ask lots of questions. In the design of the storage system, demonstrate how

the storage system addresses each of the limitations of the existing storage solution

as well as any specific requirements the customer has listed. Once both parties agree

on the requirements and design details, it is time to begin selecting hardware.
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CHAPTER 3

DESIGNING RELIABLE DISK SUBSYSTEMS IN THE

PRESENCE OF LATENT SECTOR ERRORS AND

INFANT DISK MORTALITY

3.1 The Threat to Disk Subsystems

It is easy to assume that when a file is stored to disk it will be available and

unchanged at any point in the future. However, this is not guaranteed. Imagine

a world where disk manufacturers publish expected bit error rates of one in every

12TB read, where large numbers of disks fail in their first year of operation, and

where data can be silently altered between the computer’s memory and the hard disk

platters. This world is in fact our reality. This chapter will examine the issues of

infant disk mortality, latent sector errors, and silent data corruption, and provide

recommendations for how to configure reliable disk subsystems to protect against

these issues.

3.1.1 Infant Disk Mortality

Infant disk mortality is the tendency for hard disk drives to fail at a much higher

rate in their first year of operation than the Mean Time Before Failure (MTBF) rates

specified by the manufacturer suggest. Several studies using data from large HPC
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deployments indicate that disk drives are replaced by a factor of 2 - 10 times the rate

suggested by the MTBF rating [37, 22, 58]. That fact alone is concerning, but these

studies have also shown the shape of the drive failure curve to be bathtub shaped

with the bulk of the failures coming in the first year of operation or at the end of the

life of the drive (typically 5 years) [58].
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Figure 3.1: Bathtub curve representing disk failure rates [56]

Figure 3.1 provides a graphical explanation of this failure curve. The curves do

not reflect any specific disk failure data, but instead show generalized failure trends

described in multiple studies [58]. The Infant Mortality curve represents disks that

fail early in their life while the Wear Out curve represents disks that fail toward the

end-of-life. The constant failure curve represents the expected failure rate if disk
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failures were random and evenly distributed across the expected life of the drive. The

Observed Failure curve depicts the bathtub shaped failure curve discussed previously.

Table 3.1: Probability of disk failure based upon SMART data [34]

SMART
Counter

Probability of fail-
ure within 60 days

Description

Scan Errors: 39 times more
likely to fail

Sometimes referred to as seek errors,
these errors occur when the drive heads
are not properly aligned with the track.

Reallocation
Count:

14 times more
likely to fail

The number of sectors that have failed
and been remapped.

Offline Re-
allocation
Count:

21 times more
likely to fail

The number of failed sectors that were
detected and remapped using back-
ground disk scrubbing.

Probational
Count:

16 times more
likely to fail

The number of sectors that experienced
read errors and that rescheduled to be
remapped upon the next write oper-
ation unless a successful read of the
sector occurs before the remap.

Modern disk drives provide extensive monitoring capabilities through a standard-

ized interface called SMART (Self-Monitoring, Analysis, and Reporting Technology).

Several attempts have been made to accurately predict when a disk drive is about to

fail by using this SMART data. A study examining a large collection of disk drive

failure and usage information gathered by Google attempted to ascertain whether

SMART counters can be used to predict drive failure. This work showed that

drives with Scan Errors, Reallocation Counts, Offline Reallocations, and Probational

(Pending) counts had a significantly higher probability of failure than drives with

zero counts. One of the conclusions from this study is that SMART data cannot

be used as the only indication of pending drive failure as 56% of the drive failures

in their sample set show zero counts for the above SMART counters. These results

showed a high infant mortality rate in the 3-month and 6-month time frame; however,
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these values would have been significantly higher if not for the initial system burn-in

testing that disks go through before being put into production. Table 3.1 shows some

interesting statistics from this study. Other items of interest are that drive activity

and temperature do not have a significant impact on drive failures [34].

3.1.2 Latent Sector Errors

A latent sector error is a generic term that is used when a disk drive is unable

to successfully read a disk sector. Latent sector errors can show themselves as

Sector Errors, Read Errors, Not-Ready-Condition Errors, or Recovered Errors. They

can be caused by a variety of factors including media imperfections, loose particles

causing media scratches, “high-fly” writes leading to incorrect bit patterns on the

media, rotational vibration, and off-track reads or writes [3]. The term bit error rate

(BER) refers to the frequency that unrecoverable/uncorrectable read errors (URE)

are expected to occur. Manufacturers publish expected bit error rates based upon

disk drive class (see Section 3.2.1 for definition of desktop, nearline and enterprise

disk classes). These errors are considered part of normal disk operation as long as the

errors are within the rate provided in the disk specification. The dirty little secret

about latent sector errors is that they are only detected when an attempt is made to

read the sector. This means that a disk may contain corrupted data without the user

knowing it.

Schwarz et al. observed that latent sector error rates are five times higher than

disk failure rates [38]. As a result, latent sector errors can wreak havoc on RAID

arrays. For example, imagine a 2TB array with three 1TB disks in a RAID-5

configuration. Now imagine that one of the disks fails, leaving the array operational,

but in a degraded condition. A new disk is added and the rebuild process begins,
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regenerating the RAID striping on the new disk from the remaining two disks. Three

quarters of the way through the rebuild process, one of the disks from the original

array encounters an unrecoverable read error. At this point, the RAID set is lost and

the data can only be retrieved using time consuming and expensive data recovery

techniques.

Microsoft Research conducted a study focused on the bit error rates advertised

by disk manufacturers. They performed a series of tests where they would generate

a 10GB file and calculate the checksum. Then, they would read the file and compare

the checksum of the file to the original checksum to test for read errors. The results

were written to disk, then the test was repeated. This was run for several months

with a total of 1.3PB of data transferred. Another round of tests was performed

using 100GB test files and continually reading the file to test for bit-rot. These tests

moved more than 2PB of data and read 1.4PB. They observed a total of four definite

uncorrectable bit errors and one possible uncorrectable bit error across all of their

tests. However, in their testing they saw far more failures in drive controllers and

operating system bugs than in read errors. Their conclusion is that bit error rate is

not a dominant source of system failure [22]. However, their testing was conducted

across four test systems with a combined total of only seventeen hard disk drives. This

is a statistically insignificant number of disks. Other studies by Bairavasundaram et

al. and Pâris et al. demonstrate that bit error rates and latent sector errors can have

a significant impact on storage system reliability [4, 3, 32].

This study of data corruption used statistics captured from 1.53 million disk drives

over a period of 41 months found 400,000 instances of checksum mismatches on the

disk drives [4]. A checksum error occurs when the bits stored in a disk sector are

read but the calculated checksum value does not match the checksum value stored on
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the disk when that sector was written. An interesting finding from this study is that

nearline class disks develop checksum errors at a rate that is an order of magnitude

higher than enterprise class disks (see Section 3.2.1 for definition of desktop, nearline

and enterprise disk classes). This study also provides a section on “Lessons Learned”

including recommendations for aggressive disk scrubbing, using staggered stripes for

RAID volumes, and replacing enterprise class disks at the first sign of corruption [4].

In the literature, several ideas have been put forward as techniques to help ad-

dress the issues of latent sector errors. These include a variety of intra-disk parity

schemes [13], using staggered striping for RAID volumes [4], and a variety of disk,

file/object, and RAID scrubbing techniques [3, 4, 32, 38]. Unfortunately, many of

these ideas are not generally available for use in production environments. However,

Mean Time To Data Loss (MTTDL) models that account for latent sector errors,

RAID scrubbing has been shown to increase reliability by as much as 900% [32].

3.1.3 Silent Data Corruption

Silent data corruption can occur in processor caches, main memory, the RAID con-

troller, drive cables, in the drive as data is being written, or in the drive as the data is

being read. Desktop and workstation class systems with standard DDR3 memory and

SATA disk drives are far more susceptible to silent data corruption than enterprise

class systems (enterprise class servers have error correcting memory, high end RAID

controllers with built-in error correcting procedures, SCSI, SAS, and FC protocols

that natively support error correction, and enterprise class disk drives with an extra

eight bytes per sector to use for storing checksum data directly on the disk.)

Figure 3.2 shows the layers that data must pass through when stored to or retrieved

from disk. The upper layers exist in the application and operating system space, while
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the lower levels represent the physical storage hardware. Data corruption can occur

at any of these layers. Even with enterprise class hardware, errors introduced at a

high level in the storage stack will be silently stored to disk.
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Figure 3.2: Diagram of the various layers in the storage stack

To address the issue of silent data corruption, Oracle and Emulex have joined

forces to provide end-to-end (application to disk) data integrity [11]. The idea is

that an object is created at the application level using a standardized object storage

format. In addition to the application data, the object also contains error correction

data that can be used to verify the integrity of the object. As the object is passed

from the application through the various storage layers, the storage hardware is able

to verify that the data remains correct. This object will be written directly to the

storage system as an object. Oracle is contributing their block I/O data integrity

infrastructure code to the Linux kernel [11].
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3.2 Disk Considerations

Disks drives are the building blocks of a disk subsystem. Understanding the char-

acteristics of the various types of rotational storage media will go a long way for

designing a reliable disk subsystem.

3.2.1 Classes of Disks

There are a wide variety of disk drives available on the market with an equally wide

variety of performance, capacity, and error correction features. These disks have been

loosely categorized into classes based upon a particular feature set. Originally, there

were two basic classes: desktop and enterprise. Desktop drives used the ATA interface

protocol while enterprise class disks used the SCSI protocol. In recent years, the

distinction between desktop and enterprise class disks has blurred. The development

of aggressive power management and data recovery features as well as the fact that

disk drive classifications are not consistent across manufacturers makes choosing the

appropriate disks for a storage system a challenge.

To maintain consistency in this thesis, the following disk classifications are used:

desktop, nearline, and enterprise. Desktop class disks are intended for home computer

or office workstation systems that are not run continuously and have a low duty cycle.

Nearline class disks are designed for use in data center RAID environments where

there may be large amounts of data that must be available 24x7, but in actuality are

not accessed very often. Enterprise class disks are designed for use in mission critical

data center systems where they must be available 24x7, are accessed continuously, and

must sustain high throughput levels and low latency with a high level of reliability.

These definitions were chosen because they are consistent with the usage of the
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nearline and enterprise disk classifications used in the papers and articles cited in

this thesis. Table 3.2 is derived from several white papers published by Seagate to

show the differences between the different disk classes [43, 42, 40, 41, 39].

Table 3.2: Comparison of desktop, nearline, and enterprise disk drive classes

Desktop Nearline Enterprise
Capacity up to 2TB 500GB-2TB 300GB-600GB
Cost low med high
Cache 32MB; 64MB 16MB; 32MB;

64MB
16MB

Performance 7200 RPM 7200 RPM 10K RPM and
15K RPM

Interface SATA 6Gb/s 6Gb/s SAS;
SATA 3Gb/s

6 Gb/s SAS;
4Gb/s FC

Mean Time
Between Failure
(MTBF)

750,000 hours 1,200,000 hours 1,600,000 hours

Annualized Fail-
ure Rate (AFR)

0.34% 0.73% 0.55%

Bit Error Rate
(BER)

1 in 1014 1 in 1015 1 in 1016

Duty Cycle 8x5 24x7 24x7
Power On Hours 2400 8760 8760

3.2.1.1 Desktop Class

Desktop class drives have a great price-to-capacity ratio; however, they do not have

many of the reliability features found in the nearline and enterprise class equipment.

There are also a couple features of desktop drives that make them undesirable to

use in a RAID environment. The first is power management. Oftentimes, desktop

class drives have power conservation features that allow the drive to spin down or

go to sleep when not in use. For a laptop or desktop workstation, this is great;

however, if the drive is part of a RAID array, in the best case the RAID array will be
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slow responding while waiting for the disk to speed up. In the worst case, the RAID

controller will assume the drive has failed and drop it from the array. Depending upon

the number of drives and the type of RAID subsystem, it is possible, even likely, that

multiple drives will enter power-save mode and be dropped from the RAID set. The

RAID array will then be degraded and must be recovered, possibly resulting in data

loss.

The second feature of desktop drives that makes them unsuitable for RAID en-

vironments is that they have some extremely powerful sector recovery features built

into the on-disk controller. At first glance, this might not seem like a bad thing, but

this deep recovery cycle can be time consuming [27].

“When an error is found on a desktop edition hard drive, the drive will enter

into a deep recovery cycle to attempt to repair the error, recover the data from the

problematic area, and then reallocate a dedicated area to replace the problematic

area. This process can take up to two minutes depending on the severity of the issue.

Most RAID controllers allow a very short amount of time for a hard drive to recover

from an error. If a hard drive takes too long to complete this process, the drive

will be dropped from the RAID array. Most RAID controllers allow from seven to

fifteen seconds for error recovery before dropping a hard drive from an array. Western

Digital does not recommend installing desktop edition hard drives in an enterprise

environment (on a RAID controller).” –Western digital FAQ [46]

Nearline and enterprise class drives implement a feature that limits the amount of

time spent attempting to recover a bad sector. Once this time elapses, a signal is sent

to the RAID controller notifying it of the issue to allow it to obtain the sector from a

different disk. Different disk manufacturers have different names for this feature, but

in the end it all boils down to the same thing: Time-Limited Error Recovery (Western
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Digital), Error Recovery Control (Seagate), and Command completion Time Limit

(Samsung, Hitachi).

3.2.1.2 Nearline Class

There is not a consistent name for this class of hard drives across all manufacturers.

A few examples of drives that fall into the nearline class include business class disks,

low-cost server disks, enterprise class SATA, and nearline SAS. The performance and

reliability features also vary widely between manufacturers and disk models. In some

cases, the only difference between a manufacturer’s desktop and nearline class disk

drives is the firmware on the drive controller.

In several of the papers cited in this thesis, the nearline disks have a bit error rate

of 1 in 1014; however, in Table 3.2, nearline disks are shown with a bit error rate of 1

in 1015. This discrepancy is due to the fact that the data in Table 3.2 is from 2011

and the disk drives in the cited studies are considerably older. In addition, the data

in Table 3.2 is provided by Seagate; other disk manufacturers may have a higher bit

error rate for their nearline class disk drives.

Nearline class disk drives are designed to meet the need of low cost, high-capacity

storage for use in the data center. They are designed to be powered on and available

24x7, but only accessed infrequently with a duty cycle of 20-30%. This class of disk

is designed for storing large quantities of reference data that must remain online,

but that is not continuously accessed. Nearline class drives are not well suited to

database-style workloads requiring a continuous duty cycle and a high number of I/O

operations per second (IOPs), due to both the mechanical design of the disks as well

as the limited processing capabilities of the onboard controller.
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Nearline class disk drives are designed for use in RAID applications and are

extremely well suited for large parallel distributed storage systems used in HPC

environments. These environments often deal with 10s or 100s of TBs of data that

require high levels of throughput, but not necessarily high numbers of IOPs, and the

$/GB price point of nearline class disk drives is very attractive.

3.2.1.3 Enterprise Class

There are a number of key differences between desktop/nearline class disk drives

and enterprise class disk drives. Enterprise class hard drives have a more rugged

construction than desktop or nearline class drives that allows them to operate relia-

bility in 24x7 data center environments with a continuous duty cycle. Desktop and

nearline class disks have a fixed sector size of 512 bytes while enterprise class disks

support variable sector sizes with the default being 520 to 528 bytes. These extra

eight to sixteen bytes are leveraged for end-to-end data integrity to detect silent

data corruption [27]. They also include specialized circuitry that detects rotational

vibration caused by system fans and other disk drives and compensates by adjusting

the head position on-the-fly to prevent misaligned reads and writes [27].

Enterprise class disks have dual processors and advanced error detection and error

correction capabilities built into the disk drives. The extra processing capabilities

of enterprise class disk drives enable them to implement advanced techniques for

ensuring data integrity. One of these techniques is disk scrubbing. During times

of low disk activity, the disk controller can issue commands to the disk drive to

verify the integrity of the disk sectors using the extra eight to sixteen bytes of data

stored along with each sector [27]. Data scrubbing at the disk or RAID level has

been shown in multiple studies to have a dramatic impact on the reliability of a disk
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subsystem [38, 4, 32]. Section 3.4.3 discusses data scrubbing in greater detail with an

example of usage in a production environment.

In addition, disk manufacturers implement a number of proprietary techniques

to further increase the reliability of enterprise class disk drives. These efforts allow

enterprise class disk drives to operate at twice the RPM of desktop and nearline class

drives but still maintain a bit error rate that is two orders of magnitude lower than

desktop class disks. The result is a trade-off of price and capacity for performance

and reliability.

3.3 RAID Considerations

RAID is a powerful tool that can be leveraged to improve both the reliability and

the performance of a disk subsystem. Xin et al. demonstrate that using the MTBF

rates published by disk manufacturers, a 2PB storage system composed of 500GB

nearline disks can expect to have one disk failure a day [57]. Add to this fact that

many real-world studies conclude that actual disk failure rates are up to ten times

higher than the manufacturer’s rates [32, 37, 22] and the need for RAID becomes

apparent. Table 3.3 is a summary of the commonly used RAID levels in production

environments.

Though the implementation of each RAID level is different, the underlying protec-

tion mechanisms boil down to two things: replication and parity. RAID subsystems

utilizing replication-based protection mechanisms have significantly lower failure rates

than ones that leverage parity-based protection mechanisms. This can be seen in

Figure 3.4 where the failure rates for RAID-1 and RAID-10 are significantly lower

than the failure rates for RAID-5 and RAID-6.
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Another way to think about this is with an analogy of soldiers protecting maidens.

In a RAID-1 scheme, each soldier is charged with protecting a single maiden with

his life. In a RAID-10 scheme, there are M pairs of soldiers and maidens with each

soldier charged with protecting a single maiden (similar to RAID-1). In this scheme,

any or all of the soldiers can die as long as the maidens remain unharmed; however,

if a single maiden dies, it does not matter how many soldiers remain, the battle is

lost. With RAID-5, a single soldier is charged with protecting N maidens with his

life. And finally a RAID-6 scheme charges two soldiers with the responsibility of

protecting N maidens. It is easy to understand that if a maiden has her own personal

bodyguard, she is a lot safer when trouble comes knocking than the maidens who

share protectors.

Table 3.3: Description of commonly used RAID levels

RAID
Level

Min
Disks

Protection Level Description

Level-0 2 none Data is striped in chunks across disks
Level-1 2 single failure Data is mirrored between the two disks
Level-5 3 single failure Data is striped across n-1 disks with the

nth disk containing an XOR parity. The
parity stripe is offset so that the parity
information is not stored exclusively on
a single disk.

Level-6 4 double failure Similar to RAID-5 but with dual parity
stripes

Level-10 4 single/double
failure

Data is striped across n/2 mirrored disk
pairs. Up to n/2 disks can fail as long
as no two disks are from the same mir-
rored pair.
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3.3.1 Encountering Latent Sector Errors

Care should be taken in the selection of the RAID level used as well as the number

of disks in each RAID set. Pâris et al. conducted a study that looked specifically

at RAID-1, RAID-5, and RAID-6 arrays in the presence of latent sector errors. The

results indicate that unrecoverable read errors can reduce the mean time to data loss

(MTTDL) of each of the three array types by up to 99% [32].

Figure 3.3 shows the probability of encountering an unrecoverable read error

(latent sector error) while rebuilding an array of n+1 disks. Probabilities are shown

for both 500GB (Figure 3.3a) and 2TB (Figure 3.3b) disk drives. These probabilities

are calculated directly from the manufacturer’s published bit error rates for desktop,

nearline, and enterprise class disk drives using the probability equations published

by Adaptec Storage Advisors [1]. Observe that the probability of encountering an

unrecoverable read error (URE) increases as the size of the storage array increases, by

increasing either the capacity of the disks or the number of disks. Also observe that

the probability of an URE decreases by an order of magnitude with each increase in

disk class (Desktop − > Nearline − > Enterprise). The adage “you get what you

pay for” has never been more true than in storage system design.

To bring this point home, imagine an array that is composed of eight 2TB desktop

class disk drives configured for RAID-5. When a disk fails in the array, every sector

from the seven remaining disks must be read successfully to rebuild the RAID set.

From Figure 3.3b, there is a 68% chance that a latent sector error will cause the rebuild

to fail and result in the loss of all data on the array. Even when using nearline class

disks, there is still a 10% chance that a latent sector error will be encountered. For

this reason, many storage experts feel that RAID-5 can no longer provide a sufficient
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Figure 3.3: Probability of encountering an Unrecoverable Read Error while rebuilding
an array of n+1 disk drives
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level of reliability for modern disk subsystems.

3.3.2 Utilizing Mean Time to Data Loss (MTTDL)

Figure 3.3 only reveals part of the picture. To adequately compare the relative merits

of each of the different RAID levels requires a measure called mean time to data loss

(MTTDL). MTTDL is a measure used to evaluate the reliability of a disk subsystem.

Unfortunately, the values returned by most MTTDL models are next to useless.

What value is it if a disk array has a MTTDL of 100,000,000 years versus 1,000,000

years? The trouble with most MTTDL models is that they do not take into account

latent sector errors and silent data corruption. In addition, it is assumed that failures

are evenly distributed and independent, not accounting for infant disk mortality,

manufacturing issues, or firmware glitches. Many studies have examined the issues

with MTTDL and proposed a variety of solutions including the use of Markov chains,

Poisson distribution, and even Monte Carlo-based approaches [16, 3, 13, 58].

In spite of this debate over the accuracy of MTTDL, it can still be utilized as a

measure for evaluating the relative reliability of different RAID protection schemes.

Figure 3.4 shows the failure rates for a variety of RAID levels. These values are

calculated based upon a simple MTTDL model that utilizes the MTBF values pub-

lished by disk manufactures. As a result, the values themselves are nearly worthless

since they do not account for latent sector errors and infant disk mortality. However,

there is some value if we look at them from the perspective that they are best case

values. What we see is that replication-based protection schemes have significantly

lower failure rates than parity-based schemes.

What Figure 3.4 does not show is that parity-based schemes are far more suscep-

tible to latent sector errors than replication-based schemes [33]. This is the result
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of the combination of a limited number of tolerated failures with the probability of

encountering corrupt data during a rebuild. In a replication-based protection scheme

such as RAID-1 or RAID-10, the maximum number of disks that will need to be

successfully read for a single disk failure is one. From Figure 3.3b, the probability

of encountering a latent sector error is 1.63%. Not only is the risk of encountering

a latent sector lower, but the time the array remains in a degraded state is lower

since less data must be read to rebuild the array. With a parity-based protection

scheme such as RAID-5 or RAID-6 with n disks, n-1 disks must be successfully read

to regenerate the array. This results in both a higher probability of encountering a

latent sector error and a longer period of time that the array remains in a vulnerable

state.

Figure 3.4: Failure rates for a variety of RAID levels [33]
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3.4 Designing a Reliable Disk Subsystem

The following sections describe techniques that can be leveraged to construct reliable

disk subsystems.

3.4.1 Disk Burn-in

From the Google study on infant disk mortality, it was suggested that the rate of infant

disk mortality they were seeing in their systems would be significantly higher if not for

their initial burn-in of disks before placing them in the production environment [34].

Taking a cue from Google’s playbook, the following guidelines can be used to help

limit the effects of infant disk mortality on a storage system.

The idea with a disk burn-in is that rather than discovering latent sector errors

or infant disk mortality of a new hard disk in a production server, use a tool to read

and write a series of patterns across the entire surface of the disk to identify issues

up front. The nice feature of a test like this is that if a latent sector occurs, the

controller on the disk will remap the sector the next time it is written to. After

the test completes, the SMART data will show the number of sectors that have been

remapped. The following process demonstrates a basic sanity test (burn-in) for a new

hard drive.

• Verify that the SMART counters for pending and remapped sectors is zero

• Use the badblocks utility to write test patterns over the surface of the disks

• Verify that the SMART counters for pending and remapped sectors are still

zero
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The badblocks utility can be configured to perform multiple passes across the

disk surface until there are no bad blocks detected or until the max number of passes

is completed. In the event that bad blocks (latent sector errors) are found on the

disk surface, there are a couple of different schools of thought. One is that the disk

is bad and should be returned to the manufacturer. This is supported by the disk

failure statistics shown in Table 3.1. Unfortunately, what a user considers a bad disk

does not always match up with what the manufacturer considers a bad disk. The

definition of a drive failure is not well defined [34]. Schroeder and Gibson cite a

disk manufacturer that reported that 43% of returned drives passed the its in-house

quality testing [37].

The other school of thought suggests that a nearline disk drive can still continue

to function properly even with a few remapped sectors as long as the counts do not

continue to increase; however, enterprise class drives should be replaced at the first

sign of latent sectors. This school of thought is supported by statistics gathered by

Bairavasundaram in a study of 1.53 million nearline and enterprise class disk drives [4].

3.4.2 Leveraging RAID

There are many different ways to configure RAID in a disk subsystem. Issues to

consider are reliability, performance, and usable capacity. Other issues to consider

are rebuild time, number of disks per array, and stripe size. There is not one correct

solution to a given storage problem, but one often overlooked aspect is complexity

to administer. Designing an overly complicated solution is an easy trap to fall into

given the wide variety of options available. Another factor that MTTDL models

cannot address is human error, and overly complicated disk subsystems can increase

the chances that a mistake will be made.
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An internal white paper published by Oracle introduced a new methodology called

SAME [30]. SAME stands for Stripe and Mirror Everything. SAME has four basic

rules:

1. Stripe all files across all disks using a one megabyte stripe width

2. Mirror data for high availability

3. Place frequently accessed data on the outside half of the disk drives

4. Subset data by partition, not by disk

SAME is a simple and elegant approach that applies not only to designing reliable

disk subsystems but also to designing high-performance storage systems as a whole.

At the block level, SAME indicates the use of RAID-1 or RAID-10. This approach is

substantiated by the drastically reduced failure rates for replication-based protection

schemes shown in Figure 3.4. However, this approach can also be extended to the

storage system level where data is striped across multiple storage nodes, each of which

contain disk subsystems protected using a replication-based scheme.

Placing frequently accessed data on the outside half of the disk platters will max-

imize the throughput a disk can sustain. This is simply a side effect of platter-based

rotational media. Hard disk drives implement a technique called zoned bit recording.

The tracks on a disk are grouped into zones and each zone has an increasing number

of bits per track moving from the center of the disk out. Since the platters in a disk

drive operate at a constant velocity, more bits pass under the heads per revolution

at the outer tracks than at the inner tracks. This results in a higher bit rate for the

outer tracks and hence a higher throughput.
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Utilizing partitions to localize data to certain areas of a disk can dramatically

decrease seek time and improve the performance of random disk access. This is critical

for databases, metadata servers, and applications that do not perform sequential I/O

operations. The seek time for an I/O operation is the time required to move the

disk head to the appropriate track plus the time required for the platter to rotate to

where the data begins, up to one full revolution of the disk platter. During normal

disk operation, any single I/O operation may have to move the disk heads all the way

from the inner tracks to the outer tracks. Partitioning off a smaller portion of the

disk from which to perform I/O operations has the effect of localizing the data on the

disk and will decrease seek time.

The goal of this configuration is to make the best use of disk drives that is

possible. In high-performance database systems, multiple drives are utilized for the

improved throughput instead of the capacity. This also provides great information

on performance tuning block sizes for disk access. To optimize single disk sequential

access, we only need to make sure that the seek time is a small fraction of the transfer

time (i.e. transfer time > 5 × position time). Localizing data on the outer half of

a disk drive will ensure that random operations will achieve over 90% of the best

possible throughput. To optimize random disk access, limit the area of the disk the

head will have to traverse. By limiting frequently used data to the outer half of the

disk, seek latency can be decreased while still maximizing the number of megabytes

accessible [30].

3.4.3 RAID Scrubbing

Section 3.3 demonstrates how latent sector errors can degrade the reliability of a

disk subsystem. Several studies have shown that monthly data scrubbing can have a
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dramatic impact on the reliability of disk subsystems, improving reliability by 300%

to as much as 900% when compared to annual scrubbing [32]. Disk scrubbing is a

feature of enterprise class disk drives where the extra ECC information stored with

each sector is compared against the data stored in the sector to verify it is correct.

RAID scrubbing is implemented by the RAID controller and is used to verify data

in a RAID set in a similar manner. The RAID controller reads every stripe in the

RAID set and compares it against the stored parity information. If an unrecoverable

read error occurs, the disk drive remaps the sector to a spare sector and the RAID

controller regenerates the corrupted data from the parity information and rewrites

the data to the remapped sector.

Since RAID scrubbing is implemented in the RAID controller, the procedure to

initiate the scrubbing is manufacturer specific. In Linux software RAID, scrubbing

can be initiated with the following command:

echo check >> /sys/block/mdX/md/sync_action

The status of the scrub can be checked with the following command:

watch -n .1 cat /proc/mdstat

The RAID scrub can be performed while the system is live, though it should be

done off hours. A simple script can be executed from a cron job to check all the RAID

sets on a weekly basis.

3.4.4 Leveraging a Hot-Spare

One key factor in most MTTDL models is the amount of time the RAID set remains

in a degraded state. This includes the time required to detect the failure, replace the
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disk, and rebuild the data set using the replacement disk. In a study questioning the

usability of MTTDL values, Pâris et al. conclude that MTTDL can provide fairly

good estimates of reliability as long as the individual disk repair rate remains well

above one thousand times the disk failure rate [16]. Basically, MTTDL is accurate as

long as failed disks are quickly detected and replaced.

Hot-spares should be leveraged to minimize the amount of time required to detect

and replace failed disks. A hot-spare is a disk that is not a part of a RAID set but that

is powered on and connected to the RAID controller. In the event that a disk failure

occurs, the RAID controller will automatically add the hot-spare to the degraded

RAID set and immediately begin regenerating the data. If there are multiple RAID

sets on a controller, it is a good idea to configure the hot-spare as a global hot-spare

instead of assigning it to a specific RAID set. This will make the most efficient use

of the hot-spares in the system.

In designing reliable disk subsystems, there should be at least one global hot-spare

configured per RAID controller. The specific number of hot-spares to configure will

depend upon the class of disks utilized, the number of disks in each RAID set, the

RAID level, and the probability of a disk failure. It is important to include hot-spares

in the disk subsystem design right from the start because it can be difficult, if not

impossible, to add them after the fact.

3.4.5 Replacement Strategies (End of Life)

Several studies have shown that disk failure rates form a bathtub-shaped plot, similar

to Figure 3.1, with the highest failure rates occurring during the first year of operation

(infant disk mortality) and after the fifth year (end of life) [37, 58]. An important

part of a reliable disk subsystem is having a disk replacement policy in place. Xin et
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al. developed a Markov model to simulate the effect of disk failure and replacement

on the MTTDL values for a storage system [58]. Their conclusion is that as the disks

in a storage system reach their end of life, replace them in small batches instead of

large batches. They recommend identifying all the disks that are scheduled to be

replaced in the next year, then replacing the disks in 1/12th increments each month.

Their study examined the selection of end-of-life disks either by age or randomly

from the pool of end-of-life disks and found there was not a significant effect on the

MTTDL values for the storage system either way. Their recommendation is to select

disks randomly from the pool of end-of-life disks since it requires less book-keeping

work [58].

Why not wait for disks to fail or until the SMART counters reveal a pending

disk failure before replacing them? This is a valid question and the answer is that it

depends upon the maintenance policies that an IT management has in place. First,

there is the issue of warrantees and maintenance agreements. These typically are for

three to five year periods following the purchase of the device, and many IT shops

require maintenance agreements for all critical systems. Second, it is not possible

to reliably predict when a disk drive is going to fail. Google’s study of disk drive

failures indicated that 56% of their failed disk drives not generate and SMART data

indicating a failure was eminent [34]. Proactively replacing end-of-life disks allows

the support staff to stagger the introduction of new disks into a storage system to

minimize the effects of infant disk mortality. And finally, a five year old disk is a

five year old disk. New replacement drives will likely have greater capacity, higher

performance, and possibly even improved reliability.
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3.5 Other Considerations

In this section are a few other items to keep in mind when designing disk subsystems

and storage systems in general.

3.5.1 Quality Hardware

In a study of latent sector errors conducted by Microsoft Research, one conclusion

of the study was that controller errors and OS bugs resulted in more downtime

and loss of data than latent sector errors [22]. Even when using Linux software

RAID, carefully consider the selection of the RAID controller hardware. Buggy

hardware and/or drivers will have a much more significant impact on the reliability

of a storage system than latent sector errors and infant disk mortality. Install server

class components from well-known manufacturers with a strong history of providing

Linux driver support.

If the plan is to use the RAID controller itself to assemble the RAID sets, ensure

that controllers are true hardware RAID controllers. Several quality hardware RAID

controller manufacturers include Adaptec, QLogic, LSI, 3ware, and Areca. Avoid

using “fake-raid” controllers where part of the RAID controller is implemented in

hardware and the other part is in the driver. These include many of the Promise

and HighPoint models as well as most onboard RAID controllers except in the case

of enterprise class servers. If the RAID controller costs less than the motherboard,

be vigilant. Finally, check with the controller manufacturer to determine how to

periodically scrub the arrays.
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3.5.2 RAID Is NOT Backup

RAID is not a replacement for a solid backup solution. RAID can help to keep data

available and online in the event of disk drive failures, but it will not protect against

firmware bugs, driver bugs, or even application bugs that can have the potential to

corrupt data. But most importantly, RAID does not protect against human error or

a malicious user. It is incredibly easy to delete critical data “accidentally.” An easy

way to determine if data should be backed up is to tell the data’s owner that there

was a system error and the data is gone. Their reaction will indicate whether the

data should be backed up or not!

3.6 Conclusion

In most organizations, data is the life blood. People can be replaced. Workstations,

servers, even entire data centers can be replaced if necessary, but in most cases the

organization’s data cannot be. This places a substantial burden upon the storage

engineers responsible for designing systems to maintain this data. Latent sector errors

and infant disk mortality can have a deleterious effect on disk subsystem reliability.

There are practical techniques that, when applied to disk subsystem design, can

dramatically improve disk subsystem reliability.

• Use only nearline or enterprise class disk drives with a bit error rate of 1 in 1015

or lower

• Perform an initial burn-in of new disk drives before placing them in a production

environment
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• Utilize a replication-based protection scheme such as RAID-1 or RAID-10 to

decrease the probability of encountering an unrecoverable read error during a

rebuild

• Implement RAID scrubbing on a weekly or monthly basis to proactively detect

and repair latent sector errors

• Utilize a hot-spare to minimize the amount of time a RAID set remains in a

degraded state after a disk failure

• Have a disk replacement policy in place to transition end-of-life disk drives out

of the storage system without introducing higher risk from infant disk mortality

Following these recommendations will dramatically improve disk subsystem reli-

ability; however, they are not a substitute for a solid backup solution.
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CHAPTER 4

THROUGHPUT AND SCALABILITY OF PARALLEL

DISTRIBUTED FILE SYSTEMS

4.1 Introduction

Storage has been a recurring issue in the HPC lab at Boise State University. Many

of our users’ applications require high-performance storage and lots of it. Unfor-

tunately, a storage solution that performs extremely well for one application often

performs badly for another. This chapter investigates the throughput and scalability

characteristics of four popular open source parallel distributed file systems: PVFS,

Lustre, GlusterFS, and HDFS. This information will enable individuals interested in

deploying high-performance storage systems to make informed decisions regarding the

selection of which parallel distributed file system to use. It will also provide software

developers with a good overview of how parallel distributed file systems work so that

they can leverage the I/O capabilities of these file systems in their applications.

The Atlantis research cluster and Beowulf HPC cluster were used to generate the

performance data presented in this chapter. The parallel distributed file systems

were installed on Atlantis, and Beowulf’s processing nodes were used as clients.

Appendix D provides a network diagram showing how Atlantis was linked to the

Beowulf cluster, hardware specifications for each of the storage nodes in Atlantis, and
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baseline performance results for the disk subsystems on atlantis01 - atlantis03.

This chapter is organized as follows. Section 4.2 describes the tests used to

evaluate the performance of each parallel file system. These tests reflect how users

and applications interact with the file systems in our HPC lab. Section 4.3 provides

an overview of how parallel distributed file systems work while Sections 4.4, 4.5, 4.6,

and 4.7 provide information about the file distribution techniques and performance

characteristics of PVFS, Lustre, GlusterFS, and HDFS, respectively.

4.2 Benchmarking Techniques

The throughput and scalability tests presented in the following sections simulate

applications that perform sequential I/O operations. The reason for this emphasis on

sequential I/O is that this research is the result of weeks spent diagnosing application

I/O performance issues in the HPC lab at Boise State University where the majority of

the applications that require high-performance storage in our lab perform sequential

I/O operations. It would be equally interesting to examine performance and scala-

bility of these file systems for applications that perform non-sequential (random) I/O

operations, but that is beyond the scope of this chapter.

4.2.1 Testing Environment

The testing results in Section 4.3 were generated using the Atlantis research cluster.

Appendix D provides a description of Atlantis including a network diagram and

baseline throughput results for the disk subsystem configurations used for the testing

in Sections 4.4, 4.5, and 4.6. For the PVFS, Lustre, and GlusterFS file system testing,

atlantis00 was used as the client for the basic file transfer tests as well as the block
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transfer tests. The Beowulf cluster was used for the client scalability tests while

atlantis01, atlantis02, and atlantis03 provided the storage and metadata services for

each of the parallel distributed file systems that were tested.

4.2.2 Basic File Transfer Test

The basic file transfer test measures the throughput in MB/s for a single client

attempting to transfer data to/from the storage system using the cp command. This

is performed using two different sets of data. The first, dataset1, is a single 5.6GB gzip

file containing gene data from the NCBI FASTA repository. The second, dataset2, is

a folder containing 160 bacteria genome datasets from the NCBI Genomes repository,

each containing hundreds of files with a total size of 5.4GB. To minimize the effects

of client file caching, these datasets are more than two times the amount of memory

in the client systems.

4.2.3 Block-Range File Transfer Test

The block transfer test measures the throughput in MB/s for a series of read and

write operations between a single client and the storage system using a range of block

sizes from 4KB up to 8MB. To measure the write performance of the storage system,

the dd command is first used to read from /dev/zero and write to a file located on

the storage system. The block size is set to the current test size, and block count

is calculated dynamically based upon the block size and the total system memory

so that the total transfer size is twice the amount of system memory. The read

performance is then measured by transferring the previously written file from the

storage system to /dev/null. The dd command is used for this operation as well,

with the corresponding block size.



55

4.2.4 Client Scalability Test

The client scalability test gauges how the storage system performs under significant

client load when there are several times more clients than there are storage nodes.

This test examines aggregate throughput of the storage system as the number of

clients increases. The tool used to perform the scalability testing is a custom written

benchmark tool called fs-perf. This tool spawns multiple client processes on our

Beowulf HPC cluster, each of which performs synchronized read and write operations

against the storage system. These read and write operations are performed using the

ROMIO implementation of the MPI-IO interface instead of the kernel VFS system

calls.

To measure the aggregate throughput of the storage system, each client process

tracks the amount of time required to perform its current I/O operation. Since all

the processes are started simultaneously and each is transferring 4GB of data (two

times the amount of memory on the client nodes), a lower bound for the aggregate

throughput can be determined by dividing 4GB by the max (longest) client transfer

time, and multiplying that by the number of clients.

4.3 “Parallel” Distributed File Systems Overview

Traditional distributed file systems provide a single unified namespace for accessing

data that may be spread across thousands of disk drives attached to hundreds of

storage nodes. This can provide large-scale capacity and even data redundancy if

replication is enabled, but this system is unable to provide I/O throughput at a level

that will satisfy the needs of modern HPC environments. Parallel distributed file

systems were developed to address this issue of high performance I/O throughput.
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Figure 4.1: Example of “parallel” distributed file system architecture

The “parallel” in parallel distributed file system refers to having multiple storage

servers with the file data distributed across them to increase both the aggregate band-

width as well as the storage capacity. When a file is accessed, the client communicates

with the metadata server to obtain a map of storage nodes that contain each piece of

the file. The client then communicates directly with the storage nodes to access the

file data.

Figure 4.1 shows the components that make up a parallel distributed file system.

The metadata server maintains the information required to locate and identify a file,

and it is responsible for the create, access, and modify time-stamps as well as user

and group ACLs. The metadata server also is responsible for responding to client file

operations and determining how files are distributed across (assigned to) the storage

servers. The storage servers store the file data itself.

Not all parallel distributed file systems strictly follow the architecture shown in

Figure 4.1. Some allow multiple metadata servers while others do not require any,
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choosing instead to store metadata with the associated data directly on the storage

servers and giving the storage clients a hash function to locate files within the storage

system. In addition, it is possible to run the metadata, storage, and client components

all on the same physical storage node within a storage system.

A parallel distributed file system is designed to distributed client I/O requests

across two or more storage nodes to minimize performance bottlenecks (hot spots)

within the storage system. The way this distribution of client access is accomplished

is file system dependent, but it typically uses one of the following techniques: simple

file distribution, file striping, or file replication.

4.3.1 Simple File Distribution

File E File FFile D

File Object

File C

Storage Node

01
Storage Node

02

Storage Node

03

File A File B

Figure 4.2: Simple file distribution technique

The simple file distribution technique distributes the creation of new files across

the nodes in a storage system. There are many methods for performing this distri-

bution from a simple round-robin approach to the use of a hash function. The goal

of the distribution method can be to balance disk usage across storage nodes or it

can be to balance the number of files per node. The assignment of files to storage

nodes can either be managed by a dedicated metadata server, or, in the case of a hash
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function, the client can directly calculate where to store or retrieve a file. Figure 4.2

shows a sample distribution of six files across three storage nodes.

The advantage of simple file distribution is that each file is stored entirely on a

single storage node. This reduces the overhead required to access each file and is ideal

when dealing with many small files. This is also a benefit when attempting to recover

from the failure of a storage node. Since the files exist entirely on a single storage

node, all the files in the storage system, except for the files on the failed node, remain

accessible.

The downside of simple file distribution is that each file is stored entirely on a

single storage node. This can create “hot spots” within the storage system where

multiple clients are attempting to access the same file. The result is that storage

nodes with popular files can be overloaded with client requests while other nodes

within the same storage system remain idle.

4.3.2 File Striping
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Figure 4.3: File striping distribution technique

The file striping technique breaks a file into chunks of a specific size commonly

referred to as the chunk size, block size, or stripe size. These chunks are then
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distributed across the storage nodes. In the event that a large number of clients

attempt to access the same file, the requests are distributed across the entire storage

cluster instead of all the clients accessing a single storage node. Figure 4.3 is a diagram

of how this file striping might look across three storage nodes.

The advantages of using striping are increased bandwidth and support for very

large file sizes [12]. When multiple clients are attempting to access a file stored

entirely on a single storage node, there can be a substantial I/O bottleneck. Striping

the file across multiple storage nodes increases the total aggregate bandwidth linearly

with the number of storage nodes. Striping is also beneficial if there is a file too large

to be practically contained on a single storage node. An example is an application

that generates a 32TB output file.

Unfortunately there are also disadvantages to striping, specifically the communi-

cation overhead and increased risk. The communication overhead occurs because a

client has to establish connections with multiple storage servers to retrieve the file

chunks. Common operations such as stat and file locks require multiple network

operations instead of a single operation. The increased risk comes from having files

spread across all of the storage nodes. If one storage node fails in a storage system

with n storage nodes, 1/n of every file in the storage system is lost, meaning that all

files on the storage system are corrupted. In contrast, the failure of a single storage

node in a file system configured to use simple file distribution means that only 1/n

of the files are lost. The other (n-1)/n of the files are unaffected.

4.3.3 File Replication

The file replication distribution technique replicates entire files across two or more

storage nodes. Figure 4.4 shows a diagram of the file replication technique with a
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Figure 4.4: File replication distribution technique

replication factor of two. The creation of replicated files can be strictly enforced,

requiring all replicas to be committed before returning a success write message to the

client. Or it can be lazy, meaning that the write request is completed once the file

is stored on a single storage node. The file system then schedules an internal task to

fulfill the requirements of the replication policy.

The advantages of data replication are improved read performance and reliability.

There is improved read performance because multiple clients can read from different

replicas simultaneously. There is improved reliability because even in the event of

a catastrophic loss of a storage node, the storage system will be able to continue

operation with no loss of data and relatively low impact on the end-user.

The disadvantages of data replication are poor write performance and reduced

storage capacity. The severity of the write performance penalty depends upon how the

distributed file system enforces replication. If the file system manages the replication

behind the scenes using a lazy replication approach, the performance loss will be

minimal. If the client must wait until the file is replicated or if the client itself must

write the file to multiple storage nodes, the write performance penalty will be more

severe. The issue of reduced storage capacity is a result of storing multiple copies of

each file. A replication factor of three results in the loss of 2/3 of the total capacity
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of the storage system. To demonstrate this issue, a 90TB storage system configured

with a replication factor of three will only have 30TB of usable storage capacity.

4.4 Parallel Virtual File System (PVFS)

4.4.1 Background

Parallel Virtual File System (PVFS) is a parallel distributed file system designed for

high-performance computing environments. The first version was developed in the

mid 90s at Clemson University. As PVFS became more widely used in production

environments, it was leveraged in ways not anticipated by the original designers. The

second version of PVFS introduced a modular architecture that is better able to meet

the performance needs of its growing user base. PVFS is under active development

by a number of universities and research institutions including Clemson University,

Argonne National Laboratory, and the Ohio Supercomputer Center [48].

4.4.2 Architecture

The architecture of a PVFS-based storage system utilizes a Metadata Server (MDS)

and I/O Server (IOS) components. PVFS uses a single Linux process called pvfs2-

server that implements both the MDS and IOS roles. This process is light weight and

runs in user space on the storage nodes. PVFS uses local file systems such as ext3,

ext4, and XFS for the backend datastores. Client access to the file system can be

handled entirely in user space via the PVFS system interface API or using MPI-IO.

Unix I/O access is provided by a VFS kernel module and a pvfs2-client process running

on the storage client [9]. PVFS supports running multiple MDS nodes in the storage

system to improve metadata performance when working with large numbers of files.
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4.4.3 Distribution Techniques

PVFS uses the technique of data striping to distribute data across the IOSs in the

storage system. PVFS provides a modular approach for defining the striping of data

across the IOSs. These modules are called distributions. PVFS includes four of

these distributions that users can select from, but it also provides the capability

for users to write their own. The included distributions are Simple Stripe, Basic,

Two Dimensional Stripe, and Variable Stripe. By default, Simple Stripe is used

with a stripe size (or chunk size) of 64KB [49]. The PVFS tuning guide provides

limited information regarding the use of these distributions. With the Simple Stripe

distribution, it is possible to set custom stripe sizes on specific folders within the

PVFS file system. The commands to accomplish this can also be found in the PVFS

tuning guide.

4.4.4 Feature Summary

Table 4.1 summarizes the file system access mechanisms, file distribution techniques,

and supported network interconnects for PVFS.

Table 4.1: Summary of PVFS design features

Software
Interfaces

Unix I/O via Linux VFS kernel modules, PVFS
system interfaces, ROMIO [9]

File Distribution
Techniques

Simple Stripe, Basic, Two Dimensional Stripe, and
Variable Length Stripe [49]

Network
Interconnects

Infiniband, GigE, 10GigE, IPoIB, and Myrinet [48]
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4.4.5 Performance Characteristics

4.4.5.1 PVFS Test Environment Configuration

The default configuration of PVFS recommends that pvfs2-server be configured to run

both the MDS and IOS roles on each storage node, and that is the configuration used

for the following throughput and scalability testing. The benefit of this configuration

is that it allows all three of the storage nodes in Atlantis to be used to store data. As a

result, this increases the total aggregate throughput to be on the order of 300MB/sec

for the client scalability testing compared to only 200MB/sec when utilizing only two

storage nodes for data. Table 4.2 shows the configuration of PVFS on the Atlantis

research cluster.

Table 4.2: Summary of PVFS configuration on Atlantis

atlantis01 I/O Server and Metadata Server
atlantis02 I/O Server and Metadata Server
atlantis03 I/O Server and Metadata Server
atlantis00 PVFS Client
Beowulf Cluster PVFS Client

4.4.5.2 Basic File Transfer

Figure 4.5 shows the performance of the cp command transferring the test datasets

to and from the PVFS file system with a read throughput of 5MB/sec to 6MB/sec

and a write throughput of 17MB/sec to 26MB/sec. For this test, the datasets were

read from and written to a dedicated disk subsystem on the client (atlantis00 ). This

disk subsystem is capable of sustaining 155MB/sec write throughput and more than

200MB/sec read throughput (see Table D.2 in Appendix D); therefore, it is clear that
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Figure 4.5: PVFS basic file transfer with file striping (64KB)

the performance is not limited by the client disk subsystem. The block-range file

transfer test result show why this is the case.

4.4.5.3 Block-Range File Transfer
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Figure 4.6: PVFS block-range file transfer with file striping (64KB)

The throughput results for PVFS shown in Figure 4.6 are probably the most

interesting of the three file systems examined in this thesis. This is because PVFS

does not appear to perform any read-ahead or write-back caching, and as a result
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the throughput of the file system varies directly with the block size used by the

application. Applications that perform I/O operations using 4KB blocks, which is

the default buffer size allocated by calls to fopen(), have terrible performance when

running on PVFS. Overriding this buffer size is accomplished with a call to setvbuf()

for each file that is opened. Based upon the results in Figure 4.6, the ideal buffer size

is in the area of 2MB.

Evidence of the profound impact that block size has PVFS is in the poor through-

put results of the basic file transfer test in the previous section. An investigation into

this issue revealed that the cp command makes a call to fstat() to determine the

block size to use when copying a file. For files stored on a PVFS file system fstat()

returns a 4KB block size. This is an important issue to consider when choosing PVFS

over another parallel distributed file system. Chapter 5 explores the issue of buffer

size in more detail.

4.4.5.4 Client Scalability

Figure 4.7 shows how the PVFS storage system scales. Notice the near linear scaling

of aggregate throughput performance as the number of clients reaches the number of

storage nodes. With four clients, the storage system reaches the anticipated aggregate

throughput of 300MB/sec, and the overall throughput for the read common, read

individual, and write individual tests remains in that ballpark as the number of clients

increases to more than five times the number of storage nodes. Another important

point is that these tests were performed using the MPI-IO implementation provided

by ROMIO to access the PVFS storage system. The basic file transfer and the

block-range tests both used the PVFS Linux VFS kernel module.
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Figure 4.7: PVFS client scalability with file striping (64KB)

4.5 Lustre

4.5.1 Background

Lustre is a parallel distributed file system designed for HPC environments. It started

as a research project led by Peter Braam at Carnegie Mellon University in 1999. Peter

Braam went on to found ClusterFS, Inc, which was purchased by Sun in 2007. Sun

was then purchased by Oracle in 2009. Lustre is currently being actively developed

and supported by Oracle and the community at large and can be found on many of

the largest supercomputer systems in the world, including the currently number one

ranked Jaguar supercomputer at Oak Ridge National Laboratory [51]. The Lustre

file system deployed on Jaguar is called Spider. The website for Jaguar says the

following:

“... It is the largest-scale Lustre file system in the world with 26,000 clients, and
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it is the fastest in the world with a demonstrated bandwidth of 240 GB/s. Spider

currently provides 5 PB of disk space” [14].

4.5.2 Architecture

The developers of Lustre took a significantly different approach in the development of

a parallel distributed file system than the developers of PVFS. In PVFS, the metadata

and data storage services run in user space while the Lustre implementations of these

same services are in kernel space. There are several advantages and disadvantages to

this approach. The advantages are that Lustre is able to tune many aspects of the

kernel specifically for high-performance data storage. These include customizations

of everything from the TCP stack to adding Lustre-specific hooks into the ext3 and

ext4 file systems. The disadvantages are that storage nodes that run Lustre require

custom-patched kernels, as the changes required for Lustre cannot be exclusively

handled using kernel modules. Oracle provides prebuilt kernels for most major Linux

distributions, but these have the potential to lead to compatibility issues with future

software updates.

A Lustre storage system consists of a Metadata Server (MDS) and multiple Object

Storage Servers (OSS). The MDS mounts a block device called a Metadata Target

(MDT) that is used to store the metadata for the files and directory structure of the

storage system. Each OSS mounts one or more block devices called Object Storage

Targets (OST). A single storage node can provide both the MDS and OSS roles

within a storage system. Unlike PVFS, which allows multiple metadata servers to

be active simultaneously, Lustre allows only a single active MDS within a storage

system. It does, however, allow a second MDS to be configured for Active/Passive

high-availability failover.
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4.5.3 Distribution Techniques

Lustre is similar to PVFS in that it allows both simple distribution and striping

of files across the storage nodes in the storage system; however, Lustre provides

extensive control of how and where data is stored. First, PVFS requires all of the

disks within a storage node to be combined into a single block device that is then used

as a backend datastore by the pvfs2-server service. The modularity of Lustre enables

multiple disk subsystems with different disk and RAID configurations to be mounted

as OSTs within a single storage node and accessed by a single OSS service. Second,

file distribution (striping or simple) occurs at the OST level within Lustre, not at the

storage node level. And finally, Lustre enables the creation of OST pools, subsets of

OSTs within the storage system that data is distributed across [12] . An example

of how this can be utilized is in a storage system with a mix of disk subsystems

composed of 15k SAS disks and 7.2k SATA disks. The 15k disks could be combined

into OST pools that are separate from the 7.2k disks. Then a folder could be set up

so that files written to that folder were striped across the 15k disks only, ensuring

high performance for applications accessing data contained within that folder.

Lustre provides a great deal of flexibility in the configuration of striping parame-

ters. Striping rules can be defined that apply to the entire file system, specific folders,

or individual files. These rules define whether striping should be enabled and, if so,

how many OSTs to stripe the file data across. It allows custom stripe sizes from

64KB up to 4GB in size, though in practice only stripes in the range of 512KB to

4MB are recommended [12].

With striping disabled, Lustre will attempt to balance the creation of new files

across the OSTs. This is critical to distributing client access across the storage
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system but also to balance disk usage. One issue with Lustre is that once an OST

becomes full, the entire Lustre file system is no longer able to store additional data,

even if there are other OSTs with available space [12]. Section 19.1 of the Lustre

Operations Manual describes how to deal with full OSTs. Several options include

taking nearly full OSTs offline, rebalancing data using OST pools, or enabling striping

for directories containing large files.

4.5.4 Feature Summary

Table 4.3 summarizes the file system access mechanisms, file distribution techniques,

and supported network interconnects for Lustre.

Table 4.3: Summary of Lustre design features

Software
Interfaces

Standard VFS via custom Linux kernel (or kernel
module) with Direct I/O Support, LLAPI for pro-
grammatic control of file striping, and ROMIO [12,
50]

File Distribution
Techniques

Simple File Distribution and File Striping [12]

Network
Interconnects

Infiniband, GigE, 10GigE, IPoIB, Quadrics Elan,
Myrinet, Cray [12]

4.5.5 Performance Characteristics

4.5.5.1 Lustre Test Environment Configuration

The installation of Lustre on Atlantis is slightly different than that of PVFS and

GlusterFS due to the requirement of a dedicated disk subsystem for the metadata

server. As a result, the Lustre performance tests will only use two storage nodes for

data instead of three. This limits the expected aggregate throughput to 200MB/sec.

This should not affect the performance results of the basic file transfer and block-range
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transfer tests, but it will affect the aggregate throughput levels of the client scalability

tests. Table 4.4 shows the configuration of Lustre on the Atlantis research cluster.

Table 4.4: Summary of Lustre configuration on Atlantis

atlantis01 Metadata Server (MDS)
atlantis02 Object Storage Server (OSS)
atlantis03 Object Storage Server (OSS)
atlantis00 Lustre Client
Beowulf Cluster Lustre Client

4.5.5.2 Basic File Transfer
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Figure 4.8: Lustre basic file transfer with simple file distribution

Comparing the results in Figure 4.8 with those from PVFS in Figure 4.5, there

is a marked improvement in throughput for both dataset1 and dataset2, especially

in the read performance. The reason for this is two fold. First, according to the

Lustre Operators Manual [12], Lustre uses a network chunk size of 1MB. This helps

hide much of the latency and overhead of communicating over a GigE interconnect

by reducing the number of packets that must be sent. Second, when the cp makes
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the call to fstat() to determine the block size of the file system, Lustre returns a

significantly larger block size (2MB) than PVFS.

4.5.5.3 Block-Range File Transfer
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Figure 4.9: Lustre block-range file transfer with simple file distribution

Figure 4.9 provides the throughput results for file transfers using a range of block

sizes. Notice that there is no appreciable difference in write throughput over the entire

range of block sizes, and while the read performance does improve with increasing

block sizes, Luster is able to reach full throughput with a block size of only 128KB.

This is in sharp contrast to the results for PVFS shown in Figure 4.6.

From the Lustre Operations Manual:

“LNET offers extremely high performance. It is common to see end-to-end through-

put over GigE networks in excess of 110MB/sec, InfiniBand double data rate (DDR)

links reach bandwidths up to 1.5GB/sec, and 10TGigE interfaces provide end-to-end

bandwidth over 1GB/sec” [12].

Many applications are tuned to perform file I/O in 4KB or 8KB blocks. This is

not an issue when performing I/O operations on a local disk subsystem because the
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SATA, SAS, and Fibre Channel protocols all have relatively low latency. However,

when applications developed for these local file systems are moved to a network file

system, there is a tremendous penalty because of the small block size. The developers

of Lustre attempt to address this issue by performing read requests in large blocks,

and caching write requests to allow for higher throughput at these smaller block sizes.

4.5.5.4 Client Scalability
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Figure 4.10: Lustre client scalability with simple file distribution

The final performance characteristic to examine is throughput performance as

the number of clients increases to several times the number of OSSs. Figure 4.10

shows the aggregate throughput as the number of clients increases. Since the Lustre

installation on Atlantis contains only two Object Storage Servers, each with a single

gigabit Ethernet link, the maximum theoretical throughput is 250 MB/s. This value

is not reachable in practice, but the read individual and write individual performance
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Figure 4.11: Lustre client scalability with file striping (1MB)

tests reach 80-85% of this value, which is remarkable. With only four clients, the

storage nodes are able to be fully saturated. Another important item to note is that

as the number of clients increases, there is not a significant drop in throughput as

a result of the increased number of connections. This is important for being able to

scale to a large number of clients.

The results in Figure 4.10 were generated with Lustre configured for simple file

distribution. The results in Figure 4.11, on the other hand, were generated with Lustre

configured for file striping with a 1MB chunk size. Notice that the Read Individual

and Write Individual results are nearly identical between the two. The reason for this

is that when Lustre is configured for simple file distribution, the metadata server still

attempts to distribute load across the OSSs by balancing the creation of new files

across all the storage nodes. Since the fs-perf tool generates uniform output files,

there is an even distribution of traffic as the number of clients increases. However, if
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the clients were generating files of various sizes or attempting to read from the same

file, this would result in contention.

Figure 4.10 provides an example of file contention in the throughput results for the

Read Common test. The use of simple file distribution instead of file striping means

that all the clients are attempting to access the same file located on a single OST.

This large number of clients quickly saturates the network of the OSS containing the

OST with the popular file. Figure 4.11 demonstrates that this bottleneck can be

avoided by leveraging file striping.

4.6 GlusterFS

4.6.1 Background

GlusterFS is an open source distributed file system designed to meet the storage

requirements of a wide range of environments, not only HPC. Unlike PVFS and

Lustre, which had their beginnings in the educational/research sector, GlusterFS is

a corporate contribution. The team that eventually developed GlusterFS was origi-

nally assembled at California Digital Corporation in 2003 to build a supercomputer

for Lawrence Livermore National Laboratory. At the time, this computer system

(Thunder) was ranked the 2nd fastest in the world [18].

Leveraging this experience, the team founded Z-Research and began building

custom cluster solutions. These cluster solutions had diverse storage requirements

and the storage options at the time were unable to meet these requirements. The

Z-Research team began development on GlusterFS, designing it from the ground

up. Some of the design goals included operation in user space, elimination of the

metadata server, modular design, and non-proprietary file formats. Gluster is a play
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on the words GNU and cluster. Z-Research changed their name to Gluster to honor

their roots [18]. GlusterFS is actively developed and supported by Gluster, as well as

an active user community [18].

4.6.2 Architecture

GlusterFS has a modular design that allows for a high level of customization. Glus-

terFS uses the concept of storage bricks and translators that can be layered in a variety

of configurations to meet a particular set of storage requirements. Translators can

customize everything from communication protocols and data distribution techniques

to performance features such as read-ahead and write-behind caching.

GlusterFS is well suited for use as a network file server with 5TB of storage or

as a HPC storage solution with 2PB of storage. A unique feature of GlusterFS that

makes it different from PVFS and Lustre is that it does not have a metadata server.

GlusterFS is able to accomplish this by pushing more intelligence to the client and by

utilizing the extended attributes of the underlying file systems on the storage nodes.

4.6.3 Distribution Techniques

A GlusterFS storage system can be configured to simply distribute files across storage

nodes based upon a hash that is performed by the client. Since all clients use the

same hash function, they can directly calculate which node holds a given file. For

applications with a lot of small files, this can be a huge performance benefit since there

will not be a bottleneck at the metadata server. This simple distribution technique

can be implemented using the “cluster/distribute” translator [20].
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To reconfigure the storage system for replication or striping, simply replace the

“cluster/distribute” translator with the “cluster/replicate” or “cluster/stripe” trans-

lator, respectively [20].

GlusterFS provides translators that can customize the performance of the system

by controlling read-ahead and write-behind cache functionality. The translators for

data distribution, read-ahead, and write-behind are all client-side translators.

4.6.4 Feature Summary

Table 4.5 summarizes the file system access mechanisms, file distribution techniques,

and supported network interconnects for GlusterFS.

Table 4.5: Summary of GlusterFS design features

Software
Interfaces

Native FUSE interface, NFS, CIFS, DAV, and
Booster

File Distribution
Techniques

Simple File Distribution, File Striping, and File
Replication

Network
Interconnects

Infiniband, GigE and 10GigE [19]

4.6.5 Performance Characteristics

4.6.5.1 GlusterFS Test Environment Configuration

The configuration of GlusterFS on Atlantis is similar to that of PVFS. Since GlusterFS

does not require a separate metadata server, all three of the storage nodes on Atlantis

can be used for data. This gives an expected aggregate throughput of 300MB/s for

the client-scalability tests. Table 4.6 shows the configuration of GlusterFS on the

Atlantis research cluster.
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Table 4.6: Summary of GlusterFS configuration on Atlantis

atlantis01 Storage Brick
atlantis02 Storage Brick
atlantis03 Storage Brick
atlantis00 GlusterFS Client
Beowulf Cluster GlusterFS Client

One of the aspects of GlusterFS that makes it so appealing is its modular design

and its ability to be adapted to meet a wide variety of storage requirements. When

looking at the performance characteristics of GlusterFS, it is important to examine

several of the common file distribution configurations. The following performance

results are provided for a simple distribution configuration using the “cluster/dis-

tribute” translator, a replication configuration using the “cluster/replicate” transla-

tor, and finally a striping configuration using the “cluster/stripe” translator.

4.6.5.2 Basic File Transfer

The performance results in Figure 4.12a show the best overall performance of all the

tested distributed file systems for a single client reading from and writing to a storage

system. These results were good for reading and writing both large files (dataset1)

and large numbers of small files (dataset2).

Figure 4.12b shows the throughput results for a replicated configuration of Glus-

terFS. The file system was configured for 3x replication and the results demonstrate

the write performance penalty for performing replication. The replication implemen-

tation in GlusterFS requires the client to enforce the replication requirements by

performing all write and update requests on each server in the replication pool.

Figure 4.12c demonstrates how the overhead of file striping can impact per-

formance. For transferring large files (dataset1), the performance impact is not
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Figure 4.12: GlusterFS basic file transfer using various distribution techniques
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significant when compared to the simple file distribution performance in Figure 4.12a.

However, when working with thousands of small files (dataset2), the performance

impact is substantial.

4.6.5.3 Block-Range File Transfer

The nice, consistent throughput performances, regardless of blocksize, shown in Fig-

ures 4.13a, 4.13b, and 4.13c are the result of the read-ahead and write-behind trans-

lators. These translators allow the communication between the client and the servers

to use larger chunk sizes, which is desirable in high latency protocols such as gigabit

Ethernet. The write-behind buffer size is 4MB and the read-ahead buffer is four

pages.

The poor write performance in Figure 4.13b is a side effect of file replication. The

replication factor for this GlusterFS configuration is 3x, which explains the fact that

the write performance is only about one third that of the simple distributed and the

striped configurations.

4.6.5.4 Client Scalability

Figure 4.14 shows the aggregate throughput of GlusterFS using simple file distribution

as the number of clients increases from one to sixteen. GlusterFS is configured

on three storage nodes, so the expected aggregate throughput should be in the

300MB/sec range for the read individual and write individual tests. However, since

GlusterFS uses a hash mechanism to distribute files across the storage system, a

balanced distribution of files is difficult to achieve when working with a small number

of files. This leads to hot spots in the storage system where one storage node has

more files and thus more traffic than the other storage nodes.
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(b) File replication (3x)
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Figure 4.13: GlusterFS block-range file transfer using various distribution techniques
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Figure 4.14: GlusterFS client scalability with simple distribution configuration

In the simple file distribution configuration, each file is stored on a single storage

node with newly created files assigned to storage nodes based upon a hash function.

The slow performance for the read common tests is because all the clients are accessing

a single storage node simultaneously. The 100MB/sec shown in Figure 4.14 is the

maximum throughput for that storage node.

The fairly ragged throughput results shown in Figures 4.14 and 4.15 raised some

concerns during the initial testing, so the tests were run multiple times to ensure

the accuracy of the results. It appears that the throughput drops with four and

eight clients as well as the spikes at six clients are the result of the hash mechanism

employed by GlusterFS to map files to storage nodes. The file names used in the

testing were generated programmatically by incrementing a digit appended to the

end of a base file name, resulting in an uneven distribution of client traffic across

the backend storage nodes. The effectiveness of the hash algorithm in balancing load
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Figure 4.15: GlusterFS client scalability with 3x replication configuration

across the storage nodes will likely improve as the number of clients writing files

increases.

A cool feature of the GlusterFS implementation of replication is the fact that client

read requests can be balanced across multiple storage nodes [20]. This explains how

the read common throughput can be so much higher than for the simple distributed

configuration in Figure 4.14.

Figure 4.16 shows a smooth scaling of write individual and read common through-

put as the number of clients increases, comparable to that of PVFS. However, the in-

teresting and somewhat unexpected results are the aggregate Read Individual through-

put values of only 100MB/s. These results were consistent across multiple tests, but

an explanation has not been forthcoming.
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Figure 4.16: GlusterFS client scalability with 128KB stripe configuration

4.7 Hadoop Distributed File System (HDFS)

4.7.1 Background

The Hadoop Distributed File System (HDFS) is a distributed file system specifically

designed to be used as the backend datastore for Hadoop applications. Originally

designed for the Apache Nutch web search engine project, it has now been broken

out as an Apache Hadoop subproject [15]. Until recently, the use of HDFS has been

limited to applications that were built using the Hadoop platform; however, the recent

addition of a fuse interface allows HDFS to be used as a general purpose distributed

file system. HDFS is highly fault-tolerant, designed with the expectation that at

any point in time one or more data storage nodes may be unavailable. These traits

make this file system extremely appealing to storage system designers. The following

sections will explore the design of HDFS and evaluate its suitability for use as a
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general purpose distributed file system in HPC environments.

4.7.2 Architecture

HDFS is a distributed file system written entirely in Java, which allows it to be used

in both Windows and Linux environments. HDFS is designed for high-throughput

batch processing instead of low-latency interactive user access. HDFS is tuned for

applications with large data sets and files that are gigabytes to terabytes in size.

Applications that use HDFS should have a write-once-read-many access pattern to

achieve high-throughput levels. HDFS does not support writing to existing files,

though in recent releases support for appending to a file has been included. The

write-once-read-many access model simplifies data coherency issues inherent in data

replications schemes [15].

The two primary components that make up HDFS are the NameNode and DataN-

ode. The NameNode maintains the metadata for all the files and directories in the

storage system. It addition, the NameNode tracks the number of replicas for each data

block and ensures that enough replicas are present in the storage system to satisfy

the replication policy requirements. The factor limiting the total number of files that

a HDFS file system can store is the amount of memory in the NameNode. This is

because the NameNode maintains an image of the entire file system namespace and file

block-map in memory [15]. The DataNodes store the data blocks and checksum data

for each file in the storage system. When a new data block is created, a checksum

value is calculated and stored along with the data block on the DataNode. The

checksum value is used by the client to verify the data block’s integrity and prevents

the client from using data that has been silently corrupted [15, 4, 6].
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4.7.3 Distribution Techniques

HDFS uses a combination of file striping and replication to achieve both high data

throughput and fault tolerance. When a client stores a file to HDFS, client side

caching is used to minimize the impact of network latency. Files are initially written to

a temporary location on the client. When the amount of data reaches the pre-defined

block size (64MB by default), a checksum is calculated for the block and then the

block is written to one of the DataNodes. While the block is being transferred to

the DataNode from the client, the application has already begun writing another

block to the local client size cache. Unlike GlusterFS, which requires the client to

write multiple copies of a file when replication is enabled, HDFS uses a technique

called replication pipelining. Once the first block has been successfully copied to

a DataNode, the DataNode will begin transferring the block to another DataNode

within the HDFS file system. The set of DataNodes where the blocks for a file (as

well as the block replicas) should be written is stored in a block-map generated by the

NameNode and used by the client to assign data blocks to DataNodes. This process

will continue until the minimum number of replicas are created [15].

In addition to replication pipelining, HDFS introduces a couple of other unique

features to improve throughput and fault tolerance. First is an awareness of data

locality. HDFS is designed to be used for extremely large-scale deployments with data

distributed across servers in multiple racks and possibly across multiple data centers.

This ensures that if a rack of servers or even an entire data center is destroyed, the

data will remain available. Another benefit of this knowledge of data locality is that

it leverages both the fact that any replica can be used for read operations and that

there is typically more bandwidth available within a rack than between racks. As a
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result, client file operations can be optimized to use data blocks from within the same

rack as the client instead of pulling from adjacent racks or possibly from a remote

data center.

The other unique feature of HDFS that improves throughput and fault tolerance

is that the NameNode actively monitors the replicas of each data block. In the

event that a hard disk or even an entire DataNode fails, the NameNode will issue

commands to DataNodes containing replicas of the lost blocks causing them to begin

replicating with other DataNodes. This results in a restoration of the desired level of

fault tolerance and maintains the appropriate number of replicas that can be used to

distribute read operations across the file system [15].

4.7.4 Feature Summary

Table 4.7: Summary of HDFS design features

Software
Interfaces

Native Java API, C wrapper for Java HDFS API,
WebDAV, and FUSE-HDFS [15, 28]

File Distribution
Techniques

Data Block Replication [15]

Network
Interconnects

TCP/IP over GigE, 10GigE, or Infiniband

4.7.5 Performance Characteristics

HDFS has been designed specifically for use with Hadoop applications that use the

native Java API to access the file system; however, there has recently been interest in

the use of HDFS as a general purpose storage system for HPC environments. There

are a number of projects working to develop a VFS interface for Linux. The most

promising and actively developed is fuse-dfs, included in the contrib folder of the
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hadoop source code. Marissa Hollingsworth of Boise State University has conducted

extensive testing comparing the performance of applications that access HDFS via

the fuse-dfs interface versus the native Java API. Hollingsworth demonstrates up to

a 50% slowdown in the application using the fuse-dfs interface when compared to the

native Java API [24]. These results are a bit discouraging, but in the interest of being

thorough, the basic transfer, block-range throughput, and client-scalability tests are

used to evaluate the suitability of HDFS for use as a general purpose storage system

in HPC environments.

4.7.5.1 HDFS Test Environment Configuration

Two different storage systems were used to evaluate the performance characteristics of

HDFS. The basic file and block-range file transfer tests were performed using the At-

lantis research cluster. Table 4.8 shows the configuration of HDFS on Atlantis. HDFS

was tested more than a year after the other file systems presented in this chapter.

During that time, Atlantis was removed from the HPC lab at Boise State University,

and the client-scalability testing had to be performed using three nodes from the

Gene Sequence Information System (GeneSIS) to run HDFS. These nodes have faster

processors, more processing cores, more memory, and faster disk subsystems than the

storage nodes in Atlantis. As a result, the throughput values may be slightly higher

than those for the other distributed file systems presented in this chapter; however,

the client-scalability testing still utilizes processing nodes of the Beowulf cluster over

a single-channel gigabit Ethernet interconnect. This configuration uses two storage

nodes for data, so the expected aggregate throughput is 200MB/sec, similar to that of

Lustre. Table 4.9 shows the configuration of HDFS on the Gene Sequence Information

System (GeneSIS).
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Table 4.8: Summary of HDFS configuration on Atlantis

atlantis01 NameNode
atlantis02 DataNode
atlantis03 DataNode
atlantis00 FUSE-DFS Client

Table 4.9: Summary of HDFS configuration on GeneSIS

gen01 NameNode
gen02 DataNode
gen03 DataNode
Beowulf Cluster FUSE-DFS Client

4.7.5.2 Basic File Transfer
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Figure 4.17: HDFS basic file transfer with 64MB blocks and 2x replication

The throughput results shown in Figure 4.17 for both dataset1 and dataset2 are

quite good in comparison to the throughput results for the other file systems that

were tested. This demonstrates that the fuse-dfs client is optimized to allow standard

tools such as cp to have good performance without modification. This is a sharp

contrast to the results for PVFS shown in Figure 4.5. It also shows that the HDFS

NameNode is able to deal with large numbers of files without significant impact.
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Unfortunately, the first attempts to run the basic file transfer test on HDFS failed

with the errors similar to the following:

/bin/cp: preserving times for ‘...’: Input/output error

The basic file transfer test uses cp -a to transfer both dataset1 and dataset2. The

error appears to be related to preserving time stamp information for each directory.

Replacing cp -a with cp -r resolved the issue.

Another issue occurred when attempting to overwrite existing files on the HDFS

file system.

cp: overwrite ‘...’? y

cp: writing ‘...’: Input/output error

This issue appears to be related to the previously mentioned fact that HDFS does

not allow the modification of files once they have been written to the file system. The

issue was resolved by first removing the existing files, then running the file transfer.

4.7.5.3 Block-Range File Transfer
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Figure 4.18: HDFS block-range file transfer with 64MB blocks and 2x replication



90

The throughput results for the block-range file transfer test shown in Figure 4.18

demonstrate that HDFS performs consistently for block I/O operations across a wide

range of block sizes. These results also show that in spite of the innovative replication

pipelining implemented in HDFS, there is still a significant performance penalty for

write operations. This is clearly why the HDFS documentation emphasizes the write-

once-read-many access pattern.

4.7.5.4 Client Scalability

The client-scalability test failed to run with HDFS. The fs-perf tool uses MPI and

ROMIO to perform the synchronized read/write operations; however, all attempts to

run fs-perf on HDFS result in errors similar to the following:

Node 10: Read Error at 0.000000 secs: 212399628

This is not the result of using FUSE since the GlusterFS testing also used a FUSE

interface. It appears to be either an issue with the implementation of the fuse-dfs

client, or an issue with ROMIO attempting to perform I/O operations in a manner

that is not compatible with HDFS.

4.8 Conclusion

Each of the parallel distributed file systems discussed in this chapter has specific target

applications where they can yield the best performance results. PVFS is a good choice

for HPC environments with applications that perform large sequential I/O operations

and perform a significant amount of parallel I/O using either the kernel VFS interface

or the MPI ROMIO interface. The demonstrated client scalability as well as developer

documentation indicates that PVFS is suitable for HPC installations with hundreds
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or even thousands of clients. The fact that the storage processes operate entirely in

user space makes PVFS a good choice for environments that use custom kernels or

Linux distributions that are not supported by Lustre.

In general, Lustre is a better choice than PVFS because it not only excels in

the same areas as PVFS (large sequential I/O), but the read and write caching

allow for extremely good performance for small sequential I/O operations as well. In

addition, Lustre provides well-documented tools for allowing the end-user to adjust

file distribution techniques on the fly. However, Lustre takes a bit of a heavy-handed

approach, requiring custom kernels on the storage nodes, which will likely be an issue

if the cluster is not running a supported distribution. Another factor to consider with

Lustre is that it requires dedicated block devices for the backend MDT and OSTs,

which can make it difficult to integrate Lustre into existing storage systems. Lustre

has also been demonstrated to scale extremely well, both in the number of clients it

can support as well as the aggregate throughput and storage capacity it is able to

provide. One of the keys to achieving good performance with Lustre is to use simple

file distribution when dealing with many small files and use file striping for large files.

The file striping capabilities of GlusterFS cannot compete with PVFS or Lustre

in environments performing large sequential I/O operations. The lack of a native

ROMIO interface limits MPI-based applications that perform complex I/O access

patterns. However, the simple file distribution of GlusterFS had the best throughput

results of either file system when working with large numbers of small files. Except

for HDFS, GlusterFS is the only one of the tested distributed file systems to provide

file redundancy at the file system level. These capabilities of GlusterFS make it a

good fit for HPC environments with large numbers of small files, especially when the

majority of I/O operations are read operations.
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HDFS has a lot of potential for use in HPC environments, both from a reliability

and a performance standpoint. Unfortunately, there are a number of limitations

in the fuse-dfs client that make HDFS unsuitable for use as a general purpose file

system. These limitations include relatively slow write performance compared to

other parallel distributed file systems, inconsistent behavior with user permissions,

and flakey behavior when removing directories and checking disk space usage, not to

mention the previously discussed I/O errors that were encountered while performing

relatively standard file operations. The fuse-dfs client is an excellent tool for moving

data into and out of HDFS and it may be suitable for specific applications, but it is

not suitable for use as a general purpose file system.

The distributed file systems examined in this chapter are designed for applications

that perform sequential I/O operations; however, there are many other types of

distributed file systems available, both open source and proprietary. Each has its

own design goals and performance characteristics. Some are targeted for specific

development platforms such as HDFS while others focus on optimizing sequential

I/O access such as Lustre or PVFS. Before selecting a distributed file system for a

storage system, evaluate the performance and scalability capabilities of the various

file systems based upon type of I/O operations it will be expected to satisfy in the

environment in which it is deployed.
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CHAPTER 5

IDENTIFYING APPLICATION PERFORMANCE

CONSTRAINTS USING I/O PROFILES

5.1 Introduction

This chapter presents a technique for identifying application performance limitations

by generating a profile of an application’s I/O characteristics and evaluating it in the

context of an established I/O performance baseline for the test environment. This

technique can be used by software developers interested in optimizing an application’s

I/O throughput. It can also be used by system engineers seeking to understand an

application’s I/O capabilities so that informed decisions can be made in the design

of processing and storage systems.

Identifying the performance limitations of an application using I/O profiling con-

sists of several steps. The first is to establish a baseline for the I/O performance of the

system running the application. Next, use system monitoring tools to capture system

performance statistics while the application is running. It is helpful to use a graphing

utility to plot both the baseline and application performance data to visualize the

problem. Finally, compare the application performance data against the established

baseline data. It should be possible to identify the factors limiting application

performance. Application performance limitations are typically the result of one
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of the following constraints: CPU, memory, network I/O, or block I/O. Application

constraints that are not detectable using this technique include race-conditions and

dead-locks as well as embedded sleep statements and blocking for user input.

Some application performance issues can be quickly diagnosed using real-time

system monitoring tools while others may require a more in-depth analysis. These

approaches are not mutually exclusive, and this chapter demonstrates the use of both

in evaluating an application’s I/O characteristics. After reading this chapter, the

reader should be able to:

1. Generate an I/O performance baseline for a system

2. Capture performance statistics to generate an I/O profile for an application

3. Evaluate an application’s I/O profile and identify performance constraints

Once a performance constraint has been identified, the actions required to improve

application performance depend upon the type of constraint. For instance, the

performance of a CPU-bound application can be improved by running a code profiler

to identify the processing intensive code and refactoring the code to make it more

efficient, by leveraging multiple processor cores to perform calculations in parallel, or

by purchasing a faster processor. The performance of a memory-bound application

can be improved by purchasing additional memory, by refactoring code to use more

efficient data structures, or by dividing the problem into several smaller problems

that can each be solved independently requiring a smaller memory footprint instead

of attempting to solve a single, large problem.

Improving the performance of an I/O-bound application can be difficult. The

purchase of a faster network interconnect or faster disk subsystems may help improve
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performance in some cases, but this is not guaranteed. As with CPU-bound and

memory-bound applications, there are both hardware and software-based solutions

to I/O-bound applications, but in the case of I/O-bound applications it is often

necessary to develop a hybrid approach.

Section 5.2 describes how to generate a baseline for I/O throughput and I/O oper-

ations per second (IOPS) that a system is able to sustain. Section 5.3 describes how

to determine whether an application is fully utilizing the I/O potential of the system

by monitoring the system performance counters while the I/O-bound application is

running. If the I/O performance of the application is reaching the baseline levels, then

there is strong evidence that upgrading hardware will increase application performance.

However, if the application I/O performance falls drastically short of the baseline, it

is then necessary to investigate why. This investigation will require code profiling and

most likely refactoring to make I/O operations more efficient. Section 5.4 walks the

reader through this process using a demonstration application called seqprocessor.

Section 5.6 gives some general recommendations on how to tune an application’s

I/O operations. The examples in this chapter focus on applications that perform

sequential I/O operations but Section 5.7 describes how the same technique can be

applied to applications that perform random I/O operations. Section 5.8 discusses

how the I/O profiling technique described in this chapter can be extended to parallel

applications.
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5.2 Establish an I/O Performance Baseline

5.2.1 Set up the Environment

To profile the I/O performance of an application, set up a dedicated workstation to

use for running the application. The workstation should have sufficient CPU power

and memory capacity to comfortably run the application as well as a disk subsystem

dedicated for application I/O. There should also be a minimal number of services

enabled to minimize CPU and memory contention.

The reasons for the dedicated disk subsystem are twofold. First, to ensure the

best possible I/O performance for the application, its I/O requests should not be

interleaved (queued, scheduled) along with the I/O requests of other system processes.

This is to minimize seek time for sustained sequential I/O operations since I/O

operations from other applications can move the disk heads out of position. It also

prevents application I/O requests from getting pushed lower in the queue due to

higher priority I/O operations from system processes. The second reason for using a

dedicated disk subsystem for application I/O is that the kernel-block device counters

measure throughput and IOPS at the block-device level. It is difficult to separate I/O

requests for one application from those of another if they both are accessing the same

block device. Having a dedicated block device simplifies application performance

monitoring.

When establishing an I/O performance baseline, it is a good idea to document a

few details about the test system. This is useful for preserving key details about the

environment to aid with comparisons when profiling applications on other systems.

Appendix C provides a worksheet for documenting the test environment configuration.

The system information can be retrieved from /proc/cpuinfo, the free command,
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the system BIOS, and the component manufacturer’s websites. The information

regarding the dedicated disk subsystem used by the application can be found using

the mount command, /proc/mdstat, pvdisplay, and /etc/fstab.

The benchmark and application profiling results presented in the following sections

were generated using two of the nodes from the Atlantis research cluster. The

configuration details for Atlantis can be found in Appendix D.

5.2.2 Benchmark the Environment

Before attempting to capture an application’s I/O profile, use standard benchmarking

tools to identify the I/O performance capabilities of the test system. This information

will be used as a baseline to gauge application I/O performance. Table 5.1 provides

a list of the benchmarking tools discussed in this section.

Many experts consider system benchmarks to be of little value for gauging how

an application will perform on a given system [29]. The issue with I/O benchmarks

is that they provide results for a specific type of I/O operation. If the application

performs I/O operations in a similar manner, then it is possible that the results of

the benchmark will reflect actual application performance. However, more often the

type of I/O operations performed by the benchmark do not in any way resemble how

the application will run; therefore, the benchmark results are meaningless.

For benchmark results to be of value, acquire information about how the bench-

mark is performed. This information should include the method for performing

I/O operations (fgetc, fread, memory mapped I/O), the file size used for testing,

the block size used for the I/O operations, the access pattern (sequential, random,

backward, strided), the type of processor and L2 cache size, and the amount of

RAM. If the I/O method and access pattern of the benchmark do not match the
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Table 5.1: Tools for benchmarking disk subsystems and network interconnects

Tool Name Measures Description
bonnie++ block I/O Bonnie++ performs tests that report throughput

and CPU utilization for character and block based
read, write, and rewrite operations. Bonnie++
also tests metadata performance by measuring the
amount of time required to create, stat, and delete
very large numbers of files [10].

iozone block I/O Iozone is a file system benchmark utility with
extensive testing and reporting capabilities. The
tests use various mechanisms for performing both
sequential and random I/O operations. In addition
to outputting throughput results, iozone can be
configured to output IOPS and latency results as
well [8].

NetPIPE network I/O NetPIPE measures throughput and latency for a
range of message sizes and supports a number
of network communication protocols and message
passing libraries including TCP, Myrinet, Infini-
band, MPI, PVM and SHMEM [7].

application, the benchmark results will not accurately reflect the expected application

performance. If the block size is smaller than the L2 or L3 cache size or the file size

is smaller than the amount of system memory (RAM), the read throughput of the

benchmark will be significantly higher than what is reasonable to expect for a typical

application.

5.2.2.1 Iozone

Figures 5.1 and 5.2 were generated by running iozone upon a dedicated disk subsys-

tem (md0) on atlantis01. These figures are labelled to indicate both the cache effects

as well as the “real” throughput that the disk subsystem can sustain. Notice how the

throughput for block sizes of 4KB up to 128KB in Figure 5.1a is well over 1GB/s up
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Figure 5.1: Iozone test using 4KB to 16MB block sizes on files up to 4GB
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until the point that the file size is no longer able to fit in main memory. This is an

artificial result of the benchmarking process. The benchmark first writes the file to

disk and in the process the file is cached in the L2 processor cache as well as the main

system memory. For file sizes less than the total amount of system memory, no data

has to be retrieved from the disks. This is the reason for extremely high throughput

levels and why these results do not reflect actual application performance. This would

only be a valid representation of actual application performance if the application first

wrote the file to disk, then read it back in. Most applications, however, read data

from the disk, do some work, then write data back to the disk. As a result, they are

not able to reach the 1GB/s+ throughput results.

The following iozone options were used to generate the results shown in Fig-

ure 5.1:

iozone -az -g 4G -i 0 -i 1 -i 2

To more accurately reflect expected I/O throughput for an application, the bench-

mark should use a file size that is at least two times the total amount of system

memory. Figure 5.2 also shows read and write throughput results, but this time

extended to a file size of 32GB. Notice how the throughput drops to just over 200MB/s

once the file size increases to more than 2GB. The reason for this is that the larger

file sizes negate the caching effects of the processor and operating system and expose

the true throughput capabilities of the underlying hardware.

The following iozone options were used to generate the results shown in Fig-

ure 5.2:

iozone -a -g 32G -i 0 -i 1 -i 2
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Figure 5.2: Iozone test using 64KB to 16MB block sizes on files up to 32GB
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5.2.2.2 Bonnie++

Tables 5.2 and 5.3 show the output generated by bonnie++ running on the same

dedicated disk subsystem used for the iozone testing. At first glance, this output can

appear very cryptic, but once a person becomes familiar with the format, this “slice”

of information can tell quite a lot. First, this disk subsystem can sustain 147MB/s for

block write and 193MB/s for block read operations. These results are based upon an

8KB block size and a file size of 4GB (twice the total system memory) [10]. Compare

these block results to the character write and read throughput values of 33MB/s and

39MB/s, respectively. The metadata operations for creating, reading, and deleting

files can be informative as well. These results are obtained by creating, reading, and

deleting 500,000 files on an ext3 file system with journaling enabled. It is interesting

to note that it is four to five times faster to create a file than it is to delete it.

Table 5.2: Bonnie++ throughput results for md0 on atlantis01

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
33 99 171 99 72 32 39 97 183 27

Table 5.3: Bonnie++ IOPS results for md0 on atlantis01

Bonnie++ Metadata Performance
Sequential (ops/sec) Random (ops/sec)

create read delete create read delete
11170 194149 2794 9483 235479 1978

Due to the relatively long runtime of iozone and the complexity of output,

bonnie++ is a better choice for system engineers who are wanting to quickly verify

I/O performance of a given disk subsystem. Cases where bonnie++ is a good choice
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are the investigation of disk/controller performance issues as well as comparing and

contrasting the performance of various RAID configurations. Iozone is a good choice

when a more detailed investigation of I/O block size and access pattern is required.

An example would be developing an application to leverage the performance charac-

teristics of a given disk subsystem, or tuning a disk subsystem for a specific type of

I/O operation.

5.2.2.3 NetPIPE

Although the applications demonstrated in the following sections will only be per-

forming local I/O operations, it is valuable to generate a baseline of the network

interconnect throughput and latency. NetPIPE is an excellent tool for accomplishing

this. Figure 5.3 shows the network throughput between two nodes in the Atlantis

research cluster using gigabit Ethernet. Notice the poor throughput results for packets

with small block sizes and how the throughput increases as the block size increases.

This baseline profile is important to keep in mind when evaluating applications that

perform network I/O or block I/O over a network file system.
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Figure 5.3: NetPIPE throughput results over GigE link with the default MTU of
1500 bytes



104

5.3 Generate an I/O Profile for an Application

5.3.1 Tools of the Trade

The tools described in Table 5.4 fall into two basic categories: real-time monitoring

and background monitoring. The real-time tools are designed to be run while the

application in question is running and display the performance results from the various

system counters in real-time. Each tool targets a specific subset of the available

system counters, I/O, memory, or CPU usage. The background tools are designed to

capture data from any or all of the system counters in synchronized snapshots. They

can be run as system services with the results written out to a file that can later be

manipulated in a spreadsheet. The tools in Table 5.4 are all available in CentOS in

either the base or EPEL yum repositories.

Table 5.4: Tools for monitoring system utilization

Tool Name Usage Monitors
top real-time system load, CPU and memory utilization, as well

as memory and CPU usage by individual pro-
cesses [54]

iostat real-time CPU and block I/O [21]
mpstat real-time CPU [21]
pidstat real-time process specific CPU, memory, and block I/O

statistics [21]
vmstat real-time processes, memory, paging, block IO, traps, and

CPU [53]
bwm-ng real-time network and block I/O [23]
sar background all the data reported by iostat, mpstat, and

pidstat as well as many other counters [21]
collectl real-time,

background,
and remote

extensive system real-time and background sys-
tem monitoring capabilities, which encompass the
functionality of all the tools mentioned above, but
also includes the ability to directly monitor Infini-
band and Lustre subsystems [44]
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For this discussion, application lifetime refers to the period of time beginning

when an application is executed and ending when the application terminates. At any

point during an application’s lifetime, real-time system monitoring tools can be used

to monitor current I/O throughput, IOPS, CPU, and memory usage. Unfortunately,

these techniques only give a limited view of an application’s I/O characteristics. This

is especially true for applications with complex I/O patterns with periods of heavy

read or write activity and periods of heavy CPU usage. To accurately characterize the

I/O profile of these more complex applications requires capturing snapshots of the

kernel-level performance counters in short intervals, evenly distributed throughout

the life of the application.

One issue with capturing data at frequent intervals comes from the fact that many

I/O and processing operations occur in bursts. For the I/O profiling charts presented

in the following sections, collectl was configured to capture data in one-second

intervals. Plotting this data directly yielded nearly unreadable results with huge

spikes in both CPU utilization and I/O throughput followed by equally drastic drops.

To resolve this issue, the collected data was massaged using a running average over

ten sample periods. This averaging had a smoothing effect on the sample data and

produced readable charts.

5.3.2 Profile of an I/O-Bound Application

Figures 5.4 and 5.6 show the I/O profiles for dd read and write operations, respectively.

These were chosen as simple examples to demonstrate what the profile of an I/O-

bound application looks like. Figure 5.4 was generated using the output of collectl,

collected during a dd operation that read a 32GB file from a dedicated disk subsystem

on atlantis01 and wrote it to /dev/null. Notice how the read I/O throughput is
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consistently in the 175MB/s to 190MB/s range. These results are consistent with the

baseline iozone results shown in Figures 5.1 and 5.2 as well as the bonnie++ results

shown in Table 5.2.
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Figure 5.4: I/O profile of dd reading a 32GB file using 1MB blocks

Figure 5.5 is the output from the top command, captured during the previously

mentioned dd read operation. Notice now the CPU utilization for dd is only 43.5%

and that it appears that the bulk of the processing working is being handled by

CPU-2 executing system calls with an I/O wait time of 54.2%. Another point worth

mentioning is that an application is not bound to a single processing core for its entire

lifetime. Figure 5.4 shows that the processing for the dd command was effectively

migrated from CPU-1 to CPU-2 just before the eighty-second mark.

Figure 5.6 was generated using the output of collectl, collected during a dd

operation that generated a 32GB file read from /dev/zero and written to a dedicated

disk subsystem on atlantis01. Here again, the write rate shown for the dedicated disk
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top - 12:37:59 up 5 days, 55 min, 3 users, load average: 0.81, 0.86, 1.51

Tasks: 136 total, 1 running, 135 sleeping, 0 stopped, 0 zombie

Cpu0 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 0.3%us, 6.0%sy, 0.0%ni, 93.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 0.0%us, 42.2%sy, 0.0%ni, 0.0%id, 54.2%wa, 0.3%hi, 3.3%si, 0.0%st

Cpu3 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 2075608k total, 2023076k used, 52532k free, 2444k buffers

Swap: 2031608k total, 68k used, 2031540k free, 1936636k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

19441 root 18 0 4908 1568 472 D 43.5 0.1 0:16.87 dd

173 root 10 -5 0 0 0 S 5.6 0.0 7:50.09 kswapd0

Figure 5.5: top output from the dd(read) command

subsystem is consistent with the previously generated baseline. Even with the running

average of the sample data, curves for CPU utilization and disk subsystem throughput

are not as smooth for the write operation as for the read operation. Also, there is a

lot more overall CPU activity.
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top - 12:49:01 up 5 days, 1:07, 3 users, load average: 2.07, 1.53, 1.51

Tasks: 136 total, 2 running, 134 sleeping, 0 stopped, 0 zombie

Cpu0 : 0.0%us, 37.5%sy, 0.0%ni, 51.5%id, 11.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 0.0%us, 45.7%sy, 0.0%ni, 48.7%id, 5.6%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 0.0%us, 30.3%sy, 0.0%ni, 23.7%id, 38.0%wa, 0.0%hi, 8.0%si, 0.0%st

Cpu3 : 0.0%us, 33.7%sy, 0.0%ni, 47.7%id, 18.7%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 2075608k total, 2023804k used, 51804k free, 2296k buffers

Swap: 2031608k total, 68k used, 2031540k free, 1898060k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

19512 root 20 0 4908 1572 1496 R 91.1 0.1 0:56.92 dd

19312 root 15 0 0 0 0 D 34.2 0.0 0:54.28 pdflush

173 root 10 -5 0 0 0 S 15.0 0.0 8:29.16 kswapd0

1465 root 10 -5 0 0 0 D 8.3 0.0 22:19.80 kjournald

Figure 5.7: top output from the dd(write) command

Figure 5.7 shows the output from top during the dd write operation. Notice

that even though the dd process has 91.1% CPU utilization, no single processing

core is spending more than 50% of its time actively processing, while all the cores

are spending time waiting for I/O. An observation that deserves further explanation

is the amount of processing time utilized by the pdflush, kswapd, and kjournald

processes.

When data is written to disk on a Linux system, it is first stored in the page cache.

Pages that are stored in the cache, but not yet committed to disk, are considered

dirty. Once a certain threshold is reached, pdflush is called to flush the dirty pages

to disk [45]. The output from top shows that during the dd write operation, the total

size of the page cache was more than 1.8GB of memory. To allow the transfer of a

32GB file, the kswapd process continually removes older (non-dirty) pages from the

cache so that space will be available to cache new pages. Finally, as the file data is

written to the ext3 file system, the journal must be updated to ensure that it will be

able to quickly recover from errors. This is the responsibility of kjournald.
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5.4 Case Study: seqprocessor

To demonstrate the I/O profiling technique, this section steps through the process of

diagnosing and improving the I/O performance of an application. The application

used for this demonstration is called seqprocessor and it was developed to simulate

the I/O characteristics of several bioinformatics research applications in our HPC lab

at Boise State University. Seqprocessor reads DNA sequence data from a text file,

performs some statistical processing of the data, then writes the results back to disk.

The sequence data files range in size from a few kilobytes up to tens of gigabytes.

Given the amount of data that must be processed, it is important to optimize the

throughput as much as possible. For the purposes of this demonstration, the pro-

cessing portion of the code has been removed to ensure that any bottlenecks that

are identified are directly related to the I/O portions of the applications. Therefore,

the throughput results will be best-case results for the seqprocessor application. The

source code for the three different versions discussed in this section is provided in

Appendix E.

To generate the I/O profile, collectl is first started in a separate terminal on the

test system, atlantis01. The dedicated disk subsystem is /dev/md0, so the following

command will be used to collect the CPU, memory, and disk statistics:

collectl -smDC --dskfilt md0 -P > seqprocessor-1.profile

With collectl running in the background, start seqprocessor in another terminal.

The following command uses seqprocessor to process a 5GB text file containing

sequence data from the est human dataset:

./seqprocessor-1 /mnt/data_disk1/est_human /mnt/data_disk1/est_human.processed
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top - 11:23:40 up 5 days, 23:41, 3 users, load average: 1.18, 0.43, 0.14

Tasks: 142 total, 2 running, 140 sleeping, 0 stopped, 0 zombie

Cpu0 : 0.7%us, 0.3%sy, 0.0%ni, 98.7%id, 0.3%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 86.8%us, 11.6%sy, 0.0%ni, 0.0%id, 1.3%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu2 : 0.3%us, 1.7%sy, 0.0%ni, 98.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu3 : 0.3%us, 2.0%sy, 0.0%ni, 86.1%id, 11.6%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 2075608k total, 2023312k used, 52296k free, 82220k buffers

Swap: 2031608k total, 68k used, 2031540k free, 1821820k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

23861 root 25 0 1660 356 292 D 99.1 0.0 0:41.70 seqprocessor-1

173 root 10 -5 0 0 0 R 1.7 0.0 8:46.97 kswapd0

1465 root 10 -5 0 0 0 D 1.3 0.0 22:28.36 kjournald

23823 root 15 0 15196 11m 1928 S 1.0 0.5 0:00.85 collectl

19312 root 15 0 0 0 0 S 0.7 0.0 1:11.72 pdflush

Figure 5.8: top output from seqprocessor-1 application

The data being processed are strings of the characters A,T,G, and C, so it seems

reasonable to use the fgetc() and fputc() system calls to iterate through these

files. The source code for the first version of seqprocessor can be found in Listing E.1.

Notice that this code performs no processing of the data and essentially performs a

file copy operation using character I/O.

While the seqprocessor application is running, real-time monitoring tools can be

used to get a peek at how the application is performing. Figure 5.8 shows the output

from the top command. Notice how the CPU utilization for seqprocessor-1 is 99.1%

and that the bulk of the processing is isolated to a single processing core (CPU-1). In

a single-threaded application, if the sum of %user and %system is greater than 80%

with an I/O wait of less than 10%, then the application is [47].

Figure 5.9 shows the output from the iostat command. Observe that both the

read and write throughput values are only 20MB/s, just over 60% of the baseline

values established with bonnie++ for character I/O throughput (Table 5.2).
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Linux 2.6.18-194.3.1.el5_lustre.1.8.4 (atlantis01) 02/23/2011

avg-cpu: %user %nice %system %iowait %steal %idle

19.83 0.00 5.25 7.45 0.00 67.47

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

md0 6040.40 20142.40 20151.20 201424 201512

Figure 5.9: iostat output from seqprocessor-1 application

Once the seqprocessor application has finished, collectl can be stopped and the

results used to generate an I/O profile. The output for collectl is quite verbose and

requires some manipulation with awk and/or a spreadsheet to isolate the desired data

points. Figure 5.10 shows the I/O profile for version 1 of the seqprocessor application.

From this profile, it is easy to see that the application is , and even though iostat

showed a throughput of 20MB/s at one point during the application’s lifetime, the

sustained throughput is closer to 16MB/s. At first it may seem that the application is

only achieving 50% of the expected throughput from baseline in Table 5.2; however,

a sustained throughput of 16MB/s for both read and write operations makes sense.

In addition to the baseline throughput values, Table 5.2 includes the CPU utiliza-

tion required to sustain the associated throughput level. The throughput levels shown

for character I/O in Table 5.2 require 99% CPU utilization. The input and output

tests performed by bonnie++ are unidirectional, meaning that it is either reading or

writing but not doing both at the same time. In contrast, the seqprocessor application

is bidirectional, meaning that it reads and writes simultaneously. It is not a great

leap to conclude that the Xeon processors in atlantis01 can sustain an aggregate

throughput of 32MB/s when performing character I/O with a single thread. When

attempting to perform both read and write character operations simultaneously, it

makes sense that the seqprocessor application would only sustain 16MB/s in each
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Figure 5.10: I/O profile of seqprocessor-1 with a single disk subsystem for both
read and write operations

direction.

At this point, there are a couple of options to improve application performance.

The first is to purchase a faster CPU. The second is to modify the application to

perform block I/O operations instead of the character I/O operations. Purchasing

a faster CPU may incrementally improve the application performance, but reason

suggests that there may be a programatic solution. If this were a commercial, closed-

source application, the options would be limited; however, in this instance, the source

code is available. So down the rabbit hole we go!

There are a variety of tools that can be used to profile CPU-bound applications,

and many integrated development environments have this functionality built in. On

Linux systems, several popular options include oprofile, gprof, and strace; how-

ever, given the system baseline, the application source code, and the I/O profile,

inductive reasoning suggests that modifying the application to perform block I/O
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instead of character I/O will yield a substantial performance increase. To accomplish

this, fread() and fwrite() are used instead of fgetc() and fputc(). Listing E.2

shows the updated source code.

Figure 5.11 shows the I/O profile for version two of the seqprocessor application

running with a 1MB I/O buffer. Notice that the throughput levels have increased by

more than a factor of four to 70MB/s, while at the same time the CPU utilization has

decreased to just over 50%. This example is still performing bidirectional I/O to a

single disk subsystem, and a disk subsystem using rotational media is unidirectional

by its very nature — meaning that it is unable to read and write data simultaneously.

The baseline for reading from and writing back to the same disk subsystem can

be found in the rewrite column of Table 5.2, indicating that version two of the

seqprocessor application is achieving more than 94% of the baseline I/O throughput.

These results indicate that this version of seqprocessor is I/O bound.
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Figure 5.11: I/O profile of seqprocessor-2 with a single disk subsystem for both
read and write operations



114

The disk subsystem on atlantis01 is capable of sustaining more than 170MB/s

for unidirectional write operations and more than 180MB/s for unidirectional read

operations. In an attempt to leverage the unidirectional nature of the rotation

media, the seqprocessor application was moved to atlantis02, which has two dedicated

disk subsystems identically configured to the disk subsystem on atlantis01. The

baseline performance results for these disk subsystems are provided in Appendix D.

Figure 5.12 shows the I/O profile for seqprocessor version 2 running on atlantis02.
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Figure 5.12: I/O profile of seqprocessor-2 with separate disk subsystems for read
and write operations

Notice the improved I/O throughput of 115MB/s but still only 60 to 65% of the

baseline. It is clear that this application is not I/O bound, but it is not clear what

is limiting the performance. These charts are generated using a running average

over a ten-second period. This effect masks much of the thrashing that is happening

behind the scenes with large spikes in CPU utilization. This may explain part of

the bottleneck. Figure 5.13 shows the output from top. It is clear that CPU-3 is
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top - 16:53:48 up 2:44, 5 users, load average: 1.60, 1.59, 1.31

Tasks: 152 total, 2 running, 150 sleeping, 0 stopped, 0 zombie

Cpu0 : 0.3%us, 1.3%sy, 0.0%ni, 95.4%id, 3.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 0.3%us, 18.7%sy, 0.0%ni, 79.7%id, 1.3%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 0.0%us, 21.0%sy, 0.0%ni, 63.0%id, 8.7%wa, 0.3%hi, 7.0%si, 0.0%st

Cpu3 : 0.3%us, 83.4%sy, 0.0%ni, 4.3%id, 10.3%wa, 0.0%hi, 1.7%si, 0.0%st

Mem: 2075608k total, 2022904k used, 52704k free, 3260k buffers

Swap: 2031608k total, 96k used, 2031512k free, 1906328k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

4715 platypus 25 0 2688 1400 308 R 89.4 0.1 0:46.60 seqprocessor-2

174 root 15 0 0 0 0 D 15.9 0.0 1:57.83 pdflush

175 root 10 -5 0 0 0 S 13.0 0.0 2:27.11 kswapd0

3754 root 15 -5 0 0 0 D 7.0 0.0 0:45.02 kjournald

173 root 15 0 0 0 0 D 1.0 0.0 2:02.82 pdflush

Figure 5.13: top output from seqprocessor-2 application with separate disk sub-
systems for read and write operations

performing a lot of work with only 4.3% idle time. The higher throughput rates

increase the amount of work for pdflush, kswapd, and kjournald. It is not as clear

as in the first version of seqprocessor, but the application appears to be once again.

Taking a cue from the producer/consumer problem (commonly used in Operating

Systems texts), the seqprocessor application was again rewritten to use circular buffer-

ing and separate threads for reading and writing. Figure 5.14 is the I/O profile for

version three of the seqprocessor application. These results were obtained utilizing

128 1MB buffers. Now the throughput rates for the seqprocessor application have

increased to 135MB/s, nearly 80% of the baseline values for block I/O.

5.5 Summary of seqprocessor Performance Improvements

Table 5.5 shows the incremental performance improvements with each version of

the seqprocessor application. The largest single leap in performance was the move
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Figure 5.14: I/O profile of seqprocessor-3 with separate disk subsystems for read
and write operations

from character I/O to block I/O in seqprocessor-2. This single software change

resulted in a 4x speedup in application runtime and a 466% improvement in I/O

throughput. The demonstrated I/O profiling technique allowed for the identification

of the performance limiting factors for each version of the seqprocessor application.

Addressing the limiting factors required a hybrid approach utilizing both hardware

and programatic solutions, the combined result of which is 7x speedup in application

runtime and an 875% improvement in I/O throughput.

5.6 Tuning Application I/O Operations

When developing applications in C, it is possible to adjust the size of the I/O

operations in a couple of ways. The first is to simply use fread() or fwrite()

with the desired block size. However, it is not always convenient to work with such
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Table 5.5: Summary of seqprocessor performance improvements

App Version Changes Total
Speedup

Throughput
Improvement

Limiting
Factor

seqprocessor-1 - 1.0 100% CPU
seqprocessor-2 block I/O 4.1 466% Rewrite

I/O
seqprocessor-2 dedicated

read/write disk
subsystems

6.5 766% CPU

seqprocessor-3 circular buffering
and separate read
and write threads

7.0 875% Write I/O

large blocks of data. In these cases, setvbuf() can be used behind the scenes to

optimize the size of the I/O operations.

When fopen() is called to open a file, a small block buffer is allocated (4KB).

Any calls to fread() or fgetc() will first attempt to pull the desired data from the

buffer. If the data is available, it will be returned to the application. If the data is not

available, a system call is made to read(), which retrieves the data from disk into the

buffer and then returns it to the application. This has the effect of minimizing the

number of expensive calls to read(). The same process applies to calls to fwrite()

or fputc(). Data is first written to the buffer, then flushed to disk when the buffer

is full. The buffers can be manually flushed using fflush() [17]. Using setvbuf()

to increase the size of this I/O buffer can result in significant performance increases.

This is especially true in environments where data is transferred over high latency

interconnects such as gigabit Ethernet.

Even with buffering, the use of character operations such as fgetc() and fputc()

should be discouraged in applications in which the user wishes to achieve high levels of

throughput while processing gigabytes of data. To transfer a 4GB file using fread()
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with 1MB blocks would require 4,000 function calls. To transfer the same file with

fgetc() would require 4,000,000,000 function calls, or 1 million times more work.

These numbers are derived from the fact that a call to fgetc() returns a single byte

of data. Assuming the data encoding of the character data on the disk also uses one

byte to represent a single character, four billion calls to fgetc() would need to be

made to retrieve four billion bytes of data.

There has been some debate in our lab as to whether or not gcc can or will

automatically optimize code that makes use of character I/O by either replacing

large numbers of calls with a single block I/O call or by moving the calls inline to

minimize the stack thrashing involved. The versions of seprocessor used to generate

the I/O profiles in this chapter were compiled using gcc with an optimization level

of -O3. To answer this question of optimization, the author attempted to use gprof

to profile the glibc calls made by the various versions of the seqprocessor application.

Unfortunately, the current version of glibc no longer provides the gprof profiling

extensions. In the end, the performance results demonstrated in this chapter clearly

show that character I/O is not the way to go for high performance I/O throughput.

5.7 Profiling Random I/O Applications

The examples in this chapter have focused on applications that perform sequential

I/O operations; however, the same techniques can be applied to applications that

perform random I/O operations. Applications that do not perform large sequential

operations do not benefit as much from the read-ahead and write-back caches of

modern disk drives and operating systems. Instead, they rely upon low latency I/O

and the ability to sustain a high number of I/O operations per second (IOPS).
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The bonnie++ baseline results for IOPS shown in Table 5.3 represent metadata

operations for creating, opening, and deleting files. These values depend as much upon

the file system (ext3, reiserfs, xfs) as they do upon the underlying disk subsystem.

Applications that work with a large number of small files would use these performance

measurements as a baseline. Examples would be high traffic proxy/caching servers

and mail servers.

In addition to measuring sequential I/O throughput, iozone can be used to

generate a baseline for random I/O operations with the results displayed as either

KB/s or IOPS. These values depend upon the latency of the underlying disk drives

and benefit greatly from high RPM disks or SSDs with low seek times. Applications

that work with large numbers of small files or that use data structures that store data

in non-contiguous blocks within a file can use these results as a baseline. Examples

are database servers and applications that use on-disk B-tree data structures.

The procedure for creating an I/O profile for an application performing ran-

dom I/O is similar to that of an application performing sequential I/O. First, start

collectl and redirect the output to a file, then start the application. When the

application is finished, stop collectl and use awk or a spreadsheet application to

select the desired counters. For applications performing random I/O operations,

choose reads and writes per second instead of KBs per second. Examining the queue

length and average service time counters is also extremely valuable in diagnosing

I/O bottlenecks in applications that perform random I/O operations. Finally, use a

graphing tool to plot the results and compare the I/O profile with the baseline results

established with iozone and bonnie++. If the queue length is greater than two times

the number of disks in the disk subsystem, check the average service time counters.

If it is continually growing, there is an I/O bottleneck [47].
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5.8 Profiling Parallel I/O Applications

Parallel applications are notoriously difficult to troubleshoot for performance issues or

application errors. In some cases, it is possible to run the application on a single node,

in which case the previously discussed I/O profiling techniques would be sufficient.

However, most parallel applications are designed to run on clusters consisting of

hundreds or thousands of processing nodes. Performance issues that appear on the

cluster very likely will not be apparent on a single node.

It is possible to create an I/O profile of a parallel application while it is running on

a cluster; however, it can be difficult to isolate application I/O operations and CPU

usage from system processes and other jobs running on the cluster. To capture the

application’s I/O traffic, identify the network interfaces or shared file systems that the

application will utilize and monitor only that traffic. Collectl natively supports all

TCP/IP networks and provides native support for Infiniband. In addition, collectl

natively supports both NFS and Lustre file systems.

Another issue when collecting data across multiple nodes is keeping the results in

sync. Collectl provides the ability to be started as a service and accessed remotely

via a network socket. Colmux is a tool included with the collectl-utils package that

connects to collectl services and multiplexes and synchronizes the output into a

single stream. It has been tested on systems with thousands of nodes [52].

Once the appropriate data has been gathered together into a single synchronized

stream, use awk or a spreadsheet to select the desired performance counters and then

use a graphing utility to plot the application’s I/O profile. The I/O profile will be

useful for identifying application behavior; however, without a baseline for the cluster

I/O subsystems, it may be challenging to identify whether a parallel application is
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reaching its I/O potential.

5.9 Wrapping It Up

Understanding how to capture and interpret an application’s I/O characteristics is

equal parts art and science. Benchmarking the test environment provides a baseline to

compare application performance against. Real-time monitoring tools such as iostat

and top can provide glimpses into how the application is currently performing based

upon CPU, memory, and I/O utilization, but they do not give a view of the entire life

of the application. Capturing snapshots of system performance counters in regular

intervals throughout the life of the application using a tool such as collectl gives a

more complete picture of the application’s I/O characteristics. Plotting the values for

swap, ram, CPUs, and disk subsystem IOPS and throughput creates an I/O profile

that can be used to visually identify bottlenecks that may be missed when using

real-time monitoring tools alone.

For a software developer, this technique enables the identification of potential

I/O performance issues in the applications he or she writes. For a storage engineer,

the I/O profiles produced using this technique provide insight into the performance

capabilities of an application and can be leveraged to design storage systems with

sufficient per node throughput as well as total aggregate throughput to allow the

application to run at its full potential.
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CHAPTER 6

CONCLUSION

6.1 Wrapping It Up

The goal of this thesis has been to educate the reader on the issues involved in

designing a reliable, high-performance storage system. High-performance storage

systems are complicated and require expert-level knowledge to design and maintain

them. Many of the issues discussed in this thesis were experienced first hand by

the author while working in the HPC lab at Boise State University. Issues of RAID

failures due to latent sector errors and infant disk mortality are a part of life for a

storage engineer, and knowing how to design reliable disk subsystems is critical. Un-

derstanding the configuration options and performance characteristics of the various

parallel distributed file systems is valuable so that a good selection can be made from

the get-go. It is difficult to perform an in-place migration from one parallel distributed

file system to another while preserving a user’s data so it is worth the effort to select an

appropriate file system the first time. And finally, diagnosing application performance

issues is part of the job. It is heart-sickening to design a beautiful, high-performance

storage system just to discover that the end-user’s applications perform slower than

before. Understanding how to profile the I/O characteristics of end-user applications

is extremely valuable in the initial design of storage systems but also in working with

the end-user to identify performance constraints.
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6.2 Extensions of This Research

Several ideas for research topics have come out of this storage systems research. The

following is a brief summary of these ideas.

6.2.1 Parallel File Transfer

Imagine attempting to copy an entire directory tree containing more than 16TB

distributed across one million files between two parallel distributed file systems. The

files are a mix of small files (< 1MB) and large files (> 100 MB). Simply running a

cp command on a single node will require days to complete. It would be significantly

faster to use the compute nodes on the cluster to transfer the files in parallel. The

file balancing problem is to ensure that the file transfer effort is evenly distributed

across all the processing nodes. If the load is unbalanced, then a small number of

nodes would be doing the bulk of the work while other nodes remain idle.

The initial load metric could simply be file size, ensuring that all nodes transfer a

similar amount of data. However, this will not guarantee that the load is equal since

transferring 1GB worth of 1KB files will take significantly longer than transferring a

single 1GB file.

The following describes three different implementation strategies. The first is

where the master process scans the source directory structure and generates a bal-

anced distribution of work for all slave nodes. The second allows each node to parse

the directory structure using a hash mechanism to determine which files it should

transfer (this would only balance the number of files transferred per node). The last

idea is more of a work-pool approach. In this approach, each slave would contact

the master node and request a unit of work, say 10GB worth of files. The master
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node could track which nodes have been assigned which work units, and when a node

completes a given unit of work, it would be given another. Currently, the author is

working on this project with Williams et al. [55].

6.2.2 Data Management: Storage Zones and Data Preservation Strate-

gies

There are many techniques to consider for data backup and recovery of high-performance

storage systems, including mountable snapshots, tape backup libraries, and backup to

another storage system. The idea is to conduct a survey of how other institutions with

HPC environments deal with data backup and recovery of their high-performance

storage systems, examining the pros and cons of each. Backing up hundreds of

terabytes of data is not trivial, and it would be valuable to see how this task is

accomplished in a variety of production environments.

In addition to preserving user data, this research could be leveraged to best utilize

various types of storage that may be available within a high-performance storage

system. For instance, a storage system may contain a mix of high-throughput /

low-latency SSDs (also high cost), 15k SAS disks, and 7.2k SAS/SATA disks (low

cost). Experiments could be performed to identify which types of data (and the

associated applications) are best suited for each type of storage media, with the data

grouped into storage zones. It would also be interesting to see if data could be staged

automatically by the storage system with less frequently accessed data residing on

the low cost 7.2k disks while high frequency data access could be performed upon the

SSDs.
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6.2.3 Statistical Model to Calculate the Ideal Number of Hot-Swap Disks

to Include in a Storage System

As a supplement to the charts for probability of encountering an unrecoverable read

error while reading a disk subsystem (Figures 3.3a and 3.3b) and the MTTDL

chart (Figure 3.4), it would be valuable to develop a model that calculates the ideal

number of hot-swap disks to include in a storage system of N disk drives across M

controllers. There will likely be hardware limitations requiring that the hot-swap

disk(s) be located in the same storage shelf as the arrays it may be substituted into.

If a shelf holds 16 disks, how many disks should be reserved as hot-swaps? This may

be a moot point, as many storage engineers would be hesitant to allocate more than

two disks as hot-swap given the cost of each storage slot, preferring to keep off-line

spares available and invest in a monitoring solution to quickly identify failed disk

drives.

6.2.4 Disaster Recovery of Parallel Distributed File Systems

Disk drives fail. Disk subsystems fail. But what happens when the power fails?

Parallel distributed file systems can potentially become corrupted from a variety

of events including hardware failures, power failures, or a variety of administrator-

induced issues (accidents). It would be interesting to experiment with different ways

of corrupting a parallel distributed file system, then demonstrate the techniques used

to recover data. By providing a guide on how to recover a corrupted storage system,

system administrators will have a step-by-step recovery guide to follow instead of

having to figure it out on the fly.
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6.2.5 Persistent Versus Non-Persistent Scratch Space in HPC Environ-

ments

Many applications that run in HPC environments require high-performance scratch

space to store intermediate results that are generated while the application is running.

They are then processed in some manner to obtain useful insight into the data,

but many times are never referenced again. This intermediate data can range from

hundreds of gigabytes to several terabytes in size, taking up extremely valuable space

that could be utilized by other applications.

From an administrative standpoint, this is a difficult problem because it is not

feasible to be continuously adding storage capacity, both from a cost perspective

and a system management perspective. So how can an administrator ensure that

sufficient high-performance scratch space remains available for end-user applications?

One option is to send the users a summary of their data usage and ask them to please

cleanup stale data. Unfortunately, this approach has met with limited success in the

HPC lab at Boise State University. The other option is to establish system-wide

policies for the removal of end-user data from the storage system.

This topic would explore different methods for managing storage usage and data

lifetimes for high-performance persistent and non-persistent high-performance scratch

space in HPC environments. One option for managing storage usage is disk quotas.

Unfortunately, not all parallel distributed file systems support quotas, so it would

be important to document which parallel distributed file systems support quotas and

document how to implement them. This would help to address the issue of stale data

in persistent scratch space because the user would need to remove old data before

storing new data to the scratch space. Another approach would be to establish
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policies, automatically enforced by scripts, that remove any data from the scratch

space that is older than n number of days. The users would be notified multiple

times before the data was removed from the system, giving them the chance to finish

using the data or move it to archival storage.

Another approach to addressing the issue of stale data consuming valuable high-

performance scratch space is the use of non-persistent scratch space. In this instance,

a temporary parallel distributed file system would be dynamically created across raw

storage disks within the storage cluster when a user submits a job to the cluster.

This space will be available to the user while the job is running, but will be destroyed

once the job completes. This approach forces the users to immediately process the

data or move it to archival storage or it will be lost. This technique is used for high-

performance scratch space at many research universities and national laboratories.

An area to investigate is which parallel distributed file systems provide quota

support and are suitable for use as non-persistent scratch space. It would be ex-

tremely valuable to research and document how this issue is addressed in various HPC

environments throughout the country. It would also be good to demonstrate different

techniques for implementing the discussed approaches including detailed instructions

for using them in production environments.

6.2.6 Objective-C Inspired Dynamically Generated Non-Persistent Scratch

Space for HPC Environments

The memory management model for Objective-C on the iOS platform uses a technique

called ‘reference counting’ to determine when the memory for an object should be

freed. Upon revisiting this issue of non-persistent scratch space, I realized a similar ap-

proach could be leveraged. The previously described implementation of non-persistent
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scratch space is rather heavy handed, with a use it or loose it approach. What if a

storage system implemented a form of reference counting for each dynamically created

non-persistent scratch space? The following is a description of how such a system

might function.

A user submits a batch job to the cluster using a script. One of the first actions

performed is to contact the storage system manager (running as a web service) to

request a scratch space with a given size, specific striping characteristics including

distribution technique and stripe size, and a file system ID. The storage system

manager would perform a number of checks to ensure resources were available to

create the scratch space, a scratch space with that ID did not already exist, and

that the user had permission to allocate a scratch space. Once these criteria are

satisfied, the storage manager would generate the appropriate configuration files and

start the services on the allocated storage nodes. It would then return an object to

the calling script with the file system ID and the appropriate connection information.

The script would then mount the dynamic scratch space, implicitly taking ownership

of the storage space.

At this point, the batch job can perform any necessary I/O operations using its

scratch space. Just before the batch job completes, the script can issue a retain

or a release message. If a release message is sent, the storage system manager will

immediately schedule the scratch space for de-allocation. If a retain message is sent,

the non-persistent scratch space will be held for a specific period. This will allow

more jobs to be run against the data in the non-persistent scratch space. As each

job completes, they will have the option of releasing or retaining the scratch space.

Data that is accessed frequently will be retained indefinitely while data that is not

accessed will be purged.
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In the event that a new scratch space is created but not explicitly retained or

released, a default retention period will be used that is the same interval as if the

data had been explicitly retained. This space will be flagged as being in limbo but will

be maintained as long as sufficient resources remain available on the storage system.

However, in the event that a request for scratch space comes in that requires more

storage resources than are currently available, any space that is in limbo and has no

active connections (it is not mounted anywhere) will be released.

6.2.7 Extended Application I/O Profiling

Chapter 5 demonstrates the usefulness of I/O profiles in identifying the performance

constraints in sequential applications. It would be useful to provide examples for

applications that perform random (non-sequential) I/O operations as well as for

applications running in a clustered environment. There are literally hundreds of

system counters that collectl can retrieve data from including network file systems

and network interconnects, and the I/O results are not limited to simply throughput.

Generate I/O profiles for a wide variety of applications. Is there a basic set of

categories that all applications fall into? Is it possible to classify an application

based upon its I/O profile?

Another aspect to consider is the development of scripts to stream-line the data

capture, manipulation, and display procedures to make the I/O profiling technique as

painless as possible for the end user. The collectl and colmux tools are extremely

powerful tools with many configuration options. These scripts would wrap up the

desired functionality into easy-to-use scripts that would automatically generate data

formatted for import directly into a spreadsheet or even generate pre-configured charts

with gnuplot or ploticus. Accompanying these scripts would be a detailed user
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guide with detailed instructions for setting up the profiling tools and environment as

well as many examples covering a variety of application types. These should include

applications that perform sequential I/O, random I/O, and parallel I/O operations.
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APPENDIX A

STORAGE CONFIGURATION WORKSHEET

• Company name:

• Contact individual:

• Date:

• Background

– What problem is the customer attempting to solve?

– Why is the customer interested in a high-performance storage solution?

– Does the customer have an existing storage solution, and if so, what is it?

– What are the actual/perceived limitations of the existing solution?

Talk to management, application developers, and system engineers.
Are the perceived limitations due to storage capacity, performance, or
reliability? List specific items of concern and demonstrate how they will
be resolved with the new storage system.

– What does the customer want?

This is an open-ended question but should be answered in terms of
storage capacity, performance, and redundancy. Again, make a specific
list of items and demonstrate how the design of the new storage system
meets these requirements.

• Storage capacity and growth

– How much usable storage capacity is initially required?

– What is the expected growth over the next two to three years?
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• Storage client details

– How many clients will access the storage system?

– Is the number of clients expected to grow over the next two to three years?

– What types of storage clients will need to access the storage system?

Will it be a homogeneous or heterogeneous mix of storage client sys-
tems (Windows, Linux, Unix, or Mac?)

– Identify which clients will require high-throughput access to the storage
system.

• Data details

– Identify the classes of data to be stored on the storage system.

– Define storage zones to manage data with similar storage requirements.

∗ Data that will benefit from file striping

∗ Data that will benefit from simple distribution

∗ Data that will require a specific level of replication

∗ Data that will require backup/archival to external media

– Diagram how data will flow through the system.

How will data be added to the storage system? How will data be
removed/cleaned up from the storage system?

– Who will manage the data in each storage zone?

• Application details

– What applications are going to access the storage system?

Get a list of all applications that will access data residing on the storage
system. Each of the applications on the list should be associated with the
storage clients they will run on as well as the data/storage zones they will
access.

– What are the I/O characteristics of the applications accessing this storage
system?

It is helpful to generate an I/O profile for each application. It needs
to show network and block device I/O throughput as well as CPU and
memory utilization in snapshots captured every five to thirty seconds
throughout the run-time of the application. This information can be used
to identify performance constraints within the application while providing
insight into what throughput levels the application is capable of sustaining.
Beyond this, it is helpful to know access details such as sequential vs
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random accesses and the chunk size of each access. Unfortunately, these
details can be hard to come by; however, some inferences can be made
based upon the type of data that the application is reading from or writing
to.

• Disaster recovery

– Is the data stored on the storage system critical to business operation?

Can the data be regenerated if deleted, corrupted, or lost due to
hardware failure?

How should the critical data on the storage system be backed up?

– Is access to the storage system critical to business operation?

Are there specific up time requirements the system must meet? (ac-
ceptable hours of unscheduled downtime per month)

• Facility

– Where will the system be housed?

Co-location facility, on-site?

– What is the available capacity for power?

Is there a site UPS system available? Is there a backup generator
available?

– What is the available capacity for cooling?

• Budget

– What is the budget for the initial system?

– What is the monthly budget for power and cooling costs?

– What is the budget for maintenance?

Is the customer planning on purchasing vendor maintenance agree-
ments? If not, is there a budget for spare components?

– Is there a line item in the budget for an engineer’s salary to maintain the
storage system?
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APPENDIX B

DATA CLASSIFICATION

The following sections attempt to classify data based upon the type of data being

stored, the file format used, and the size of the files. The types of files described

below are all data types that we have had to deal with at one point or another in

the HPC lab at Boise State University. The conclusions were not derived from any

specific research testing but rather were collected from knowledge of the formats and

observations of the associated applications. More scientific results could be generated

with extensive testing of representative data sets and the generation of I/O profiles for

the associated applications; however, the data classifications provided in the following

sections provide a good jumping off point to get the reader started thinking about

his or her own data.

B.1 Large Multimedia Files (Greater Than 100MB)

• Typically sequential access

• Video formats such as divx, mpeg, dv

• Audio formats such as wav, flac, raw

• These formats can be processed as a real-time stream requiring low bit-rates
(less than 100Mbit)

• These formats can be processed as blocks or chunks utilizing high bit-rates
(greater than or equal to 100Mbit)
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• Suffers from interconnect/storage system latency when processed using small
block sizes

• Benefits from read-ahead caching

• Benefits from write-back caching

• Benefits from striping

B.2 Large Text Files (Greater Than 100MB)

• Typically sequential access

• Processed as chars, lines, or blocks utilizing high bit-rates (greater than or equal
to 100Mbit)

• Suffers from interconnect/storage system latency when processed using chars,
lines, or small block sizes

• Benefits from read-ahead

• Benefits from write-back caching

• Benefits from striping

B.3 Large Compressed Files (Greater Than 100MB)

• Typically sequential access

• Formats such as zip, gzip, bzip2

• NetCDF (mix of random and sequential depending upon organization of data
in file)

• These formats can be processed as chunks utilizing high bit-rates (greater than
or equal to 100Mbit)

• Suffers from interconnect/storage system latency when processed using small
block sizes

• Benefits from read-ahead caching

• Benefits from write-back caching

• Benefits from striping
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B.4 Large Database Files (Greater Than 100MB)

• Typically random access

• MySQL Datastore

• B-tree, db2

• Lucene Indexes

• Virtual Disks: vmware, virtualbox, mounted ISO images

• Various processing methods including pages and chunks

• Suffers from striping overhead

• Suffers from gigabit Ethernet latency

• Benefits from high performance low latency disk drives

• Benefits from high performance low latency network interconnect

B.5 Medium Multimedia Files (1MB - 100MB)

• Typically sequential access

• Graphic Formats: Jpeg, BMP, TIFF, PDF, etc.

• Audio Formats: wav, MP3, OGG, FLAC

• Video Formats: mpeg, divx, dv

• These formats can be processed as blocks or chunks utilizing high bit-rates
(greater than or equal to 100Mbit)

• Can benefit from striping depending upon client access pattern by eliminating
hot spots

• Benefits from simple distribution by eliminating striping overhead

• Benefits from read-ahead caching

• Benefits from write-back caching

• Good candidate for file replication
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B.6 Medium Text Files (1MB - 100MB)

• Typically sequential access

• Processed as chars, lines, or blocks utilizing high bit-rates (greater than or equal
to 100Mbit)

• Suffers from interconnect/storage system latency when processed using chars,
lines, or small block sizes

• Benefits from read-ahead caching

• Benefits from write-back caching

• Benefits from simple distribution by eliminating striping overhead

• Good candidate for file replication

B.7 Medium Compressed Files (1MB - 100MB)

• Typically sequential access

• Formats such as zip, gzip, bzip2

• NetCDF (mix of random and sequential depending upon organization of data
in file)

• These formats can be processed as chunks utilizing high bit-rates (greater than
or equal to 100Mbit)

• Suffers from interconnect/storage system latency when processed using small
block sizes

• Benefits from simple distribution by eliminating striping overhead

• Benefits from read-ahead caching

• Benefits from write-back caching

• Good candidate for file replication



143

B.8 Medium Database Files (1MB - 100MB)

• Typically random access

• MySQL Datastore

• B-tree, db2

• Lucene Indexes

• Virtual Disks: vmware, virtualbox, mounted ISO images

• Various processing methods including pages and chunks

• Suffers from striping overhead

• Suffers from gigabit Ethernet latency

• Benefits from high performance low latency disk drives

• Benefits from high performance low latency network interconnect

B.9 Small Files (Less Than 1MB )

• Video, Text, Audio, Picture, Database

• Processed as char, line, chunk, block

• Suffers from striping overhead

• Suffers from gigabit Ethernet latency

• Benefits from high performance low latency disk drives

• Benefits from high performance low latency network interconnect

• Benefits from simple distribution

• Good candidate for file replication
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B.10 Large Number of Files (Small or Large)

• Metadata operations benefit greatly from high performance low latency disk
drives housing metadata

• Client connectivity to metadata server benefits greatly from low latency inter-
connect

• Extra memory in the metadata server allows for caching of metadata and
increases performance

• Multiple metadata servers decreases the bottleneck that occurs when many
clients are performing metadata operations simultaneously
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APPENDIX C

APPLICATION I/O PROFILING WORKSHEET

• Application name:

• Test date:

• System details

Type of processor:

Total number of cores (across all processors):

Total amount of system memory:

Disk subsystem RAID configuration:

Number of disks in disk subsystem:

Network interface details:

• Baseline of test environment I/O performance:

Record bonnie++ throughput and metadata baseline in the tables below

(Optional) Attach 3D Surface plots of iozone results for sequential and
random throughput and IOPS testing

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU

Bonnie++ Metadata Performance
Sequential (ops/sec) Random (ops/sec)
create read delete create read delete
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• Application I/O Profiles

Generate I/O profiles for the application using the technique described in
Chapter 5 and attach them to this worksheet

• Evaluation

Compare the I/O profile against the established baseline values for the test
environment.

Is I/O activity evenly distributed over the lifetime of the application or are
there times of high I/O activity and times of low I/O activity?

Use a marker to identify the critical features of the I/O profile, specifically
times when the application is CPU bound, memory bound, or I/O bound.
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APPENDIX D

ATLANTIS RESEARCH CLUSTER CONFIGURATION

D.1 Storage Node Specifications

Table D.1 shows the specifications for the nodes in the Atlantis research cluster. The

first four Atlantis nodes (atlantis0[0-3]) were purchased in 2008 from eBay for a grand

total of $800.00 (including shipping). These nodes were used extensively for much of

the early work with distributed file systems as well as the work on application profiling,

the results of which are presented in Chapters 4 and 5. Atlantis04 and atlantis05

were purchased in 2010 from eBay for a grand total of $200.00 (including shipping).

The high disk density of these nodes (16 disks each), allowed for experimentation

with Linux software RAID configurations, RAID scrubbing, and RAID recovery

techniques.

Table D.1: Atlantis research cluster node specifications

atlantis00 atlantis0[1-3] atlantis0[4-5]
Processor 2x 2.8GHz Xeon 2x 2.6GHz Xeon 3.2GHz P4
Memory 2GB ECC DDR 2GB ECC DDR 1GB DDR
Network 2xGigE 2xGigE GigE
RAID
Controller

3ware(SATA),
Adaptec(U320)

Adaptec(U320) 2x3ware(PATA)

Hard Disks 4x500GB SATA,
4x36GB 15k SCSI

4x36GB 15k SCSI 16x80GB PATA
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D.2 Network Diagram

For much of its life, the Atlantis research cluster was housed in the Beowulf HPC Lab

at Boise State University. Figure D.1 represents how the storage nodes of Atlantis

were linked with the 60 node Beowulf cluster. This configuration allowed a wide range

of options for measuring file system scalability and efficiency as the number of clients

increased.

Beowulf 

HPC Cluster

atlantis00

Gigabit Switch

atlantis01

Atlantis

Research Cluster

BSU Campus

Network
node00

atlantis02

atlantis03

atlantis04

atlantis05

Gigabit 

Switch Stack

Figure D.1: Network layout of Atlantis research cluster

D.3 Chapter 4 RAID Configuration and Performance Base-

line

The nodes of the Atlantis research cluster were stripped down and rebuilt multiple

times over the course of this thesis. For the parallel distributed file system research in

Chapter 4, the four 15k RPM SCSI disks on atlantis0[0-3] were configured for RAID-0
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striping using the onboard Adaptec hardware RAID controller. In addition to being

used as the backend datastore for the distributed file systems, this disk subsystem also

was used for the Linux system partitions. Tables D.2, D.3, D.4, and D.5 show the

baseline block throughput results for these nodes. These results were gathered using

bonnie++, but at the time of this testing, emphasis was mostly on block throughput,

not on character I/O or metadata performance.

Table D.2: Chapter 4 throughput results for md0 on atlantis00

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
– – 155 99 83 36 – – 219 31

Table D.3: Chapter 4 throughput results for md0 on atlantis01

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
– – 152 99 86 32 – – 225 34

Table D.4: Chapter 4 throughput results for md0 on atlantis02

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
– – 161 86 85 35 – – 223 34

D.4 Chapter 5 RAID Configuration and Performance Base-

line

The I/O profiling research for Chapter 5 required a dedicated disk subsystem to

ensure accurate results. For this research, atlantis01 and atlantis02 were rebuilt with
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Table D.5: Chapter 4 throughput results for md0 on atlantis03

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
– – 162 86 87 36 – – 216 33

a single disk (sda) used for the system partitions. The remaining three 15k RPM

SCSI U320 disks in each node were configured using Linux software RAID (md0).

The disks were configured for RAID-0 striping with a chunk size of 256KB. As the

research progressed, it became apparent that another dedicated disk subsystem would

be needed to fully demonstrate the profiling process. To this end, a second Adaptec

SCSI controller card was added to atlantis02 along with three additional 15k RPM

SCSI U320 disks, also configured for RAID-0 striping with Linux software RAID

(md1).

Tables D.6 and D.7 show the baseline throughput and IOPS for dedicated disk sub-

system (md0) on atlantis01. Next, Tables D.8 and D.9 show the baseline throughput

and IOPS for the primary dedicated disk subsystem (md0) on atlantis02. Finally,

Tables D.10 and D.11 show the baseline throughput and IOPS for the secondary

dedicated disk subsystem (md1) on atlantis02.

Table D.6: Chapter 5 throughput results for md0 on atlantis01

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
33 99 171 99 72 32 39 97 183 27
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Table D.7: Chapter 5 IOPS results for md0 on atlantis01

Bonnie++ Metadata Performance
Sequential (ops/sec) Random (ops/sec)

create read delete create read delete
11170 194149 2794 9483 235479 1978

Table D.8: Chapter 5 throughput results for md0 on atlantis02

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
36 99 199 98 76 29 42 97 196 25

Table D.9: Chapter 5 IOPS results for md0 on atlantis02

Bonnie++ Metadata Performance
Sequential (ops/sec) Random (ops/sec)

create read delete create read delete
16194 213798 3307 13476 260769 2299

Table D.10: Chapter 5 throughput results for md1 on atlantis02

Sequential Output Sequential Input
Char Block Rewrite Char Block

MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU MB/s %CPU
35 97 187 93 80 31 41 94 195 25

Table D.11: Chapter 5 IOPS results for md1 on atlantis02

Bonnie++ Metadata Performance
Sequential (ops/sec) Random (ops/sec)

create read delete create read delete
16095 214388 2882 13674 261441 2018
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APPENDIX E

SEQPROCESSOR APPLICATION SOURCE CODE

E.1 Seqprocessor Version 1

/∗
∗ F i l e : s eqproce s so r −1. c
∗ Author : Luke Hindman
∗ Created on September 29 , 2010 , 11 :45 AM
∗/

/∗ Allow fopen to handle f i l e s l a r g e r than 2GB ∗/
#define FILE OFFSET BITS 64

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

void usage (char ∗ program ) {
f p r i n t f ( s tde r r , ”Usage : %s <source f i l e > <d e s t i n a t i o n f i l e > [ b u f f e r

s i z e ]\n” , program ) ;
e x i t (EXIT FAILURE) ;

}

/∗
∗ Read from a FASTA DNA sequence f i l e and wr i t e to a d i f f e r e n t f i l e
∗ This ve r s i o n uses f g e t c ( ) and fputc ( ) f o r I /O ope ra t i on s .
∗/

int main ( int argc , char∗∗ argv ) {
FILE ∗ s r c f i l e ;
FILE ∗ d e s t f i l e ;
int cu r r en t cha r ;

i f ( argc < 3)
usage ( argv [ 0 ] ) ;

s r c f i l e = fopen ( argv [ 1 ] , ” r ” ) ;
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i f ( s r c f i l e == NULL) {
per ro r (NULL) ;
return (EXIT FAILURE) ;

}

d e s t f i l e = fopen ( argv [ 2 ] , ”w” ) ;
i f ( d e s t f i l e == NULL) {

per ro r (NULL) ;
return (EXIT FAILURE) ;

}

/∗Tight loop f o r t r a n s f e r r i n g data from s r c to d e s t i n a t i o n ∗/
while ( ( cu r r en t cha r=f g e t c ( s r c f i l e ) ) != EOF ) {

fputc ( cur rent char , d e s t f i l e ) ;
}

f c l o s e ( s r c f i l e ) ;
f c l o s e ( d e s t f i l e ) ;

return (EXIT SUCCESS) ;
}

Listing E.1: Seqprocessor source code (version 1)
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E.2 Seqprocessor Version 2

/∗
∗ F i l e : s eqproce s so r −2. c
∗ Author : Luke Hindman
∗ Created on September 29 , 2010 , 11 :45 AM
∗/

/∗ Allow fopen to handle f i l e s l a r g e r than 2GB ∗/
#define FILE OFFSET BITS 64

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

void usage (char ∗ program ) {
f p r i n t f ( s tde r r , ”Usage : %s <source f i l e > <d e s t i n a t i o n f i l e > [ b u f f e r

s i z e (KB) ]\n” , program ) ;
}

/∗
∗ Read from a FASTA DNA sequence f i l e and wr i t e to a d i f f e r e n t f i l e
∗
∗ This ve r s i o n uses f r ead ( ) and f w r i t e ( ) with a va r i ab l y s i z e d b u f f e r
∗ to t r a n s f e r data from s r c to d e s t i n a t i o n . The d e f a u l t b u f f e r s i z e
∗ i s 4KB.
∗
∗/

int main ( int argc , char∗∗ argv ) {
FILE ∗ s r c f i l e ;
FILE ∗ d e s t f i l e ;
s i z e t b u f f e r s i z e ;

i f ( argc < 3) {
usage ( argv [ 0 ] ) ;
e x i t (EXIT FAILURE) ;

} else i f ( argc >= 4)
b u f f e r s i z e = a t o i ( argv [ 3 ] ) ∗ 1024 ;

else
b u f f e r s i z e = 4 ∗ 1024 ; /∗ 4KB charac t e r b u f f e r ∗/

/∗ Al l o ca t e b u f f e r ∗/
char ∗ b u f f e r = (char ∗) mal loc ( s izeof (char ) ∗ b u f f e r s i z e ) ;

s r c f i l e = fopen ( argv [ 1 ] , ” r ” ) ;
i f ( s r c f i l e == NULL) {

per ro r (NULL) ;
return (EXIT FAILURE) ;
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}

d e s t f i l e = fopen ( argv [ 2 ] , ”w” ) ;
i f ( d e s t f i l e == NULL) {

per ro r (NULL) ;
return (EXIT FAILURE) ;

}

/∗Tight loop f o r t r a n s f e r r i n g data from s r c to d e s t i n a t i o n ∗/
int count ;
while ( ( count = f r ead ( bu f f e r , s izeof (char ) , b u f f e r s i z e / s izeof (

char ) , s r c f i l e ) ) > 0 ) {
f w r i t e ( bu f f e r , s izeof (char ) , count , d e s t f i l e ) ;

}

f r e e ( b u f f e r ) ;
f c l o s e ( s r c f i l e ) ;
f c l o s e ( d e s t f i l e ) ;

return (EXIT SUCCESS) ;
}

Listing E.2: Seqprocessor source code (version 2)
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E.3 Seqprocessor Version 3

/∗
∗ F i l e : s eqproce s so r −3. c
∗ Author : Luke Hindman
∗ Created on September 29 , 2010 , 11 :45 AM
∗/

/∗ Allow fopen to handle f i l e s l a r g e r than 2GB ∗/
#define FILE OFFSET BITS 64

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <pthread . h>

#define NUM BUFFERS 8 /∗Number o f b u f f e r s ∗/
#define BUFFER SIZE 4 /∗ S i z e o f each b u f f e r in KB ∗/
#define EMPTY 150 /∗Reader thread should f i l l the b u f f e r ∗/
#define FULL 250 /∗Writer thread should empty the b u f f e r ∗/
#define DONE 350 /∗Reader thread i s done read ing ∗/
#define TRUE 1
#define FALSE 0

pthread t r eade r th r ead ;
pthread t w r i t e r t h r e a d ;
pthread mutex t reader done mutex ;
int reader done ;

unsigned int num buffers ;
s i z e t b u f f e r s i z e ;

pthread mutex t ∗ buf fer mutex ;
char ∗ b u f f e r s t o r e ;
char ∗∗ b u f f e r ;
int ∗ b u f f e r s t a t u s ;
s i z e t ∗ b u f f e r u s e d ;
pthread cond t ∗ b u f f e r c o n d v a r ;

void ∗ reader (void ∗ arg ) {
FILE ∗ s r c f i l e = (FILE ∗) arg ;
int i = 0 ;
unsigned long int read count = 0 ;
unsigned long int l a s t r e a d c o u n t = 0 ;
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i f ( s r c f i l e != NULL) {
while ( ! f e o f ( s r c f i l e ) && ! f e r r o r ( s r c f i l e ) ) {

pthread mutex lock(&buf fer mutex [ i ] ) ;
while ( b u f f e r s t a t u s [ i ] != EMPTY) {

/∗ Wait u n t i l a b u f f e r i s a v a i l a b l e in which to
∗ s t o r e data ∗/

pthread cond wait (& b u f f e r c o n d v a r [ i ] ,& buf fer mutex [ i ] ) ;
}
b u f f e r u s e d [ i ] = f r ead ( b u f f e r [ i ] , s izeof (char ) , b u f f e r s i z e ,

s r c f i l e ) ;
read count += b u f f e r u s e d [ i ] ;
l a s t r e a d c o u n t = b u f f e r u s e d [ i ] ;
b u f f e r s t a t u s [ i ] = FULL;
pthread mutex unlock(&buf fer mutex [ i ] ) ;
/∗ Send s i g n a l to w r i t e r thread that a b u f f e r i s a v a i l a b l e
∗ from which to read data f o r output to d i sk . ∗/

pth r ead cond s i gna l (& b u f f e r c o n d v a r [ i ] ) ;
i = ( i + 1) % num buffers ;

}
pthread mutex lock(&buf fer mutex [ i ] ) ;
f p r i n t f ( s tde r r , ”Reader i s Done!(%d,%d) \n” , i , b u f f e r s t a t u s [ i ] ) ;
pthread mutex unlock(&buf fer mutex [ i ] ) ;
pthread mutex lock(&reader done mutex ) ;
reader done = TRUE;
pthread mutex unlock(&reader done mutex ) ;

/∗ Send s i g n a l to w r i t e r thread i n c a s e i t i s b lock ing on the
∗ l a s t bucket . This should prevent dead−l o ck in t h i s case . ∗/

pth r ead cond s i gna l (& b u f f e r c o n d v a r [ i ] ) ;
}
f p r i n t f ( stdout , ”ReadCount : %d\n” , read count ) ;
f p r i n t f ( stdout , ”LastReadCount : %d\n” , l a s t r e a d c o u n t ) ;
p t h r e a d e x i t ( ( void ∗) 0) ;

}

void ∗w r i t e r (void ∗ arg ) {
FILE ∗ d e s t f i l e = (FILE ∗) arg ;
int i = 0 ;
unsigned long int wr i t e count = 0 ;
i f ( d e s t f i l e != NULL) {

while ( 1 ) {
pthread mutex lock(&buf fer mutex [ i ] ) ;
while ( b u f f e r s t a t u s [ i ] == EMPTY) {

/∗ Check to see i f the reader thread i s done ∗/
pthread mutex lock(&reader done mutex ) ;
i f ( reader done == TRUE) {

pthread mutex unlock(&reader done mutex ) ;
f p r i n t f ( stdout , ”WriteCount : %d\n” , wr i t e count ) ;
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p t h r e a d e x i t ( ( void ∗) 0) ;
}
pthread mutex unlock(&reader done mutex ) ;

/∗ Wait u n t i l a b u f f e r i s a v a i l a b l e from which read data
∗ to wr i t e to d i sk ∗/

pthread cond wait (& b u f f e r c o n d v a r [ i ] ,& buf fer mutex [ i ] ) ;
}

wr i t e count += f w r i t e ( b u f f e r [ i ] , s izeof (char ) , b u f f e r u s e d [ i
] , d e s t f i l e ) ;

b u f f e r s t a t u s [ i ] = EMPTY;
pthread mutex unlock(&buf fer mutex [ i ] ) ;
/∗ Send s i g n a l to reader thread that a b u f f e r i s empty . ∗/
pth r ead cond s i gna l (& b u f f e r c o n d v a r [ i ] ) ;
i = ( i + 1) % num buffers ;

}
}
f p r i n t f ( stdout , ”WriteCount : %d\n” , wr i t e count ) ;

p t h r e a d e x i t ( ( void ∗) 0) ;
}

void usage (char ∗ program ) {
f p r i n t f ( s tde r r , ”Usage : %s <source f i l e > <d e s t i n a t i o n f i l e > [ number

o f b u f f e r s ] [ b u f f e r s i z e (KB) ]\n” , program ) ;
}

/∗
∗ Read from a FASTA DNA sequence f i l e and wr i t e to a d i f f e r e n t f i l e
∗
∗ This ve r s i o n i s multi−threaded and uses c i r c u l a r b u f f e r i n g as we l l
∗ as f r ead ( ) and f w r i t e ( ) with a va r i ab ly s i z e d b u f f e r s to t r a n s f e r
∗ data from s r c to d e s t i n a t i o n . The d e f a u l t b u f f e r s i z e i s 4KB.
∗/

int main ( int argc , char∗∗ argv ) {
FILE ∗ s r c f i l e ;
FILE ∗ d e s t f i l e ;

int i ;
p t h r e a d a t t r t a t t r ;
void ∗ s t a t u s ;

i f ( argc < 3) {
usage ( argv [ 0 ] ) ;
e x i t (EXIT FAILURE) ;

} else i f ( argc >= 5) {
num buffers = a t o i ( argv [ 3 ] ) ;
b u f f e r s i z e = a t o i ( argv [ 4 ] ) ∗ 1024 ;

} else i f ( argc >= 4) {
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num buffers = a t o i ( argv [ 3 ] ) ;
} else {

b u f f e r s i z e = BUFFER SIZE ∗ 1024 ;
num buffers = NUM BUFFERS;

}

/∗ Al l o ca t e Arrays ∗/
f p r i n t f ( s tde r r , ” A l l o c a t i ng g l o b a l a r rays !\n” ) ;
buf fer mutex = ( pthread mutex t ∗) mal loc ( s izeof ( pthread mutex t ) ∗

num buffers ) ;
b u f f e r s t o r e = (char ∗) mal loc ( s izeof (char∗) ∗ num buffers ∗

b u f f e r s i z e ) ;
b u f f e r = (char ∗∗) mal loc ( s izeof (char∗) ∗ num buffers ) ;
for ( i =0; i < num buffers ; i++)

b u f f e r [ i ] = b u f f e r s t o r e + i ∗ b u f f e r s i z e ;

b u f f e r s t a t u s = ( int ∗) mal loc ( s izeof ( int ) ∗ num buffers ) ;
b u f f e r u s e d = ( s i z e t ∗) mal loc ( s izeof ( s i z e t ) ∗ num buffers ) ;
b u f f e r c o n d v a r = ( pthread cond t ∗) mal loc ( s izeof ( pthread cond t )
∗ num buffers ) ;

/∗ I n i t i a l i z e mutex and cond i t i on v a r i a b l e s ∗/
f p r i n t f ( s tde r r , ” I n i t i a l i z i n g Mutexes !\n” ) ;
for ( i =0; i < num buffers ; i++){

pthread mutex in i t (&buf fer mutex [ i ] , NULL) ;
p t h r e a d c o n d i n i t (& b u f f e r c o n d v a r [ i ] , NULL) ;

}

/∗ Setup a mutex and f l a g so the w r i t e r thread can
∗ determine when the reader thread i s f i n i s h e d . ∗/

pthread mutex in i t (&reader done mutex ,NULL) ;
pthread mutex lock(&reader done mutex ) ;
reader done = FALSE;
pthread mutex unlock(&reader done mutex ) ;

/∗ I n i t i a l i z e the s t a t u s f o r a l l b u f f e r s to EMPTY.
∗ This code does not need to be locked with mutexes
∗ because i t i s p roce s s ed be f o r e the the threads are
∗ s t a r t e d . ∗/

f p r i n t f ( s tde r r , ” I n i t i a l i z i n g Buf f e r Status !\n” ) ;
for ( i = 0 ; i < num buffers ; i++) {

b u f f e r s t a t u s [ i ] = EMPTY;
}

p t h r e a d a t t r i n i t (& a t t r ) ;
p t h r e a d a t t r s e t d e t a c h s t a t e (&attr , PTHREAD CREATE JOINABLE) ;
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f p r i n t f ( s tde r r , ”Opening Input and Output F i l e s !\n” ) ;
s r c f i l e = fopen ( argv [ 1 ] , ” r ” ) ;
i f ( s r c f i l e == NULL) {

per ro r (NULL) ;
return (EXIT FAILURE) ;

}

d e s t f i l e = fopen ( argv [ 2 ] , ”w” ) ;
i f ( d e s t f i l e == NULL) {

per ro r (NULL) ;
return (EXIT FAILURE) ;

}

f p r i n t f ( s tde r r , ” S ta r t i ng Threads !\n” ) ;
p th r ead c r ea t e (&reader thread , &attr , reader , (void ∗) s r c f i l e ) ;
p th r ead c r ea t e (& wr i t e r th r ead , &attr , wr i te r , (void ∗) d e s t f i l e ) ;
p t h r e a d a t t r d e s t r o y (& a t t r ) ;
p t h r e a d j o i n ( reader thread , &s t a t u s ) ;
p t h r e a d j o i n ( wr i t e r th r ead , &s t a t u s ) ;
p r i n t f ( ” Trans fe r Complete !\n” ) ;

/∗ Cleanup ∗/
f c l o s e ( s r c f i l e ) ;

f c l o s e ( d e s t f i l e ) ;

for ( i = 0 ; i < num buffers ; i++)
pthread mutex destroy(&buf fer mutex [ i ] ) ;

f r e e ( buf fer mutex ) ;
f r e e ( b u f f e r s t a t u s ) ;
f r e e ( b u f f e r ) ;
f r e e ( b u f f e r s t o r e ) ;
f r e e ( b u f f e r u s e d ) ;
f r e e ( b u f f e r c o n d v a r ) ;

p t h r e a d e x i t (NULL) ;
return (EXIT SUCCESS) ;

}

Listing E.3: Seqprocessor source code (version 3)


