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Data-Driven and Cell-Specific Determination of
Nuclei-Associated Actin Structure

Nina Nikitina, Nurbanu Bursa, Matthew Goelzer, Madison Goldfeldt, Chase Crandall,
Sean Howard, Janet Rubin, Anamaria Zavala, Aykut Satici, and Gunes Uzer*

1. Introduction

Mechanical information is translated into biological response
through perturbations of a highly organized and connected
filamentous actin (F-actin) cytoskeleton where linker of nucleos-
keleton and cytoskeleton (LINC)-mediated F-actin connections to

the nucleus at the “actin cap” translate
these mechanical forces into the nucleus
to alter both nuclear structure and gene
expression.[1] While understanding the
organization and connectivity of cytoskele-
tal networks has been a research topic in
cell mechanobiology for many years,[2]

reconstructing the interconnected struc-
tures of branching F-actin fibers remains
a technical barrier. Much of the informa-
tion regarding F-actin organization relies
on manual and semiautomated processing
of 2D images through open-source pro-
grams such as imageJ;[3] these methods
yield qualitative information with poor
quantitative numbers for molecular struc-
tures. Furthermore, 3D reconstruction of
F-actin represents another challenge as
these methods generally represent the cyto-
skeleton as a simple planar geometry[4–6]

precluding the development of models that
recapture the full complexity of cellular
cytoskeletal networks. To provide quantita-
tive information from planar analysis, fluo-
rescence and electron microscopy-based

image analysis methods have been developed to analyze biopoly-
mer properties, including number, length, and organization.
Reconstruction methods typically involve enhancing filamentous
features to identify and isolate filaments in images, separating
filaments from the background, and extracting individual
filaments using line segment detectors.[7–10] Aside from these
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Quantitative volumetric assessment of filamentous actin (F-actin) fibers remains
challenging due to their interconnected nature, leading researchers to utilize
threshold-based or qualitative measurement methods with poor reproducibility.
Herein, a novel machine learning-based methodology is introduced for accurate
quantification and reconstruction of nuclei-associated F-actin. Utilizing a
convolutional neural network (CNN), actin filaments and nuclei from 3D confocal
microscopy images are segmented and then each fiber is reconstructed by
connecting intersecting contours on cross-sectional slices. This allows mea-
surement of the total number of actin filaments and individual actin filament
length and volume in a reproducible fashion. Focusing on the role of F-actin in
supporting nucleocytoskeletal connectivity, apical F-actin, basal F-actin, and
nuclear architecture in mesenchymal stem cells (MSCs) are quantified following
the disruption of the linker of nucleoskeleton and cytoskeleton (LINC) complexes.
Disabling LINC in MSCs generates F-actin disorganization at the nuclear
envelope characterized by shorter length and volume of actin fibers contributing
a less elongated nuclear shape. The findings not only present a new tool for
mechanobiology but introduce a novel pipeline for developing realistic
computational models based on quantitative measures of F-actin.
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planar approaches, only few studies have been conducted on the
process of separating cytoskeletal filaments and networks in 3D
using immunofluorescence microscopy images.[11,12] While such
methods have provided valuable information, reproducible
volumetric quantification of F-actin is still beyond the reach of
many research groups necessitating an easy-to-use, unbiased
and repeatable volumetric reconstruction of dynamic cytoskeletal
networks in cells.

LINC complexes formed by a family of proteins that include
KASH (Klarsicht, ANC-1, Syne Homology) and SUN (Sad1p,
UNC-84) domains provide mechanical connection between cyto-
plasmic and nuclear compartments. LINC-mediated nucleocyto-
plasmic connectivity has been shown to play important roles
in mechanosensitivity,[13,14] chromatin organization,[15–17] and
DNA repair mechanisms.[18,19] Here, utilizing intact and
LINC-disabled mesenchymal stem cells (MSCs), we describe a
novel approach for automating reconstruction of the nucleocytos-
keletal architecture that is based on deep learning-assisted image
analysis and segmentation of cross-sectional image slices.
Focused on the actin fiber architecture within the nuclear region,
our method provides precise reconstruction of nuclei-associated
fibers, nuclei, and enables extraction of associated statistical data.
The software package developed for this method, “afilament”, is
publicly available for use and validation (see Data Availability
section). Using the afilament software and confocal images of
primary MSCs, we have further quantitatively compared the
cell-specific consequences of disabling LINC complex on the
F-actin cytoskeleton.

2. Methods and Data Collection

2.1. Cell Culture

Bone marrow-derived MSCs (mdMSCs) from 8 to 10 week male
C57BL/6 mice were isolated as described from multiple mouse
donors and MSCs pooled, providing a heterogenous MSCs cell
line.[20] Briefly, tibial and femoral marrow were collected in
RPMI-1640, 9% fetal bovine serum (FBS), 9% horse serum
(HS), 100 μg/ml pen/strep, and 12 μM L-glutamine. After 24 h,
nonadherent cells were removed by washing with phosphate-
buffered saline (PBS) and adherent cells were cultured for
4 weeks. Passage 1 cells were collected after incubation with
0.25% trypsin/1mM EDTA� 2min and replated in a single
175 cm2 flask. After 1–2 weeks, passage 2 cells were replated
at 50 cells/cm2 in expansion medium (Iscove’s Modified
Dulbecco’s Medium [IMDM], 9% FBS, 9% HS, antibiotics,
L-glutamine). mdMSCs were replated every 1–2 weeks for two
consecutive passages up to passage 5 and tested for osteogenic
and adipogenic potential, and subsequently frozen.

These isolated MSC stocks were stably transduced with a
doxycycline-inducible plasmid expressing an mCherry-tagged
dominant-negative KASH (dnKASH) domain.[21] The dnKASH
plasmid was lentiviral packaged as a generous gift from Dr.
Daniel Conway (Addgene # 125 554). In order to label actin in
living MSCs, RFP-tagged chromobody against actin was used
(Chromotek acr-TagRFP). Prior to usage, chromobody was
packaged into a lentivirus for stable transfection. For both
doxycycline-inducible dnKASH and chromobody, lentivirus

supernatant was added to growth media with polybrene
(5 μg/ml). Lentivirus growth media mixture was added to
50%–70% confluent MSCs. Lentivirus media was replaced
48 h later with selection media containing G418 (1mgml�1)
for 5 d to select stably infected dnKASH-MSCs or chromobody
expressing MSCs. Calf serum was obtained from Atlanta
Biologicals (Atlanta, GA). MSCs were maintained in IMDM
with FBS (10%, v/v) and penicillin/streptomycin (100 μg/ml).
For immunostaining experiments, seeding cell density was
3,000 cells per cm2 in growth media. Twenty-four hours after
seeding, dnKASH cells were given growth media containing
doxycycline (1 μg/ml).

2.2. RNA-seq

Total RNA was extracted using RNAeasy (Qiagen) for three sam-
ples per group. Total RNA samples were sent to Novogene for
mRNA sequencing and analysis. Briefly, the index of the refer-
ence genome was built using Hisat2 v2.0.5 and paired-end clean
2 reads were aligned to the reference genome using Hisat2
v2.0.5. featureCounts v1.5.0-p3 was used to count the reads num-
bers mapped to each gene. Differential expression analysis was
performed using the DESeq2 R package (1.20.0). DESeq2 pro-
vides statistical routines for determining differential expressions
in digital gene expression data using a model based on the nega-
tive binomial distribution. The resulting p-values were adjusted
using the Benjamini and Hochberg’s approach for controlling
the false discovery rate. Genes with an adjusted p-value< 0.05
and fold change >0.2 found by DESeq2 were assigned as differ-
entially expressed. Genes with significant differential gene
expression were further analyzed with DAVID for pathway
analysis.[22] Pathways with a p< 0.05 were selected.

2.3. Immunofluorescence

Forty-eight hours after dnKASH expression, cells were fixed with
4% paraformaldehyde. Cells were permeabilized by incubation
with 0.1% Triton X-100. Cells were incubated in a blocking
serum consisting of PBS with 1% bovine serum albumin.
Reagents used for immunofluorescence and their concentrations
are listed in Supplementary Table S1, Supporting Information.
For nuclear staining, cells were incubated with NucBlue Hoechst
33 342 stain (Fisher Scientific) according to the manufacturer’s
protocol. F-actin was stained using Phalloidin (0.1 μM, iFluor
488, Cayman Chemicals). The fluorescent actin cytoskeleton
images were obtained using a Leica Stellaris 5 confocal system
configured with a Leica DMi8 inverted microscope and 63x/1.4
Oil HC PL APO objective. Live cell imaging was performed in
Zeiss LSM 900 confocal microscope with an environmental
chamber using 40x oil immersion objective.

2.4. Reconstruction of Apical and Basal Actin Stress Fibers of
MSC from Confocal Microscope Images

The reconstruction algorithm is divided into three phases: con-
focal image preprocessing, deep learning image segmentation,
and postprocessing (Figure 1).
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Figure 1. Stress fiber reconstruction algorithm. a) Image preprocessing algorithm reads images and metadata, normalizes the images, cuts out the
region corresponding to the nucleus location, rotates the image to align fibers based on Hough Transformation (Methods) of maximal projection
of a fiber layer, and converts the processed single-cell image layers into cross-sectional layers. b) Segmentation process for actin fibers and nuclei
in Y–Z cross-sectional confocal images using two distinctly trained U-Net CNN models. c) Actin fiber reconstruction process based on contour inter-
sections across successive cross-sectional layers of actin masks. In this process, contours of detected F-actin blobs on cross-sectional masks are extended
from the initial layer. These contours are methodically connected to corresponding ones on subsequent layers, following specific overlap criteria:
1) Straightforward continuation: A single contour from layer xþ 1 overlaps exclusively with one contour from layer x. This indicates a direct continuation
of the actin fiber. 2) Overlap with multiple contours: When a contour from layer xþ 1 overlaps with several contours from the previous layer x, it is
integrated into the fiber with the contour that has the largest overlap area. This scenario often represents a branching point. 3) Formation of a new actin
fiber: If a contour on layer x does not overlap with any contours from the preceding layer xþ 1, a new actin fiber object is formed, signifying the start of a
separate fiber. d) A side-by-side comparison of original confocal microscopy images and their respective 3D reconstructions. MSCs were fixed with 4%
paraformaldehyde and stained against F-actin (Phalloidin) and nucleus (Hoechst). Afilament reconstruction of nucleus is shown in blue and actin is
shown in green. The top panel shows the nucleus and its mesh reconstruction. The middle panel displays the actin fibers superimposed on the nucleus.
The bottom panel focuses on actin fibers, differentiated by color in the reconstruction to depict individual fiber paths.
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2.4.1. Preprocessing

The preprocessing phase (Figure 1a) prepares images for seg-
mentation. The algorithm acquires image resolution, z-stack
size, and bit depth via the python-bioformats package.[23] To
detect nuclear area, thresholding was applied to each layer of
the confocal image z-stack to isolate the largest circumference,
which was then cropped for further analysis. To align F-actin
fibers along the nucleus, fiber layers were converted into 2D
via maximal projection and gross fiber orientation was detected
via Hough Transform and aligned along the X-axis. This rotation
allows detection of fibers through Y–Z cross-sectional view along
the X-axis. As apical and basal fibers are not necessarily parallel to
each other,[24] we preprocessed basal and apical fibers separately.
To optimize reconstruction efficiency for apical fiber analysis,
rotation was based on maximal projection of the top 50% of
the height and the bottom 50%was designated as the basal fibers.
Finally, these rotated sets of nuclei and F-actin images were
converted into Y–Z cross-sectional layer sets along the X-axis.

2.4.2. Image Segmentation

Actin fibers on Y–Z cross-sectional images appear as discrete
dots which vary in size, shape, and intensity across stacked layers
along the X-axis. Because of this heterogeneity, applying a global
detection threshold was not possible and required user-directed
manual thresholding for each layer. To both reduce the input
parameters from the user and provide unbiased detection,
cross-sectional images of the actin and nucleus channels were
segmented utilizing a trained convolutional neural network
based on a U-Net architecture (Figure 1b).[25,26]

The use of the U-Net architecture is compelling because of its
good performance (precise segmentation) even in the absence of
thousands of training images. Indeed, it is difficult to obtain a
myriad of training images because a human operator must tend
to each image and provide segmentation of the actin fibers and
nuclei, which becomes overwhelming after a few hundred
images are processed. The U-Net convolutional neural network
architecture comprises an encoder–decoder (contracting–
expansive) structure, where the encoder and the decoder are
almost symmetric and yield a U-shaped architecture. This archi-
tecture makes excessive use of data augmentation by applying
elastic deformations to the available training images.

Training and validation image sets were generated manually
by labeling each F-actin dot and nuclei border on Y–Z cross-
sectional images. For the training and validation sets, we ran-
domly selected 44 cross-sectional slices for actin and 41 slices
for the nucleus, drawing from images of two distinct cells.
The sliced images were padded to a size of 512� 512 pixels,
and a total number of 44 images were split into 38 for training
and 6 for validation for actin and 41 images were split into 35 for
training and 6 for validation for nucleus. Parameters for learning
were: learning rate—0.001, batch size—1, and number of epochs
—200. We used a graphics processing unit to speed up the train-
ing process. The neural network minimizes the loss function
during training that quantifies the pixel-to-pixel differences
between the predicted and target image (Figure 2b). We changed
the loss function to increase the error for false-negative results

for actin fibers to 200 and nucleus to 20. Apical and basal fibers
were assigned based on the mean Z coordinate of each fiber
point; if the mean is higher than the nucleus center, then the
fiber is labeled as apical, and if it is lower than the nucleus center,
then the fiber is tagged as a basal fiber.

2.4.3. Reconstruction

As depicted in Figure 1b, to reconstruct individual F-actin struc-
tures, we grew each of the detected F-actin dots (will be referred
as contours) from the first layer by connecting them to the
detected contours on the next layer if it satisfied the overlap cri-
terion from the previous layer mask. If the contour did not over-
lap with any other contour from the previous layer, a new actin
fiber object was created. If the contour overlapped with more
than one contour from the previous layer (i.e., branching points),
the contour was added to a fiber whose contour had the biggest
overlap area. For example, if two contours on the current layer
overlapped the same contour on the previous layer, the contour
with the larger overlapping area was added to the existing actin
fiber object, and a new actin fiber object created for the second
contour. At the end of the reconstruction, all fibers smaller than
1 μm in length were filtered out (optional parameter). Fiber
length and volume were measured for each specific fiber within
each cell in the dataset. Aggregated fiber statistics on a cellular
level include the total fiber volume, length, and count of apical
fibers, basal fibers, and the whole cell (apical þ basal).

To reconstruct the nucleus, the contours of the nucleus shape
on each Y–Z plane were combined together as a nucleus object.
Volume was measured for the reconstructed object. Length was
measured as the length of the rotated nucleus projection on the
X-axis, width on the Y-axis, and the height extracted by applying
the ellipsoid volume formula: (4/3) � π � R1 � R2 � R.

Figure 1d demonstrates a side-by-side comparison of raw con-
focal images with algorithmic reconstruction results. A more
detailed validation of the algorithm’s accuracy is presented in
Results section.

2.5. Statistical Analysis

The statistical analyses in Figure 4 and 5, S3, and S4, Supporting
Information, as well as Table 1 and 2 were based on a dataset
containing 19 nontreated (–Dox) and 26 treated (þDox) cells with
12 variables (basal fiber length, apical fiber length, total fiber
length, basal fiber volume, apical fiber volume, total fiber volume,
basal fiber number, apical fiber number, total fiber number,
nucleus width, nucleus length, and nucleus volume). To reduce
the confounding bias and to obtain treated and nontreated cells
with similar characteristics, propensity score matching was used
with the nearest neighbor method. When calculating the propen-
sity score, a 1:1 allocation ratio based on the nucleus volume
variable was used. Thus, 19 treated cells were selected from
26 treated cells that were most statistically similar to the 19 cells
in the nontreated group.

All statistical analyses were applied using R-software, version
4.1.3 (R Core Team, 2022) and the RStudio graphical interface.
Shapiro–Wilk test was used to determine whether the variables
were distributed normally. Continuous variables are presented as
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mean � standard deviation or median (quartile deviation)
according to their normality (Table 1). The Spearman correlation
coefficient was used to examine correlations between variables
(Figure 5c). When comparing the variables between groups, boot-
strap t-test with 1000 replications was preferred because of the

small sample size. Two-tailed p-value<= 0.05 was considered
statistically significant in analyses. In addition to p-values, r effect
sizes were also calculated for comparisons.

To see the effects and odds ratios of variables, both a univariate
logistic regression model and a multiple logistic regression

(c)
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Figure 2. Afilament algorithm successfully labels nuclei-associated actin fibers. a) Comparative segmentation analysis: side-by-side views of the cross-
sectional slice from the original confocal microscopy images alongside the manual and U-Net-derived segmentation masks for both actin and nucleus.
This visual comparison shows the actin and nucleus model’s segmentation capabilities, with the U-Net masks closely mirroring the precision of manual
annotations. b) Training details for the neural network. The learning parameters used were a learning rate of 0.001, a batch size of 1, and 200 epochs. The
loss function, which quantifies the differences between predicted and target images, was minimized during training. To prioritize false-negative results the
loss function was adjusted to increase the error by 200 for actin fibers and by 20 for nucleus model. c) Comparative analysis between manual measure-
ments and algorithmic estimations of actin fibers’ lengths and volumes. MSCs were fixed with 4% paraformaldehyde and stained against F-actin
(Phalloidin) and nucleus (Hoechst). The manual measurements were obtained using ImageJ tools, while the algorithmic data were derived from an
afilament algorithm. A paired t-test was conducted to evaluate the differences between the two sets of measurements for both actin fiber length
and volume. The average length of apical actin fibers measured manually is 7.36 μm, compared to 7.64 μm for the afilament algorithm
(p= 0.3760). Similarly, for fiber volume, the manual measurement is 1.91 μm3, and the algorithmic estimation is 2.01 μm3, also yielding a nonsignificant
difference (p= 0.5109).
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model with stepwise variable selection were used (Table 2).
Redundant physical parameter measurements of each cell were
reduced and described with fewer cell properties via a principal
component analysis (PCA). Usage of PCA-transformed data
serves to prevent multicollinearity, reduces the dimension of
the dataset, and improves the classification performance. The
number of principal components was determined via elbow
criteria in the scree plot of eigenvalues (Figure 5b). Finally, to
classify the data points as nontreated and treated groups based
on selected two principal components, three different discrimi-
nant analyses were applied: linear discriminant analysis (LDA),
nonlinear quadratic discriminant analysis (QDA), and mixture
discriminant analysis (MDA). Accuracy rate, sensitivity, and
specificity measures of confusion matrices were used for the
performance evaluation of classification methods. In the below
measurement criteria, true positive means the number of correct
predictions for treated cells, false positive means the number of
incorrect predictions for treated cells, true negative means the
number of correct predictions for nontreated cells, and false neg-
ative means the number of incorrect predictions for control cells.

Accuracy rate ¼ True positiveþ True negative
True positiveþ True negativeþ False positive

þ False negative

(1)

Sensivity ¼ True positive
True positiveþ False negative

(2)

Specificity ¼ True negative
True negativeþ False positive

(3)

A flowchart containing the scheme for all statistical analyses is
demonstrated in Figure S2, Supporting Information. Raincloud
plots to visualize the summary statistics of the nucleus and fibers
are added in Figure S3 and S4, Supporting Information.

3. Results

3.1. Afilament Algorithm Successfully Labels Nuclei-Associated
Actin Fibers

To test the segmentation performance, we used a total of 44 actin
and 41 nucleus cross-sectional images, which were split: 38 train-
ing and 6 validation for actin and 35 training and 6 validation for
nucleus. We first used the training set and monitored the train-
ing progression of U-net models for nucleus and actin fibers
using binary cross-entropy loss function (Figure 2b). Cross-
entropy loss function (Loss ¼ �P

iðyi � logðpiÞ þ ð1� yiÞ�
logð1� piÞÞ penalizes deviations of the algorithm’s predictions
from user-defined predictions with a goal of minimizing the loss
during U-net training. As shown in Figure 2b, loss function
exhibited a downward trend for both actin and nucleus, reaching
on average to values of 0.0085 and 0.0065 at epoch 200 (blue line).
In order to test the performance, we also computed the loss func-
tion for a given random test data (red line). Results show that for
n= 3 random test datasets, the loss function value remains below
0.06 and 0.04 for actin and nucleus, respectively.

To further evaluate the accuracy, we performed a comparison
of user labeling and U-net labeling of actin fibers. We analyzed a
z-stack of an apical fibers on a cell manually via imageJ by track-
ing each fiber using a maximal projection and sampling three
fiber cross sections. These measures were compared to the out-
put from our program. As shown in Figure 2c, visually compar-
ing a fully labeled cross sections showed alignment between the
two methods. Average total actin length difference for 21 fibers
between manual (7.36 μm) and algorithm (7.64 μm) calculations
was �3.81%. Similarly, average actin volume showed a� 5.59%
difference between the manual (1.91 μm3) and algorithm
(2.01 μm3) calculations. Fully reconstructed apical F-actin images
for fixed MSCs are provided in Figure S5, Supporting
Information. We have also confirmed the ability of afilament
to detect fibers in fixed C2C12 muscle precursor cells

Table 1. Characteristics of dataset. Bold indicates p-value<0.05; deviations
of continuous variable were presented either as mean � standard
deviation or as median (quartile deviation) according to their normality.

Variables Nontreated Treated p-value Effect size

Nucleus volume 1620.53 (628.26) 1187.58� 405.51 0.138 –

Nucleus length 30.10� 5.49 25.70 (2.77) <0.001 0.560

Nucleus width 21.00� 4.25 19.33� 4.38 0.200 –

Total fiber number 89.84� 48.12 70.16� 29.73 0.158 –

Apical fiber number 64.32� 32.52 49.32� 41.29 0.112 –

Basal fiber number 27.00 (16.50) 23.63� 14.61 0.672 –

Total fiber volume 57.66� 44.78 25.21 (15.02) 0.016 0.268

Apical fiber volume 45.66� 35.18 23.33� 14.61 0.022 0.295

Basal fiber volume 7.84 (8.54) 6.68 (7.65) 0.463 –

Total fiber length 400.40� 239.90 259.06� 153.19 0.040 0.292

Apical fiber length 293.18� 161.63 186.63� 96.07 0.022 0.324

Basal fiber length 100.46 (64.53) 92.52 (73.82) 0.578 –

Table 2. Univariate and multiple binary logistic regression results. Bold indicates p-value <0.05.

Variables β Estimates with SE OR [95% CI] for univariate model p-value β Estimates with SE OR [95% CI] for multiple model p-value

Nucleus length 0.277� 0.010 1.319 [1.085; 1.605] 0.006 0.277� 0.010 1.319 [1.085; 1.605] 0.006

Total fiber volume 0.024� 0.011 1.024 [1.002; 1.047] 0.036 – – –

Apical fiber volume 0.033� 0.015 1.034 [1.003; 1.066] 0.030 – – –

Total fiber length 0.004� 0.002 1.004 [1.000; 1.007] 0.046 – – –

Apical fiber length 0.006� 0.003 1.006 [1.001; 1.011] 0.027 – – –
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(Figure S6, Supporting Information) and live MSCs labeled
against actin (Figure S7, Supporting Information).

3.2. Overexpressing Nesprin KASH Domain Disables LINC
Function in MSCs

To disable LINC function, we stably infected MSCs via lentivirus
harboring a doxycycline (Dox) inducible mCherry-tagged KASH
domain (dnKASH-MSCs). 1 μg/ml Dox was added to cell culture
medium to induce mCherry-KASH and prevent actin linking to
Nesprins on the nuclear envelope (Figure 3a, referred as þDox).
Controls were not exposed to Dox. As shown in Figure 3b,
þDox treatment increased mCherry intensity by 73% (n= 515,
p< 0.0001) and decreased Nesprin-2 intensity by 63% (n= 530,
p< 0.0001), measured over the nuclear area, indicating that
Nesprin-2 was displaced from nucleus inmCherry expressing cells.

3.3. Disabling LINC Function Reduces Unbiased Measures of
Apical but Not Basal F-actin

As shown in Figure 4a, þDox treatment resulted in less F-actin
fibers across the apical nuclear surface and changed both the

nucleus and F-actin measures. Statistical comparison of all 12
variables between Dox treated and controls are given in
Table 1 and Figure S3 & S4, Supporting Information. Total fiber
volume and apical fiber volume were 67% (p= 0.016) and 47%
(p= 0.022) smaller in the þDox groups, respectively. Similarly,
total and actin apical fiber lengths were both 37% shorter
(p< 0.05). As shown in Figure 4b,c, when fibers from all cells
were pooled,þDox treatment resulted in shortened total and api-
cal fiber lengths (15%, p< 0.001). Total fiber volume and apical
fiber volume were 30% (p< 0.001) and 32% (p< 0.001) smaller
in the þDox groups, respectively. As depicted in Figure 4c,
length and volume distributions showed that control cells with
no Dox treatment exhibited longer F-actin fibers with more
volume: the longest fibers with the greatest volume in the
–Dox group were 30%–50% larger than those in theþDox group.
Basal F-actin fiber measurements did not change. Average
nucleus length was also 23% smaller in the þDox group
(Table 1, p= 0.0007). Taken together, these results show a sig-
nificant decrease in the volume and length of actin fibers associ-
ated with the apical nuclear surface by þDox-induced disruption
of actin/Nesprin binding, resulting in a less elongated nucleus.

3.4. Disabling LINC Function Uncouples F-actin from Nuclear
Shape Measures

We next explored correlations between the 12 variables across the
groups. Correlation between total fiber measures, number,
length, and volume, remained relatively unchanged between
–Dox (0.87� 0.04) and þDox (0.94� 0.03) groups. Fiber length,
volume, and number all had lower correlations with the nucleus
shape measures in the þDox group when compared to the –Dox
group (Figure 5a). For example, the average correlation of apical
F-actin number, volume, and length with nuclear width, length,
and volume was 0.73� 0.04 in the –Dox group, dropping by 50%
to 0.36� 0.05 in the þDox group. This indicated a strong decou-
pling between F-actin configuration and nuclear shape when
LINC was disrupted due to the þDox treatment.

Further univariate and multiple binary logistic regressions
were applied to the dataset to find how significant variables
increased the likelihood of being in one of the groups.
According to Table 2, using the stepwise variable selection crite-
ria, only the nucleus length variable was selected. As shown in
Table 2, when nucleus length increases by 1 unit, the probability
of being in the –Dox group increases 1.32 times compared to the
þDox, suggesting nuclear length as the most predictive measure.
Next, we performed a PCA. As shown in Figure 5b, two uncor-
related principal components were found: one representing
nucleus length and the other representing apical fiber length,
total fiber length, apical fiber volume, and total fiber volume
which explained the 95.60% of the total variance in the dataset.
To test the accuracy of these two principal components, we per-
formed discriminant analysis. To classify the cells into either
treated or nontreated groups, quadratic and mixture discrimi-
nant analysis approaches were used. Results shown in
Figure 5c indicate that LDA and QDA performed similarly, while
MDA showed the best classification accuracy rate (87%),
sensitivity (84%), and specificity (90%). Together these findings

Imaging
RNA-seq
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Figure 3. Overexpressing Nesprin KASH domain disables LINC function
in MSCs. a) KASH expression was induced in MSCs harboring a doxycy-
cline (Dox) inducible mCherry-tagged KASH domain by adding 1 μg/ml
Dox to cell culture medium. No Dox treatment was used as control.
Imaging and RNAseq outcomes were acquired 48 h after the Dox treat-
ment at day 3 after cell seeding. b) þDox treatment resulted increased
mCherry (red) intensity by 73% (n= 515, p< 0.0001) and decreased
Nesprin-2 (green) intensity by 63% (n= 530, p< 0.0001). Nucleus was
counterstained via Hoechst.
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support that our unbiased approach can predict whether LINC
function is disabled by querying nuclear length.

3.5. LINC Depletion Alters Cell Attachment and Actin-Related
Gene Expression in MSCs

Finally, to understand the possible transcriptional changes due to
alterations in the actin and nucleus under þDox treatment, we
performed RNA-seq analysis. DESEQ2 analyzes filtered gene
pairs with significant expression differentials (p< 0.05). As
shown in Figure 6a, a hierarchical heatmap showed a clustering
of þDox treatments (i.e., dnKASH expression). As shown in
Figure 6b, a total of 177 genes (127 up, 50 down) were

differentially regulated between þDox and –Dox groups with
p< 0.05 statistical significance. Comparing the gene profiles
between the �Dox groups, DAVID analyses identified 38 differ-
entially expressed pathways. Downregulated genes only associ-
ated with two pathways (total of five genes). Upregulated
pathways included cell migration, integrin binding, integrin sig-
naling, and cell adhesion-related pathways. As shown in
Figure 6c, quantification of cytoskeleton and cell adhesion-
related genes revealed that þDox treatment significantly
increased the expression of 17 genes including adhesion G
protein-coupled receptor G1 (Agdrg1)[27] and CD93[28] which
have roles in RhoA-mediated cell spreading and migration, as
well as integrin subunit beta 3 (itgb3), integrin subunit beta 7
(itgb7), and tyrosine-protein kinase Src (Src). The DAVID
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Figure 4. Disabling LINC function reduces unbiased measures of apical but not basal F-actin. a) MSCs were fixed with 4% paraformaldehyde and stained
against F-actin (Phalloidin) and nucleus (Hoechst). Visualization of þDox treatment indicates less and disorganized F-actin fibers across the apical
nuclear surface. b) When fibers from all cells were combined, þDox treatment resulted in shortened total and apical fiber lengths (15%,
p< 0.001). Total fiber volume and apical fiber volume were 30% (p< 0.001) and 32% (p< 0.001) smaller in the þDox groups, respectively. No changes
in basal actin were observed. c) Similarly, combined distribution of total actin length and volume showed that –Dox treatment exhibited longer actin fibers
with larger volumes.
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pathway analyses can be found in Table S2 and S3, Supporting
Information. The increased levels of integrin and cell spreading-
related genes in þDox-treated cells indicate a compensatory
mechanism by which cells might respond to loss of apical actin
filament volume by upregulating RhoA-mediated cell spreading.

4. Conclusions and Discussion

Here, we developed an automated volumetric detection method
for cell nuclei and nuclei-associated F-actin fibers. Our method

requires no user input for segmentation and allows unbiased
analysis of confocal images. This approach enables an unbiased
analysis of confocal images, substantially improving processing
time. The manual method of analyzing cells for verification algo-
rithm accuracy (Figure 2c) took an estimated 4 h, whereas the
automated algorithm accomplished the task in just 20min.
Although these durations may vary depending on computational
power and individual proficiency, the algorithm’s primary bene-
fit is its ability to provide uniform measurement standards.
Versatile postprocessing options based on user needs can be
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Figure 5. Disabling LINC function uncouples F-actin from nuclear shape measures. a) Correlations of þDox and –Dox groups, from left to right.
Correlation between total fiber measures remained relatively unchanged between the þDox (0.87� 0.04) and the –Dox (0.94� 0.03) groups.
Average correlation of apical F-actin measures with nuclear width, length, and volume (0.73� 0.04) seen a 50% drop in the þDox group and reduced
to 0.36� 0.05. b) Scree plot of the eigenvalues (left) and rotated principal components plot (right). Two uncorrelated principal components were found,
one representing nucleus length and the other representing apical fiber length, total fiber length, apical fiber volume, and total fiber volume which
explained the 95.60% of the total variance in the dataset. c) Linear, quadratic, and mixture discriminant analysis approaches were used to classify
the cells into either treated or nontreated groups. LDA and QDA performed similarly, while MDA showed the best classification accuracy rate
(87%), sensitivity (84%), and specificity (90%).
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adapted to allow detection of large range of F-actin structures
associated with nuclei. As shown by quantification of a relatively
small dataset, this approach permits a comprehensive statistical
analysis of F-actin structure and should lend itself to
high-throughput approaches when coupled with automated data
collection, available through most of the modern microscopes.
As most in vitro investigations also rely on sampling relatively
small number of cells in an imaging plate, such unbiased, high
throughput capabilities that detect inherent variations in single
dish will expand cytoskeletal analysis options and aid repeatabil-
ity of data across multiple laboratories. We show that our method
can be implemented with multiple fixed cell types (Figure S5 &
S6, Supporting Information) and live cell imaging (Figure S7,
Supporting Information). In our investigations, however, we
were not able to detect apical or basal fiber in muscle tissue (data
not shown), suggesting that in vivo detection of nuclei-associated
fibers may be more technically challenging due to increased
imaging complexity.

Analyzing F-actin and nuclear shape parameters in LINC-
disabled MSCs showed that depleting LINC function does not
decrease the total number of fibers on the apical nuclear surface
but instead shortens their overall length and volume.
Interestingly we did not detect any changes in the number or
characteristics of basal F-actin fibers, perhaps indicating that
Nesprin is not involved. On the apical aspect, F-actin-generated
contractile forces indent the nuclear surface[29–31] magnitude of
which are likely proportional to the cross section of the F-actin
fibers. Our method predicts that force across the apex of the
nucleus should be reduced by disrupting LINC because F-actin

volume decreased but their numbers stayed the same, likely due
to a reduction in the cross section of each fiber. Such an unbiased
method to detect and quantify F-actin should contribute to under-
stand cytoskeletal forces on the nucleus. For example, mechani-
cal models of cells often rely on simple and idealized geometries
to represent cells and cytoskeleton.[32–35] Unbiased segmentation
of F-actin and nuclei from confocal scans will allow more com-
plex and realistic cellular models and thus enable researchers to
quantify nuclear forces more accurately.

Using statistical models our data was able to distinguish –Dox-
treated cells fromþDox-treated cells based on the nuclear length.
This was possible because disabling LINC function reduced the
correlation between F-actin and nuclear shape measures by half,
indicating that F-actin regulation and nuclear shape were
uncoupled in LINC-disabled MSCs. Our results further indicated
that the LINC-disabled state was accompanied by upregulation of
genes involved in cell attachment, integrin signaling, and actin
regulatory pathways. Similar increases in focal adhesion struc-
ture have been reported when Nesprin and SUN components
of LINC complex were depleted[36–38] or when the nucleus
was softened by depleting LaminA/C.[39] To this point, we previ-
ously reported that depleting LINC function does not soften cell
nuclei;[40] the preservation of nuclear modulus suggests that
interfering with actin/Nesprin attachment stimulates compensa-
tory processes to losing nucleocytoskeletal connectivity by upre-
gulating attachments at the cell edge.

As to effects in MSC, it has been recently reported that deplet-
ing LINC function via depletion of SUN proteins can alter
heterochromatin states altering lineage selection.[41] Depleting
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Figure 6. LINC Depletion alters cell attachment and actin-related gene expression in MSCs. a) DESEQ2 analyzes filtered gene pairs with significant
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SUN proteins results in functionally different heterochromatin
rearrangements than does dnKASH expression,[21] suggesting
that changes in the heterochromatin state are affected by both
nuclear envelope structural composition and F-actin contractility.
To this end, our method can be implemented with both fixed and
live cell imaging to detect changes in F-actin under variety of
mechanical forces and thus enable researchers to develop new
hypotheses in cell mechanobiology.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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