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Quantum dot growth on (111) and (110) surfaces using tensile-strained 
self-assembly 

Paul J. Simmonds* a
a Dept. of Physics / Micron School of Materials Science & Engineering, Boise State University, 

1910 University Drive, Boise, ID 83725, USA 

ABSTRACT 

The self-assembly of epitaxial quantum dots on (001) surfaces, driven by compressive strain, is a widely used tool in 
semiconductor optoelectronics. In contrast, the growth of quantum dots on (111) and (110) surfaces has historically been 
a significant challenge. In most cases the strain relaxes rapidly via dislocation nucleation and glide before quantum dots 
can form. In this paper, we discuss a method for the reliable and controllable self-assembly of quantum dots on both (111) 
and (110) surfaces, where tensile strain is now the driving force. By showing that tensile-strained self-assembly is 
applicable to several material systems, we demonstrate the versatility of this technique. We believe that tensile-strained 
self-assembly represents a powerful tool for heterogeneous materials integration, and nanomaterial development, with 
future promise for band engineering and quantum optics applications. 

Keywords: Tensile strain, quantum dots, self-assembly, (111), (110), fine structure splitting. 

1. INTRODUCTION
Since the early 1990s, self-assembled quantum dots (QDs) have been the subject of intensive research for technologies 
ranging from high-stability lasers, to intermediate band solar cells.1,2 Under large compressive strains, semiconductor QDs 
form spontaneously via the Stranski-Krastanov (SK) mechanism on the (001) surfaces of both III-V and group IV 
materials.3,4 In zinc-blende and diamond-cubic materials, the shear stress caused by the compressive strain is aligned with 
the {111} glide plane in such a way that plastic strain relief by dislocation nucleation is energetically unfavorable.5,6 A 
window therefore exists within which partial elastic strain relief by 3D roughening takes place instead,7 resulting in the 
self-assembly of dislocation-free QDs. 

That being said, QDs grown on non-(001) surfaces such as (111) and (110), or QDs grown under tensile rather than 
compressive strain, are highly desirable for certain applications. The low fine-structure splitting of (111) QDs should make 
them ideal entangled photon sources,8 while tensile-strain dramatically reduces semiconductor band gaps.9 The ability to 
synthesize (111)-oriented and tensile-strained QDs therefore has implications for quantum optics, infrared optoelectronics, 
and nanoscale band structure engineering. However, until recently it has been enormously challenging to synthesize QDs 
on (111) and (110) surfaces, or tensile-strained QDs, that are free from strain-related crystallographic defects such as 
dislocations.10–13 In both situations, the strain-induced shear stress is aligned with the corresponding {111}glide plane in 
such a way that the energy barrier to dislocation nucleation and glide is very low.5,6 As a result, to obtain QD growth on 
non-(001) surfaces, researchers have resorted to inventive approaches such as droplet epitaxy,14,15 and growth on pre-
patterned substrates.16,17 Only a few isolated reports of dislocation-free tensile-strained QDs exist.18–20 Despite the merits 
of these alternative approaches, a QD self-assembly process based on the single-step SK or Volmer-Weber (VW) 
mechanisms would be preferable from the points of view of simplicity, scalability, and crystal quality. 

To this end, we have pioneered a new, single-step approach based on molecular beam epitaxy (MBE) that enables the self-
assembly of dislocation-free, tensile-strained QDs on (111) and (110) surfaces.5,21–25 The success of this approach comes 
from recognizing that combining tensile strain and a (111) or (110) surface restores the energy barrier to dislocation 
nucleation and glide. On both the (111) and (110) surfaces, the tensile strain-induced shear stresses align with the respective 
{111} glide planes to effectively reproduce the situation for compressive strain on a (100) surface.5,6 As a result, we once 
again obtain a window where strain relief via QD self-assembly can occur before dislocation formation. The outcome is a 
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single-step, tensile-strained self-assembly process that results in the reliable, controllable growth of defect-free QDs on 
(111) and (110) surfaces. 

We have now demonstrated the viability of tensile-strained self-assembly as a new tool for heterogeneous materials 
integration and nanomaterial development in several materials systems. In this paper, we review the current progress made 
in this emerging field of optoelectronic nanostructure synthesis, and outline some of the applications for the resulting QDs 
that take advantage of their unique properties.  

2. GaP QD SELF-ASSEMBLY ON GaAs(110) and (111)
2.1 GaP QDs on GaAs(110) 

We carried out our initial proof-of-concept studies of tensile-strained self-assembly in the GaP/GaAs(110) material system. 
The first challenge is that growth of smooth homoepitaxial GaAs(110) buffers is more difficult than on the traditional 
(001) substrate orientation. The result is frequently material with a very rough surface, and poor electrical and optical 
properties.26,27 Nevertheless, these issues can largely be resolved by carefully control of the MBE parameters during 
growth, namely by selecting low growth rates, high V/III ratios, and low substrate temperatures.6,28–30  

We then deposited GaP onto the smooth GaAs(110) buffers to test our hypothesis that dislocation-free self-assembly would 
occur.21 Due to its smaller lattice constant, GaP on GaAs experiences 3.7% tensile strain. We found that this tensile-strain 
causes the GaP to self-assemble into QDs (Fig. 1). Transmission electron microscopy (TEM) reveals that below some size 
threshold (~6 ML), the self-assembled GaP QDs are dislocation-free, as predicted.21 We can readily tune QD size and areal 
density by adjusting the amount of GaP we deposit (Fig. 1).21 

Figure 1. 1×1 μm2 atomic force micrographs, showing the evolution of GaP/GaAs(110) QDs with GaP deposition amount (z-
scale is 3 nm). (a) After 0 ML(monolayers) of GaP (i.e., the bare GaAs(110) buffer surface), and (b)–(e) with GaP deposition 
increasing from 0.3–2.8 ML. (f) Line sections taken along the long and short axes of the 0.7 ML QD shown in (c). 

These GaP(110) QDs exhibit some interesting features. In archetypal compressively strained QD systems, such as 
InGaAs/GaAs(001), the dots are typically quasi-circular dots in shape.3 In contrast, the GaP(110) QDs in Fig. 1 adopt a 
distinctive, conical shape, with a constant length/width ratio of ~2 for all samples. The axis of symmetry of these QDs is 
consistent across samples, aligned along the  direction. Interestingly, each GaP(110) QD is also accompanied by a 
nanohole located at the “base” of the cone. This can be most clearly seen in the long-axis line section in Fig. 1(f). QDs 
with very similar line profiles have been previously reported for the InGaAs/GaAs QDs grown by droplet epitaxy on the 
(311)A surface.31 The most likely mechanism for nanohole formation is the out-diffusion of arsenic and etching of the 
underlying buffer material by gallium-rich surface droplets.32  

Rather than forming via the SK mechanism that is typical for compressive (001) QDs, the GaP(110) QDs form via the VW 
growth mode. Self-assembled GaP(110) QDs are clearly evident even when significantly less than one monolayer of 
material has been deposited (Fig. 3(b)). This observation precludes the formation of a continuous 2D wetting layer prior 
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to the onset of 3D QD formation, which is the signature of SK growth.3 The fact that we see VW rather than SK growth is 
likely a function of the surface energies of the GaP/GaAs system.21 

The QDs have very low areal density of ~7 × 107 cm–2. Regardless of deposition amount, the size distribution of GaP(110) 
QDs is monomodal, with no evidence of Ostwald ripening.21 We attribute the low areal density and uniformity of the 
GaP(110) QDs to the fact that adatom migration lengths are much longer on (110) surfaces than on (001).33 Gallium 
adatoms can therefore be efficiently shared between the growing QDs, and could result in QDs reaching an equilibrium 
size, a phenomenon that has been proposed but rarely observed in traditional (001) QDs.34 Another feature that results 
from the high adatom mobility of (110) surfaces is that fact that the GaP QDs nucleate solely at step-edges on the surface. 
This contrasts with compressive (001) QDs that tend to nucleate randomly across the surface. The longer migration length 
on (110) means Ga adatoms are able to reach the very low energy sites available at the step edges before QD nucleation 
begins.5 

2.2 GaP QDs on GaAs(111)A 

Having verified our model for (110) surfaces, we moved on to test the prediction that tensile-strained self-assembly should 
also occur on (111)-oriented surfaces. We began by optimizing the growth of homoepitaxial buffers on GaAs(111)A 
substrates (i.e., the gallium-terminated surface orientation). The primary challenge for growth on (111)A is the formation 
of pyramidal surface defects that appears to be linked to the low sticking coefficient of arsenic on these surfaces.35,36 
Therefore, by using very large V/III ratios to avoid arsenic-limited growth, we are able to grow reasonably smooth 
GaAs(111)A buffers.22 

Depositing tensile-strained GaP onto these GaAs(111)A buffers results in QD self-assembly. As before, TEM analysis 
shows that these GaP(111)A QDs are free from dislocations and coherently strained to the GaAs buffer.22 This time the 
GaP QDs resemble equilateral triangles, reflecting the three-fold symmetry of the (111) surface. As we saw for the 
GaP(110) QDs, growth of the GaP(111)A QDs proceeds via the VW growth mode. As expected, we can tune QD size by 
increasing the amount of GaP deposited. We can also control QD size and areal density by adjusting the substrate 
temperature during GaP deposition (Fig. 2). Raising the substrate temperature from 520–580 °C, increases average QD 
height (from 3-7 nm) and radius (from 40-83 nm), while decreasing the areal density (from 2 × 109 – 7 × 108 cm–2). Ga 
adatom diffusion length rises as we increase the substrate temperature, resulting in the formation of low density, larger 
dots that minimize strain energy more efficiently than numerous small dots.37 

Figure 2. (a)–(c) 5×5 μm2 atomic force micrographs, showing the evolution of GaP/GaAs(111)A QDs with substrate 
temperature during GaP deposition  (scale bar is 1 μm, z-scale is 3 nm). Insets show higher magnification 1×1 μm2 images of 
each sample (scale bar is 200 nm, z-scale is 3 nm). (d) Summary of GaP QD size and areal density statistics as a function of 
substrate temperature. As substrate temperature is raised, average QD height and size increase, while QD density reduces.

Growth of GaP(111)A QDs obeys island scaling theory.22 We see an increase in the critical cluster size for QD nucleation 
as we raise the substrate temperature, compatible with nucleation behavior in other material systems.38,39 This agreement 
indicates that the kinetics underpinning tensile-strained self-assembly of GaP(111)A QDs are consistent with what has 
been established for traditional compressive QD self-assembly. 

There are some key differences between the GaP(110) and GaP(111)A QDs. GaP(111)A QDs nucleate randomly across 
the GaAs surface, rather than only at the step-edges like the GaP(110) QDs. In addition, the areal densities of the 
GaP(111)A QDs are at least an order of magnitude higher than the 7 × 107 cm–2 we observe for the GaP(110) QDs.21 We 
can explain both of these differences by the fact that Ga adatom mobility is lower on (111)A than (110) surfaces.33 Adatoms 
hence do not have enough energy to reach the closest step-edges, and instead QD nucleation occurs closer to where the 
adatoms first land on the surface. The result is a higher density of randomly distributed QDs on the (111)A surface. 
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2.3 GaP quantum wires on GaAs(111)B 

To complete this initial study of tensile-strained self-assembly on low-index, non-(001) planes, we moved to the 
GaAs(111)B surface (i.e., the arsenic-terminated surface orientation). Growth of smooth GaAs with a (111)B orientation 
is notoriously difficult, with the surface typically covered in wide, short triangular defects composed of three vicinal (111) 
facets inclined at ~2° from the surface.40 It is possible to suppress growth on these facets by using misoriented substrates, 
offcut by 2° in the  direction.40 The outcome is growth of smooth GaAs(111)B buffers whose surface morphology is 
dominated by terraces around 50 nm wide that result from the offcut (Fig. 3(a)). The terraces are separated by step-bunches 
~6 ML in height. 

Figure 3. 1×1 μm2 atomic force micrographs, showing the surface morphology of GaAs(111)B buffers (a) before and (b) after 
4.5 ML of GaP deposition (scale bar is 200 nm, z-scale is 3 nm). 

When GaP is deposited onto these GaAs(111)B buffers, it too undergoes tensile-strained self-assembly, just as we see for 
GaP(110) and GaAs(111)A.5 The difference in this situation is that the morphology of the resulting GaP(111)B 
nanostructures conforms to that of the underlying GaAs buffer. During GaP deposition, Ga adatoms landing on a given 
terrace are prevented from moving up or down to neighboring terraces due to the potential barriers caused by the steep 
step-bunches. The only direction in which the adatoms can therefore move is along the terraces. The result is the formation 
of tensile-strained 1D GaP quantum wires instead of discrete QDs. These 4.5 ML GaP(111)B quantum wires are ~2 nm 
high and typically several microns long. Their width is dictated by the width of the underlying GaAs(111)B terraces.5 

2.4 Summary of GaP QD self-assembly on GaAs(110) and (111) 

The results described in the preceding three sections verify that our model for tensile-strained self-assembly is correct. 
When tensile-strained zinc-blende GaP is deposited onto a (110)- or (111)-oriented surface, partial elastic strain relief by 
surface roughening takes place before the onset of plastic strain relief by dislocation nucleation and glide. The result is the 
spontaneous formation of defect-free 3D nanostructures by the VW growth mode, the features of which are dominated by 
Ga adatom mobility on each GaAs buffer surface orientation. We can readily tune the size and areal density of the GaP 
nanostructures both by controlling the amount of material deposited, and by the MBE growth conditions. 

GaP is however an indirect band gap semiconductor, and so these QDs and quantum wires are not optically active. The 
second stage of tensile-strained self-assembly development was therefore to extend this novel approach to direct band gap 
semiconductors. 

3. GaAs QD SELF-ASSEMBLY ON InAlAs(110) and (111)
We selected tensile-strained GaAs deposited on In0.52Al0.48As buffers for the second stage of our study. In0.52Al0.48As 
(InAlAs) is lattice matched to InP substrates. We chose this material system for several reasons. First, both GaAs and 
InAlAs are direct band gap materials, meaning that any tensile-strained nanostructures that form should be optically active. 
Second, the lattice mismatch between GaAs and InAlAs is almost identical to that between GaP and GaAs, so that these 
two systems are almost identical from the point of view of the tensile strain. Third, we wanted to find a tensile-strained 
system where the band gap of the buffer material is greater or equal to that of the nanostructure material. This arrangement 
is a requirement for carrier confinement within the nanostructures. The GaAs/InAlAs system meets this requirement. 
Without strain, the band gap of InAlAs is slightly larger than that of GaAs (1.45 eV and 1.42 eV respectively at 300 K). 
However, we calculate that the band gap of GaAs will shrink by as much as 0.7 eV when the 3.7% tensile strain is taken 
into account, leading to robust carrier confinement within the InAlAs barriers.23,24 
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3.1 GaAs QDs on InAlAs(110) 

Mirroring our approach with the GaP/GaAs experiments, we began with GaAs deposited on InAlAs(110). Growth of 
smooth InAlAs buffers on non-(001) InP substrates is perhaps even more of a challenge than the GaAs homoepitaxial 
buffers in Section 2. The fact that the sticking coefficient of indium rapidly reduces at temperatures above 545 °C places 
a major constraint on the MBE growth conditions that can be used.41 This is compounded by the fact that the adatom 
mobility of Al is typically lower than that of Ga. The growth of InAlAs on InP(110) by MBE is the subject of only a small 
handful of studies.42–44 Nevertheless, by using extremely low substrate temperatures and high arsenic overpressures it is 
possible to achieve growth of smooth InAlAs(110) (Fig. 4(a)).44  

Figure 4. (a)–(d) 1×1 μm2 atomic force micrographs, showing the evolution of GaAs(110) QD self-assembly as a function of 
GaAs deposition thickness (scale bar is 200 nm, z-scale is 2 nm). (e) Total volume of GaAs in QDs per unit area as a function 
of deposition thickness. The linear fit indicates a critical thickness of 1.8 ML for the SK growth transition. 

GaAs deposited onto InAlAs(110) initially forms a smooth 2D wetting layer (Fig. 4(b)). However, as the deposition 
thickness is increased to 2 ML, we see a transition from 2D to 3D growth with the formation of self-assembled GaAs QDs 
(Fig. 4(c)). This is a critical difference from the GaP QDs above for which we saw VW-based self-assembly at 
submonolayer deposition thicknesses. Here, the formation of a 2D wetting layer prior to GaAs(110) QD self-assembly is 
a signature of SK growth. Since the tensile strains experienced by the GaP and GaAs are similar, this change from VW to 
SK growth is most likely due to the different surface energies of the GaAs/InAlAs system. The GaAs(110) QDs increase 
in both size and areal density as we raise the deposition thickness further to 3 ML (Fig. 4(d)). After calculating the total 
volume of material per unit area incorporated into the 3D QDs as a function of GaAs deposition thickness, we can 
extrapolate back and estimate a critical thickness of 1.8 ML for the 2D to 3D growth transition.  

The quasi-rectangular GaAs(110) QDs are elongated in the  direction, with an average aspect ratio of 2.4. 
Interestingly, we see no evidence of the nanoholes that formed during GaP(110) QD self-assembly (Fig. 1). TEM analysis 
shows that these tensile-strained QDs are again dislocation-free.23 High crystalline quality, combined with the direct band 
gap of the GaAs, means that these tensile strained QDs are optically active (Fig. 5). 

Figure 5. Room temperature PL from a sample containing 6 ML GaAs(110) QDs. Control spectra from the InP(110) substrate 
and a 0 ML QD sample (i.e., just the InAlAs barriers on InP) are shown for comparison. The dashed line indicates the band 
gap of bulk GaAs at 300 K. The pump laser wavelength is 532 nm. 

GaAs(110) QDs buried under a top InAlAs barrier emit room-temperature photoluminescence (PL) that is readily tunable 
with QD size because of quantized carrier confinement.23 Figure 5 shows the PL spectrum for a sample containing 6 ML 
GaAs(110) QDs, which emit light at 1.24 eV (1000 nm) (Fig. 5). Fundamental to this work is the fact that the GaAs(110) 
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QD PL is at lower energy than the 300 K band gap of bulk (i.e., unstrained) GaAs at 1.42 eV (873 nm) (dashed line in Fig. 
5). This red-shift in the GaAs(110) QD PL is consistent with the presence of tensile strain, and its effect of reducing the 
semiconductor band gap. Despite the fact that carrier confinement within the QDs pushes the energy states away from the 
band edges, we still see a net reduction in photon energy of 200 meV compared to bulk GaAs, confirming the dramatic 
effect of tensile strain on the GaAs QD band structure. 

3.2 GaAs QDs on InAlAs(111)A 

MBE growth of smooth InAlAs on InP(111)A is not straightforward. We typically see large, 50 nm tall pyramidal defects, 
with areal densities around 107 cm–2, while features consisting of concentric 2D islands appear in the smoother regions 
between the pyramids.44 Using high substrate temperature, a low growth rate, and a very high V/III ratio during 
InAlAs(111)A growth helps to significantly reduce the appearance of these features, but it is not possible to eliminate them 
completely. We also found that inserting a thin layer of lattice-matched In0.53Ga0.47As between the InAlAs and the 
InP(111)A substrate led to a marked improvement in surface morphology.44 

Figure 6. (a)–(c) 1×1 μm2 atomic force micrographs, showing the evolution of GaAs(111)A QD self-assembly as a function 
of GaAs deposition thickness (scale bar is 200 nm, z-scale is 2 nm). (d) 7 K PL spectra from (111)A QDs as a function of 
GaAs deposition thickness in the range 3.0–4.5 ML (spectra normalized to InAlAs barrier peak height). (e) Plot of peak QD 
PL energy from (d) against GaAs deposition amount. 

2.5 ML GaAs deposition results in a smooth, 2D surface (Fig. 6(a)), while by 3.5 ML, a transition to 3D growth occurs, 
consistent with SK growth. Small GaAs(111)A QDs appear (Fig. 6(b)), which then increase in both size and areal density 
by 4.5 ML (Fig. 6(c)). The well-resolved triangular shape of the QDs corresponds to the three-fold symmetry of the (111)A 
substrate. These self-assembled GaAs(111)A QDs are free from dislocations and optically active up to room temperature.25 
PL emission from GaAs(111)A QDs buried under a top InAlAs barrier is highly tunable with QD size over the range 1.18–
1.29 eV at 7 K (960–1050 nm) (Fig. 6(d)). We observe the expected redshift as QDs get larger, due to quantum confinement 
effects (Fig. 6(e)). The linearity of this trend means that we can accurately grow QDs with any emission energy in this 
range by targeting a given GaAs deposition amount. Once again, due to the large tensile strain, the GaAs(111)A QDs emit 
light at much lower energy than the band gap of bulk GaAs (1.52 eV at 7 K). 

Light emission is most intense for the 4.0 ML GaAs(111)A sample as it has the highest areal QD density, and so the largest 
number of emitters. We see a low-energy shoulder start to appear on the 3.5 ML QD peak, which develops into a secondary, 
low-energy peak for the 4.0 and 4.5 ML QD samples. This additional peak indicates emission from a population of larger 
QDs, suggesting the onset of Ostwald ripening and the development of a bimodal QD size distribution.45
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3.3 GaAs quantum wires on InAlAs(111)B 

As for the GaAs(111)B substrates discussed in Section 2.3, to promote the growth of smooth InAlAs buffers we use 
InP(111)B substrates offcut by 2° in the  direction.46 The optimal conditions for MBE growth of InAlAs(111)B are 
a high substrate temperature of 540 °C and a V/III ratio of 10–12.44 

The InAlAs buffer is smooth, with shallow striations along  as a result of the substrate offcut (Fig. 7(a)). Just as for 
the GaP(111)B, tensile-strained self-assembly takes place via the formation of GaAs(111)B quantum wires that decorate 
each terrace on the InAlAs buffer surface.24 The quantum wires grow in both height and width with increasing GaAs 
deposition (Figs. 7(b)–(c)). Their length is typically on the order of several hundred nanometers. 

Figure 7. (a)–(c) 1×1 μm2 atomic force micrographs, showing the evolution of GaAs(111)B quantum wire self-assembly as a 
function of GaAs deposition thickness (scale bar is 200 nm, z-scale is 3 nm). (d) 77 K PL spectra from (111)B quantum wires 
as a function of GaAs deposition thickness in the range 2.0–4.0 ML (spectra normalized to InAlAs barrier peak). (e) Plot of 
peak QD PL energy from (d) against GaAs deposition amount. 

The GaAs(111)B quantum wires are defect-free and optically active (Fig. 7(d)).24 GaAs(111)B quantum wires buried under 
a top InAlAs barrier offer carrier confinement, since their PL emission energy is once again tunable with GaAs deposition 
amount, (i.e., quantum wire size). Due to quantum confinement effects, we see the expected redshift over the range 1.33–
1.18 eV (932–1051 nm) as the wires get larger (Fig. 7(e)). Again, a linear response means that we can readily tune the 
quantum wires to any emission energy in this range. The large residual tensile strain in the GaAs(111)B quantum wires 
mean they emit light below the band edge of bulk GaAs (1.51 eV at 77 K). 

Light emission is most intense for the 2 ML GaAs(111)B quantum wire sample. By 4 ML, the accumulated strain has 
become sufficiently large to overcome the energy barrier to dislocation nucleation and glide.24 The resulting defects quench 
the PL from the 4 ML GaAs(111)B quantum wires. 

3.4 Summary of GaAs QD self-assembly on InAlAs(110) and (111) 

When tensile-strained GaAs is deposited onto a (110)- or (111)-oriented surface, partial elastic strain relief by surface 
roughening takes place before the onset of plastic strain relief by dislocation nucleation and glide. The result is the 
spontaneous formation of defect-free quantum dots or wires by the SK growth mode. The size and areal density of the 
GaAs nanostructures are readily tunable by controlling the amount of material deposited, or the MBE growth conditions. 

Since GaAs is a direct band gap semiconductor, these QDs and quantum wires are optically active up to room temperature, 
indicating strong carrier confinement. We can predictably control their emission wavelength, simply by adjusting their 
size to take advantage of quantum confinement effects. 
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In summary, we have established tensile-strained self-assembly as a robust and controllable technique for synthesizing 
quantum dot and quantum wire nanostructures on the (111) and (110) surfaces of zinc-blende semiconductors. Tensile-
strained self-assembly is a general approach that can in principle be applied to any zinc-blende or diamond-cubic material 
system. 

4. NON-(001) TENSILE STRAINED QDs: APPLICATIONS AND FUTURE DIRECTIONS
Tensile-strained self-assembly offers new opportunities for the integration of heterogeneous materials. The resulting 
quantum dots and wires represent an emerging class of nanostructures in their own right, with certain unique properties 
that arise either from their non-(001) orientation or from their tensile strain. The future applications we are exploring for 
these nanostructures therefore seek to take advantage of these distinctive characteristics. QDs grown on (111) surfaces 
have long been desirable for on-demand entangled photon sources. We have already confirmed that the fine structure 
splitting between the orthogonal bright exciton states in these QDs is very small, which is a key requirement for robust 
entanglement.8,25 Now that we can routinely grow these (111)-oriented QDs via the SK mechanism, the next stage is to 
develop them as entangled photon emitters. 

In parallel to these efforts, the large residual tensile strains in these QDs can also be beneficial. As we have seen, tensile 
strain pushes the QD towards longer wavelengths, meaning that these nanostructures could be of great interest for infrared 
optoelectronics, especially if they were synthesized from a low band gap semiconductor. Another way in which we might 
take advantage of the tensile strain would be to alter the fundamental properties of certain materials via band structure 
engineering. A good example is germanium. Naturally, Ge is an indirect band gap material, but under just 2% tensile strain 
it is predicted to transform into a direct band gap semiconductor.47 If we can create tensile-strained Ge QDs with a direct 
band gap, this would open up its use for optoelectronic applications. 
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