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A Radial Basis Function Method for Computing Helmholtz-Hodge

Decompositions

Edward J. Fuselier Grady B. Wright∗

Dept. of Mathematics and Computer Science Dept. of Mathematics
High Point University Boise State University
High Point, NC 27262 Boise, ID 83725-1555

Abstract

A radial basis function (RBF) method based on matrix-valued kernels is presented and analyzed for
computing two types of vector decompositions on bounded domains: one where the normal component of
the divergence-free part of the field is specified on the boundary, and one where the tangential component
of the curl-free part of the field specified. These two decompositions can then be combined to obtain a
full Helmholtz-Hodge decomposition of the field, i.e. the sum of divergence-free, curl-free, and harmonic
fields. All decompositions are computed from samples of the field at (possibly scattered) nodes over the
domain, and all boundary conditions are imposed on the vector fields, not their potentials, distinguishing
this technique from many current methods. Sobolev-type error estimates for the various decompositions
are provided and demonstrated with numerical examples.

Key words: Radial Basis Functions; Kernel Methods; Vector Decomposition; Divergence-free Approxi-
mation; Curl-free Approximation.

1 Introduction

In the literature the phrases “Helmholtz decomposition,” “Hodge decomposition,” and “Helmoltz-Hodge
decomposition” are used to describe a variety of vector decompositions in which a given field f is written as
a sum of divergence-free and curl-free fields. We will refer to any such decomposition as a Helmholz-Hodge
decomposition (HHD). These decompositions are fundamental to many applications, from fluid dynamics
and electromagnetics, to computer graphics and imaging. Each component plays an essential role in the
underlying application. For example, the incompressible Navier-Stokes’ equations describe the dynamics
of an incompressible fluid, the velocity field of the fluid is divergence-free while the (hydrostatic) pressure
is curl-free. This fact is exploited in projection methods, which are the dominant strategy employed for
numerically solving these equations [5, 33]. A more general version of such a decomposition is given by the
Hodge Theorem [31], which implies that vector fields f on a compact domain Ω ⊂ Rd can be split into the
sum f = w+∇p+∇η, where w is divergence-free and tangent to the boundary, ∇p is curl-free and normal
to the boundary, and the scalar function η is harmonic. This “full” HHD is used in graphics for detecting
singularities (e.g. sinks, sources, and vortices) in vector fields that arise in various disciplines [28].

Several techniques exist to compute HHDs, with most making use of the vector field sampled on a mesh
or grid. The standard approach employed is to recast the problem in terms of a Poisson equation for a
potential function p. More specifically, given a vector field f , one numerically solves Δp = ∇ · f , using,
for example, finite difference or finite element methods. It follows then that f is the sum of ∇p (which is
curl-free) and f − ∇p (which is approximately divergence free). One drawback of this approach is that in
many applications it is not clear how to impose the correct boundary conditions on the Poisson problem for
the potential p. This is in part because the boundary conditions are typically imposed on the divergence-free
or curl-free fields directly, not on the potentials for these fields. For example, with regard to solving the
incompressible Navier-Stokes equation, standard projection methods require a decomposition by calculating
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a pressure p as the solution of a Poisson problem. However, the pressure does not have a boundary condition
as it plays the role of a Lagrange multiplier, with its value being whatever it has to be to make the velocity
field divergence-free [7].

Other techniques for decomposing vector fields use basis functions that are customized to split into ana-
lytically divergence- and curl-free parts. These methods avoid having to explicitly solve a Poisson problem,
but do require solving some other type of problem (e.g. an interpolation problem). Examples on periodic
domains include those utilizing wavelets [8], and meshless kernel methods such as spherical basis functions
[11, 17]. For domains with boundaries, a meshless radial basis function (RBF) method was developed for
numerically solving certain static fluid problems (see [29, 35]), with a by-product of this approach being a
method for computing a certain type of decomposition.

In this paper we develop and provide error estimates for a meshless RBF method for computing two
standard vector decompositions on bounded domains in R2 or R3: one where the normal component of the
divergence-free part of the field is specified on the boundary, and one where the tangential component of the
curl-free part of the field is specified. These decompositions can then be combined to compute the full HHD
on a bounded domain. Our approach utilizes matrix-valued RBFs that split into analytically divergence-free
and curl-free parts. Each decomposition is obtained by solving a generalized interpolation problem, with the
boundary conditions appearing on the velocity field variables and not on the potentials, and gives rise to
a positive definite linear system of equations. While we never work with the (vector and scalar) potentials
of the components of the decomposed field directly, these potentials can be easily recovered at no added
computational cost. Sobolev-type error estimates are given for decompositions involving continuous vector
fields having enough smoothness. Our method provides accurate decompositions, but does require global
information. As such, a drawback, as is the case with many global kernel-based methods, is expense. We
hope this can be mitigated by employing approaches similar to those in the scalar kernel theory, such as using
a multiscale approach [9] or by employing a localized basis [2, 12], but this will be reported on separately.

As noted above the technique described in [29, 35] also gives rise to methods for computing certain vector
decompositions in Rd. In fact, a vector decomposition as in Proposition 1 was obtained in [29]. In these
papers the authors use “combined kernels”, which are constructed by incorporating a d× d divergence-free
kernel with a scalar RBF to obtain a larger (d + 1) × (d + 1) kernel. Our approach is different in that
instead of combining kernels to make a larger one, we sum kernels with properties to match the HHD, which
results in a diagonal d × d matrix-valued kernel. Though not obvious at first appearance, it can be shown
that the techniques are in fact equivalent for a certain choice of the scalar kernel in the combined method.
However, we approach the problem from a different perspective—instead of using a combined kernel that
sets out to model the components of the vector field with separate kernels, we model the field directly with
a single kernel that splits naturally. A practical by-product of this approach is that a large portion of the
interpolation matrix becomes block-diagonal, which gives savings in terms of storage and computational
efficiency. Where there is overlap in our work with previous work, we offer improvements in error estimates
in terms of the order of approximation1 and the domains on which they apply. We also include a vector
decomposition not treated with kernel methods before (as described in Proposition 2) and develop the first
kernel method for computing the full HHD.

The paper is organized as follows. Section 2 contains the necessary preliminaries on function spaces and
vector decompositions. In Section 3 we give background information on scalar and matrix-valued RBFs.
Next, the construction of our kernel decompositions are described in detail in Section 4. Error estimates
and numerical experiments are presented in Sections 5 and 6, respectively. We end the paper with some
concluding remarks regarding decompositions with other boundary conditions.

2 Preliminaries

We will distinguish between scalar and vector valued functions by denoting the latter in bold-face. We denote
the gradient and divergence in the usual way, i.e. ∇ and ∇·. The curl operator on three dimensional fields
will be denoted by curl(f). Given a scalar valued function f : R2 → R, we will use the same notation for
curl(f) := (−∂yf, ∂xf) — this should cause no confusion. We will let Ω denote a connected open domain

1Previous work presented error measured in the H1 norm, and we extend this to H1/2.
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in Rd with boundary Γ of Hölder class Cm,1 for some nonnegative integer m. Also, in our estimates we will
use the common convention that C represents a generic constant whose value may differ at each use.

2.1 Function spaces

The function spaces we will work with are all Hilbert spaces: L2(Ω) will denote the space of square integrable
functions on Ω, and L2(Ω) will denote the space of all vector fields with components in L2(Ω). Given s ≥ 0,
we let Hs(Ω) denote the Sobolev class of functions on Ω with smoothness s, and denote its vectorial analogue
by Hs(Ω). When the underlying domain is Rd, we use the Fourier transform form of the inner product in
these spaces. For example, the inner product on Hs(Rd) is given by

(f ,g)Hs(Rd) :=

∫
Rd

f̂(ω)
T

ĝ(ω)(1 + |ω|2)s dω, (1)

where f̂ denotes the Fourier transform of f and |ω| denotes the Euclidean length of ω ∈ Rd. We will also

need the space of functions H̃s(Rd), which is endowed with the inner product

(f, g)
˜Hs(Rd) :=

∫
Rd

f̂(ω)ĝ(ω)
(1 + |ω|2)s+1

|ω|2 dω. (2)

It can be shown that H̃s(Rd) is a subspace of Hs(Rd) and that ‖f‖Hs(Rd) ≤ ‖f‖
˜Hs(Rd) for all f ∈ H̃s(Rd)

[14, Proposition 2]. The space H̃s(Rd) is defined in an analogous way.
We denote the L2(Γ) inner product by 〈·, ·〉. Sobolev spaces on the boundary Γ can be defined in various

ways. If the boundary is Cm,1, then to define Hs(Γ) with 0 ≤ s ≤ m+ 1 one can use charts and a partition
of unity (see, for example [19, Section 1.3.3]). For s ≥ 0, we let H−s(Γ) denote the dual space to Hs(Γ),
and the vector-valued cases for these spaces will be denoted in bold-face.

Lastly, we will make use of the following norms, which are both equivalent to ‖ · ‖Hs(Ω) for all s ≥ 1 when

Γ is at least C�s�,1:

|||u|||2n = ‖u‖2L2(Ω) + ‖curl(u)‖2Hs−1(Ω) + ‖∇ · u‖2Hs−1(Ω) + ‖u · n‖2Hs−1/2(Γ), (3)

|||u|||2t = ‖u‖2L2(Ω) + ‖curl(u)‖2Hs−1(Ω) + ‖∇ · u‖2Hs−1(Ω) + ‖u× n‖2Hs−1/2(Γ). (4)

For integer s, see [18, Corollary 3.7, pg 56] for (3) and [6, Proposition 6’, pg. 237] and the proceeding remarks
for (4). The fractional cases follow from standard interpolation arguments. Though stated here for d = 3,
similar results hold in the two dimensional case.

2.2 Vector Decompositions

The Helmholtz-Hodge decomposition for vector fields in L2(R
d) can be easily described in terms of the

Fourier transform. A field f ∈ L2(R
d) is divergence-free if and only if ωT f̂(ω) = 0 almost everywhere, and f

is curl-free if and only if f̂(ω) = ωĥ(ω) for some h ∈ H1(Rd). Letting F−1 : L2(R
d) → L2(R

d) denote the
inverse Fourier transform, the operators

Pdivf := F−1

((
I − ω ωT

|ω|2
)
f̂(ω)

)
, Pcurlf := F−1

((
ω ωT

|ω|2
)
f̂(ω)

)
, (5)

are projections on L2(R
d), with Pdivf divergence-free, Pcurlf curl-free, and Pdivf ⊥ Pcurlf . With this,

f = Pdivf+Pcurlf uniquely decomposes f into L2(R
d)-orthogonal divergence-free and curl-free fields. Further,

if V ⊆ L2(R
d) is a Hilbert space with inner product of the form

(f ,g)V =

∫
Rd

f̂(ω)
T

ĝ(ω)ϕ(ω) dω, (6)

where the weight function ϕ ≥ 0 is measurable, then Pdivf and Pcurlf are also orthogonal in V for all f ∈ V .
This includes the Sobolev spaces Hs(Rd) and H̃s(Rd).

For fields on bounded domains we will focus on the two fundamental decompositions given in the following
propositions.
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Proposition 1. Let Ω ⊂ Rd be a connected Lipschitz domain. f ∈ L2(Ω) be such that ∇· f ∈ L2(Ω), and let
g ∈ H−1/2(Γ) satisfy 〈g, 1〉 = 0. Then one has the unique decomposition f = w+∇p, where p ∈ H1(Ω), and
w ∈ L2(Ω) satisfies ∇ ·w = 0 with w · n = g on Γ. The function p is uniquely determined up to a constant,
and satisfies the bound

|p|H1(Ω) = ‖∇p‖L2(Ω) ≤ C
(‖∇ · f‖L2(Ω) + ‖f · n− g‖H−1/2(Γ)

)
, (7)

where C is some constant independent of f . When g = 0, w and ∇p are orthogonal in L2(Ω).

Proof. Since the divergence of f is in L2(Ω), f has a well-defined normal boundary component f ·n ∈ H−1/2(Γ)
satisfying Green’s formula (see [18, Theorem 2.5]). Thus we can consider the following weak Neumann
problem

(∇p,∇v) = (−∇ · f , v) + 〈f · n− g, v〉 ∀ v ∈ H1(Ω).

Standard Lax-Milgram theory dictates that the solution p is continuous with respect to the data, giving (7)
(see, for example, [18, Proposition 1.2]). The field w := f −∇p has the other properties listed above.

An important by-product of this decomposition in the case g = 0 is the Leray projector PL and its orthogonal
complement P⊥

L , defined by PLf := w and P⊥
L f := ∇p.

The next decomposition splits a vector field into a divergence-free field and a gradient field normal to the
boundary. Note that ∇p is normal to the boundary if and only if p|Γ is constant on each of the connected
components of Γ, which we denote by Γ0,Γ1, . . . ,ΓK . The following is from Corollary 5′ in [6, pg 224].

Proposition 2. Every f ∈ L2(Ω) admits the unique orthogonal decomposition f = w + ∇p, where p ∈
H1

c (Ω) = {v ∈ H1(Ω), v|Γi
= constant, i = 0, . . . ,K}. The vector field w is divergence-free and perpendicular

to ∇p in L2(Ω).

2.2.1 Potential Functions and Extensions

In what follows we require w (the divergence-free term of f) to be expressed as w = curl(ψ) in the case of
d = 3 dimensions (or w = curl(ψ) when d = 2).2 We will also need a well-defined continuous assignment
w → ψ. This requires some mild assumptions on Ω in the event that Ω is multiply connected. Specifically,
we require that Ω can be made simply connected by a series of non-intersecting “cuts” Σ1, . . . ,Σn, where
Σj ⊂ Ω is a smooth variety (see for example [6, pg. 217]). We will assume that Ω satisfies this condition for
the remainder of the paper. On such an Ω, we have the following:

Proposition 3. A given w ∈ L2(Ω) is an element of curl(H1(Ω)) if and only if w satisfies ∇ ·w = 0 and∫
Γi

w · n dΓ = 0 for all i = 0 . . .K. Of all possible potential functions, there is a unique ψ ∈ H1(Ω) such

that w = curl(ψ) satisfying

∇ ·ψ = 0, ψ · n = 0, 〈ψ · n, 1〉Σi = 0, i = 1, . . . , n. (8)

Finally, we have the bound ‖ψ‖H1(Ω) ≤ C‖w‖L2(Ω) for some C independent of w.

Proof. The first claim is Corollary 4 from [6, pg. 224], and the unique assignment follows from Remark 4
proceeding the corollary. For continuity, note that curl(H1(Ω)) endowed with the L2(Ω) norm is closed [6,
pg. 222, Proposition 3]. Now let V denote the subspace of fields ψ ∈ L2(Ω) satisfying (8). By [6, pg. 225,
Proposition 4], V is closed in L2(Ω), so V ∩ H1(Ω) is closed in H1(Ω). Using this one can show that the
operator T : curl(H1(Ω)) → V ∩H1(Ω) given by Tw := ψ is a closed map, and therefore continuous.

This leads to potential functions for our decompositions that satisfy the following regularity result.

Proposition 4. Let τ be such that 0 ≤ τ ≤ m and let f ∈ Hτ (Ω). Then the decompositions in Propositions
1 and 2 can be written as f = curl(ψ) + ∇p, for uniquely determined potentials p ∈ Hτ+1(Ω) and ψ ∈
Hτ+1(Ω). For the decomposition in Proposition 1 with g ∈ Hτ−1/2(Γ) satisfying 〈g, 1〉Γi

= 0 on each
connected component of Γ, these potentials satisfy

‖p‖Hτ+1(Ω) ≤ C(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)), ‖ψ‖Hτ+1 ≤ C(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)). (9)

Similar bounds (with g = 0) hold for the decomposition in Proposition 2.
2Since our results will hold in two and three dimensions, throughout the remainder of the paper we will concentrate specifically

on the more complicated d = 3 case to avoid constantly distinguishing between these two cases.
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Proof. Let τ be a nonnegative integer. In the case of Proposition 1, with g = 0, existence and uniqueness of
ψ follows from [6, page 224, Corollary 5] and the proceeding remarks. The Proposition 2 case follows from [6,
page 224, Corollary 5′]. The additional regularity of the boundary gives regularity of these potentials (see,
for example [6, page 236, Corollary 7]). Recall that V denotes the subspace of fields ψ ∈ L2(Ω) satisfying
(8), and V is closed in L2(Ω), so V ∩ Hτ+1(Ω) is closed in Hτ+1(Ω). From this one can show that the
assignment f → ψ is a well-defined closed map, and thus obtain the bound for ψ in (9). The scalar potential
p is unique if we require

∫
Ω
p dx = 0. In a similar fashion as above, the bound for p follows from the fact that

the space Hτ+1(Ω) ∩ {p ∈ L2(Ω) |
∫
Ω
p dx = 0} is closed in Hτ+1(Ω). The fractional cases can be handled

using standard interpolation arguments.
To handle the case g �= 0 from Proposition 1, let pg be the unique solution of the problem

−Δpg = 0 in Ω,
∂pg
∂n

= −g on Γ,

satisfying
∫
Ω
pg dx = 0. Note that wg := −∇pg is divergence free. Since wg is divergence-free and wg ·n = g

satisfies the conditions in Proposition 3, wg = curl(ψg) for a unique ψg. Letting f = curl(ψ0) + ∇(p0)
denote the decomposition of f from Proposition 1 with g = 0, where the potentials are the unique potentials
from above satisfying (9) with g = 0, the desired potentials are given by ψ := ψ0 +ψg and p := p0 + pg.

The bound (9) will follow from bounding ψg and pg. Since g ∈ Hτ−1/2(Γ) and the domain is assumed
smooth enough, we get the regularity bound [18, Theorem 1.10]

‖wg‖Hτ (Ω) = ‖∇pg‖Hτ (Ω) ≤ ‖pg‖Hτ+1(Ω) ≤ C‖g‖Hτ−1/2(Γ).

Using this with Proposition 3, ψg satisfies the bound ‖ψg‖H1(Ω) ≤ C‖wg‖L2(Ω) ≤ C‖g‖H−1/2(Γ). For higher
regularity, we use (3) with s = τ + 1 to finish the proof:

‖ψg‖2Hτ+1(Ω) ∼
∣∣∣∣∣∣ψg

∣∣∣∣∣∣2
n
≤ C

(
‖wg‖2H1(Ω) + ‖wg‖2Hτ (Ω)

)
≤ C‖wg‖2Hτ (Ω) ≤ C‖g‖2Hτ−1/2(Γ).

We remark that the existence of these potentials is only used for theoretical purposes. The choice of cuts and
the conditions (8) plays no role in implementing the kernel-based decomposition presented later. However,
potential functions for each term in the kernel decomposition will be readily available.

Next we use these potentials to define an extension operator, which will be useful later.

Lemma 5. Let g ∈ Hτ−1/2(Γ) satisfy 〈g, 1〉Γi = 0 on each connected component of Γ, and let f = w +∇p
denote the corresponding vector decomposition from Proposition 1. Given Ω ⊂ Rd satisfying the assumptions
preceeding Proposition 4, there exists an extension operator E : Hτ (Ω) → H̃τ (Rd), for all τ satisfying
0 ≤ τ ≤ m, such that

Ef |Ω = f , PdivEf |Ω = w and PcurlEf |Ω = ∇p, (10)

and is continuous in the sense that ‖Ef‖
˜Hτ (Rd) ≤ C

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Proof. Let p and ψ denote the unique potentials for a given f ∈ Hτ (Ω) in Proposition 4. These can be
extended using Stein’s continuous extension E : Hτ+1(Ω) → Hτ+1(Rd), which we note is universal in the
sense that E does not depend on τ [32, Chapter 4]. We will interpret E : Hτ+1(Ω) → Hτ+1(Rd) as E applied
component-wise. We can then define the extension Ef := curl(Eψ) +∇Ep, which satisfies (10). Lastly, (9)
gives us that E is continuous:

‖Ef‖2
˜Hτ (Rd)

=

∫
Rd

(
|ω × Êψ|2 + |ωÊp|2

) (1 + |ω|2)τ+1

|ω|2 dω

≤
∫
Rd

(
|Êψ|2 + |Êp|2

)
(1 + |ω|2)τ+1 dω = ‖Eψ‖2Hτ+1(Rd) + ‖Ep‖2Hτ+1(Rd)

≤ C‖ψ‖2Hτ+1(Ω) + C‖p‖2Hτ+1(Ω) ≤ C
(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)2
.

These same arguments can be repeated to establish a continuous extension satisfying (10) for the decompo-
sition in Proposition 2.
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3 Radial Basis Functions and Related Kernels

A kernel φ : Rd ×Rd → R is positive definite if given any finite set of unique points X = {x1, x2, . . . , xN} ⊂
Rd, the associated Gram matrix with entries Aij = φ(xi, xj) is positive definite. The typical Ansatz for
interpolation of function f over the points X with such a kernel is to find an interpolant of the form

sf =

N∑
j=1

φ(·, xj)cj , (11)

where the coefficients cj are chosen so that sf
∣∣
X

= f
∣∣
X
. Positive definiteness of the kernel ensures existence

and uniqueness of the interpolant. If φ is radial in the sense that φ(x, y) = ϕ(|x− y|) for some univariate ϕ,
then φ is a radial basis function (RBF). It is common to simply write φ(x, y) = φ(|x− y|). Good references
on RBFs are, for example, [4, 10, 34].

For vector-valued approximations, there are matrix-valued kernels Φ : Rd ×Rd → Rd ×Rd. Interpolants
to a vector field f : Rd → Rd sampled at distinct points X = {x1, x2, . . . , xN} ⊂ Rd can be constructed from
these kernels as follows:

sf =

N∑
j=1

Φ(·, xj)cj , (12)

where the vector coefficients cj ∈ Rd are chosen so that sf
∣∣
X

= f
∣∣
X
. This leads to the following Nd × Nd

linear system of equations: ⎡
⎢⎣
Φ(x1, x1) · · · Φ(x1, xN )

...
. . .

...
Φ(xN , x1) · · · Φ(xN , xN )

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣
c1
...
cN

⎤
⎥⎦

︸ ︷︷ ︸
c

=

⎡
⎢⎣
f1
...
fN

⎤
⎥⎦

︸ ︷︷ ︸
f

. (13)

We say that Φ is positive definite if the Gram matrix A in (13) is positive definite for any distinct set of
points X. It will be useful later to express this property in a block-style quadratic form. Since A is positive
definite, we have ∑

j,k

cTkΦ(xk, xj)cj = cTAc ≥ 0, (14)

with equality occurring if and only if cj = 0, j = 1, . . . , N .
Customized matrix-valued kernels leading to divergence-free and curl-free approximations were introduced

independently by several researchers in the 1990s: [1, 20, 24]. In all cases the construction of the customized
kernel is fairly simple. For example, letting φ be an RBF on R3, we define

Φdiv(x, y) = −curlx curly (φ(|x− y|)I) and Φcurl(x, y) = ∇x∇T
y (φ(|x− y|)I) , (15)

where I is the 3-by-3 identity matrix, the subscript in the differential operators indicate which argument they
act on, and the curl of a matrix is interpreted as having the curl operator act on the matrix column-wise.
Note that ∇yφ = −∇xφ, so this simplifies to a form that readily generalizes to any Rd:

Φdiv(x, y) := (−ΔI+∇∇T )φ(|x− y|) and Φcurl(x, y) := −∇∇Tφ(|x− y|),

where the differential operators act on x. Letting r = |x−y| and κ = φ′(r)/r, where φ′ denotes the univariate
derivative of φ, one can show that these kernels take the form3

Φdiv(x, y) = − (κ′(r)r + dκ(r)) I+
κ′(r)
r

(x− y)(x− y)T (16)

Φcurl(x, y) = −κ′(r)
r

(x− y)(x− y)T . (17)

3Since φ is even and C2, it can be shown that the apparent singularities in φ′(r)/r and κ′(r)/r are removeable.
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From this we see that these kernels are symmetric, even in the sense that Φdiv(x, y) = Φdiv(y, x), and that
the second argument acts as a shift, e.g. Φdiv(x, y) = Φdiv(x − y). If φ is positive definite, Φdiv and Φcurl

are both positive definite (see, for example [14, 24]). Further, the kernel given by

Φ := Φdiv +Φcurl = −ΔφI (18)

is also positive definite because it is the sum of positive definite kernels. Φ decomposes naturally into its
divergence-free and curl-free components. Indeed, given xj , cj ∈ Rd, the identities4

Φ̂div(ω) =
(|ω|2I− ωωT

)
φ̂(ω) and Φ̂curl(ω) =

(
ωωT

)
φ̂(ω)

imply that PdivΦ(·,xj)cj = Φdiv(·,xj)cj and PcurlΦ(·,xj)cj = Φcurl(·,xj)cj .

3.1 The Native Space

From here on out, we let Φ denote the matrix-valued kernel from (18). Each positive definite matrix-valued
kernel gives rise to a canonical reproducing kernel Hilbert space, commonly referred to as the native space for
that kernel. The native space for Φ is denoted by NΦ(R

d). A precise definition for NΦ(R
d) is not warranted

here and we refer the interested reader to [14, Section 3]. Φ serves as a reproducing kernel in the sense that
if f is a vector field in NΦ(R

d) and b ∈ Rd, then

(f ,Φ(·, x)b)NΦ(Rd) = bT f(x) ∀x ∈ Rd, (19)

where (·, ·)NΦ(Rd) denotes the inner product on NΦ(R
d).

It can be shown that if φ ∈ C2(Rd) with Δφ ∈ L1(R
d), then the inner product in NΦ(R

d) is

(f ,g)NΦ(Rd) =

∫
Rd

f̂(ω)
T

ĝ(ω)

|ω|2φ̂(ω)
dω, (20)

where f̂ is the Fourier tranform of f and NΦ(R
d) ⊂ L2(R

d) is identified with all functions finite in the

associated norm (see [14, Section 3.1]). It immediately follows that if the RBF φ satisfies φ̂(ω) ≤ C(1 +

|ω|22)−τ−1 for some constant C, then NΦ(R
d) is continuously embedded in H̃τ (Rd). If in addition

φ̂(ω) ∼ (1 + |ω|22)−τ−1, (21)

then NΦ(R
d) = H̃τ (Rd) with equivalent norms.

3.2 Generalized Interpolation

The reproducing kernel Hilbert space structure of the native space makes it possible to interpolate using a
wide variety of continuous linear functionals. A concise treatment of this is given for scalar-valued RBFs
in [34, Chapter 16], and generalizes in a straightforward way to the matrix-valued case. We summarize the
main results we need below.

Let Λ ⊂ NΦ(R
d)∗ be a finite linearly independent collection of linear functionals, where NΦ(R

d)∗ denotes
the dual space to NΦ(R

d). Given the data {λ(f) |λ ∈ Λ}, where f ∈ NΦ(R
d), we look for a generalized

interpolant to f of the form

sf =
∑
λ∈Λ

vλαλ,

where αλ ∈ R and each vλ is the Riesz representer for λ. The interpolation conditions λ(sf ) = λ(f) ∀λ ∈ Λ
lead to a linear system, and as long as the functionals are linearly independent the problem is uniquely
solvable. Further, sf is perpendicular to f − sf in NΦ(R

d), which gives us the following:

‖f − sf‖NΦ(Rd) ≤ ‖f‖NΦ(Rd), ‖sf‖NΦ(Rd) ≤ ‖f‖NΦ(Rd). (22)

Note that since Φ is a reproducing kernel for NΦ(R
d), the Riesz representer for λ can be written in terms of

Φ. For example, (19) shows that the evaluation functional defined by λ(f) = bT f(xj) is represented in the
native space as Φ(·, xj)b. Next we consider functionals involving Pdiv.

4Here ̂φ denotes the d-variate Fourier tranform of the single argument function φ(| · |).
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Proposition 6. Let x,n ∈ Rd, and define the functional ν(f) := nTPdivf(x). Then ν is continuous on
NΦ(R

d) and has Riesz representer Φdiv(·, x)n.
Proof. First note that by (20) and (6), Pdiv is a projection on NΦ(R

d). Using this and the reproducing
kernel property of Φ we have

|ν(f)| = |(Pdivf ,Φ(·, x)n)NΦ(Rd)| ≤ ‖Φ(·, x)n‖NΦ(Rd)‖Pdivf‖NΦ(Rd) ≤ C‖f‖NΦ(Rd).

This gives us continuity. To verify the form of the representer, first note that the Fourier transform of
g := Φdiv(·, x)n is given by

ĝ(ω) = (|ω|2I− ωωT )φ̂(ω)eix
Tωn.

Using this and (20), we have

(f ,g)NΦ(Rd) = nT

∫
Rd

(
I− ωωT

|ω|2
)
f̂(ω)eix

Tω dω = nT

∫
Rd

P̂divf(ω)e
ixTω dω = nTPdivf(x).

4 Kernel-based Decompositions

In this section we show how to construct a kernel-based approximation to the decompositions discussed
earlier. We will also show how one easily obtains potential functions from the kernel approximation.

4.1 Kernel Approximation with Divergence-free Boundary Conditions

Given a target f on Ω and boundary target g, it is our aim to construct a kernel approximation stf such
that Pdivs

t
f and Pcurls

t
f , which we can compute analytically, approximate the appropriate terms of the

decomposition in Proposition 1.5 We will construct our kernel-based vector decomposition by requiring full
interpolation on nodes X = {x1, x2, . . . , xN} ⊂ Ω, while at the same time enforcing boundary conditions at
a dense set of nodes Y = {y1, y2, . . . , yM} ⊂ Γ. Although no repetition is allowed within each node set, X
and Y can have a nonempty intersection.

Letting ei ∈ Rd denote the vector whose only nonzero entry is a 1 in the ith position, the interpolation

functionals are given by λ
(i)
j (f) := eTi f(xj) for 1 ≤ i ≤ d, xj ∈ X. The boundary functionals are given by

νj(f) := nT
yj
Pdivf(yj), yj ∈ Y , where ny ∈ Rd is the outward normal vector at y ∈ Γ. This gives a total of

dN +M conditions to be met. The basis functions to be used are the Riesz representers of these functionals,
which from the previous section are given by Φ(·, xj)ei and Φdiv(·, yj)nyj , respectively.

Using these as basis functions, our RBF approximation will take the form

stf =

N∑
j=1

d∑
i=1

Φ(·, xj)eicij +

M∑
j=1

Φdiv(·, yj)nyjdj =

N∑
j=1

Φ(·, xj)cj +

M∑
j=1

Φdiv(·, yj)nyjdj , (23)

where the coefficents cij , 1 ≤ i ≤ d have been consolidated into the vector unknowns cj for each j, as in
(12). Letting f |X denote the dN × 1 vector whose jth d × 1 block is given by f(xj), the interpolation and
boundary conditions lead to a linear system of the form[

A B
BT C

] [
c
d

]
=

[
f |X
g|Y

]
, (24)

where A is the matrix given in (13), B is given by

B =

⎡
⎢⎣

Φdiv(x1, y1)ny1
· · · Φdiv(x1, yM )nyM

...
. . .

...
Φdiv(xN , y1)ny1

· · · Φdiv(xN , yM )nyM

⎤
⎥⎦ ,

5We use the superscript t because when g = 0 the divergence-free portion is tangential to Γ.
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and C is an M × M matrix given by Cij = nT
yi
Φdiv(yi, yj)nyj

. Since Φdiv = ΦT
div and Φdiv(yi, yj) =

Φdiv(yj , yi) (see (16)), C is symmetric. Note that due to the diagonal structure of the kernel Φ = ΔφI, the
matrix A can be rearranged to be block-diagonal, with d identical N × N blocks along the diagonal. This
not only reduces the cost of storing the interpolation matrix, but also makes it possible to solve (24) using
a more efficient Schur complement method than if the matrix A was dense [3].

Note that the interpolation matrix in (24) is symmetric, and since we have taken the symmetric approach
for generalized interpolation, it is also positive definite (and hence invertible) if the functionals involved are
linearly independent [34, Section 16.1].

Lemma 7. The functionals in Λ = {λ(i)
j |xj ∈ X, 1 ≤ i ≤ d} ∪ {νj | yj ∈ Y } are linearly independent.

Proof. Suppose that some linear combination of the functionals in Λ sums to zero. This is equivalent to its
Riesz representer vanishing, i.e.

g :=

N∑
j=1

Φ(·, xj)cj +

M∑
l=1

Φdiv(·, yl)dl = 0,

where dl = nldl for some scalars dl. Since the terms in the decomposition g = Pdivg+Pcurlg are orthogonal
in NΦ(R

d), we have ‖Pcurlg‖2NΦ(Rd) = 0. We also have

‖Pcurlg‖2NΦ(Rd) =
∑
j,k

(Φcurl(·, xj)cj ,Φcurl(·, xk)ck)NΦ(Rd).

Using the native space inner product (20) with the Fourier identities

̂Φcurl(·, xj)cj = (ωωT )cj φ̂(ω)e
ixT

j ω, ̂Φ(·, xk)ck = ck|ω|2φ̂(ω)eixT
k ω,

it follows that

(Φcurl(·, xj)cj ,Φcurl(·, xk)ck)NΦ(Rd) = (Φcurl(·, xj)cj ,Φ(·, xk)ck)NΦ(Rd).

Thus the reproducing property of Φ gives us

‖Pcurlg‖2NΦ(Rd) =
∑
j,k

(Φcurl(·, xj)cj ,Φ(·, xk)ck)NΦ(Rd) =
∑
j,k

cTkΦcurl(xk, xj)cj ,

and since Φcurl is positive definite, (14) implies that this equaling zero necessitates cj = 0 for all j = 1, . . . , N .
Thus g only consists of the boundary terms, i.e.

g =

M∑
l=1

Φdiv(·, yl)dl,

from which one can show similarly that

‖g‖2NΦ(Rd) =
∑
l,m

dT
l Φdiv(yl, ym)dm,

and since Φdiv is also positive definite we must have dl = 0 for all l = 1, . . . ,M . This completes the proof.

Once (24) is solved, the resulting approximation decomposes as follows:

stf =

N∑
j=1

Φdiv(·, xj)cj +

M∑
j=1

Φdiv(·, yj)nyj
dj

︸ ︷︷ ︸
Pdivstf

+

N∑
j=1

Φcurl(·, xj)cj

︸ ︷︷ ︸
Pcurlstf

.

As a bonus, we get a stream function ψstf
and velocity potential qstf satisfying

stf = curl(ψstf
) +∇qstf . (25)

Indeed, the identities (15) imply that such potentials are given by

ψstf
:= −

N∑
j=1

curl(φ(·, xj)cj)−
M∑
j=1

curl(φ(·, xj)nyj
)dj and qstf := −

N∑
j=1

∇T (φ(·, xj)cj).
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4.2 Kernel Approximation with Curl-free Boundary Conditons

We now focus on how to obtain a kernel-based approximation to the decomposition in Proposition 2, whose
gradient term ∇p is normal to the boundary. As in the previous section, we enforce full interpolation on a
node set X and apply boundary conditions on a node set Y . The boundary conditions are imposed in this
case by first projecting a kernel approximation snf onto the subspace of curl-free functions, and then setting
all tangential components to zero pointwise. In d = 2 dimensions, this is given by tTyj

Pcurls
n
f (yj) = 0 for all

yj ∈ Y , where tyj is tangent to Γ at yj . As before, the Riesz representers give the basis functions one should
consider: for full interpolation they are the same as the previous section, and the boundary-centered basis
functions are of the form Φcurl(·, yj)tyj

. Thus the interpolant is written as

snf =

N∑
j=1

Φ(·, xj)cj +

M∑
j=1

Φcurl(·, yj)tyj
dj . (26)

In the d = 3 case the two dimensional boundary leads to two basis functions at each shift on the boundary.
For notational simplicity, we will continue with the d = 2 case here.

The interpolation constraints give rise to a linear system similar to (24) for determining the coefficients
cj and dj : [

A B
BT C

] [
c
d

]
=

[
f |X
0

]
, (27)

where A is the matrix given in (13), B is given by

B =

⎡
⎢⎣

Φcurl(x1, y1)ty1
· · · Φcurl(x1, yM )tyM

...
. . .

...
Φcurl(xN , y1)ty1

· · · Φcurl(xN , yM )tyM

⎤
⎥⎦ ,

and C is the symmetric M ×M matrix with Cij = tTyi
Φcurl(yi, yj)tyj

. It can be shown using an argument
similar to that in Lemma 7 that the linear functionals involved are linearly independent, which guaran-
tees that the matrix in (27) is symmetric and positive definite. The decomposition of the resulting kernel
approximation is given by:

snf =

N∑
j=1

Φdiv(·, xj)cj

︸ ︷︷ ︸
Pdivsnf

+

N∑
j=1

Φcurl(·, xj)cj +

M∑
j=1

Φcurl(·, yj)tyjdj

︸ ︷︷ ︸
Pcurlsnf

.

In Section 5.2 we will show that Pdivs
n
f and Pcurls

n
f approximate the terms from Proposition 2. Also one

can use the form of the kernels (15) to access potential functions ψsnf
and qsnf .

5 Error Estimates

Our analysis follows the paradigm of RBF error estimates developed in recent years, where bounds on Sobolev
functions having many zeros (the so-called “zeros lemmas,” or “sampling inequalities”) play a prominent
role [25]. We will review the specific results we require below, and extend them slightly to suit our purposes.
Next, we derive the error estimates in Sections 5.2 and 5.3.

5.1 Zeros Lemmas

The zeros lemmas involve bounding the norm of Sobolev functions that vanish on a set X = {x1, . . . , xN} ⊂
Ω ⊂ Rd in terms of the density of X in Ω, which is quanitfied by the mesh norm:

hΩ := sup
x∈Ω

dist(x,X).

The following is from [25], with improvements in [35, Theorem 4.6].
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Proposition 8. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Let s ∈ R with s > d/2, and
let μ ∈ R satisfy 0 ≤ μ ≤ s. Also, let X ⊂ Ω be a discrete set with mesh norm hΩ sufficiently small. Then
there is a constant CΩ, depending only on Ω, such that if hΩ ≤ CΩ and u ∈ Hs(Ω) satisfies u|X = 0, then

‖u‖Hμ(Ω) ≤ Chs−μ
Ω ‖u‖Hs(Ω), (28)

where the constant C is independent of hΩ and u.

The condition s > d/2 is required to ensure that u is continuous (see, for example [21, Theorem 9.8]),
guaranteeing that point evaluations of u make sense. The zeros lemma can also be extended to manifolds
in a straightforward way (see [13, Lemma 10]). Thus, if s > (d − 1)/2 and u ∈ Hs(Γ) satisfies u|Y = 0, for
0 ≤ μ ≤ s one has

‖u‖Hμ(Γ) ≤ Chs−μ
Γ ‖u‖Hs(Γ). (29)

Here the mesh norm hΓ for a finite set Y ⊂ Γ, is defined just as in the Euclidean case, the only difference
being that distances are measured on the surface Γ.

5.2 Convergence with Divergence-free Boundary Conditions

For the rest of the paper we assume that the smoothness τ satisfies τ > d/2, the RBF φ is such that

NΦ(R
d) = H̃τ (Ω) with equivalent norms, the boundary Γ is smooth (at least Cm,1 with 0 < τ ≤ m), and

that the mesh norms for the node sets X and Y (hΩ and hΓ) are sufficiently small for the zeros lemmas to
be applied. Further, we assume that g satisfies the condition 〈g, 1〉Γi = 0 on each connected component of
Γ. We begin with a basic interpolation estimate.

Lemma 9. Let μ satisfy 0 ≤ μ ≤ τ . Let stf be the kernel approximation discussed in Section 4.1 for a given
f and g. Then for all f ∈ Hτ (Ω) and g ∈ Hτ−1/2(Γ) we have6

‖f − stf‖Hμ(Ω) ≤ Chτ−μ
Ω

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Proof. Since f − stf has zeros on X, we may apply Proposition 8 to get

‖f − stf‖Hμ(Ω) ≤ Chτ−μ
Ω ‖f − stf‖Hτ (Ω).

Now we use the extension operator. Since Ef |Ω = f and (PdivEf)|Ω = w, where w satisfies w · n = g, then
the data in the system used to determine stEf (see (24)) is the same as that of stf . Thus we get stf = stEf .

This with (22), the fact that H̃τ (Rd) is norm equivalent to NΦ(R
d), and the continuity of E gives

‖f − stf‖Hτ (Ω) = ‖Ef − stEf‖Hτ (Ω) ≤ ‖Ef − stEf‖˜Hτ (Rd) ≤ C‖Ef − stEf‖NΦ(Rd)

≤ C‖Ef‖NΦ(Rd) ≤ C‖Ef‖
˜Hτ (Rd) ≤ C

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

This completes the proof.

We continue our analysis by showing that Pdivs
t
f · n− g is small on the boundary.

Lemma 10. Let μ satisfy 1/2 ≤ μ ≤ τ . For all f ∈ Hτ (Ω) and g ∈ Hτ−1/2(Γ) we have

‖Pdivs
t
f · n− g‖Hμ−1/2(Γ) ≤ Chτ−μ

Γ

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Proof. Recall that Pdivs
t
f · n = g on the node set Y ⊂ Γ by construction. Since the normals are assumed

smooth and μ− 1/2 ≥ 0, we can apply (29) to get

‖Pdivs
t
f · n− g‖Hμ−1/2(Γ) ≤ Chτ−μ

Γ ‖Pdivs
t
f · n− g‖Hτ−1/2(Γ)

≤ Chτ−μ
Γ

(‖Pdivs
t
f‖Hτ−1/2(Γ) + ‖g‖Hτ−1/2(Γ)

)
.

6Here and throughout, C is a constant independent of f , g, and the node sets.

11

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IMA
Journal of Numerical Analysis, published by Oxford Academic. Copyright restrictions may apply. doi: 10.1093/imanum/drw027



Applying the Trace Theorem and the fact that the H̃τ (Rd) norm bounds the Hτ (Rd) norm gives us

‖Pdivs
t
f‖Hτ−1/2(Γ) ≤ C‖Pdivs

t
f‖Hτ (Ω) ≤ C‖Pdivs

t
f‖˜Hτ (Rd) = C‖Pdivs

t
Ef‖˜Hτ (Rd) ≤ C‖stEf‖˜Hτ (Rd),

where in the last two steps we used the fact that stf = stEf and that Pdiv is a projection on H̃τ (Rd). The

continuous embedding of NΦ(R
d) into H̃τ (Rd), the bounds (22), and continuity of E gives us

‖stEf‖˜Hτ (Rd) ≤ C‖stEf‖NΦ(Rd) ≤ C‖Ef‖NΦ(Rd) ≤ C‖Ef‖
˜Hτ (Rd) ≤ C‖f‖Hτ (Ω).

This finishes the proof.

Next, apply Proposition 1 to obtain stf = wstf
+∇pstf . Next we show that Pdivs

t
f approximates wstf

.

Lemma 11. Let 1/2 ≤ μ ≤ τ . For all f ∈ Hτ (Ω) and g ∈ Hτ−1/2(Γ) we have

‖Pdivs
t
f −wstf

‖Hμ(Ω) = ‖Pcurls
t
f −∇pstf ‖Hμ(Ω) ≤ Chτ−μ

Γ

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Proof. The first equality follows easily from the fact that Pdivs
t
f −wstf

= ∇pstf − Pcurls
t
f . For the rest, note

that Pcurls
t
f = ∇qstf , where qstf is from (25). It follows that

0 = Pdivs
t
f −wstf

+∇(qstf − pstf ),

which is the decomposition in Proposition 1 of the field f = 0 with boundary data Pdivs
t
f ·n− g. Recall that

the scalar potential qstf − pstf is uniquely determined up to a constant, so its gradient agrees with ∇p, where

p is the unique potential appearing in Proposition 4. Letting v := Pdivs
t
f − wstf

, we apply the regularity

estimate (9) (with τ = μ, f = 0, and boundary function Pdivs
t
f · n− g) to get the bound

‖v‖Hμ(Ω) = ‖∇(pstf − qstf )‖Hμ(Ω) = ‖∇ p‖Hμ(Ω) ≤ ‖p‖Hμ+1(Ω) ≤ C‖Pdivs
t
f · n− g‖Hμ−1/2(Γ).

An application of Lemma 10 finishes the proof.

Now we are ready to prove one of our main results.

Theorem 12. Let 1/2 ≤ μ ≤ τ . Given f ∈ Hτ (Ω) and admissible g ∈ Hτ−1/2(Γ), we denote the decompo-
sition of f from Proposition 1 as f = wf +∇pf . Then we have

‖Pdivs
t
f −wf‖Hμ(Ω) ≤ C

(
hτ−μ
Ω + hτ−μ

Γ

) (‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
, and

‖Pdivs
t
f −wf‖L2(Ω) ≤ C

(
hτ
Ω + h

τ−1/2
Γ

) (‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Proof. We begin with a triangle inequality and an application of Lemma 11:

‖Pdivs
t
f −wf‖Hμ(Ω) ≤ ‖wstf

−wf‖Hμ(Ω) + Chτ−μ
Γ

(‖f‖Hτ (Ω) + ‖g‖Hτ−1/2(Γ)

)
.

Next we bound ‖wstf
− wf‖Hμ(Ω). Note that stf − f = (wstf

− wf ) + ∇(pstf − pf ) decomposes stf − f as in

Proposition 1 with g = 0. Applying Proposition 4 to f−stf , we get that wstf
−wf = curl(ψ) with ψ satisfying

(9), which yields:
‖wstf

−wf‖Hμ(Ω) ≤ C‖ψ‖Hμ+1(Ω) ≤ C‖stf − f‖Hμ(Ω).

An application of Lemma 9 finishes the proof of the first estimate. Note that while Lemma 9 can be applied
in L2(Ω), H

1/2(Ω) is the roughest space for which we may apply Lemma 11. Thus using the same argument
as above in L2(Ω) leads to the second estimate.

Since Pcurls
t
f −∇pf = stf − f +wf − Pdivs

t
f , similar estimates hold for the curl-free part.
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5.3 Convergence with Curl-free Boundary Conditions

Now we focus on the decomposition in Proposition 2. Recall that there is a projector Pn that projects f
onto the curl-free term in this decomposition, and that snf denotes the kernel interpolant from Section 4.2
whose tangential components of Pcurls

n
f are forced to vanish on the node set Y ⊂ Γ. Showing that Pcurls

n
f

approximates Pnf uses arguments similar to those in the preceeding section, thus we provide only the aspects
of the proof that are significantly different.

First, we have a lemma, whose proof we omit since the arguments are similar to those of Lemma 9 -
the major difference here is that the proof requires an extension E so that snf = snEf , and such an extension
exists by Lemma 1 and the remark proceeding it.

Lemma 13. Let μ satisfy 0 ≤ μ ≤ τ . Then for all f ∈ Hτ (Ω) we have

‖f − snf ‖Hμ(Ω) ≤ Chτ−μ
Ω ‖f‖Hτ (Ω).

Next we have a lemma analogous to Lemma 11.

Lemma 14. Let 1/2 ≤ μ ≤ τ . Then for all f ∈ Hτ (Ω) we have

‖Pns
n
f − Pcurls

n
f ‖Hμ(Ω) ≤ Chτ−μ

Γ ‖f‖Hτ (Ω).

Proof. We will use the tangential trace operator γt, which is defined on smooth vector fields as γtv := v|Γ×n.
By [18, Theorem 2.11, page 34], this operator extends to a continuous linear map defined on L2(Ω) vector
fields with bounded curl (in L2(Ω)) to the space H−1/2(Γ), and the following Green’s formula holds:

(curl(v),g)− (v, curl(g)) = 〈γtv,g〉 ∀g ∈ H1(Ω). (30)

For ease of notation, let v = Pns
n
f − Pcurls

n
f . First we show that

‖v‖L2(Ω) ≤ ‖γtv‖H−1/2(Γ). (31)

The identity Pns
n
f − Pcurls

n
f = Pdivs

n
f − P⊥

n snf implies that v ∈ ∇(H1(Ω)) ∩ curl(H1(Ω)). Since v ∈
curl(H1(Ω)), Proposition 3 gives a potential ψ satisfying v = curl(ψ) and

‖ψ‖H1(Ω) ≤ C‖v‖L2(Ω).

With this, we apply (30) with g = ψ and use the fact that v is curl-free to get the inequality

‖v‖2L2(Ω) = |〈γtv,ψ〉| ≤ ‖γtv‖H−1/2(Γ)‖ψ‖H1/2(Γ)

≤ C‖γtv‖H−1/2(Γ)‖ψ‖H1(Ω) ≤ C‖γtv‖H−1/2(Γ)‖v‖L2(Ω).

This establishes (31).
Now let μ ≥ 1. Using (4) and the fact that v is both divergence-free and curl-free we obatin

‖v‖2Hμ(Ω) ≤ C|||v|||2t = C
(
‖v‖2L2(Ω) + ‖γtv‖2Hμ−1/2(Γ)

)
≤ C‖γtv‖2Hμ−1/2(Γ).

Using this with (31) gives

‖Pns
n
f − Pcurls

n
f ‖Hμ(Ω) ≤ C‖γtPcurls

n
f ‖Hμ−1/2(Γ),

where we have used the fact that γtPns
n
f = 0. Since γtPcurls

n
f by design has many zeros on Γ, this situation

is very similar to that in Lemma 10, whose arguments can be repeated to arrive at the bound

‖γtPcurls
n
f ‖Hμ−1/2(Γ) ≤ Chτ−μ

Γ ‖f‖Hτ (Ω).

This finishes the proof for μ ≥ 1.
For the μ = 1/2 case, we may rely on the following estimate from [23, Theorem 3.47]:

‖v‖H1/2(Ω) ≤ C(‖v‖L2(Ω) + ‖∇ · v‖L2(Ω) + ‖curl(v)‖L2(Ω) + ‖γtv‖L2(Γ)),

which holds for all v ∈ L2(Ω) with square integrable divergence, curl and tangential trace. With this we
may proceed as before, and arrive at the estimate

‖Pns
n
f − Pcurls

n
f ‖H1/2(Ω) ≤ Ch

τ−1/2
Γ ‖f‖Hτ (Ω).

The 1/2 < μ < 1 case follows from standard operator interpolation.
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(a) Target Field on Ω (b) Example Node Layout

Figure 1: The domain and target field f used in the first experiment.

With these results, one can now construct an argument very similar to the proof of Theorem 12 to arrive
at the theorem below, which we state without proof.

Theorem 15. Let 1/2 ≤ μ ≤ τ . Then for all f ∈ Hτ (Ω) we have

‖Pnf − Pcurls
n
f ‖Hμ(Ω) ≤ C

(
hτ−μ
Ω + hτ−μ

Γ

) ‖f‖Hτ (Ω), and

‖Pnf − Pcurls
n
f ‖L2(Ω) ≤ C

(
hτ
Ω + h

τ−1/2
Γ

)
‖f‖Hτ (Ω).

Remark 16. Theorems 12 and 15 relied heavily on the fact that given f ∈ Hτ (Ω), we are guaranteed
potential functions having the appropriate smoothness (assuming Γ is smooth enough). We are not aware of
the existence of such potential functions in native spaces associated with C∞ kernels, even for very smooth
domains. However, convergence results for the decompositions treated here can be derived for C∞ kernels,
assuming that all potentials (or their components) reside within Nφ, where Φ = −Δφ.

6 Numerical Examples

In this section we illustrate the methods described previously with numerical experiments. We start with
the following target function:

f = curl(cos(2(x2 + y2))) +∇p, (32)

where p is the MATLAB peaks function, and consider f on the annulus Ω centered at the origin with inner radius
.75 and outer radius 2 (see Figure 1(a)). This function on Ω has the property that the Leray projection, PLf ,
is equal to curl(cos(2(x2 + y2))), and in what follows we will compare PLf to Pdivs

t
f . We used the freely

available distmesh package to generate quasi-uniformly spaced nodes on Ω [27] for the experiments. Eight
nodes sets were generated with the number of full-interpolation centers ranging from N = 615 to N = 11210,
and the number boundary centers ranging in cardinality from M = 115 to M = 521. An example node set
with N = 1276 is pictured in Figure 1(b). In every experiment, we enforced full-interpolation at all centers,
including the boundary sites. MATLAB files containing the nodes used and other useful files can be downloaded
from [15]. To generate our matrix-valued kernels, we used the scalar Matérn kernel φ given by

φ(r) =
1

945
e−r(r5 + 15r4 + 105r3 + 420r2 + 945r + 945),

where r = r(x, y) = ε
√
x2 + y2. The free parameter ε, known as the shape parameter, affects the stability

and accuracy of the method. The shape parameter remained fixed at ε = 5 throughout our experiments,
which kept the computations relatively stable. The two dimensional version of this kernel, φ(

√
x2 + y2),

satisfies φ̂(ω) = C(1 + |ω|2)−13/2, where C is a constant, which means in particular that the matrix kernel
Φ satisfies (21) with τ = 5.5.
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(a) Pdivs
t
f = curl(ψst

f
) (Leray Projec-

tion)

(b) Pcurls
t
f = ∇qst

f

Figure 2: The kernel decomposition of f using stf = Pdivs
t
f + Pcurls

t
f . The contours represent the potentials

ψstf
and qstf .

We measured the relative error ‖Pdivs
t
f − PLf‖�2(X)/‖PLf‖�2(X), where X is the finest node set of those

described above (i.e. with #X = 11210) and the norm is given by

‖g‖�2(X) =

√√√√ 1

#X

∑
xj∈X

|g(xj)|2.

The error between the generalized interpolant stf and f was recorded similarly. Lemma 9 and Theorem 12
dictate that the H1/2(Ω) errors should all decay like O(h5). Although the current theory does not predict
it, we expect then that the error in L2(Ω) should decay like O(h5.5). Since our nodes are very uniform,
‖ · ‖�2(X) ∼ ‖ · ‖L2(Ω), so observing O(h5.5) would confirm this.

Due to the quasi-uniformity of the nodes, the mesh norm h behaves asymptotically like 1/
√
N , where N

is the number of nodes in a given node set. A loglog plot of error versus 1/
√
N is given in Figure 3(a), where

it can be seen that the error for the Leray projection appears to converge slightly faster than O(h5.5).
In the next experiment, we computed the full Helmholtz-Hodge decomposition (HHD) of f on a slightly

more complicated domain, and in the process obtained evidence for the bound in Theorem 15. Recall that
the full HHD is given by

f = Pnf + PLf +∇η, (33)

where Pnf is the curl-free normal component of f from Proposition 2, PLf is the Leray projection, and
η is a harmonic function. We used the same target function (32), but on the domain pictured in Figure
4(a). As in the previous test, several quasi-uniform node sets were generated using the distmesh package
with sizes ranging from N = 486 to N = 16882 (see [15]). Samples of f at these sites were used to obtain
approximations to each term in (33) using the method described below.

The first step of the two-step process is to construct an interpolant of f with curl-free boundary conditions
of form (26) that solves the system (27). Let snf denote this interpolant and note that Pcurls

n
f approximates

Pnf . Second, decompose Pdivs
n
f to approximate PLf and ∇η by using an interpolant with divergence-free

boundary conditions of the form (23) that solves (24) (with g = 0 and f replaced by Pdivs
n
f ). Denote this

interpolant by stf , and note that Pdivs
t
f ∼ PLf and Pcurls

t
f ∼ ∇η. These steps give approximations to the

three components of the decomposition of f , which are plotted in Figure 4, together with contour plots of
the corresponding potential functions.

With regard to convergence, we did not measure the error directly because the exact decomposition
for f on this domain is unknown to us. Nevertheless, we estimated the rate of convergence by using each
approximation on the finest node set as proxies for the true solution. To measure the error corresponding to
Pnf , for example, we used ‖Pcurls

n
f −∇p‖�2(X) where ∇p is the kernel approximation to Pnf on the finest
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(a) Convergence for the Annulus Experiment

500 1000 2500 5000 10000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

N

� 2
E
rr
o
r

 

 

snf f

Pcurls
n
f Pnf

O(h5.5)

(b) Convergence for the Full HHD Experiment

Figure 3: Convergence results for each numerical experiment. The vertical axis gives the logarithm of the
relative �2(X) error (base 10), and the horizontal axis gives N on a log10 scale.

(a) Curl-Free Normal Portion (b) Leray Projection (c) Harmonic Portion

Figure 4: The kernel approximation of the full HHD for the target field f (32), with contours of each term’s
scalar potential.
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node set X (with #X = 16882). We also tested the error between the generalized interpolant snf and f .
Lemma 9 and Theorem 15 dictate that the H1/2(Ω) errors to be O(h5), so again we expect the L2(Ω) error
to decay like O(h5.5). A loglog plot of error versus 1/

√
N ∼ h is given in Figure 3(b), where the errors seem

to be converging like O(h5.5).

7 Concluding Remarks

There is room for improvement in both the error estimates and computational cost of this method. First,
the global basis functions used here lead to full systems. As mentioned earlier, a multiscale approach [9]
or localized kernel bases [2, 12] adapted to the matrix kernel setting may offset some of this expense.
With regard to the estimates, a major assumption is that the target field is smooth enough to be within
NΦ(R

d) = Hτ (Rd). However, estimates for continuous target functions too rough for the native space have
been given in other kernel approximation problems (see, for example [26, 30]), and we believe that these
arguments can be adapted to the decomposition problems treated in this paper. Also, the scalar (and/or
vector) potential functions in the decomposition are also assumed to be very regular. Given that the potential
functions are usually solutions to some elliptic differential equation, this assumption requires smoothness of
the domain, even for very smooth target fields. On nonsmooth domains we expect the convergence rates to
be dictated by the regularity of the potentials, which are governed by the elliptic regularity of the domain.

The method presented in this paper distinguishes itself from many existing approaches in several ways.
The decomposition is approximated by analytically divergence-free and curl-free functions, can handle data
from scattered sites, and only discrete samples from the target field are used to construct the approximation,
e.g., one does not need to compute the curl or divergence of the samples in order to reconstruct one of the
potentials. One important feature is that boundary conditions are enforced on the divergence-free or curl-
free terms directly, with no boundary conditions required on the scalar or vector potential functions. This
is in constrast to standard projection methods, for example, which incorporate decompositions obtained
by solving a Poisson problem for the pressure. Choosing proper boundary conditions for the pressure is
sometimes a difficult task; even boundary conditions consistent with the model often cause slow time-
convergence in unsteady flow simulations [22]. The decomposition presented here, which completely avoids
boundary conditions on the pressure, has been used as a projection step on test problems solving the unsteady
Stokes equation, and high-order approximation in time (up to order 4) was observed [16].

Lastly, the method seems to extend to other boundary conditions quite easily. In fact, if no boundary
conditions are specified, one can find an interpolant sf using only shifts of the positive definite kernel
Φ = −ΔφI. Enforcing sf |X = f |X leads to a positive definite system, and since Φ = Φdiv + Φcurl, sf
decomposes trivially. This idea was used in a decomposition technique using thin plate splines introduced
in earlier work [1]. For other boundary conditions, if the functionals associated with the interpolation and
boundary conditions are linearly independent and the Riesz representers are chosen as basis functions, then
the kernel decomposition can be constructed. In this way, one could impose a whole host of boundary
conditions in vector decomposition problems, and do so in a natural way.
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[29] D. Schräder and H. Wendland. A high-order, analytically divergence-free discretization method for
Darcy’s problem. Math. Comp., 80(273):263–277, 2011.
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