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ABSTRACT 

With the prevalence of stress fractures in the military and athletes of all levels, research 

into the pathology of this injury has taken flight in recent years.  One area of research has focused 

on the role bone strain, which is known to be a factor in bone remodeling, has on stress fracture 

development.  It has been difficult to perform studies in this area of research due to the 

invasiveness of in vivo measurements of the bone strain.  Recently, a methodology for 

approximating the bone strain using a computational model was proposed by Al Nazer et al. (Al 

Nazer et al., 2008b).  This methodology employs the combination of a dynamic simulation with a 

flexible body (finite element model), replacing one of the rigid bodies in the musculoskeletal 

model.  The use of a flexible body, generated from the deformation modes of the bone, 

sufficiently decreases the degrees of freedom of the finite element model so that it can be used in 

a fully dynamic simulation.  This study used a similar methodology, with an improved 

methodology for generating the flexible tibia, to establish a normative range of strains seen in a 

homogenous population of young, healthy, male subjects.  The flexible tibia was generated by 

first segmenting the CT scanned tibia to regenerate a 3D solid model of the tibia geometry, then 

applying the material properties developed from the CT scan Hounsfield Units (HU) values for 

each element in the finite element model, and finally performing a modal analysis on the finite 

element model to generate the deformation modes of the tibia model.  Strain data from five 

reference locations around the tibial mid-shaft, and a simulated staple were obtained using 

subject-specific forward dynamics simulations.  The results showed large variability in strain 

magnitude for a homogenous population.  The mean peak and standard deviation for the 

maximum principal strain, minimum principal strain, and maximum shear strain for the anterior-
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medial location were 488µε (+175 µε), -473µε (+93µε), and 814µε (+177µε), respectively.  

However, comparisons with previous in vivo research showed that nearly all in vivo data were 

within two standard deviations of the mean values.  The ability to differentiate between normal 

and potentially harmful strain levels is key to determining their effect on stress fracture 

development.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Mechanical failure of bone can be categorized into two failure mechanisms.  The first 

mechanism involves a single traumatic loading event that generates strains above the failure load 

of bone causing a fracture.  The second mechanism is characterized by the buildup of 

microdamage (microscopic scale breakdown of bone) resulting from repetitive loading at 

subultimate strains and causing a stress fracture.  Prior to a stress fracture, the bone will go 

through a stress reaction, which is characterized by microfailures in the bone that have yet to 

disrupt the cortical bone (Kaeding & Najarian, 2010).  This type of fracture is often diagnosed in 

athletes of all levels and military recruits, with incidence reports of 0.2% to 4% for males and 1% 

to 7% for females in the US military, and up to 31% in track and field sports (Burr et al., 1996; 

Martin, 2001).  While stress fractures can occur in nearly any bone, the most common sites are 

the lower extremities, with the tibia accounting for up to 50% of all stress fractures (Kaeding & 

Najarian, 2010; Whiting & Zernicke, 1998).   

According to Wolff’s Law, bone remodels itself to adapt to applied stresses (Takeda, 

Narita, & Ito, 2004). Over the years, this theory has been adapted extensively.  Early studies 

showed that the state of strain, rather than stress, drives bone adaptation (Thompson, 1961), and 

that there is a “minimum effective strain” that must be exceeded to stimulate that adaptation 

(Frost, 1964).  More recent studies have shown that bone growth is influenced by dynamic strain 

rather than static strain (Lisková & Hert, 1971), is proportional to the peak applied strain 

(Lanyon, Hampson, Goodship, & Shah, 1975), and that the frequency of loading effects bone 

remodeling (Rubin & McLeod, 1994).  During the process of bone remodeling, if the magnitude
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or frequency of the applied load exceeds the ability of bone to remodel, stress reactions or 

fractures may develop (Whiting & Zernicke, 1998). As discussed previously, the buildup of 

microdamage (microcracks) in the bone leads to stress reactions, which can end up causing stress 

fractures.  Recent studies investigating the dependence of bone material properties on the strain 

rate have shown that the material properties of bone change with changes in strain rate (Hansen, 

Zioupos, Simpson, Currey, & Hynd, 2008; Zioupos, Hansen, & Currey, 2008).  Additionally, 

Zioupos et al. found that the formation of microcracks was inversely proportional to the strain 

rate applied, showing that lower strain rates resulted in a larger amount of microcracks in the 

bone (Zioupos et al., 2008).  With the dependence of bone remodeling on strain and the 

relationship between strain rate and microcrack formation, the ability to quantify this strain and 

strain rate is very important for studying bone remodeling processes and stress fracture 

development.  

1.2 Determining Bone Strain 

1.2.1 In Vivo Strain Measurement 

Direct in vivo measurements have been used to observe how bone strain changes in the 

tibia under different external conditions, including overground vs. treadmill running (C. Milgrom 

et al., 2003), the effect of shoe orthoses on stress fracture prevention (I. M. Ekenman et al., 2002), 

and the effect of cane use on tibial strain and strain rates (Mendelson et al., 1998).  In addition to 

investigating these external conditions, researchers have also investigated the effects of activity 

level (Burr et al., 1996) and fatigue (Fyhrie et al., 1998; C. Milgrom et al., 2007) on bone strain 

and stress fractures.  However, in vivo studies have several limitations.  First, the instrumentation 

of strain gauges or strain gauge staples is extremely invasive and therefore experiments using 

human subjects are difficult to conduct. Second, the reliability of the instrumentation appears low.  

In vivo strain gauge instrumentation is difficult, with many uncertainties associated with bonding 
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and bone preparation (C. Milgrom et al., 2004) and a susceptibility to motion artifact (Fyhrie et 

al., 1998).  Ekenman et al. found that there was a low inter-subject reliability for both strain 

gauges and strain gauge staples (I. Ekenman, Halvorsen, Westblad, Felländer-Tsai, & Rolf, 

1998).  Finally, the extent of the area the strain gauge instrumentation can provide information 

about is low.  In vivo strain gauge measurements can only determine the strain in a limited area 

around the instrumented site (I. Ekenman et al., 1998). Currently, there is not an experimental 

solution to these problems.   

1.2.2 Computational Approach 

Computational models combining a musculoskeletal simulation and finite element (FE) 

models provide an alternative approach to in vivo measurements that is capable of approximating 

the bone strain during dynamic motor activities. The advantages of a computational approach 

include: minimal invasiveness, allowing researchers to recruit more participants, elimination of 

the errors associated with implanting the strain gauges, and the capability of providing strain 

distributions from anywhere in the tibia.  A recent computational approach using musculoskeletal 

models with a bone (tibia) modeled as a flexible body, in place of a rigid body, has shown 

promising results of estimating tibial bone strains and strain rates during dynamic human 

movements such as walking (Al Nazer et al., 2008a; Al Nazer, Rantalainen, Heinonen, Sievänen, 

& Mikkola, 2008b; Klodowski, Rantalainen, Mikkola, Heinonen, & Sievanen, 2009).  The main 

advantage of using a flexible bone is to reduce the large computational cost required for a finite 

element analysis to compute bone strain.  Typically, three-dimensional bone models have very 

large nodal degrees of freedom (DOF) due to bone’s complex geometry.  These large nodal DOF 

make static and dynamic finite element solutions computationally expensive.  This flexible body 

approach reduces the number of nodal DOF using a Craig-Bampton modal analysis (Craig & 

Bampton, 1968), which takes into account only the most important deformation modes based on 
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the natural frequencies of the bone.  Through the combination of internal dynamic and boundary 

static modes, the Craig-Bampton modal analysis can accurately model the deformation of a 

complex system (geometry) with a significant reduction in the number of DOF (Gerstmayr & 

Ambrosio, 2007).     

In the finite element (FE) modeling of bones, regenerating accurate geometry and 

applying the material properties are very important steps and have been researched extensively 

(Gray, Zavatsky, Cristofolini, & Gill, 2008; Lengsfeld, Schmitt, Alter, Kaminsky, & Leppek, 

1998; Rathnayaka, Sahama, Schuetz, & Schmutz, 2010; Schileo, Taddei, Malandrino, 

Cristofolini, & Viceconti, 2007; Taddei, Schileo, Helgason, Cristofolini, & Viceconti, 2007).  

Subject specific bone geometry can be regenerated from medical imaging data such as Computed 

Tomography (CT) scans and Magnetic Resonance Imaging (MRI).  The advantage of CT scans, 

over MRI, is that in addition to bone geometry, bone material properties (apparent density) can be 

estimated.  The apparent density is used to calculate subject specific Young’s modulus (E) for the 

bone.  With the variety of bone density – Young’s Modulus relationships that have been proposed 

for different bones (femur, vertebra, and tibia) and bone types (cortical and trabecular), the 

options for which relationship to use depend on which bone(s) and what type(s) of bone are of 

interest.   

1.3 Tibial Bone Strain While Walking 

 Walking is one of the most common dynamic motor activities, and a variety of 

kinesiological studies have been reported.  However, the strain state of the tibia, during walking is 

not well understood.  An understanding of the tibial strain state during walking may provide 

important implications for understanding the mechanisms of stress fracture development, 

developing rehabilitation protocols after fracture occurs, or serving as a basis for comparisons 

between various dynamic motor activities such as running.    



5 

 

 

 

 In vivo measurements of bone strain have been a topic of study for many years, beginning 

with Lanyon et al. in 1975.  They compared the strain state of the tibia for a single subject while 

walking with and without shoes on a treadmill and walking overground with four loading 

conditions.  For the condition of walking on a treadmill with shoes, they found a peak maximum 

principal strain of 311 microstrain (µε), a peak minimum principal strain of -368µε, and a 

maximum strain rate of -3.37X10
3
µε/sec (Lanyon et al., 1975).  Several similar studies 

investigating the strain state of the tibia under varying conditions have since been performed.  

Burr et al. investigated the effects of activity levels on the tibial bone strain, including walking 

and running (Burr et al., 1996).  For the condition of walking on level ground, they found slightly 

higher maximum and minimum principal strains of 437µε and -544µε, respectively (Burr et al., 

1996).  More recently, Milgrom et al. reported strains of 394µε (maximum tensile strain) and       

-672µε (maximum compressive strain) for the tibia (C. Milgrom et al., 2007).   

There are only a few studies examining tibial strains during walking using computational 

approaches (Al Nazer et al., 2008a; Klodowski et al., 2009).  Al Nazer et al. obtained tibial 

strains using a flexible model of the tibia within a musculoskeletal model (Al Nazer et al., 2008a).  

The strains calculated in this study were in general agreement with previous in vivo studies.  

However, the maximum reported difference in maximum principal strain was 20% while the 

maximum principal strain rate differed by only 2% (Al Nazer et al., 2008a).  The relatively large 

error in maximum principal strain may be due to the single bone material property assigned to the 

tibia.  The study by Klodowski et al. reduced this inaccuracy of the tibial model by employing CT 

scans and a more detailed material assignment using the Young’s Modulus – density relationship 

developed by Morgan et al. (Morgan, Bayraktar, & Keaveny, 2003).  Their results showed that 

the tibial maximum and minimum principal strains and the maximum shear strain were 512 µε, -

923 µε, and 1444 µε, respectively, on the anterior medial aspect of the tibia.  This resulted in a 
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reduction of 16% in the difference between the maximum principal strains for their study 

compared with previous in vivo studies. 

Klodowski et al. have noticeably improved the methodology proposed by Al Nazer et al. 

by using a more accurate tibial model; however, one of the major limitations present in both of 

these studies is that the analyses were performed for only a single subject.  Currently, there exists 

very little knowledge of how much bone strain differs among individuals.  Such information is 

important for identifying the critical differences in bone strain among individuals with a high risk 

of stress fractures and asymptomatic individuals. 

1.4 Study Objective 

As a step towards understanding critical bone strain under repetitive loading conditions, 

the purpose of this study was to use the computational approach combining a flexible model of 

the tibia with a musculoskeletal model in a dynamic simulation to determine a range of expected 

bone strains during walking for subjects from a homogenous population.  The results from this 

study were compared to previous research using the flexible body approach (Al Nazer et al., 

2008a; Klodowski et al., 2009) as well as in vivo studies (Burr et al., 1996; Lanyon et al., 1975; 

C. Milgrom et al., 2000).   
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CHAPTER 2: METHODS 

2.1 Overview 

 The computation of tibial bone strain during walking is a multistep process.  The first 

step was to create dynamic simulations of walking using subject-specific musculoskeletal models 

based on previously collected experimental data, including motion trajectories from motion 

capture, ground reaction forces (GRFs) and electromyography (EMG).  Following the creation of 

the subject-specific musculoskeletal model and walking simulations, the medical imaging data 

obtained from each subject were used to generate a three-dimensional finite element (FE) 

representation of the subject’s tibia.  The medical imaging data were used to generate the 

geometry of the bone and define the material properties.  Once the tibial model was created, an 

initial modal analysis was performed using token boundary conditions at three landmark locations 

to generate a modal neutral file.  This modal neutral file was imported into the musculoskeletal 

model for an initial alignment with respect to the subject-specific musculoskeletal model and to 

determine the muscle attachment sites and joint center locations with respect to the flexible tibia
1
.  

The ankle and knee joint centers were then used as new boundary conditions to generate a new 

modal neutral file of the FE tibial model.  The modal neutral file is the result of a Craig – 

Bampton modal analysis that calculates the modal deformation shapes (based on the natural 

frequencies) for the tibia.  This new flexible tibia was then imported into the subject-specific 

musculoskeletal model prior to the forward dynamic analysis. The last step was to perform a 

forward dynamic analysis of the walking simulation with the flexible tibia inserted in the

                                                      
1
 The summation of the deformation modes, used to calculate the strains, for the FE tibial model 

is called a flexible tibia when analyzing bone strain in this study.  
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musculoskeletal model.  With this methodology, the strain values at any location of interest can 

be computed.  This study focused on the bone strain at six locations, including; reference 

locations at the anterior medial (AM), anterior lateral (AL), lateral (LA), posterior lateral (PL), 

and posterior medial (PM) aspects of the mid-shaft of the tibia and a simulated staple located 

distal to the AM location.  A general flowchart is shown in Figure 1 below. 

 
Figure 1: Flowchart for Dynamic Simulations with a Flexible Body 

 

2.2 Experimental Data 

2.2.1 Subjects 

Experimental and imaging data were collected from 13 male subjects that were part of a 

larger study conducted at Ball State University.  IRB approval for the experimental protocol was 

obtained, and all experimental data collection was conducted at Ball State University.  The 

inclusion criteria for this study included being a male age 18-27 with no military basic training 

experience, a body mass index below 28, participating in recreational sport or exercise a 

minimum of three times per week, being free of musculoskeletal injury, and classified as low risk 

by ACSM guidelines (Kaminsky, 2006).  The subject demographics are outlined in Table 1. 
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Table 1: Subject Demographics 

Number of Subjects Height (cm) Mass (kg) Age (years) 
13 180.45+/- 4.6 74.8+/-11.0 20.85+/-1.5 
 

2.2.2 Kinesiological Data 

 Subjects wearing military combat boots (Altama, Atlanta, GA) were asked to walk at 

1.67 m/s for five minutes on an instrumented treadmill (AMTI, Waterton MA).  After a warm up 

period allowing the subjects to acclimate to the treadmill, ten separate motion data sets (five 

seconds each) were collected during the last minute of the walking trial using a motion capture 

system with 14 cameras (Vicon, Oxford, UK).  Reflective markers were attached according to the 

lower body Plug-In-Gait marker set (Figure 2) provided by the Vicon system.  Reference markers 

were placed at the hip, knee, ankle, and foot anatomical landmarks, and cluster markers including 

three (foot) or four (thigh and shank) markers per segment were placed on the left and right thigh, 

shank and foot, respectively.  Marker trajectories were collected at 120 Hz.  Surface EMG data 

were collected using a Bagnoli EMG system (Delsys, Boston, MA), from the vastus medialis 

(VM), vastus lateralis (VL), tibialis anterior (TA), gastrocnemius (GAS), and soleus (SOL) 

bilaterally based on the recommendations of Cram et al. (Cram, Kasman, and Holtz, 1998).  EMG 

and ground reaction force data were sampled at 2400 Hz.    
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Figure 2: Musculoskeletal Model Setup with Motion Capture Marker Placement and Muscle 

Locations. 

ASIS – Anterior Superior Iliac Spine, PSIS – Posterior Superior Iliac Spine, THI – Thigh cluster, 

LKNE – lateral side of the knee, MKNE – Medial side of the knee, Ref – Reference node, SHNK – 

Shank Cluster, LMAL – Lateral Malleolus, MMAL – Medial Malleolus, CALC – Calcaneus, FOOT 

– foot cluster, COM – Center of Mass location.  Marker placement was the same for the right and left 

limbs. 
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2.2.3 Medical Imaging Data 

Medical imaging data were collected for the length of the tibia using a CT scanner (GE 

Light Speed VCT General Electric, Fairfeild, CT).  The slice thickness was 0.625mm with a 

15cm by 15cm field of view and scanning parameters of 120 kVp (peak kilovolts) and 140 mAs 

(milliampere-second).  Images were reconstructed at 512 by 512 pixels. 

2.2.4 Signal Processing 

The marker trajectories were filtered at 6 Hz using a zero-lag second order recursive low 

pass filter in Visual 3D (C-motion, Germantown, MA).  Force platform data were filtered at 40 

Hz using the same filter design.  Surface EMG data were rectified and then filtered using a 

second order low pass Butterworth filter with a cutoff frequency of 10 Hz to generate EMG linear 

envelopes.   

2.3 Modeling 

2.3.1 Finite Element Tibia Model Construction 

 The process for constructing a finite element model of the tibia consisted of three steps.  

The first was to use the CT scans to create a three dimensional model.  This was done by first 

segmenting the CT scan slices highlighting the cortical bone, trabecular bone, and medullary 

cavity.  The combination of these segments was used to create a 3D representation of the tibial 

geometry.  The second step was to create a mesh that was used in the finite element analysis (or 

modal analysis).  The final step was to assign a material property scheme.  Based on the 

recommendations of Gray et al., a total of 600 regions of material properties were applied to the 

FE tibial model, with 300 for the cortical region of bone and 300 for the cavity and trabecular 

regions (Gray et al., 2008).  The Young’s Modulus assigned to each of the 600 regions was 

calculated using the density of the tibia (represented by Hounsfield Units in a CT scan). A 
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Hounsfield Unit (HU) represents the density of an object with respect to water (HU of water is 

zero).  A flowchart for the creation of the FE tibial model is shown in Figure 3.  

 

Figure 3: FE Tibial Model Creation Flowchart 

 

2.3.2 CT Slice Segmentation and Model Creation 

Due to the lower intensity used in the CT scans (120 kVp compared to a typical intensity 

of 160 kVp), which result in lower HU values for the CT pixels, the common HU threshold 

values for cortical (662 – 1986 HU) and trabecular bone (148-661 HU) cannot be used for this 

study.  Therefore, an intensity thresholding technique similar to one validated by Rathnayaka et 

al. (Rathnayaka et al., 2010) was used to determine the threshold values for each region of bone 

(cortical, trabecular, and cavity).  By creating a pathline crossing a single slice from the CT scans 

generated in Mimics 14.0 (Materialise, Leuven Belgium) a graph of the HU intensity range seen 

in the middle third of the tibia can be created.  Using this graph, three distinct thresholds for the 

cavity, cortical, and trabecular bone can be selected for the tibia.  An example of the pathline and 

pathline graph can be seen in Figures 4 and 5 below. 
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Figure 4: Graph Showing the Threshold Regions for Cortical Bone, Trabecular Bone, and the 

Medullary Cavity 

 
Figure 5: Cross-Sectional Area with a Pathline of a Representative Tibia 

The layers in Figure 4 (above) mark the threshold intensity ranges of the cortical bone, trabecular 

bone, and medullary cavity segments.  The HU value limits reported in Figure 4 are the mean 

limits taken from all subjects.  Using these thresholds and some manual masking near the 

proximal and distal ends of the tibia, a 3D solid model of the tibia was created for further 

analysis.   
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2.3.3 Mesh Development 

The 3D model was exported to 3-Matic 5.1 (Materialise, Leuven, Belgium) where a 

surface mesh was automatically generated.  The surface mesh provides a boundary for the 

automatic formulation of a solid mesh.  The surface mesh created in 3-Matic was then exported to 

MD MARC (MSC.Software, Santa Ana, CA) and a solid mesh using hexahedral elements with a 

target element edge length of 3mm was generated.  This level of refinement was chosen due to 

the complexity of the bone geometry and computational limitations.   

2.3.4 Material Property Assignment 

Once the 3D tibial model was created and meshed, the material properties (Young’s 

Modulus and Poisson’s Ratio) were applied.  The CT images were broken down into rectangular 

3D elements (with a thickness that is half the width and length) called voxels.  The HU, 

determined in the segmentation process, was applied to each voxel.  To provide a calibration 

scale for determining the bone apparent density, a phantom with known material densities was 

scanned with the same CT scan parameters used for the subjects’ bone scanning.  A model of the 

phantom and the material densities used for calibration are shown in Figure 6 and Table 2, 

respectively. 

 

Figure 6: Model of the Phantom Used for Density Calibration  
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Table 2: Phantom Calibration Material Densities  

 

 

Using the values in Table 2 and the HU values obtained from the CT scan of the phantom, a 

relationship between density and HU was obtained.  The density values, once computed, were 

used to calculate Young’s Modulus using the following established power law relationships for 

cortical bone and trabecular bone (Linde, Hvid, & Madsen, 1992; Snyder & Schneider, 1991).     

              
      (Cortical Bone) 

 

             
     (Trabecular Bone) 

 

Where ρapp is the apparent density in grams per cubic centimeter (g/cm
3
) and E is Young’s 

Modulus in Giga Pascals (GPa).  As shown by Gray et al., the number of material property 

groups assigned to the tibia model can influence the strain results (Gray et al., 2008).  Gray et al. 

found that the strain results (strain energy, displacement, and maximum principal strain) could be 

accurately estimated using 600 material property groups (Gray et al., 2008).  Based on these 

results, 300 material properties were applied to all the elements in the cortical bone region, and 

300 material properties were applied to all the elements in the trabecular bone region and the 

medullary cavity.   

 Material Bulk Density 

1 Empty N/A 

2 UHMW – Ultrahigh Molecular Weight Polyethylene 0.93 g/cm
3
 

3 ABS – Acrylonitrile Butadiene Styrene 1.02 g/cm
3
 

4 Nylon 1.13 g/cm
3
 

5 PEEK – Polyether Ether Ketone 1.3 g/cm
3
 

6 Acetal 1.42 g/cm
3
 

7 PET – Polyethylene Terephthalate 1.44 g/cm
3
 

8 FR4 – Glass 1.86 g/cm
3
 

9 Virgin PTFE – Polytetraflouroethylene 2.18 g/cm
3
 

2.1 

2.2 
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2.4 Dynamic Simulation of Walking 

 The dynamic simulations of walking were generated using musculoskeletal modeling and 

simulation software (LifeMOD, LifeModeler, San Clemente, CA).  The simulations were created 

in two steps: 1) performing an inverse kinematics analysis using the experimental marker 

trajectories and a subject-specific musculoskeletal model, and 2) performing a forward dynamics 

simulation using the experimental ground reaction force (GRF) data, simulated joint torques, and 

simulated muscle excitations.   

2.4.1 Subject-Specific Musculoskeletal Model 

 A subject-specific three dimensional musculoskeletal model, based on the individual 

subject’s height, mass, age, and sex, that consisted of seven rigid body segments for the lower 

body (a pelvis, two femurs, two tibias, and two feet) was created using the GeBOD program 

(Cheng, Obergefell, & Rizer, 1996).  This model was scaled using joint center calculations from 

Visual 3D (C-Motion, Germantown, MA).  The hip joints were modeled as ball and socket joints, 

while the knee and ankle joints were modeled as simple hinge joints. 

 The initial posture was set by matching the expected locations of the markers on the 

model with the experimental marker locations (Plug-In-Gait, Vicon) from the first frame of the 

static motion capture trial.  The cluster markers from this frame were then added to their 

respective segments in the model.  This method for setting the posture resulted in the model being 

aligned with the first frame of the static motion trial and the cluster markers being attached at the 

same location as defined in Visual 3D.   

2.4.2 Gait Simulation 

 The kinematics (joint angles and muscle lengths with respect to time) of each walking 

trial were calculated using the experimental marker trajectories in an inverse kinematics (IK) 
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analysis.  The initial posture was set by synchronizing the previously created model markers with 

the first frame of the motion trajectory data.  The joint angles and muscle lengths computed 

during the IK analysis were used as inputs to the subsequent forward dynamics simulation.  The 

forward dynamics simulation was driven using PD-controlled joint actuators, for the left and right 

hip, and the left knee and ankle joints, and PID-controlled muscle actuators for the right lower 

limb.  The joint torques and muscle forces generated by these actuators depended on the joint 

angles and muscle lengths obtained in the IK analysis. The joint torques were modeled as simple 

PD controlled servomotors, and the muscle forces were defined by the following equations. 

       (      )       (      )       (      ) 

 

where 

       
(                          )

(   )
 

 

 

                                  

 

 

        ∫          
 

 

For Equations 2.3 through 2.6, Pgain is the proportional gain, Igain is the integral gain, and Dgain is 

the derivative gain.  For the PD-controlled joint torque actuators, Equation 2.3 above loses the 

Igain (Ierror) term.  The target value was the target length of the muscle, or joint angle calculated 

during the IK analysis, the current value was the value at the current time step in the forward 

dynamics simulation, and ROM is the range of motion of the muscle (the difference between the 

shortest and longest lengths experienced by the muscle), or the joint.  The P, I, and D terms for 

the muscles, and the P and D terms for the joints are shown in Table 3 below.  

  

2.3 

2.5 

2.4 

2.6 
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Table 3: PID Values for the Model Muscles and Joints 

 Muscles Joints 

P 1 X 10
7 

2.87 X 10
5
 

I 1 X 10
6 

- 

D 1 X 10
4 

2.87 X 10
3
 

    

There were 15 muscles present in the forward dynamics simulation, including the biceps 

femoris short head, vastus medialis, vastus intermedius, vastus lateralis, gastrocnemius, soleus, 

tibialis posterior, flexor digitorum, flexor hallucis, tibialis anterior, peroneus brevis, peroneus 

longus, peroneus tertius, extensor digitorum, and extensor hallucis.  Prior to the forward 

dynamics analysis, the flexible tibia (Figure 8) was integrated into the subject-specific 

musculoskeletal model, replacing the original tibia in the model.  The forward dynamics 

simulation was generated such that all leg joint angles determined in the IK analysis were tracked 

by activating the PD-controlled joint and PID-controlled muscle actuators with applied 

experimental GRFs at the center of pressure of the feet. The motion of the center of mass of the 

pelvis was prescribed to follow the pelvis kinematics determined during the IK analysis.  The 

dynamic equations of motion for the forward dynamics simulation were integrated with a time 

step of 0.01, and the default integrator tolerance (maximum error of 0.001) defined in LifeMOD. 

2.4.3 Flexible Tibia Incorporation 

Due to the highly complex geometry of the tibia, finite element (FE) models have very 

high nodal degrees of freedom.  Since the computational expense of performing a dynamic 

analysis on such a complex model is extremely high, a modal analysis was performed on the FE 

tibia to create a flexible model of the tibia (a flexible tibia) to be imported into the subject-

specific musculoskeletal model.  An initial Craig – Bampton modal analysis was performed using 

token boundary conditions to generate a flexible tibia that was used to align the flexible tibia with 

the subject-specific musculoskeletal model.  The nodes in the FE tibia model corresponding to the 
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tibial landmarks in the motion trajectory data were manually selected for aligning the flexible 

tibia with the rest of the musculoskeletal model.  The alignment of the flexible tibia was 

accomplished by matching the selected nodes with the corresponding tibial landmarks in the rigid 

model, such that the flexible tibia was fitted in the space between the knee and ankle joints, with 

the long axis of the tibia being in line with the knee and ankle joint centers.  After aligning the 

flexible tibia in the musculoskeletal model, the muscle attachment points, and knee and ankle 

joint center locations were calculated and exported from LifeMOD.  A second Craig – Bampton 

modal analysis was performed using boundary conditions applied at the knee and ankle joint 

centers, respectively.  The new flexible tibia was used during the forward dynamics simulation to 

calculate the tibial strain during walking.  A flowchart of the steps involved in integrating the 

flexible body into the musculoskeletal model is shown in Figure 7 below.  

 

Figure 7: Flowchart for Incorporating a Flexible Tibia into a Musculoskeletal Model. 

A) Flexible tibia with token BCs.  B) Alignment of the flexible tibia with the musculoskeletal model. 

C) Rebuild the flexible tibia with BCs at the knee and ankle.  D) Insert the new flexible tibia into the 

dynamic simulation for strain calculations 

 In the original rigid musculoskeletal model, the muscle attachment sites were defined 

using a single point on the rigid body segments.  The use of point attachments is reasonable for a 

rigid body; however, they will cause unrealistically high strains in a flexible body.  In order to fix 
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this problem, nodes at the locations of the muscle attachment sites (exported from LifeMOD 

during the initial alignment of the flexible tibia) were connected to the six nearest nodes on the 

flexible tibia by rigid body elements (RBEs), alleviating the point load of a single node 

attachment site.  The six nodes represent an approximation of the physiological insertion area for 

each respective muscle.  The RBEs connecting the muscle attachment sites to the flexible body 

were set to represent a rigid fixation of the muscle to the bone.  RBEs were also used to represent 

the joint contacts for the knee and ankle, respectively, by connecting a node at the knee and ankle 

joint centers to the corresponding joint surfaces (approximated as flat surfaces).  A detailed 

representation of the muscle attachment sites and joint centers is shown in Figure 8.      
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Figure 8: Flexible Tibia with RBEs for Muscle Attachment Sites and Joint Centers.  

Muscle Attachments for groups (A) medial gastrocnemius(B) lateral gastrocnemius, biceps femoris 

short head, (C) peroneus longus (1st attachment), extensor digitorum, extensor hallucis, (D) flexor 

digitorum(1st attachment), flexor hallucis (1st attachment), (E) peroneus brevis (1st attachment), 

peroneus tertius, (F) peroneus brevis (2nd and 3rd attachments), peroneus longus (2nd and 3rd 

attachments), (G) tibialis posterior (2nd attachment) flexor digitorum (2nd attachment), and flexor 

hallucis (2nd attachment).  Not shown are the vastus medialis, vastus intermedius, vastus lateralis, 

tibialis anterior, and soleus attachment sites 
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In order to compare the bone strain results between subjects and with previous research 

using a similar computational approach, surface nodes were selected in groups of four at five 

reference locations around the mid-shaft of the FE tibia (Figure 9 – A).  In addition to these 

reference locations, a simulated staple consisting of eight nodes was selected on the anterior 

medial aspect and distal to the mid-shaft of the tibia (Figure 9 – B) in order to compare with 

previous in vivo studies.     

 

Figure 9: Strain Locations 

A) Shows the five mid-shaft positions, AL - Anterior Lateral, AM - Anterior Medial, LA - Lateral, 

PL - Posterior Lateral, PM - Posterior Medial. B) Showing a frontal view of the 4 nodes at AM 

(similar pattern at other 4 locations), and the position of the simulated staple. 

2.5 Data Analysis 

2.5.1 Strain Data 

 Strain data during walking were computed using the Durability Plug-in for 

ADAMS/View (MSC.Software, Santa Anna, CA) that was incorporated in the LifeMOD analysis 

framework.  Maximum principal, minimum principal, and maximum shear strain data were 

obtained from the four nodes at the reference locations on the flexible tibia model and filtered 

using a second order low pass Butterworth filter with a seven Hz cutoff frequency (Turner, 

Yoshikawa, Forwood, Sun, & Burr, 1995).  The filtered data was then scaled to microstrain and 

AM 

Staple 

A B 
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time-normalized to a single gait cycle (from right heel strike to the subsequent ipsi-lateral heel 

strike).  Due to the noise included in the ground reaction force data, the right foot’s heel strike 

was determined by finding the time in the simulation of walking on the treadmill when the 

anterior-posterior (A/P) position of the right foot’s center of mass was at a maximum, while toe 

off was considered to be the time when the A/P position of the right foot’s center of mass was at a 

minimum. The mean strain calculated from the eight nodes of the simulated staple, or four nodes 

for each reference location, was used as a representation of the strain value for each location, 

respectively.  The strain rates were calculated by differentiating the filtered and scaled 

(microstrain) data.  Strain data were computed for subjects with a minimum of 12 complete 

strides.  A complete stride was defined as any stride following the first stride with a complete gait 

cycle.  The first stride was excluded due to the unknown initial positioning of the right foot.   

2.5.2 Model Validation 

For the purpose of validating the dynamic walking simulation, joint angles, joint torques, 

and muscle excitation patterns were compared between the forward dynamics simulation, 

including the flexible tibia, and the experimental data.  The comparison between experimental 

EMG and muscle excitation patterns from the simulation was performed by first determining 

whether the difference in activation timing was significantly different by finding the 95% 

confidence interval for the coefficient of cross correlation (Li & Caldwell, 1999), and then 

determining whether the cross correlation coefficient for the two excitations was within that 

range.  The joint angles and joint torques for the forward dynamics simulation and the 

experimental joint angles and joint torques were similarly compared using the 95% confidence 

interval of the coefficient of cross correlation.  The cross correlation coefficient rxy is the 

maximum value of  
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For the above equations, k is a number indicating a time shift of one signal with respect to the 

other (k = 0 for two signals synchronized in time), N is the number of data points in the time 

series, xt is the value of the first signal at time t, and  ̅ is the average of the first signal, yt is the 

value of the second signal at time t, and  ̅ is the average of the second signal. The 95% 

confidence interval for rxy is determined by the lower and upper confidence interval bounds 
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2.5.3 Statistical Analysis 

   The strain curves from each subject (12 strides) were averaged, assuming that the mean 

curve could represent the subject’s strain patterns.  This assumption was evaluated for each 

subject by computing the Coefficient of Multiple Correlation (CMC) at each location of strain 

measurement.  The calculation of CMC was based on the method used by Kadaba et al. (Kadaba 

et al., 1989).  The CMC was calculated using the following equations, where CMC is equal to the 

positive square root of R
2
.  
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For the above equations, M represents the number of locations (three strains multiplied by six 

locations), N represents the number of strides, and T represents the time (normalized to 100 

points). Yik represents the average value at time k, where 1<k <101, for the ith location.  Yi 

represents the “grand” mean for the ith location.   

   To establish the normative range of strain data for the population represented by the 

subjects in this study, the mean strains from the subjects were bootstrapped to generate a larger 

sample dataset.  The bootstrap method is a statistical resampling technique used when the 

distribution of the original population is unknown (TC, 1998).  In this study, 1000 indexes 

generated by randomly selecting a value between 1 and 12 (representing each subject) were used 

2.12 

2.13 

2.14 

2.15 
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to generate 1000 strain curves based on the original twelve.  Due to the random nature of 

selecting the indices, the subjects were not guaranteed to be selected an equal number of times.   

The mean, standard deviation, and 2.5 and 97.5 percentile bounds of this dataset were then 

calculated.  The ranges covering the normal population were calculated using the upper (97.5 

percentile) and lower (2.5 percentile) values calculated at each normalized time step (1 to 101).  

These ranges were plotted against the percentage of the gait cycle to show the expected range of 

the strain profile during walking.  The strain rate data was treated in the same manner, creating 

expected ranges for the strain rates at each location. 

A comparison of the selection of the low pass filter’s cutoff frequency was performed to 

determine if there was a statistical difference in choosing frequencies of 3, 5, or 16.04 Hz, instead 

of 7 Hz.  The 95% confidence interval of the mean strain of a bootstrapped dataset was calculated 

for each frequency choice.  A statistical difference was considered to exist when the confidence 

intervals of the mean strains were not overlapping.  
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CHAPTER 3: RESULTS 

3.1 Model Validation 

3.1.1 Kinematic, Kinetic, and Muscle Activation Comparison 

The coefficient of cross correlation showed that there were no significant differences 

between the subjects’ experimental joint angles and the simulated joint angles (mean rxy: 0.95, 

0.93, and 0.92 for the ankle, knee and hip) or torques (mean rxy: 0.98, 0.82, 0.92 for the ankle, 

knee and hip), or between the simulated muscle excitation timing and the experimental EMG 

timing (mean rxy: 0.62, 0.75, 0.57, 0.62, 0.59 for the gastrocnemius, soleus, tibialis anterior, 

vastus lateralis, and vastus medialis, respectively).  A significant difference was considered to 

exist if the rxy values fell outside of the 95% confidence interval calculated in Equation 2.10.  The 

results from this analysis are shown in Table 4 below. The average root-mean-square-errors for 

the hip, knee, and ankle angles were 7.77˚, 9.38˚, and 2.85˚, respectively.  A comparison of the 

experimental and simulated joint angles and torques plus or minus one standard deviation are 

shown in Figure 10 and Figure 11, respectively.   

In order to calculate the necessary joint torques for the PID controlled joints (left and 

right hip, left knee, and left ankle), the forward dynamics simulation required a ground reaction 

force (GRF) input.  The GRF inputs used for this simulation were the experimental GRFs 

collected during the original walking trials.  A plot of the mean vertical (Z), anterior-posterior 

(Y), and medial-lateral (X) ground reaction forces plus and minus one standard deviation is 

shown in Figure A-1 of Appendix A.
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Table 4: Confidence Intervals for rxy Values from the Kinematic, Kinetic, and EMG Comparisons 

 
 

Lower CI rxy Upper CI 

Kinematic 

Comparison 
Ankle 0.9227 0.9468 0.9636 

Knee 0.9011 0.9284 0.9491 

Hip 0.8737 0.9123 0.9397 

Kinetic 

Comparison 
Ankle 0.9741 0.9825 0.9882 

Knee 0.7398 0.8164 0.8723 

Hip 0.8825 0.9191 0.9447 

Muscle 

Activation 

Comparison 

Gastrocnemius 0.4796 0.6156 0.723 

Soleus 0.6548 0.753 0.8263 

Tibialis Anterior 0.4206 0.568 0.6864 

Vastus Lateralis 0.482 0.6179 0.7249 

vastus Medialis 0.453 0.5946 0.7071 
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Figure 10: Joint Angle Comparisons for the (A) Ankle, (B) Knee, and (C) Hip.  The vertical bands 

indicate the typical timing of toe-off. 

C 

A 

B 

Black bands – Simulated          

Angles 

Gray Bands – Experimental 

Angles 
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Figure 11: Joint Torque Comparisons for the (A) Ankle, (B) Knee, and (C) Hip.  The vertical bands 

indicate the typical timing of toe-off. 

A 

B 

Black bands – Simulated          

Torques 
Gray Bands – Experimental 

Torques 
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A representative plot of the experimental EMG and simulated muscle excitation patterns 

is shown in Figure 12.  The EMG data and simulated muscle excitations for each muscle were 

normalized to the maximum value per stride. 

 

Figure 12: Experimental EMG and Simulated Muscle Excitation Comparison. 

 (A) Gastrocnemius, (B) Soleus, (C) Tibialis Anterior, (D) Vastus Lateralis, and (E) Vastus Medialis.  

The vertical bands indicate time of toe-off for the subject.  Curves shown were filtered using a second 

order low pass Butterworth filter with a cutoff frequency of 10 Hz. 

A 

B 

C 

D 

E 
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3.2 Peak Strain and Strain Rate 

3.2.1 Comparison with Previous Research 

The results obtained from integrating a flexible tibia into a dynamic simulation of 

walking were compared with previous in vivo studies (Burr et al., 1996; Lanyon et al., 1975; C. 

Milgrom et al., 2000) and previous studies using similar methodologies to calculate bone strain 

computationally (Al Nazer et al., 2008a; Klodowski et al., 2009).  The anterior medial location 

was a common location between this study and previous computational models while the 

simulated staple was a common site between this study and previous in vivo studies.  The results 

from previous computational models and in vivo studies are shown in Table 5 along with the 

present study’s results. 

Table 5: Strain and Strain Rate Comparison with Previous Research (maximum values) 

 Peak Strain (µε) Peak Strain Rate (µε/sec) 

Study Result Type 
Max 

Principal 

Min 

Principal 

Max 

Shear 

Max 

Principal 

Min 

Principal 

Max 

Shear 

Anterior 

Medial 

Location
1 

Simulation 488 -473 814 6946 -3588 8612 

Simulated 

Staple
1 Simulation 543 -453 838 7921 -3494 10390 

Klodowski et 

al. (2009) 
Simulation 512 -932 1444 

2
 

2
 

2
 

Al Nazer et al. 

(2008a) 
Simulation 305 -645 948 4000 -7000 10000 

Milgrom et al. 

(2000) 
Experimental 500 -250 980 3200 -1900 4500 

Burr et 

al.(1996) 
Experimental 437 -544 871 11006 -7183 16162 

Lanyon et al. 

(1975) 
Experimental 311 -368 

2
 

2
 -3370 

2
 

1 - Values from the present study 

2 - Indicates a value that was not reported in the literature 

The study by Lanyon et al. was the first use of strain gauges in vivo to measure bone 

strain during a dynamic activity, and has become the standard of comparison for later research 
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(Lanyon et al., 1975).  The values for the maximum and minimum principal strains in the present 

study were 42% and 18% higher than the results shown by Lanyon et al. (Lanyon et al., 1975).  

Other prominent studies for in vivo bone strain of the tibia include studies performed by Burr et 

al. and Milgrom et al. (Burr et al., 1996; C. Milgrom et al., 2000).  The maximum principal strain 

calculated in this study was 19% higher than the results obtained by Burr et al., while the 

minimum principal strain was 17% lower, and the maximum shear strain was 3% lower (Burr et 

al., 1996).  The maximum principal, minimum principal, and maximum shear strains in this study 

were 8% higher, 45% higher, and 17% lower than the results reported by Milgrom et al. (C. 

Milgrom et al., 2000).  Compared to Lanyon et al., the calculated minimum principal strain rate 

was 3% higher (Lanyon et al., 1975).  The maximum principal strain rate for this study was 28% 

lower than Burr et al.’s results, while the minimum principal strain rate was 51% lower, and the 

maximum shear strain rate was 35% lower (Burr et al., 1996).  The maximum principal strain 

varied by 59% (higher), while the minimum principal was 46% higher, and the maximum shear 

strain was 57% higher than the results reported by Milgrom et al. (C. Milgrom et al., 2000).   

The results reported by Al Nazer et al. and Klodowski et al. showed similar differences 

to the differences from in vivo data (Al Nazer et al., 2008a; Klodowski et al., 2009).  The 

maximum principal strain from this study was 5% lower than that reported by Klodowski et al., 

while the maximum shear strain was 44% lower (1444µε compared to814µε), and the minimum 

principal strain was 49% lower (-932µε and -473µε) (Klodowski et al., 2009).  The study by Al 

Nazer et al. reported lower values overall, with a maximum principal strain of 305µε (37% 

lower), a maximum shear strain of 948µε (14% higher), and a minimum principal strain of  -

645µε (27% higher) (Al Nazer et al., 2008a).  The maximum principal, minimum principal, and 

maximum shear strain rates for this study were 22% higher, 62% lower, and 32% lower than the 

results reported by Al Nazer et al. (Al Nazer et al., 2008a). 
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3.2.2 Strain and Strain Rate Variability 

 Strain and strain rate data were obtained from five reference locations spaced around the 

tibia at mid-shaft as well as a simulated staple located distal of mid-shaft on the anterior medial 

(AM) face of the tibia (see Figure 9 in Chapter 2).  The inter-subject mean and standard deviation 

for peak maximum principal, minimum principal and maximum shear strains and strain rates over 

a gait cycle are shown in Table 6. The simulated staple and the anterior-medial reference nodes 

showed very similar strain and strain rate profiles due to their nearness.   

Table 6: Peak Strain and Strain Rate Results 

  Peak Strain Peak Strain Rate 

Location  mean (µε) SD (+µε) mean (µε) SD (+µε) 

Simulated 

Staple (ST) 

Max 543 165 7921 3249 

Min -453 135 -3494 1206 

Shear 838 211 10390 4494 

Anterior 

Medial (AM) 

Max 488 175 6946 2510 

Min -473 93 -3588 1221 

Shear 814 177 8612 3050 

Anterior 

Lateral (AL) 

Max 333 99 2748 1360 

Min -620 169 -7282 2515 

Shear 914 260 9600 3344 

Lateral (LA) 

Max 287 78 2735 971 

Min -708 206 -8555 3172 

Shear 954 259 11060 3773 

Posterior 

Lateral (PL) 

Max 271 62 2700 935 

Min -766 192 -9703 2836 

Shear 1009 246 11837 3617 

Posterior 

Medial (PM) 

Max 533 137 7531 2758 

Min -489 161 -3657 1303 

Shear 857 210 9909 3788 
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3.2.3 Intra-Subject Variability  

The intra subject peak strains and strain rates showed noticeably smaller standard 

deviations than the inter-subject peak strains and strain rates.  For example, the intra-subject peak 

strain standard deviations were an average of 87.37µε lower than the inter-subject strains, and the 

strain rate standard deviations were an average of 779.8µε/sec lower than the inter-subject strain 

rates. Intra-subject peak strains and strain rates are shown in Table B-1 in Appendix B.   

In order to evaluate the variability of computed bone strain within a subject, the 

Coefficient of Multiple Correlation (CMC) was calculated for the strains at each location (AM, 

AL, LA, PL, PM, and ST) for individual subjects.  The CMC was used to describe the 

repeatability of the strain curves for each subject.  When the curves being compared are very 

similar, the CMC value approaches a value of one, while dissimilar curves approach a CMC of 

zero.  The CMC values calculated for each subject are shown in Table 7. 

Table 7: Coefficient of Multiple Correlation for Each Subject 

Subject Mean CMC 

003 0.9262 

006 0.9561 

007 0.9371 

013 0.9151 

015 0.8579 

016 0.9656 

017 0.9396 

018 0.8906 

022 0.9233 

023 0.9454 

024 0.9239 

026 0.9442 

These results indicate that the assumption that a mean strain curve calculated from the 12 strides 

per subject can be used as the representative strain data from that subject is valid.   
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3.3 Expected Range of Strain and Strain Rate for the Tibial Mid-Shaft 

The expected ranges determined by the bootstrap method and average values of the strain 

and strain rate for a gait cycle for the anterior medial location, the simulated staple, the anterior 

lateral location, the lateral location, the posterior lateral location, and the posterior medial 

location are shown in Figures 13 through 24, respectively.  

The timing of the strain peaks occurred during consistent phases of the gait cycle.  As 

seen in Figure 13 (below), the maximum shear strain at the anterior medial location had peaks 

just after heel strike (0 to 20% of the gait cycle), slightly prior to toe-off (40 to 50%), and 

following toe-off during the early swing phase (60 to 70%).  The anterior lateral location and 

simulated staple (Figures 15 and 17) had similar peak locations to the anterior medial location.  

The maximum principal strain was similar at these locations with the exception of the absence of 

a peak prior to toe-off (40 to 50%), while the minimum principal strain showed a single peak late 

in the stance phase at toe-off (40 to 50%), coinciding with the second peak for the maximum 

shear strain.  The timing of the peaks at the lateral (LA) and posterior lateral (PL) locations were 

less consistent, generally showing peaks near heel strike (0 to 20%) and toe-off (40 to 50%) for 

all three strains (maximum principal, minimum principal, and maximum shear) (Figures 19 and 

21).  Finally, the posterior medial (PM) location showed a definite peak following heel strike (0 

to 20%) for the minimum principal and maximum shear strains, followed by smaller peaks at toe-

off (40 to 60%) and early in the swing phase (60 to 65%) (Figure 23). 
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Figure 13: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Anterior Medial Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 14: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Anterior Medial Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 15: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Simulated Staple Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 16: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Simulated Staple Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 17: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Anterior Lateral Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 18: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Anterior Lateral Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 19: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Lateral Position on the Tibia.  The vertical bands indicate the typical timing 

of toe-off. 
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Figure 20: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Lateral Position on the Tibia.  The vertical bands indicate the typical 

timing of toe-off. 
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Figure 21: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Posterior Lateral Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 22: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Posterior Lateral Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 23: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strains at the Posterior Medial Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off. 
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Figure 24: Expected Ranges of (A) Maximum Shear, (B) Maximum Principal, and (C) Minimum 

Principal Strain Rates at the Posterior Medial Position on the Tibia.  The vertical bands indicate the 

typical timing of toe-off.
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CHAPTER 4: DISCUSSION 

 The purpose of this study was to establish an expected range for tibial bone strain during 

walking for a homogeneous subject group.  The expected ranges were generated from the 2.5 and 

97.5 percentiles of a bootstrapped dataset.  In addition to this overall goal, the inter-subject 

(between subjects) and intra-subject (within a single subject) variability of tibial bone strain and 

strain rate at various locations around the tibial mid-shaft were calculated.  The noticeably larger 

standard deviation for the inter-subject strains and strain rates is understandable due to the use of 

subject specific bone geometry and material properties as well as the natural variability in the 

subjects’ walking patterns and anthropometric proportions.   

 The ability to differentiate between normal tibial strain and strain rate levels and 

potentially harmful strain and strain rate levels is critical for research into tibial stress fracture 

development.  The results from this study show that for a homogenous population the tibial strain 

and strain rate can vary substantially.   The subjects analyzed in this study consisted of males in 

their twenties (mean: 20.85 years, SD: 1.5 years), with a body mass index below 28, and 

participating in recreational sports or exercise at least three times per week.  The mean inter-

subject standard deviation was 153µε (averaged for the six locations of interest), with the highest 

variability in the shear strain at the posterior lateral (PL) location (SD: 245µε) and least 

variability in the maximum shear strain at the posterior medial (PM) location (SD: 61µε).  For the 

duration of the gait cycle, the expected range of strains was wider at peak locations, indicating 

that there were differences in the timing and magnitude of peak strain and strain rate among 

subjects.  While there was a sizeable amount of variability in the strain and strain rate peaks of 

the population, those peaks occurred during consistent phases of the gait cycle.  The maximum
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shear strain (see Figure 13A in Chapter 3) at the anterior-medial (AM) location had peaks just 

after heel strike (0 to 20% of the gait cycle), slightly prior to toe-off (40 to 50%), and following 

toe-off during the early swing phase (60 to 70%).  The maximum principal strain (Figure 13 – B) 

was similar at these locations with the exception of the peak at toe-off (40 to 50%), while the 

minimum principal strain (Figure 13C) showed a single peak late in the stance phase near toe off 

(40 to 50%), coinciding with the second peak for the maximum shear strain.   

The timing of these peak strains appears reasonable.  During the loading response phase 

(0 to 20%), the anterior face of tibia is experiencing tensile loading, and the posterior face is 

experiencing compressive loading.  The tensile load on the anterior aspect is partly due to the 

vertical (normal) ground reaction force (GRF) acting posterior of the neutral bending axis of the 

tibia and the anterior posterior (shear) GRF acting posteriorly on the foot early in the stance phase 

(resulting in a bending load on the tibia).  In addition to the bending load caused by the reaction 

forces, the tibia is also experiencing loading from active muscles.  During the loading response 

phase, the quadriceps muscles (vastus lateralis, vastus medialis, vastus intermedius, and rectus 

femoris) and the tibialis anterior are both actively applying force to the anterior face of the tibia 

(Anderson & Pandy, 2001; Sasaki & Neptune, 2010).  The combination of the tensile bending 

load and the forces of the quadriceps muscles, tibialis anterior and other dorsiflexor muscles 

acting axially along the tibia results in a positive (tensile) strain, apparent in the maximum 

principal strain curve (Figure 13B).  Due to the shape of the tibia, and the fact that the muscles do 

not only act axially along the tibia’s longitudinal axis, the tensile bending load and muscle forces 

will also result in shear strains, which are apparent in Figure 13A.  During mid-to-late stance 

phase (30 to 60%), the bending load changes directions due to the vertical GRF shifting 

anteriorly.  The shift of the vertical GRF results in a compressive load on the anterior aspect of 

the tibia prior to toe-off.  This bending load results in a negative strain (compressive) that is seen 

in the minimum principal strain curve (Figure 13C).  During swing phase, the GRFs play no part 
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in the loading of the tibia, resulting in generally lower strains, which are caused by antagonistic 

muscle activity, and muscle activity in preparation for heel strike.  The timing of the peaks for the 

anterior medial (AM) location and simulated staple are consistent with previous in vivo tibial 

strain research by Lanyon et al. (Lanyon et al., 1975).   Using strain gauges at a similar location 

to the simulated staple, they found peaks at just after heel strike, just prior to toe-off, and early in 

swing phase (Lanyon et al., 1975) 

The comparison between previous in vivo research and the results from this study were 

outlined in Table 5 (seen in Chapter 3).  The maximum principal, minimum principal, and 

maximum shear strain results from this study differed from previous in vivo results by an average 

of 23%, 27%, and 9%, respectively, while the strain rate results differed by an average of 44%, 

33%, and 46%. Although these differences may seem large, this study has demonstrated that there 

is a considerable amount of variability in the strains and strain rates even for a homogenous 

subject population.  In fact, all in vivo peak strain results reported in previous studies were within 

the expected range for peak strains (Figure 25), and all in vivo peak strain rate results except for 

the results by Burr et al. (Burr et al., 1996) were within the expected range of peak strain rates 

(Figure 26).  Therefore, the ranges of strain and strain rate obtained in this study may be 

applicable for a wider range of population. The sample population for this study consisted of 

males, 20.85 years + 1.5 years old, with a BMI under 28, and physically active, while the subjects 

in those in vivo studies were four males and one female, aged 35, 39, 42, 49, and 33 (mean: 39.6 

years, SD: +6.3 years) who were reported as being healthy and at least recreationally active.    
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Figure 25: Maximum Shear (A) Maximum Principal (B) and Minimum Principal (C) Strains and 

previous research maximum values.  The gray band represents toe - off.  Peak in vivo strain results 

were assumed to occur at similar locations to the peak strain results in this study.  The vertical bands 

indicate the typical timing of toe-off. 
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Figure 26: Maximum Shear (A) Maximum Principal (B) and Minimum Principal (C) Strain Rates 

and Previous Research Maximum Values.  The gray band represents toe - off.  Peak in vivo strain 

rate results were assumed to occur at similar locations to the peak strain results in this study.  The 

vertical bands indicate the typical timing of toe-off. 
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As shown in Figure 25 above, the minimum principal, and maximum shear strain results 

reported by Klodowski et al. were well outside the expected ranges of strains in this study 

(Klodowski et al., 2009).   While this study’s minimum principal and maximum shear were much 

lower (49% and 44%, respectively) than those reported by Klodowski et al., the maximum 

principal strain was lower by only 5%.  Compared to the results reported by Al Nazer et al., the 

strains from the present study were 37% higher (maximum principal strain), 27% lower 

(minimum principal strain), and 14% lower (maximum shear strain) (Al Nazer et al., 2008a).  The 

strain values reported by Al Nazer et al. were within the expected range for the maximum 

principal, minimum principal, and maximum shear strains (Figure 25).  There are several possible 

explanations for these differences, mostly due to methodological differences.  First, Al Nazer et 

al. and Klodowski et al. both used simulated ground reaction forces (GRFs) in place of the 

experimental GRFs (Al Nazer et al., 2008a; Klodowski et al., 2009).  The simulated GRFs used 

by Al Nazer et al. had an increased number of force peaks (i.e., high-frequency components) and 

increased magnitude (Figure 8 in Al Nazer et al., 2008a).  The simulated GRFs used by 

Klodowski et al. showed an increased number of peaks for a single gait cycle, but failed to 

produce consistent magnitudes matching the experimental GRFs  (Figure 5 in Klodowski et al., 

2009).  The experimental GRFs (see Figure A-1 in Appendix A) used for this study were much 

more consistent, resulting in a more reliable loading pattern for the dynamic simulations of 

walking.  In addition to the simulated GRFs, Al Nazer et al. used a single material property for 

the entire tibia.  The material property was considered to be linear elastic and transversely 

isotropic and based on literature values.  This simplified model may cause an error in strain 

computation (Gray et al., 2008).  The effect of using a single material property on the present 

model was investigated for a single subject.  The maximum shear, maximum principal, and 

minimum principal strains (Figure 27) at the anterior medial location were compared using the 

95% confidence interval of the mean strain, and a statistical significance was tested by comparing 



55 

 

 

 

the two 95% confidence intervals.  A significant difference was shown by locations on the curve 

where the two intervals do not overlap.   As shown below, the effect of the single material 

property was a significant increase in strain at all points of the gait cycle.    

 

 

 

Figure 27: Single Material Property Versus Multiple Material Properties.  The vertical bands 

indicate the typical timing of toe-off. 
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On top of using simulated GRFs, Klodowski et al. used different parameters for creating 

the musculoskeletal model and performing the dynamic simulation (Klodowski et al., 2009). 

First, they used a complete musculoskeletal model (upper and lower body), while the present 

study used only a lower body musculoskeletal model with prescribed kinematics at the mass 

center of the pelvis.  Second, they used a muscle model consisting of open-loop simple muscles 

for the right leg tibialis anterior, soleus, rectus femoris, and the medial head of the gastrocnemius, 

closed-loop Hill-type muscles for the remaining muscles in the right leg, and closed-loop simple 

muscles (PID tuned actuators) for the remaining muscles in the model.  The open-loop muscles 

used by Klodowski et al. were controlled by EMG activation patterns obtained during their 

experimental data collection.  In contrast, the muscle model used in this study employed closed-

loop simple muscles for a total of 15 muscles controlling the right shank and foot, and PID joint-

torque actuators to control the left and right hip, the left knee and the left ankle.  These 

differences in actuators can cause different forces applied to the flexible tibia, which could result 

in different strain magnitude.  

4.1 Filtering Effects 

In this study, the calculated tibial bone strain data were low-pass filtered because the raw 

strain data had noticeable high frequency components (Figure 28).  These high frequency 

components were assumed to have originated from muscle forces because the muscle actuators 

were controlled by simple PID controllers.   
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Figure 28: Filtered Versus Unfiltered Strain Curves for the Anterior Medial Location for a 

Representative Subject 

In order to confirm this assumption, power spectrum analyses for the strain data (Figure 29) and 

for muscle forces (Figure 30) were performed.  As shown in these figures, the frequency range of 

bone strain was correspondent with the frequency range of muscle forces.  

 

Figure 29: Power Spectrum for the Strain from a Representative Subject 
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Figure 30: Power Spectrums for (A) vastus intermedius, (B) vastus medialis, (C) gastrocnemius, (D) 

hamstrings, (E) soleus, (F) tibialis posterior, and (G) extensor hallucis. 

 

A 

B 

C 
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In this study, a low pass cut-off frequency of seven Hz was selected to smooth the raw 

bone strain data. However, the cut-off frequency could also influence the magnitude of strain or 

strain rate. Therefore, the sensitivity of the strain magnitude to the cut-off frequency was 

analyzed by filtering the data with three other cut-off frequencies (3, 5, and 16.04 Hz).  16.04 Hz 

is the highest frequency used in in vivo data (Burr et al., 1996).  The results showed that the 5 and 

7 Hz cutoff frequencies were able to reduce the noise substantially (unlike 16.04 Hz), while not 

reducing the peaks as occurred when using the 3 Hz cutoff frequency (Figure 31).  When 

comparing the results with previous research, the 7 Hz cutoff frequency resulted in peak strains 

and strain rates that were closer to the in vivo studies (see Table 5 in Chapter 3) compared to the 

peaks when filtering with a 5 Hz cutoff frequency.   The 95% confidence interval of the mean 

strain when using each of the cutoff filter frequencies is plotted in Figure 31.  From these results, 

the cutoff frequency of 7 Hz used in this study appears the most appropriate.  However, future 

studies may be able to fix this issue by using different muscle controllers (Hill – type or open – 

loop) or tuning the PID actuators for individual muscles, with the goal of reducing the noise in the 

main driving muscles.  The peak values for the maximum principal, minimum principal, and 

maximum shear strains calculated at each cutoff frequency are outlined in Table 8. 
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Figure 31: Cutoff Frequency Effect on Anterior Medial Maximum Principal Strain  

Table 8: Effects of Filter Cutoff Frequency (Shown for the Anterior Medial Location) 

 Peak Strain (µε) Peak Strain Rate (µε/sec) 

Filter 
Max 

Principal 

Min 

Principal 

Max 

Shear 

Max 

Principal 

Min 

Principal 

Max 

Shear 

3Hz filter
1 

468 -385 711 2986 -1684 4031 

5Hz filter
1
 512 -432 784 5152 -2624 6786 

7Hz filter
1
 552 -451 840 8010 -3525 10623 

16.04Hz filter
2 

812 -490 1144 25261 -10063 33812 

No filter 790 -536 1181 28304 -17295 40405 

Percent difference 

3Hz - 5 Hz 
8 10 9 42 35 40 

Percent difference 

7Hz - 5 Hz 
7 4 6 35 25 36 

Percent difference 

16.04Hz – 5 Hz 
37 11 31 79 73 79 

Percent difference 

No filter – 5 Hz 
43 14 34 85 84 86 

1 – Values chosen based on strain power spectrum (Figure 29) 

2 – Highest reported cutoff frequency in in vivo data (Burr et al., 1996) 
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4.2 Limitations 

 There are several limitations to this study.  First, the sample size might be small for 

establishing accurate expected ranges of tibial strains, although it is still larger than previous 

computational studies and in vivo studies.  In order to approximate a larger sample size (and a 

normal distribution of subjects), the data from the 12 subjects were bootstrapped, resulting in a 

dataset that was much larger.  The bootstrapped dataset resulted in marginally narrower expected 

ranges than the original dataset of 12 subjects.  The differences between the results of this study 

and the results from a larger sample pool need to be evaluated in the future. Second, this study 

used a lower body musculoskeletal model to perform the dynamic simulation of walking.  The 

lower body model required a motion tracker with a prescribed motion (based on the inverse 

kinematics) to complete the forward dynamics simulation.  The lower body model was still able 

to recreate kinematics (see Figure 10 in Chapter 3) and reasonable joint kinetics (Figure 11). 

However, the prescribed pelvis kinematics could eliminate the influences associated with the 

upper body dynamics. Also, errors in the prescribed pelvis kinematics could load or unload the 

legs driven by joint and muscle actuators that track the experimental leg kinematics. The 

influences of these modeling and simulation techniques on strain computation need to be 

evaluated in the future.  Finally, the relationships between bone density and Young’s modulus 

used in this study could have a noticeable effect on the tibial bone strain.  There are several 

relationships between bone density and Young’s modulus that have been developed for different 

bone types and different bones.  These relationships are outlined in a study performed by 

Helgason et al. (Helgason et al., 2008).  In this study, the relationships for cortical and trabecular 

bone were selected based on the resulting Young’s modulus for the cortical bone and trabecular 

bone, respectively, as well as the use of apparent density in the conversion (instead of ash 

density).  
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4.3 Delimitations 

 There are a few delimitations for this study.  First, all subjects were male, aged 18 to 27, 

with a BMI under 28, and at least recreationally active.  These subjects were selected as surrogate 

military recruits.  Although the study results showed that the range of tibial strain obtained from 

these subjects included the variation of in vivo strain obtained from different adults (males and 

females with a mean age of 39.6) (Burr et al., 1996; Lanyon et al., 1975; C. Milgrom et al., 2000), 

the results should not be applied to estimate tibial strain among more diverse population such as 

children and impaired/injured individuals, or strain during different motor activities.  Second, 

because stress fractures are not dependent on the strain or strain rate magnitude alone, these 

results should not be used as a range for predicting stress fractures, but as a base for comparing 

the strain results of future research. 

4.4 Future Work 

 Future work using flexible bodies in dynamic simulations to determine strains should be 

directed toward methodological improvements and expanding the analysis to different types of 

activities.  Due to the novelty of integrating a flexible tibia into a forward dynamics simulation to 

determine bone strain, the best practice for choosing the musculoskeletal model, muscle model, 

and type of muscle actuator have not been fully established.  Future research improving these 

factors can improve the accuracy of strain and strain rate computations.  The analysis techniques 

used in this study can be readily applied to different motor activities.  The analysis of bone strains 

during more vigorous activities, such as running can provide valuable information about critical 

bone strain and strain rates that may be an important factor in causing stress fractures.  Finally, 

investigating the contributing factors into what causes the inter-subject variability in bone strain 

may provide important information for both comparing the strains between subjects, and potential 

causes of stress fractures.
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APPENDIX A 

Experimental GRFs Used in the Forward Dynamics Simulation of Walking
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Figure A-1: Experimental GRFs Used in the Forward Dynamics Simulation of Walking. 
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APPENDIX B 

Intra-Subject Mean and Standard Deviation for Maximum Principal, 
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Table B-1: Intra-Subject Mean and Standard Deviation for Maximum Principal, Minimum Principal 

and Maximum Shear Strain 
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Table B-1: Intra-Subject Mean and Standard Deviation for Maximum Principal, Minimum Principal 

and Maximum Shear Strain 
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Table B-1: Intra-Subject Mean and Standard Deviation for Maximum Principal, Minimum Principal 

and Maximum Shear Strain 
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