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Orthogonal Decomposition Methods to Analyze PIV, LDV,

and Thermography Data of Thermally Driven Rotating
Annulus Laboratory Experiments

Uwe Harlander1, Thomas von Larcher2, Grady B. Wright3, Michael Hoff4,
Kiril Alexandrov1, and Christoph Egbers1

17.1. INTRODUCTION

Already in the 1950s, an elegant laboratory experiment
had been designed to understand how the atmospheric
circulation transports heat from equatorial to polar lati-
tudes (cf. the pioneering studies described by Hide [1958,
2010]). It consists of a cooled inner and heated outer cylin-
der mounted on a rotating platform, mimicking the heated
tropical and cooled polar regions of Earth’s atmosphere.
Depending on the strength of the heating and the rate of
rotation, different flow regimes had been identified in the
gap: the zonal flow regime, wave regimes that can be clas-
sified by propagating waves of different wave numbers,
and quasi-chaotic regimes where waves and small-scale
vortices coexist.

The baroclinic annulus experiment, often called the
differentially heated rotating annulus of fluid, has been
accepted as a suitable laboratory model for the midlati-
tude large-scale flow in Earth’s atmosphere. For example,
Fultz [1961] and Lorenz [1964] used the heated rotating
annulus as an analogy to the complex dynamics of the
large-scale weather when they discussed problems related
to climate variability.

Obviously, large-scale environmental flows and the
flows observed in the rotating annulus show agreement
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on fundamental features. A large part of this agreement
is owed to the baroclinic instability mechanisms that gov-
ern atmospheric and laboratory flows [Pierrehumbert and
Swanson, 1995]. This fact makes the heated rotating annu-
lus an inspiring experiment for the community of geo-
physical fluid dynamics, even in the computer age.

Baroclinic instability has been investigated in the annu-
lus not only in numerous experimental studies but also
theoretically [Lorenz, 1962] and numerically [Miller and
Gall, 1983; Lewis and Nagata, 2004; Randriamampianina
et al., 2006; von Larcher et al., 2013; von Larcher and
Dörnbrack, 2014]. The two references mentioned last are
discussed in more detail in chapters 2 and 16 of the
present book.

Due to its relative simple geometry as well as to the
well-definable forcing parameters, the rotating annulus
is still of particular interest not only for research with
respect to atmospheric sciences [Gyüre et al., 2007; Ravela
et al., 2010] but also in the development of computational
fluid dynamics (CFD) models where the annulus data can
be used as reference for the validation of new numeri-
cal concepts. In this context it is worth noting that the
rotating annulus experiment described here is a reference
experiment within the German priority program Multiple
Scales in Fluid Mechanics and Meteorology (MetStröm)
that focuses on the development of model- as well as
grid-adaptive numerical simulation concepts in multidis-
ciplinary projects (see http://metstroem.mi.fu-berlin.de).

The flow regime that develops in the cylindrical gap
of the annulus depends on the radial temperature gradi-
ent between the inner and the outer cylinder, �T , and
on the rotation rate of the apparatus, �. Thus, a 2D
parameter space (called regime diagram) spanned by the
Taylor number (∝ �2) and by the thermal Rossby number
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316 MODELING ATMOSPHERIC AND OCEANIC FLOWS

(∝ (�T �−2)) includes all flow regimes. Such regime
diagrams are the basis of many studies and they have been
experimentally derived already by Fowlis and Hide [1965]
and have been refined later by other authors e.g. [Früh and
Read, 1997; von Larcher and Egbers, 2005a]. The range of
azimuthal wave numbers m is restricted by the dimensions
of the gap. Hide and Mason [1970] found an empirical law
for the minimum and maximum wave number, mmin ≤
m ≤ mmax, known as the Hide criterion reading,

π

4
b + a
b − a

≤ m ≤ 3π

4
b + a
b − a

, (17.1)

with a (b) as the inner (outer) radius of the gap.
One of the most fascinating aspects of the differentially

heated rotating annulus is its rich time-dependent flow
behavior. It is therefore not surprising that many stud-
ies have focused on this aspect. A phenomenon that has
attracted much attention over many years is the so-called
amplitude and structural vacillation, which is a modu-
lation of the amplitude and the wave shape in distinct
subregions of the regime diagram mentioned above. Wave
dispersion and structural vacillation have been observed
by e.g. Pfeffer and Fowlis [1968] using streak photographs
and by Harlander et al. [2011] by particle image velocime-
try (PIV). They showed the simultaneous presence of two
subsequent wave modes and argued that some part of the
vacillation might result from the different phase speeds of
the two modes (see also Yang [1990]).

However, wave dispersion cannot explain the existence
of multiple wave modes during a traverse of the regular
wave regime. Therefore, Lindzen et al. [1982] numerically
investigated a nonlinear version of Eady’s baroclinic insta-
bility problem for the annulus, and Barcilon and Drazin
[1984] investigated the problem by asymptotic techniques.
In both studies, regions in the regime diagram could be
identified where two modes with the same wave num-
ber may grow. Later, Früh [1996] and Früh and Read
[1997] suggested that resonant wave triads are responsi-
ble for certain amplitude vacillations (see also the review
on amplitude vacillations in this book in chapter 3). Such
triads, besides the dominant mode, involve two other,
weaker modes. Energy is redistributed between the mem-
bers of a triad, and the dominant pattern vacillates with a
characteristic time. Geostrophic turbulence, i.e., the irreg-
ular flow regime, is generally found at high rotation rates
[Morita and Uryu, 1989; Read et al., 1992; Pfeffer et al.,
1997].

The nonlinear behavior of the annulus flow motivated
a number of contributions using nonlinear time series
analysis to better understand the physical mechanisms.
Read et al. [1992] and Früh and Read [1997], for exam-
ple, used time series of temperature from probes in the
fluid interior. In contrast, Sitte and Egbers [2000] and von
Larcher and Egbers [2005a] used velocity time series that

have been acquired by the optical laser Doppler velocime-
try (LDV).

On the other hand, also linear, multivariate statistical
techniques have been successfully applied to highlight
certain aspects of the motion in the rotating annu-
lus. [Read, 1993], e.g., used multivariate singular system
analysis (MSSA) for phase portrait reconstructions of
the annulus flow. Complex empirical orthogonal function
(EOF) analysis have been applied to data from a rotating
annulus with bottom topography [Pfeffer et al., 1990]. The
focus of this work was to identify features of the wave prop-
agationasafunctionof theTaylornumber.MundtandHart
[1994] constructed a reduced low-dimensional model of
two-layer baroclinic instability by projecting the governing
equations onto the EOFs of numerical flow simulations.
The same should be possible by using EOFs from annulus
laboratory data [Stephen et al., 1997, 1999]. Finally, Read
et al. [2008] used EOFs deduced from numerical simula-
tions to identify structural changes of the dominant modes
in the annulus when the Taylor number is increased.

The differentially heated rotating annulus has also been
used as a test bed for studies on weather predictabil-
ity [Young and Read, 2008; Ravela et al., 2010]. Young
and Read studied the breakdown of predictability for
numerically deduced irregular flow regimes. In this con-
text breeding vectors (close relatives to singular vectors)
play an important role. Such vectors are an orthogonal
decomposition for flows with nonorthogonal eigenmodes.

The present chapter is organized as follows. In Section
17.2 we will give details on the experimental appara-
tus we use and the governing nondimensional parame-
ters. Then, in section 17.3 we will present a summary
of laboratory studies on annulus flows we performed
over the previous few years. In particular, we describe
the multivariate orthogonal decomposition techniques we
applied to the laboratory data. In Section 17.3.1 we ana-
lyze PIV and LDV data at the transition between two
different wave regimes by applying the complex EOF
analysis and MSSA. Subsequently, in Section 17.3.2 we
analyze data from an annulus with a broken azimuthal
symmetry. Similar to Pfeffer et al. [1990], we are inter-
ested in the wave propagation characteristics in a rotating
annulus with “topography”. The data have been retrieved
simultaneously by thermography and PIV measurements.
Complex EOF analysis is able to decompose the flow
into features typical for the flow up- and downstream
of the annulus constriction. This study was motivated
by specific large-scale ocean currents like the Antarctic
Circumpolar Current where the “gap width” of the flow
depends on longitude. In Section 17.3.3 we decompose
surface temperature data of the annulus flow in principal
oscillation patterns (POPs), that is, the linear eigenmodes,
and in modes of maximal growth, called singular vectors
(SVs). In contrast to the traditional approach, we deduce



�

�

“vonLarcher-Driver” — 2014/10/11 — 10:15 — page 317 — #3
�

�

�

�

�

�

ORTHOGONAL DECOMPOSITION METHODS TO ANALYZE PIV, LDV, AND THERMOGRAPHY 317

these modes from the data alone without using a linear
model operator. Finally, in Section 17.3.4 we decompose
the annulus flow in a purely rotational and a purely diver-
gent part. This decomposition is based on radial basis
functions (RBFs) and it might prove useful in discriminat-
ing different wave types in the flow. We close the chapter
with Section 17.4, where we summarize our results and
provide an outlook on future work.

17.2. EXPERIMENTAL SETUP, PARAMETERS,
AND FLOW REGIMES

17.2.1. Setup

Our setup (Figure 17.1), described in more detail by
von Larcher and Egbers [2005b], consists of a tank with
three concentric cylinders mounted on a turntable that
rotates around its vertical axis of symmetry. The inner
cylinder is made of anodized aluminum; the middle and
outer ones are made of borosilicate glass. The temperature
of the inner and outer cylinders and the rotation rate of
the apparatus are controlled by the experiment software
which is programmed in LabVIEW�. Temperature sen-
sors are part of the inner and outer side walls: at the inner
wall at one azimuthal position in two different heights, at
the outer wall at four equidistant positions in midheight

a
b

d

Cold
Warm

Ω

g

Inner cylinder

Drift

Inner side wall of
outer cylinder

Figure 17.1. Sketch of the rotating annulus with illustration of
a typical large-scale jet stream of wave number m = 4 that has
a drift relative to the rotating reference system.

of the annulus. The radial temperature difference between
the outer and inner walls is realized by heating the fluid in
the outer annulus-shaped chamber by a heating coil and
by cooling the fluid in the inner cylinder by using a ther-
mostat. Deionized water is used as working fluid in all
experiments.

All experiments were conducted in the classical f -plane
configuration though a sloping bottom could easily be
inserted and then β-plane experiments could also be per-
formed. Furthermore, the surface is free rather than a
rigid lid. We refer the reader to Fein [1973] for a com-
parison of experiments with a free surface and a rigid lid
and to Mason [1975] for details of the influence of a slop-
ing bottom on the flow regimes. In cases of experiments
on baroclinic channel flows with narrows, a barrier was
inserted in the gap, as described in Section 17.3.2.

By keeping the temperature gradient fixed but varying
the rotation rate of the apparatus, sequences of regime
transitions can be observed. Once the radial temperature
gradient is settled, the spin-up time is found to be less
than 30 min for steady waves and up to 40 min for com-
plex flows. Observations were usually done up to several
hours per parameter point, extended partly in complex
flow regimes.

17.2.2. Parameters

The shape of the annulus is defined by the radius ratio
η and the aspect ratio � with

η =
a
b

, � =
d

b − a
, (17.2)

where the inner radius a = 45 mm, the outer radius
b = 120 mm, and the fluid depth d = 135 mm (implying
η = 0.38 and � = 1.8 for our apparatus).

Beyond these geometric parameters, the fluid motion
is governed by the two dynamic control parameters, the
rotation rate of the annulus, �, and the radial tempera-
ture difference in the cylindrical gap, �T . These parame-
ters determine the nondimensional Taylor number Ta and
thermal Rossby number Ro, as already mentioned above.
The two numbers read

Ta =
4�2(b − a)5

ν2d
, Ro =

g dα �T

�2 (b − a)2 , (17.3)

where ν is the kinematic viscosity, g the acceleration due
to gravity, and α the volumetric expansion coefficient. The
Taylor number measures the rotation rate with respect
to the viscous effect, and the thermal Rossby number
corresponds to the ratio of buoyancy and Coriolis terms
and therefore indicates a thermal stratification of the flow.
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Another important parameter is the Prandtl number,
defined by

Pr =
ν

κ
, (17.4)

where κ is thermal conductivity and Pr describes the phys-
ical properties of the fluid, with Pr = 7.16 as the appro-
priate value for water at 20◦C (see chapter 2 this volume
and Fowlis and Hide [1965] for more details on the effect
of the Prandtl number).

17.2.3. Flow regimes

By keeping �T = 7.5 K constant and varying � in
the range 3 × 106 < Ta < 3 × 108, the regime diagram
typically shows specific flow regimes characterized by the
azimuthal wave number 0 ≤ m ≤ 4, i.e., the axisymmet-
ric m = 0 basic flow at 3 × 106 < Ta < 6 × 106, the
wave flow regime with 2 ≤ m ≤ 3 at about 6 × 106 <

Ta < 1.5 × 108, and the regime with structural vacillations
(called irregular wave regime when the wave structure is
deformed in an irregular way) with dominant wave m = 4
at higher Taylor numbers (see Figure 17.2). Note, that
mmax = 4 is in good agreement with the Hide criterion
(eq. 17.1). Hysteresis occurs when one can find different
regimes for the same control parameters where the param-
eters have been approached from different directions that
is an increasing or decreasing Taylor number. Hystere-
sis is a well-known phenomenon for annulus experiments
and can generically be observed in free-surface [Sitte and
Egbers, 2000; von Larcher and Egbers, 2005b] and rigid
lid experiments [Cole, 1971; Hignett et al., 1985]. For our
experimental setup a rather broad region of hysteresis
exists at the transition between m = 3 and m = 4. The
existence of hysteresis depends not only on Ta, Ro, and Pr
but also on η and � [von Larcher and Egbers, 2005b].

Moreover, complex vacillating flow patterns are found
in the transition from axisymmetric flow to the wavy
flow regime (see Figure 17.3, upper row), where mode

Tac= 6.33×106

↑
Tac

3 × 106 107 108 3×108

Taylor number Ta

m = 0

2/3I

↓

↔

↔

3 3 (SV)

4(SV)

Transition to
irregular flow

as indicated by
visualization

Figure 17.2. Regime diagram observed for η = 0.38, � = 1.8,
and �T = 7.5 K [von Larcher and Egbers, 2005b].

interaction between mode m = 2 and m = 3 occurs. Fur-
thermore, structural (or shape) vacillations are found at
high Taylor numbers (Figure 17.3, lower row), where cold
cells separate from the inner wall, move radially outward,
and then return to the inner cylinder while their outer
boundary largely remains unaffected.

While the complex flow patterns in the first transition
zone might be identified as a superposition of two coex-
isting waves with different zonal wave numbers and phase
speeds, denoted as interference vacillation (IV), which was
found to occur in experiments with a free surface [Pfeffer
and Fowlis, 1968; Kaiser, 1970; Harlander et al., 2011] as
in rigid-lid experiments [Früh and Read, 1997], the struc-
tural vacillations observed at higher Taylor numbers could
be consistent with an oscillation of a higher radial mode
of the same azimuthal wave as observed in experiments by
Pfeffer et al. [1980] and described theoretically by Weng
et al. [1986].

17.3. RESULTS

Multivariate statistical techniques are suitable to under-
stand better the variability of the heated rotating flow.
We consider here four different methods: EOF analysis,
MSSA, POP analysis, and SV analysis. It is worth to
briefly mention the field of application of the different
techniques. This enables the reader to assess which tech-
nique is good for what purpose. For many applications it
is useful to decompose noisy multivariate data sets into
subsets or subspaces. A few patterns might span the “sig-
nal subspace” where the noise is captured in the “noise
subspace.” The specification of relevant patterns can be
done in many different ways, ranging from eigenmodes
(e.g., in terms of Bessel and trigonometric functions for
cylindrical geometry) to patterns that optimize certain
statistical moments [H. von Storch, 1995].

EOFs are defined as those patterns that are powerful
in explaining variance and thus the EOF method is the
method of choice for analyzing the variability of fields.
It is therefore widely used in the geosciences [Lorenz,
1956; von Storch and Zwiers, 1999]. This method also goes
by different names, e.g., principal component analysis or
proper orthogonal decomposition. The EOF method is
able to find the spatial patterns of variability and their
time variation and provides a measure for the relevance of
each pattern. Simply speaking, the EOF method breaks
the data into modes of variability that might (as is the
case for our data) be interpreted as physical modes of the
system. Strikingly, it can be shown that the EOF method
provides the most efficient way of capturing the dominant
components of a high-dimensional process with often
surprisingly few modes [Holmes et al., 1996]. However,
more appropriate in our context is the use of the com-
plex EOF (CEOF) analysis [Pfeffer et al., 1990; von Storch
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Figure 17.3. Sequence of thermographic measurements describing vacillating flows [von Larcher and Egbers, 2005b]. Top: Wave
mode competition of wave number m = 2 and m = 3 at Ta = 1.08 × 107, Ro = 3.00. Bottom: Structural vacillation flow, radial
oscillation of a wavy flow of wave number m = 4 at Ta = 7.65 × 107, Ro = 0.41, with t as relative time.

and Zwiers, 1999] that reveals propagating patterns of
variability by single CEOFs, whereas pure EOFs capture
only standing modes of variability.

The MSSA is a generalization of the single-time-series
SSA method to multiple time series [Broomhead and King,
1986; Read, 1992; Vautard, 1995]. These time series may
contain observations of a certain variable at different loca-
tions (as in our case) or even observations of different
variables. In classical EOF analysis the dominant spa-
tial patterns are captured by diagonalizing the covariance
matrix. As discussed Vautard [1995], the coordinates of
the state vector in the EOF analysis represent different
locations in space at the same time. In an SSA, the state
vector contains values at the same locations but at dif-
ferent time lags. CEOF analysis is a special case of the
MSSA method; however, MSSA deals with more tem-
poral degrees of freedom than spatial ones, allowing the
investigation of spectral properties of the data. In con-
trast, CEOF contains only a single lag but a large number
of spatial points. The MSSA method allows one to detect
oscillating features in noisy time series where oscillations
occur frequently only during certain time periods. The
larger generality of the MSSA is purchased by a larger
amount of computing time. A detailed description of the
MSSA method is beyond the scope of the present chapter
but is given by Dettinger et al. [1995], Vautard [1995], and
Elsner and Tsonis [1996].

POPs are empirical, that is, data estimated normal
modes [Hasselmann, 1988]. POPs are another way of

decomposing a data set into a signal and noise subspace.
To evaluate POPs, the system matrix corresponding to a
linear model has to be found as described, e.g., by von
Storch and Zwiers [1999]. Frequently, POPs correspond
with EOFs, though this correspondence is not guaranteed
from a mathematical point of view. Also the correspon-
dence between true normal modes and POPs is not always
obvious [J.-S. von Storch, 1995]. In real data, linearly
unstable modes occur only in a nonlinearly saturated state.
Thus POP modes are either neutral or damped. In con-
trast, a linear operator might allow for unstable modes
that cannot be covered by any data based method. Nev-
ertheless, POP analysis has proven to be useful in a broad
range of applications and can be considered as one of
the routine tools in climate research. From the empirically
estimated system matrix, not only POPs can be computed.
A further useful step is to estimate SV, from the system
matrix. SVs correspond to those initial perturbations that
grow in an optimal sense with respect to a chosen norm
within a predefined time interval, the so-called optimiza-
tion time. For large-scale baroclinic systems, SVs might
play an important role and they might be even more rel-
evant for real flows than unstable normal modes [Badger
and Hoskins, 2001].

All the four mentioned orthogonal decompositions
(EOF analysis, MSSA, POP analysis, SV analysis) are
related via the data matrix. Let us briefly describe how. A
variable Xi is observed at M different arbitrarily spaced
points, i = 1, 2, . . . , M, and at P different instances of
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time. Note that tj+1 = tj + j�, where � is the sampling
interval, and that the first measurement was done at time
t1 and the last at time tP = tN + n�, where n is an inte-
ger number. Subtracting the mean from each time series
xi = Xi − X̄ , we can put the data into a generalized N ×M
data matrix

Fn� =

⎛

⎜⎜⎜
⎝

x1(t1 + n�) x2(t1 + n�) · · · xM(t1 + n�)

x1(t2 + n�) x2(t2 + n�) · · · xM(t2 + n�)
...

...
. . .

...
x1(tN + n�) x2(tN + n�) · · · xM(tN + n�)

⎞

⎟⎟⎟
⎠

,

where n�, n = 0, 1, 2, . . ., defines a time delay. An
extended matrix Fm can be defined as

Fm =
(
F�, F2�, F3�, . . . , Fm�

)
. (17.5)

Note that Fm is an N × mM matrix formed by the m
submatrices F�, . . . , Fm�. EOFs are the eigenvectors of
(F0�)T F0�, space-time EOFs (MSSA modes) with time
window m are the eigenvectors of FT

mFm, POPs are the
eigenvectors of P = ((F1�)T F0�)((F0�)T F0�)−1, and
singular vectors with optimization time � and based on
the Euclidean norm are the eigenvectors of PT P. All these
eigenvectors form an orthogonal basis. Therefore, the data
vector at time i can be written as

�F =
∑

j

a(ti)j ��j,

where ��j is the jth eigenvector from an EOF, MSSA, POP,
or SV analysis, and the coefficients a(ti)j are found by a
suitable projection of the eigenvectors on the data vector.

In Section 17.3.4 we discuss a novel orthogonal decom-
position that is not premised on a statistical basis. Here we
use a mesh-free data reconstruction method that is based
on RBFs. Using these basis functions, we can decompose
the horizontal velocity data into a sum of divergence-free
and curl-free parts. Such a decomposition can be very
useful in discriminating different wavefields in the annulus.

17.3.1. EOF and MSSA Analysis of Wave Interactions
With PIV and LDV Measurements

In this section, we present the analysis of velocity data
from classical f -plane thermally driven rotating annulus
experiments with η = 0.38, � = 1.8, and Pr = 7.16
(see (17.2) and (17.4)), recovered by PIV and LDV (see
Harlander et al. [2011] for details). The following ques-
tions will be addressed: (i) Can the statistical analysis
detect coexisting wave modes during a traverse between
two regular wave regimes? (ii) Can we find coexisting
modes in the transition region to the quasi-chaotic regime
or is the flow dominated by random fluctuations?

The data we used are sampled twice (PIV) or 20 times
(LDV) per revolution of the annulus and cover time

periods sufficiently long to allow for the application of
multivariate statistical techniques. While the PIV data
consist of the horizontal flow field, the LDV data con-
sist of 20 time series regularly distributed along a circle in
the annulus at mid-radius, i.e. (a + b)/2 (see Figure 17.1).
Note that the sampling rate of the LDV measurement is 10
times larger than the one of the PIV measurements. How-
ever, with respect to a fixed spatial point, the LDV samples
the data just once per revolution. Still, short-lived struc-
tures typical for more transient flows are better resolved
in the LDV data.

The PIV system is used to measure the horizontal veloc-
ity components 15 mm below the fluid surface. Each
experiment lasts typically 50τ , where τ is the revolution
period of the annulus. We sample the PIV data with τ/2,
i.e. two observations per revolution. The PIV camera is
mounted in an inertial frame above the cylinder, that is,
the camera does not corotate with the cylinder. To obtain
the velocity components in the corotating frame, we sub-
tract the solid-body velocity �v = ��×�r from each observed
PIV velocity rigid-field. A preprocessing of the data is
needed to eliminate erroneous vectors and to homogenize
the data.

The radial velocity component is measured with the
LDV that was fixed in the inertial frame, too. The mea-
surements take place 2 mm below the fluid surface at
midradius of the annulus. The large data set is reduced
by an appropriate averaging. Furthermore, linear interpo-
lation is applied to obtain a homogeneous data set with
regular grid distance �� = 18◦ and �t = τ/20. These pre-
processed LDV data are then analyzed using the MSSA
software toolkit by Dettinger et al. [1995].

The MSSA software package is particularly suited to
detect (intermittent) oscillations in noisy time series as
well as in multivariate data. With regard to the aims of
our study, this makes the method particularly suitable
to find structures in the transition region to the quasi-
chaotic regime where the waves become more and more
irregular. In the specific experimental setup used here, this
regime occurs when the Taylor number is larger than 108

and the thermal Rossby number is smaller than 0.5 (cf.
Figure 17.2).

Owing to the fixed PIV camera, the errors of PIV obser-
vations grow with growing angular velocity of the cylin-
der. In contrast, using LDV, the radial velocity component
can be observed even for large angular velocities of the
annulus with high accuracy. Thus, LDV data from the
irregular wave regime will be analyzed by using the MSSA
method (question (ii)). Instead, the preprocessed PIV data
were analyzed by using the CEOF method with the focus
on question (i).

A detailed description of our approach to find cou-
pled propagating patterns with the CEOF is given by
Harlander et al. [2011]. Briefly speaking, we use the Hilbert
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transform method to make the (horizontal) velocity com-
ponents (u, v) complex and then formed extended time
series by combining the two complex time series. With
this new time series we built the covariance matrix and
computed its eigenvectors (i.e., the CEOFs) and the cor-
responding time-dependent coefficients.

17.3.1.1. Analysis of PIV Measurements. As des-
cribed, PIV measurements were performed to detect
complex flows during the traverse between two reg-
ular wave regimes. The measurements presented here
have been conducted at Ta = 1.74 × 107, Ro = 1.30 (i.e.,
� = 0.50 rad/s, �T = 6.7 K). That parameter point is close
to the transition from the steady wave regime of wave
number m = 3 to the structural vacillation (SV) regime,
i.e., m = 3 (SV) (cf. Figure 17.2, but note that here
�T = 7.5 K and that for larger �T transitions occur at
larger Ta).

The eigenvalue spectrum (not shown) is dominated by
the first eigenvalue that contains more than 40% of the
total variance of the flow, and the second eigenvalue
includes about 10% of the total variance. It should be
noted that the variance distribution depends on the data
quality and on Ro and Ta. The lower row of Figure 17.4
shows the corresponding real part of the CEOFs and
the upper row their time evolution. Note that, in gen-
eral, the real and imaginary parts of the CEOFs and their
time series show a 90◦ phase difference [von Storch and
Zwiers, 1999].

The velocity field can be reconstructed via (17.5).
CEOF1 together with the time-dependent coefficient
determines a prograde propagating wave (i.e., a wave prop-
agating in the direction of the annulus revolution) with
wave number m = 3; CEOF2, in contrast, determines a
rather regular and slowly retrograde wave (propagating
in the opposite direction of the annulus revolution) with
wave number m = 4. By combining the first two patterns
(which then contain about 50% of the total variance), a
wavy jet flow with dominant wave number m = 3 is found
which shows slow vacillations due to an interference with
the (weak) mode pattern with m = 4. Further details
and also patterns for different Ta and Ro are discussed in
Harlander et al. [2011].

From the time-dependent coefficients (Figure 17.4,
top panel), the drift rates of the dominant mode m = 3
and of the weak mode m = 4 are found to be 0.021 and
−0.007 rad/s, respectively. Slow retrograde propagating
modes are rather exceptional but have been reported
earlier [Früh and Read, 1997]. It appears that the prop-
agation of the weak mode is strongly affected by the
dominant mode of the system and that linear wave theory
fails to describe its anomalous retrograde propagation, as
all unstable baroclinic modes should propagate with the
volume-averaged mean flow (which was estimated to be

approximately 0.009 rad/s), according to the linear Eady
model.

To summarize the main results of the CEOF analy-
sis, we find that in the rather stable m = 3 regime the
presence of higher modes and their linear interaction
with the leading wave mode can give rise to slow mod-
ulations. However, the existence of the m = 4 mode in
the m = 3 wave regime cannot be explained by linear
theory.

17.3.1.2. Analysis of LDV Measurements. Next we dis-
cuss the results from the MSSA of the LDV data. As
mentioned above, a strong feature of the MSSA is its
ability to detect oscillating/propagating features in noisy
data. Thus, the MSSA seems to be more suitable than
EOF analysis to find excited propagating modes in flow
with structural vacillations and “irregular wave regimes.”
Note that we call a wave irregular when it shows signif-
icant transient features. In contrast, for a turbulent flow
regime a dominant wave can no longer be observed. Here
we apply the MSSA to a parameter point in the irreg-
ular flow regime, i.e., at Ta = 3.76 × 108, Ro = 0.14
(� = 2.32 rad/s, �T = 6.9 K).

Figure 17.5 (top panel) shows the preprocessed LDV
data. The data are presented in the form of a space-time
diagram, where the abscissa runs from 0 to 2π , covering
the spatial structure of the radial velocity at midradius of
the annulus. Although the flow is much more noisy than
for the PIV experiment, we clearly can identify a wave pat-
tern with m = 4 that propagates prograde with a phase
speed of 0.011 rad/s.

The eigenvalue spectrum is broad (Figure 17.5, upper
right part). Noise is usually part of the flat tail in the eigen-
value spectrum. Here, we define the noise level to be at 1%
of the total variance. Note that this is a qualitative mea-
sure, and it is not the exact signal-to-noise level of our
experiments. The first two eigenvalues explain 36% of the
total variance and the next two eigenvalues are also clearly
above the defined noise level.

Similar to the description of flow field reconstruction
using the CEOF method, reconstructing the data by using
just the first two space-time EOFs (ST-EOFs) gives a
filtered version of the original data (Figure 17.5, bot-
tom left). Instructive is the reconstruction by ST-EOF
3 and 4, explaining at least 5% of the total variance
(Figure 17.5, bottom right). The reconstruction reveals
a wave pattern with wave number m = 5 that propa-
gates essentially with the same phase speed as the dom-
inant m = 4 wave. Finally, note that the m = 5 wave pat-
tern shows slight amplitude vacillations. Moreover, its
phase speed is less constant than the phase speed of the
dominant wave.

Roughly speaking, for the irregular flow regime, the
first wave modes seem to be less dispersive than for the
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Figure 17.4. CEOF analysis of PIV measurements (given in corotating frame). Top: The principal component (PC) of CEOF1 (real
part black, imaginary part red) (left) and of CEOF2 (right). Bottom: Real part of CEOF1 (left) and of CEOF2 (right). The imaginary
parts of the two CEOFs are phase-shifted versions of the real parts.

vacillating wave regime discussed above. Classical Eady
modes are nondispersive, and we might conclude that
the first four EOFs do not resolve the nonlinear features
of the wave modes in the irregular flow. Hence, EOFs
from the noisy part of the spectrum need to be considered
to address the irregularity of large Taylor/small Rossby
number regimes.

Finally, in Figure 17.6 and Table 17.1 we show the vari-
ance distribution (in percent of the total variance) for the
first 12 wave modes m = 1, 2, . . . , 12 along a transection

through the regime diagram, from the azimuthal flow
regime (m = 0) to the slightly irregular m = 4 wave regime
(6.79 × 106 ≤ Ta ≤ 4.77 × 108, 5.73 × 10−2 ≤ Ro ≤ 4.0,
�T = 8 K). The transition from m = 0 to m = 2 occurs
at (Ta, Ro) = (9.49 × 106, 2.82). A dominant wave with
m = 2 establishes, but other waves (m = 3, . . . , 6) are also
present in the variance spectrum. This indicates that the
flow with zonal wave number 2 exhibits some vacillations.
At (Ta, Ro) = (2.3 × 107, 1.19), the flow regime changes
to m = 3 and we can find this wave and its harmonics
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(m = 6, 9) in the EOF variance spectrum. When we
increase Ta, the dominant wave becomes weaker and the
first harmonics stronger. At the transition to m = 4 (at
(Ta, Ro) = (3.04 × 108, 9.01 × 10−2)) the first harmonic
comprises as much variance as the m = 4 mode. The flow
is rather irregular and it becomes more and more difficult

to identify a dominant wave. The EOF variance spectrum
starts to become broader. Within the m = 3 regime we find
transitions to the m = 4 flow indicating regions of multiple
equilibria. Note that the irregular wave flow must not be
confused with turbulent flow. For the first a wave pattern
is still present whereas for the latter it is not.
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Table 17.1. Variance in % explained by the zonal wave modes m = 1, 2, . . . , 12.

Ta Ro 1 2 3 4 5 6 7 8 9 10 11 12

6.79E+06 4.00E+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9.49E+06 2.82E+00 0.0 4.8 8.7 7.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.24E+07 2.21E+00 0.0 37.0 6.8 5.8 4.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0

1.24E+07 2.19E+00 0.0 51.1 9.1 8.2 5.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0
1.54E+07 1.76E+00 0.0 48.9 6.3 11.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.91E+07 1.40E+00 0.0 46.0 4.3 10.7 4.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0

2.30E+07 1.19E+00 0.0 0.0 36.5 0.0 0.0 24.7 0.0 0.0 9.6 0.0 0.0 0.0
2.74E+07 9.67E-01 0.0 0.0 52.6 0.0 0.0 23.0 0.0 0.0 3.4 0.0 0.0 0.0
3.20E+07 8.64E-01 0.0 0.0 50.0 0.0 0.0 21.3 0.0 0.0 4.5 0.0 0.0 0.0

3.75E+07 7.24E-01 0.0 0.0 48.1 0.0 0.0 24.0 0.0 0.0 5.3 0.0 0.0 0.0
4.29E+07 6.40E-01 0.0 0.0 45.6 0.0 0.0 24.9 0.0 0.0 4.5 0.0 0.0 0.0
4.85E+07 5.62E-01 0.0 0.0 44.1 0.0 0.0 26.8 0.0 0.0 7.3 0.0 0.0 0.0

5.50E+07 4.89E-01 0.0 0.0 0.0 25.7 0.0 0.0 0.0 36.1 0.0 0.0 0.0 6.1
6.17E+07 4.40E-01 0.0 0.0 41.4 0.0 0.0 28.4 0.0 0.0 8.4 0.0 0.0 0.0
6.88E+07 3.85E-01 0.0 0.0 34.6 0.0 0.0 28.4 0.0 0.0 7.7 0.0 0.0 0.0

7.56E+07 3.54E-01 0.0 0.0 33.1 0.0 0.0 27.1 0.0 0.0 8.5 0.0 0.0 0.0
8.89E+07 3.08E-01 0.0 0.0 37.4 0.0 0.0 24.1 0.0 0.0 10.3 0.0 0.0 0.0
9.73E+07 2.80E-01 0.0 0.0 37.5 6 0.0 0.0 25.3 0.0 0.0 9.9 0.0 0.0 0.0

1.10E+08 2.51E-01 0.0 0.0 26.9 0.0 0.0 29.1 0.0 0.0 7.9 0.0 0.0 0.0
1.19E+08 2.30E-01 0.0 0.0 27.2 0.0 0.0 21.6 0.0 0.0 5.0 0.0 0.0 0.0
1.29E+08 2.11E-01 0.0 0.0 0.0 24.5 0.0 0.0 0.0 35.4 0.0 0.0 0.0 7.7

1.39E+08 1.97E-01 0.0 0.0 30.8 0.0 0.0 27.1 0.0 0.0 7.1 0.0 0.0 0.0
1.49E+08 1.84E-01 0.0 0.0 25.7 0.0 0.0 25.7 0.0 0.0 7.2 0.0 0.0 0.0
1.72E+08 1.59E-01 0.0 0.0 24.3 0.0 0.0 22.9 0.0 0.0 6.3 0.0 0.0 0.0

1.95E+08 1.39E-01 0.0 0.0 27.0 0.0 0.0 18.2 2.9 0.0 3.7 2.5 0.0 0.0
3.04E+08 9.01E-02 0.0 0.0 0.0 20.1 0.0 0.0 0.0 24.9 0.0 0.0 0.0 3.9
4.77E+08 5.73E-02 0.0 0.0 3.00 19.51 0.0 0.0 0.0 9.29 3.37 0.0 0.0 0.0

Note: Left two columns give the Taylor and Rossby number. The table corresponds with Figure 17.6, right.

Figure 17.6 illustrates that EOF decomposition is a
powerful tool to classify regime transitions. Such an EOF-
based classification is not restricted to laboratory data but
should work as well for data from the real atmosphere.

In this section, we have presented the application of
multivariate statistical methods to velocity data, and we
have highlighted the particular abilities of the CEOF anal-
ysis and the MSSA to detect interactions. In the next
section, we will apply the CEOF analysis to a more com-
plex experiment with broken azimuthal symmetry and
time-dependent boundary conditions. Moreover, in addi-
tion to the velocity, surface temperature has been mea-
sured as well.

17.3.2. Baroclinic Waves in Rotating Annulus with
Barrier: CEOF Analysis

Several experiments with the differentially heated rotat-
ing annulus have been performed with modifications to
the standard geometry (flat bottom, constant gap width).
These geometric modifications were introduced to better
represent certain aspects of natural flows, e.g., to further
understand the dynamics of zonal flow over topography
[Weeks et al., 1997]. In ocean basins, the zonal flow is
blocked by continents. Thus, several authors studied the
case when a radial barrier is mounted in the annulus to
understand better the western intensification of flows in
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Figure 17.7. Sequence of surface temperature in the standard geometry at 69, 73, and 77 revolutions.

ocean basins [Bowden and Eden, 1968; Maxworthy and
Browand, 1974; Rayer et al., 1998].

Not all oceanic flows are completely blocked in the
zonal direction. The Antarctic Circumpolar Current
(ACC), for example, is not blocked, but the flow has to
weave through the Drake Passage between the southern
tip of South America and the Antarctic continent. The
Drake Passage partially blocks the zonal flow. It is there-
fore straightforward to perform experiments with par-
tial barriers to understand better the intermediate case
between a free and fully blocked annulus flow.

In the experiment discussed here, the azimuthal flow is
blocked at the inner cylinder and at the bottom (see Figure
17.9). At the barrier, the gap width is reduced from 75 to
43 mm and the fluid depth is reduced from 135 to 95 mm.
More details can be found in the work of Harlander et al.
[2012a].

Figure 17.7 shows a sequence of surface temperature
images taken from an experiment in standard geometry
with � = 4.6 rpm and �T = 2.8 K. We see the baro-
clinic wave after 69, 73, and 77 revolutions. Obviously,
the wave is rather stable and rotates counterclockwise
(that is, prograde) within a prograde mean flow. In con-
trast, in Figure 17.8, we see a comparable experiment
(� = 4.8 rpm and �T = 4.0 K) but then with the
barrier mounted. The most obvious new feature is wave

breaking at the barrier and wave recovery downstream
of the barrier. That is, the baroclinic wave never satu-
rates but is invariably in a transient state. We can say
that the barrier leads to a mechanically induced baroclinic
life cycle. Life cycles play an important role for midlat-
itude atmospheric and oceanic flows where they occur
due to linear growth, nonlinear saturation, and dissipa-
tive decay of large-scale waves. The experiment with the
barrier opens the possibility to study baroclinic life cycles
in a controlled way.

The experiment we discuss shows a slow periodic
variation of the radial temperature difference with an
amplitude of 1K and a period of 26 min. The purpose
of this variation of boundary conditions is to make sure
that the wave breaking is due to the barrier and not
due to regime transitions that occur for certain Taylor
and Rossby numbers. We can exclude the latter from
the fact that the flow looks very similar for maximum
and minimum �T . It is important to note that during
the experiment we observed the surface velocity and sur-
face temperature simultaneously. This allows for analyz-
ing coupled temperature and velocity anomalies and the
evaluation of the mean and turbulent surface heat flux.

The CEOF analysis already applied in Section 17.3.1 is
eminently suited for our data [Pfeffer et al., 1990]. The
CEOF analysis decomposes a propagating mode into a
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Figure 17.8. Sequence of surface temperature in the geometry with the barrier mounted. Top row from left to right: at 37, 39, and
43 rotations. Bottom row from left to right: at 45, 47, and 48 revolutions.
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Figure 17.9. (a) Annulus with the barrier. (b) Photograph of the
barrier.

single complex orthogonal function and not in two real
functions. Therefore, amplitude and phase information is
contained in a single CEOF. More specifically, we will
apply a combined CEOF Analysis to find connected prop-
agating anomalies of surface temperature and velocity
[Harlander et al., 2012a]. Frequently, the dominant com-
ponents of a high-dimensional process are captured with

often surprisingly few “modes” and thus the CEOF anal-
ysis is an efficient technique for dimension reduction.

We computed CEOFs over the full annulus and over
subregions. The first 10 eigenvalues denoting the variance
comprised in the corresponding CEOFs of the annulus
region upstream of the barrier are shown in Figure 17.10a.
We find that the first two local CEOFs explain more than
50% of the total variance in the region upstream of the
barrier. For the CEOFs of the full annulus we find a very
similar spectrum with contributions of 28.8% and 19.4%
for CEOF1 and CEOF2, respectively. PC1 and PC2, that
is, the temporal behavior of CEOF1 and CEOF2, are
shown in Figures 17.10b and 17.10c for the upstream
region. Note that real and imaginary parts are in quadra-
ture, indicating propagating anomalies. Obviously, PC2
comprises for a significant part the slow periodic variation
of the radial temperature difference mentioned above. In
contrast, PC1 shows a strong wave oscillation and only a
weak modulation due to the slow variation of the temper-
ature difference. We find about 9 wave oscillations per 100
rotations. The PCs of the full annulus look very similar to
the one of the upstream part; however, the order of PC1
and PC2 is reversed. That is, for the full annulus the first
PC mainly contains the low-frequency forcing.

We now focus on the dominant spatial structure of
the anomalies. CEOF2 of the full annulus and CEOF1
of the local domain are shown in Figures 17.11a–d. The
CEOFs shown correspond to the PCs that mainly contain
the waves and not the low-frequency forcing. Real parts
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Figure 17.10. (a) Variance spectrum of a CEOF analysis. (b) Real and imaginary parts of PC1. (c) Real and imaginary parts of PC2.
PC1 mainly captures the propagating wave whereas PC2 comprises a significant part of the low-frequency temperature forcing.

(a,c) and imaginary parts (b,d) of the CEOF show the
propagating anomaly at two different phases with a phase
shift of π/2. The patterns have to be read in the follow-
ing way: Figure 17.11a,c represent the flow at the begin-
ning of a cycle, and Figures 17.11b,d represent a quarter
of a cycle later. The fields displayed in Figures 17.11a,c
but multiplied by −1 show the flow at half of the cycle;
Figure 17.11b,d multiplied by −1 give the flow at three
quarters of the cycle. A quarters of the cycle later the cycle
is complete and the starting point is reached again (that is,
Figures 17.11a,c).

CEOF1 computed for the full annulus (not shown) con-
tains a mix of waves and the forcing signal and is more
difficult to interpret than CEOF2. In the temperature field
we find the modulation pattern as an increase/decrease of
the temperature along the outer boundary. We also find
propagating wave structures and vortices in the upstream
region and a locally fixed but pulsating vortex in the
downstream region. This vortex can be seen even clearer
in a local EOF analysis of the downstream region and is
likely directly connected to the barrier and is not gener-
ated by baroclinic instability. The strength of the vortex
changes due to the oscillating meridional temperature
contrast.

CEOF2 (Figures 17.11a,b) clearly reveals that the wave
structure is prominent in the upstream and weak in the
downstream region. The pattern of the local CEOF1
(Figures 17.11c,d) is rather easy to interpret. It is clearly
dominated by a regular train of vortices slowly traveling
prograde towards the barrier. Note that the local CEOFs
have been computed independently from the full annulus
just for the local domain. Still, Figures 17.11c,d resemble
very closely the upstream part of the full annulus CEOFs
(Figures 17.11a,b). From the local CEOFs we find that
temperature anomalies are not circular but show a promi-
nent bulge that is opposed to the direction of the mean
flow. We also find that the temperature maxima and min-
ima do not correspond with the centers of the vortices.
With respect to these centers, the temperature anomalies
are shifted toward the inner cylinder and slightly down-
stream. We see that due to the bulges, a significant pos-
itive heat flux can be observed (positive anomalies are
transported inward, negative anomalies outwards). This
flux reduces the radial temperature gradient.

From Figures 17.11c,d we see further that the strength
of a vortex continuously increases until the anomaly
reaches the barrier. We further note a small cyclone within
the constriction of the annulus (Figure 17.11d). This
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Figure 17.11. Real and imaginary parts of CEOFs: surface temperature and velocity: (a,b) CEOF2 for full annulus; (c,d) CEOF1 of
upstream region. The CEOFs resolve coupled heat and velocity anomalies propagating anticlockwise toward the barrier. For color
detail, please see color plate section.

demonstrates that vortices are important in the constric-
tion even if this is not directly visible in Figure 17.8.
However, the magnitude of the vorticity in the gap is
weak compared to the vorticity in the region upstream of
the barrier. Note finally that downstream of the barrier
the anomalies become more turbulent and less coherent
features can be observed (Figures 17.11a,b).

The present experiment of a differentially heated rotat-
ing annulus with a radial barrier that partially blocks the
azimuthal component of the flow along the inner cylin-
der and the bottom enables us to present a rather general
picture of the transient flow. This picture should hold for

a certain range of Taylor and thermal Rossby numbers
in the wave regime of the annulus. Roughly speaking,
the annulus can be subdivided into the half upstream
of the barrier, where waves amplify, and the half down-
stream of the barrier, where waves decay (see Figures 17.8
and 17.11). The dominant linear wave mode (in our case
with azimuthal wave number 3) is unstable upstream but
stable downstream of the barrier. In the upstream half,
the azimuthal mean flow is moderate but with a signif-
icant positive radial eddy heat flux. In contrast, in the
downstream half, we find an increased radial mean tem-
perature gradient. The latter points to a weakened or
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even reversed radial eddy heat flux in the lee side of the
barrier.

The experiment described has not been designed to
resemble some particular large-scale flow that can be
found in nature. However, it is tempting to point to simi-
larities between experimental and real flows. The ACC is
an annulus-like large-scale flow that is partially blocked
at the Drake Passage, connecting the Pacific and the
Atlantic oceans. For the ACC, eddy fluxes play a more
central role in the dynamical and thermodynamical bal-
ances than in other oceans [Rintoul et al., 2001]. Of course,
many processes important for the ACC dynamics are not
captured by the experiment, e.g., wind stress, coastal as
well as bottom topography, and the high-latitude β-effect
[Harlander, 2005; Afanasyev et al., 2009, chapter 5 this
issue]. Nevertheless, a meridional overturning circulation
is present in the ACC and the experiment and baroclinic
instability plays an important role for the ACC dynamics
due to the meridional transport of heat toward the pole.

17.3.3. Principal Oscillation Patterns and Singular
Vectors

In many cases, EOFs can be interpreted as the pat-
terns of natural oscillations, i.e., as the eigenmodes of the
system under consideration. From a mathematical point
of view such an interpretation is not justified. However,
empirically estimating the eigenmodes and then compar-
ing them with the EOFs can reveal the connection between
modes and patterns of variability [Harlander et al., 2009b].
Empirically estimated normal modes are called principal
oscillation patterns (POPs) in the meteorological litera-
ture [Hasselmann, 1988]. In the following we will compare
EOFs and POPs computed from our annulus data. In a
subsequent step we will then estimate optimal growing ini-
tial perturbations, called singular vectors from the POPs.
Theoretically, SVs converge to POPs in the limit t → ∞.
As we will see, this holds for the empirically estimated SVs
as well. SV growth might explain the increased irregularity
that occurs for annulus flows at Taylor numbers larger that
108. We will briefly discuss this by employing laboratory
data and model results.

17.3.3.1. Principal Oscillations Patterns. Generally
speaking, the POP method is promising when the dynam-
ical process under consideration is linear to first approx-
imation. This sounds very restrictive in particular when
geophysical applications are the target. However, the
method has successfully been applied to a wide class of
geophysical data [von Storch and Zwiers, 1999].

The linear system considered reads

x(t + �) = G(�)x(t), (17.6)

where x(t+�) is the state vector at time t+� and G(�) the
propagator matrix that maps the state at time t to time t +
�. G(�) bears the argument � since it can be estimated by

G(�) = C(�)C(0)−1, (17.7)

where

C(�) = (F1�)T F0�, (17.8)

C(0) = (F0�)T F0� (17.9)

are the covariance matrices with lag � and lag zero.
The eigenvectors of G(�) are the POPs, whereas the
eigenvectors of C(0) are the EOFs. Usually, the POPs are
sorted (in decreasing order) with respect to the e-folding
times τi = −1/ ln(|λi|), where the λi are the eigenvalues of
G(�). The period of the POP is given by T = 2π/arg λ.

We used surface temperature data to compute EOFs
and POPs. The data have been recorded by an infrared
camera that has a noncooled microbolometer detector
with a spectral range of 7.5 − 14.0 μm and a tempera-
ture resolution smaller than 0.08 K with an accuracy of
±1.5 K at 30◦C. The spatial resolution of the infrared sen-
sor is 640 × 480 pixels. To reduce the size of the covariance
matrices we smoothed the data by using a running aver-
age over areas of 2 × 2 pixels. In Figure 17.12a we display
the EOF1 that explains 27% of the total variance. Further,
in Figure 17.12b, the real part of the least damped POP1
with a damping time of 1827.6 s and a period of 62.5 s for
an experiment with � = 6 rpm and �T = 8 K is shown.
It should be noted that EOF2 is a phase shifted version
of EOF1 with nearly the same explained variance. Obvi-
ously, EOF1 and POP1 agree very well. Taking EOF1 and
EOF2, as well as the real and imaginary parts of POP1
together, both patterns propagate with the same phase
speed. This suggests that for the data considered the EOFs
represent the eigenmodes of the system.

Let us next use the POPs to estimate the dominant
patterns of nonmodal instability. This procedure needs an
appropriate filtering and the EOF analysis is a suitable
method for this purpose.

17.3.3.2. Empirical Singular Vectors. Instability is
related to exponentially growing eigenmodes and thus to
POPs with | λi |> 1. Interestingly, when finite time
intervals are considered, growth rates of certain initial per-
turbations can exceed the growth rates of the most unsta-
ble modes. Moreover, even when all modes are damped
(| λi |< 1), such particular initial perturbations can
grow dramatically during finite time intervals. The pertur-
bations with the largest growth rates are called singular
vectors or optimal perturbations. They play an impor-
tant role not only in atmospheric ensemble predictions
[Kalnay, 2002] but also for the theory of instability and
turbulence [Trefethen et al., 1993; DelSole, 2007].
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Figure 17.12. Experiment with parameters � = 6 rpm, �T = 8 K. (a) EOF1, 27% explained variance. (b) POP1, damping time
1827.6 s, period 62.5 s. (c) First singular vector at t = 0, topt = 20 s, σ = 1.182. (d) First singular vector at t = topt. (e) First singular
vector at t = 2500 s.

The starting point for the SV analysis is the linear
dynamical system

dx
dt

= Bx (17.10)

with the system matrix B. In atmospheric ensemble pre-
diction linearization is generally done around a nonlinear
solution and then B is time dependent. In contrast, in
turbulence research linearization is done around a mean
state. In that case B is time independent [DelSole, 2007].
We consider the mathematically simpler latter case.

The matrices G in (17.7) and B in (17.10) are connected
via the equation

G(�) = exp(B�) =
∞∑

k=0

1
k! (B�)k (17.11)

or

B =
1
�

ln[G(�)] =
1
�

∞∑

k=1

(−1)k+1

k
[G(�) − E]k, (17.12)

where E is the identity matrix. It is instructive to note that
by discretizing the first term in (17.10) by [x(t + �) −
x(t)]/� and using (17.6), we find

B =
1
�

[G(�) − E]. (17.13)

This corresponds to (17.12) when just the first term
is kept. The simplification gives still good results for

low-dimensional systems [Harlander et al., 2009a] but it
fails in general.

Having estimated the system matrix B from (17.12), we
can compute the propagator G for any time interval �0 by

G(�0) = exp(B�0). (17.14)

When the L2-norm is used to measures the growth of a
perturbation in the time interval 0 ≤ t ≤ �0, the SVs with
optimazation time �0 are given by the eigenvectors of
the matrix GT (�0)G(�0). The eigenvalues of the matrix
define the square of the growth rates.

Figure 17.12c shows the first singular vector at t = 0
estimated from surface temperature data of an experiment
with � = 6 rpm and �T = 8 K. The data sampling rate
was � = 5 s, and the optimization time was set to be �0 =
20 s. For the time interval 0 ≤ t ≤ �0 we obtain a growth
rate of σ = 1.182. To reduce the noise in the data, we used
the EOF filtering technique. Just 33 EOFs explain a total
variance very close to 90%. Thus we used j = 33 in (17.5)
to reconstruct the data from the EOFs. It should be noted
that the growth rate increases by increasing the number of
EOFs used for the reconstruction. It appears that the more
EOFs that are available to support the SVs, the larger is the
maximum growth rate. However, reconstructing the data
by a large number of EOFs increases the noise, and at a
certain number, the SVs seem to be dominated by noise
and lose their physical meaning.
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Figure 17.12d shows SV1 at the optimization time
t = �0 computed by x(�0) = G(�0)x(0), where x(0) is the
SV at t = 0 shown in Figure 17.12c. Obviously, the tilted
troughs and ridges have turned up as expected [Will et al.,
2006]. The structure does not change much for longer
times. Figure 17.12e shows the SV after t = 125�0 =
2500 s computed by x(N�0) = GN(�0)x(0) with N =
125. As expected, this pattern agrees very well with POP1
shown in Figure 17.12b. For t → ∞ the SVs converge to
the corresponding normal modes [Kalnay, 2002].

Seelig et al. [2012] discussed SVs of the simple
Lorenz annulus model [Lorenz, 1984] in the con-
text of transitions to irregular flow and compared
some numerically deduced SVs with data-based ones.
The numerical model enabled the construction of a regime
diagram in terms of singular vector growth rates, where
the abscissa was the Taylor number and the ordinate the
thermal Rossby number. Strikingly, the diagram based on
singular vector growth strongly resembles the traditional
bifurcation diagram for annulus flows [Hide and Mason,
1970; Lorenz, 1984]. The largest growth rates could be
found in the irregular flow regime of the Lorenz model.

The findings from the simple numerical model suggest
that the gradual increase of irregularity in the rather broad
transition region to quasi-geostrophic turbulence might
partly be addressed to singular vector growth. For labora-
tory experiments as well as for natural flows there is always
a certain background noise level. Irregularities in the tran-
sition region might be seen as extreme events that arise
from random excitation of singular vectors with unusual
large growth rates [DelSole, 2007]. This process, together
with nonlinear wave-wave interaction, could explain the
gradual broadening of the spectrum when the rotating
annulus flow transits to geostrophic turbulence [Pfeffer
et al., 1997]. Whether these ideas, derived from the low-
order Lorenz model, can be transferred to real annulus
flows is not clear yet. More data sets have to be analyzed
by the techniques described above to address this ques-
tion. However, it can be expected that the growth rates
increase for irregular flows since more EOFs have to be
considered to cover, say, 90% of the total variance for
irregular flows.

17.3.4. Helmholtz-Hodge Decomposition
of Annulus Flows

According to the Helmholtz-Hodge decomposition the-
orem, any suitably smooth vector field can be decomposed
into the sum of a divergence-free field and a curl-free
field [Foias et al., 2008]. These two fields can be used to
discriminate different wave types occurring in the annu-
lus. Baroclinic waves and Rossby waves are divergence
free, whereas inertia-gravity waves comprise a significant
part of horizontal divergence. Presently, the process of

spontaneous gravity wave emission is a major issue in
atmospheric research. The differentially heated rotating
annulus is a lab experiment suitable to systematically
study spontaneous gravity wave emission in analogy to
the atmosphere [Williams et al., 2008]. To detect inertial-
gravity waves in the experimental data, it is favorable
to not use the full flow field but instead make use of
the decomposition and analyze just the curl-free part of
the flow.

The primary difficulties with computing the decompo-
sition of the measured horizontal velocity at a given level
of the cylindrical tank is that the PIV data do not line
up on a nice grid, and the data may contain noise. To
handle these two issues, we use a mesh-free reconstruc-
tion method based on radial basis functions (RBFs). The
method employs matrix-valued kernels [Narcowich and
Ward, 1994] and mimics the Helmholtz-Hodge decompo-
sition of a 2D velocity field. It is similar to the method
described by Fuselier and Wright [2009] for the surface of
the sphere but is instead adapted for a 2D annular domain,
for which dealing with boundaries becomes important.
The method also provides a means of filtering the noise
in the measured velocity fields and can be used to recon-
struct the full 3D field in the rotating annulus. The key
ingredients to the mesh-free reconstruction and decompo-
sition technique are divergence-free and curl-free matrix-
valued kernels. In this study, we construct these kernels
from the scalar-valued Matérn radial kernels, which are
popular for spatial statistics [Stein, 1999] and are given by

φν(r) =
1

2ν+1�(ν + 1)
(αr)νKν(αr),

r ≥ 0, ν >
5
2

, α > 0, (17.15)

where Kν is the modified Bessel function of the second
kind of order ν. Increasing ν in (17.15) increases the
smoothness of the kernel, while increasing α increases
its peakedness. Letting x = (x, y) and xj = (xj, yj),
the respective divergence-free and curl-free matrix-valued
kernels are then defined as [Narcowich and Ward, 1994]

�div
ν (x, xj) = (−∇2I + ∇∇T )φν(‖x − xj‖2), (17.16)

�curl
ν (x, xj) = −∇∇Tφν(‖x − xj‖2), (17.17)

where I is the 2 × 2 identity matrix and ∇∇T is the Hes-
sian matrix. By construction, the columns of �div

ν are
divergence free, while the columns of �curl

ν are curl free.
Before discussing the exact details on the reconstruc-

tion and decomposition method, we note that since the
present application involves boundaries, it is necessary to
supplement the given data with boundary conditions to
make the decomposition of 2D velocity field unique [Foias
et al., 2008]. We assume that both the divergence-free and
curl-free parts of the field are parallel to the boundaries.
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We enforce this condition on the reconstructed field at
discrete locations on the boundary of the annulus.

Let vj = (uj, vj), j = 1, . . . , N, denote the normal-
ized PIV measurements of the horizontal velocity field
at any horizontal level � of the cylindrical tank and let
xj = (xj, yj) denote the corresponding normalized loca-
tions of the measured field. Here we have normalized so
that the outer radius of the tank is unity. Since the PIV
data do not include measurements on the boundary, we
must define these points. We choose the boundary points
to be equally spaced on the inner and outer circles of the
annulus with a density that is comparable to that of the
interior points. We denote these boundary points by ξk,
k = 1, . . . , M, and we let nk denote the corresponding unit
outward normal vector at ξk. The matrix-valued kernel
approximation of the field then takes the form

ṽ(x; νn, νf ) =
N∑

j=1

�div
νn

(x, xj)aj +
M∑

k=1

(�div
νf

(x, ξk)nk)dj

︸ ︷︷ ︸
ṽdiv(x; νn, νf )

+
N∑

j=1

�curl
νn

(x, xj)aj +
M∑

k=1

(�curl
νf

(x, ξk)nk)cj

︸ ︷︷ ︸
ṽcurl(x; νn, νf )

,

(17.18)

where aj = [aj bj]T , ck, and dk are determined by the
following constraints:

ṽ(xi; νn, νf ) = vi, i = 1, . . . , N,

ṽdiv(ξ i; νf , νf ) · ni = 0, i = 1, . . . , M,

ṽcurl(ξ i; νf , νf ) · ni = 0, i = 1, . . . , M.

(17.19)

These constraints can be arranged into a (2N + 2M) ×
(2N + 2M) symmetric linear system of equations for
determining the unknown coefficients.

We have introduced two smoothness parameters νn
and νf in (17.18) to provide a mechanism for filtering
the reconstructed field. The method we use for filtering
is adapted from a technique first proposed by Beatson
and Bui [2007] for scalar-valued RBF approximations.
It involves fitting the noisy data with one smoothness
parameter νn and then evaluating the resulting approx-
imation with a larger smoothness parameter νf . This
means the data is fit with one kernel but evaluated with
a smoother yet similar kernel. As discussed by Beat-
son and Bui [2007], this kernel replacement technique
corresponds to applying a low-pass filter to the approxi-
mations. Since the measurements are noisy and the bound-
ary conditions are not, we only use νn in (17.19) when

fitting the measurements. All evaluations of ṽ are done
with νn = νf to filter out the noise. The resulting filtered
approximation then satisfies the boundary conditions.
Presently, there is no theory for selecting νn and νf in
an “optimal” manner. Instead, the choice is somewhat by
trial and error. In the experiments that follow, we found
that νn = 3.5 and νf = 5.5 gave good results for several dif-
ferent flow parameter regimes and vertical measurement
levels. Half-integer choices for the smoothness parame-
ter also lead to significant simplifications in computing
(17.15) [Fasshauer, 2007].

Because of the properties of �div
ν and �curl

ν , the expan-
sions ṽ div and ṽ curl in (17.18) are divergence and curl free,
respectively. Thus, the ṽ mimics the Helmholtz-Hodge
decomposition theorem. Furthermore, an approximation
to the divergence-free or curl-free parts of the field can be
obtained from these respective expansions.

In Figure 17.13, we show the reconstruction and decom-
position of the velocity field for two sets of parameters
measured with PIV close to the surface at z = 120 mm.
For these data we set the shape parameter to α = 20.91,
which corresponds to the inverse of the minimum of
the pairwise distances between the normalized sample
locations.

Figures 17.13a,c show contour plots of the stream-
function for the divergence-free part ṽ div of the 120 mm
fields, while Figures 17.13b,d show contours of the veloc-
ity potentials for the curl-free part of the fields ṽ curl.
As can be seen, the main pattern of the flow is quasi-
geostrophic dynamics which is divergence free. The curl-
free patterns shown in 17.13b,d can be interpreted as
a deviation from pure quasi-geostrophic flow. We see
that these deviations are strongest at the inner and outer
boundaries of the annulus. There prominent axial flows
can be expected due to the heating and cooling of the
boundaries. The axial gradients of this flow component
induce a horizontal divergence. While the divergence-free
part shown in Figures 17.13a,c is rather robust, the curl-
free part is more delicate and already small effects can per-
turb the symmetry of the patterns. Still, the curl-free part
of both experiments is rather smooth and no small-scale
wavelike features can be seen. The reason for this might be
that the spatial resolution of the PIV observations is not
high enough to resolve the transient, nongeostrophically
balanced part of the flow.

We conclude this section by noting that we can also
use (17.18) to compute the divergence of the recon-
structed velocity field at any location in the 2D slice of
the cylindrical tank. These approximations can be com-
bined with the incompressibility assumption of the full
3D fluid in the rotating annulus to reconstruct the full
velocity field of the fluid (see Harlander et al. [2012b] and
the extended abstract on http://ltces.dem.ist.utl.pt/lxlaser/
lxlaser2012/upload/92_paper_ecvgbw.pdf for details).
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Figure 17.13. Helmholtz-Hodge decomposition for two sets of parameters (�, �T, Ta, Ro, m) = (5.02rpm, 6.7 K, 1.93 × 107,
1.189, 3) for (a) and (b) and (�, �T, Ta, Ro, m) = (15.00 rpm, 8.0 K, 1.72 × 108, 1.150, 4) for (c) and (d): (a) stream function
m = 3, (b) velocity potential m = 3, (c) stream function m = 4, (d) velocity potential m = 4.

17.4. CONCLUSION

This chapter summarized recent experimental work on
the differentially heated rotating annulus. Some experi-
mental techniques used are unique and the work on sin-
gular vectors and the Helmholtz-Hodge decomposition
is novel. All the statistical and mathematical techniques
discussed are versatile and can be applied to any kind
of multivariate data, no matter whether they result from
numerical models or field or laboratory observations.

Here we have applied the techniques solely on data from
the heated rotating annulus that is operated in the lab
of the Brandenburg University of Technology in Cottbus
as part of the Multiple Scales in Fluid Mechanics and
Meteorology initiative.

With the focus on geophysical fluid dynamics, the dif-
ferentially heated and rotating annulus is an ideal test
bed that allows for a rigorous and replicable testing of
theories and computational tools. The atmosphere and
oceans as well as many astrophysical fluids are stratified
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and rotate. The complex wave interactions and instabilities
that shape their natural systems all have their equivalent
in the annulus experiment.

Our understanding of the annulus flow is by far not
complete and the work discussed in the present chapter
can be seen as a starting point for further studies on the
many facets of the experiment.

In Section 17.3.1 we studied transient features of baro-
clinic waves by using PIV and LDV measurements. The
data sets involved could be expanded by simultaneous PIV
and LDV observations. LDV is well suited to resolve fast
local features like gravity waves excited close to the inner
cylinder. At the same time, PIV can capture the state of the
large-scale baroclinic wave that is particularly favorable
for gravity wave excitation.

In Section 17.3.2 we discussed simultaneous surface
temperature and PIV measurements. From these data the
surface eddy heat flux can be derived [Harlander et al.,
2012a]. A future systematic study of the surface eddy heat
flux for different flow regimes and annulus geometries
would help to understand better the transient eddies and
their feedback on the mean flow [Wilson and Williams,
2006].

In Section 17.3.3 patterns with large growth rates,
so-called singular vectors, have been estimated from data
[Penland and Sardeshmukh, 1995]. To our knowledge, no
method is available yet that can do this for systems with
time-dependent system matrices. In that case, linearization
can no longer be done about a time mean state. Instead,
linearization about a full nonlinear realization of the flow
is necessary. Due to its reproducibility, the annulus experi-
ment is well suited to provide data to test future statistical
methods that can handle problems with time-dependent
system matrices.

Finally, as already mentioned at the end of Section
17.3.4, from simultaneous observed surface temperature
and 2D flow measurements, the 3D flow can be recon-
structed by using radial basis functions [Harlander et al.,
2012b]. To further increase the reliability of such a novel
reconstruction, the technique should be tested against
stereo PIV observations that give 3D velocity fields on
2D laser slices. Combining such 3D flow observations
with numerical simulations is a promising strategy to
detect gravity waves and the excitation mechanisms in
the stratified annulus [Williams et al., 2008; Scolan et al.,
2013].
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