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ABSTRACT 

In the field of DNA nanotechnology, self-assembly is being advanced as the key 

technology for the creation of nanoscale structures. Popular and effective DNA 

nanotechnology methods of producing nanoscale structures are branched DNA junctions 

and DNA origami. DNA nanostructures have recently been employed as scaffolds for the 

bottom-up arrangement of proteins, as well as semiconductor and metallic nanoparticles, 

with nanometer precision. Such structures are expected to exhibit unique optical 

properties and may enable new photonic devices. Conversely, the majority of photonic 

devices for optical waveguide are fabricated using top-down processes. However, the 

cost and controllability of complex nanostructures using top-down processes imposes 

significant challenges. As an alternative to top-down processes, work will be presented 

demonstrating the use of DNA self-assembly processes to fabricate nanoscale photonic 

devices for optical waveguide. To fabricate photonic devices using DNA self-assembly, 

DNA nanostructures were used as scaffolds to configure light emitting molecules so as to 

create a near-field energy transfer waveguide. Spectrophotometry was used to 

characterize the device operation. The spectral results indicate that DNA nanostructures 

functionalized with light emitting molecules can transfer energy through a three molecule 

system with 28% efficiency, demonstrating the potential of using DNA nanostructures for 

future photonic devices for optical waveguide. 
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CHAPTER 1: INTRODUCTION 

The goal of photonic devices is to use and control the interaction of light with 

matter to perform functions; it is analogous to the use and control the interaction of 

electrons with matter-to-perform functions in electronic devices. A wave packet of light, 

or a photon, is electromagnetic radiation of frequencies in the range from 1 THz to 10 

PHz, corresponding to wavelengths between ~300 µm and ~30 nm in free space. This 

electromagnetic range is generally divided into infrared, visible, and ultraviolet regions, 

as indicated in Table 1.1. The primary interest in the applications of photonic devices is 

in a narrow range of visible and near-infrared wavelengths. This spectral range for 

applications is largely determined by the properties of materials used for photonic 

devices
1
. 

Table 1.1 Electromagnetic spectrum
1
 

Wave region Frequency Wavelength Devices 

Radio kHz-MHz-GHz km-m-cm Electronic devices 

Microwave 1 GHz-1 THz 300 mm-300 µm Microwave devices 

Optical    

  Infrared 1 THz-430 THz 300 µm-700 nm 

Photonic devices   Visible 430 THz-750 THz 700 nm-400 nm 

  Ultraviolet 750 THz-10 PHz 400 nm-30 nm 

X-ray 10 PHz-10 EHz 30 nm-300 pm  

Gamma ray 10 EHz and above 300 pm and shorter  

 

Current photonic devices for optical wave guiding can nearly achieve nanometer 

size by using advanced top-down fabrication methods. However, top-down processes are 
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costly and increasingly complex. Advanced techniques that can attain nanometer size 

with reasonable costs will play an important role in the production of nanoelectronic, 

nanomechanical, and nanooptical devices. Unlike top-down techniques, which create 

sophisticated devices by etching individual molecules away from bulk materials, bottom-

up techniques exploit molecular self-assembly by specific placement of individual 

molecules and requires less time and effort to achieve
2
. 

One bottom-up approach with the potential of lower cost and synthesis time for 

fabricating photonic devices for optical wave guiding at nanometer scale is DNA self-

assembly. Using DNA self-assembly, nanostructures are formed with sub-10 nanometer 

resolution. Recently, several groups have reported methods of fabricating photonic 

devices for optical wave guiding using duplex DNA as scaffolds and multiple 

fluorophores as light transmitting elements, which are illustrated in Fig.1.1. The photon 

energy is selectively injected into one end of the duplex DNA and it is detected at the 

opposite end. The transport of photon energy is possible due to the fluorescence (or 

Förster) resonance energy transfer (FRET) between fluorophores with spectral overlap 

and close proximity (typically 2 – 10 nm); the FRET process is discussed in detail in 

Appendix A.1. For these wave guiding devices (hereafter referred to as FRET-based 

waveguide), the efficiency is in the range from 17% to 40%
3,4,5,6

. It is worth noting here 

that a key distinction between FRET-based waveguides and traditional waveguides is the 

way in which photon energy propagates in the devices. The photon energy is diffusively 

transferred in FRET-based waveguides, whereas it is coherently transferred in traditional 

waveguides
5
.  
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Fig.1.1: Schematics of photonic devices for optical wave guiding using DNA duplex 

approaches by (a) Haustein et al.
3
 (b) Ohya et al.

4
 (c) Vyawahare et al.

5
 (d) 

Heilemann et al.
6
. The dots with different colors represent the different fluorophores 

which are incorporated into the duplex DNA. 

 

Unlike traditional waveguides, the FRET-based waveguides discussed in this 

thesis are built upon DNA oligomers. Current synthetic DNA oligomers are limited to 

roughly 200 nucleotides in length. Although such oligomers could in principle be used to 

create a FRET-based waveguide, however, the persistence length would be limited to 50 

nm
7
. Such a duplex DNA waveguide would be difficult to couple with larger electrodes 

and would exhibit a high degree of curvature, reducing the effective length of the 

waveguide. In order to extend beyond the size limitations imposed by current synthetic 

DNA oligomers and create longer FRET-based waveguides, a much longer DNA scaffold 

is needed. 
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One approach to fabricating a longer DNA scaffold can be realized by 

incorporating more than a single duplex DNA into the design structure.  One example is 

an immobile DNA branch junction
8
 which has been demonstrated by Ned Seeman, as 

shown in Fig.1.2 (a). This junction is a stable analogue of the Holliday junction
9
. By 

adding “sticky ends” to the four-arm junction, a two-dimensional lattice
10

 can be formed, 

as illustrated in Fig.1.2 (b); a sticky end is a non-binding nucleotide in the DNA structure 

but it can potentially bind to any complementary nucleotide outside of its own structure. 

The use of branched intermediates allow one to form connected structures from DNA
11,12 

, as well as periodic
13,14

 and aperiodic
15,16

 arrays. Using branched DNA junctions, 

multiple fluorophores can be easily incorporated into the design to overcome the 

limitation of a single duplex DNA.  
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Fig.1.2: (a) Schematic of an immobile four-arm DNA junction; (b) Formation of 

two-dimensional lattice from a four-arm junction with sticky ends, X and Y are 

sticky ends, X’ and Y’ are their complementary sticky ends, respectively. 

 

Another approach to overcome the limitations of a single duplex DNA scaffold is 

a method described by Paul Rothemund in 2006. The method he called DNA origami
17

 

produces nanoscale DNA structures using numerous short “staple” strands of DNA to 
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direct folding of a long “scaffold” strand into a flat array of antiparallel helices, as shown 

in Fig.1.3. A “scaffold” strand is a long, single-stranded genomic DNA, obtained from a 

bacteriophage M13mp18, which is harvested from infected bacteria. “Staple” strands are 

synthetic oligonucleotides, typically less than 100 nucleotides in length, that hybridize 

with the scaffold strand in strategic locations. One half or end of the staple strand 

hybridizes in one location while the other half hybridizes in another location. As many as 

170 staple strands can interact with the scaffold strand in this manner, which will 

eventually fold the DNA into a desired shape (i.e., DNA origami). Since its introduction, 

the use of DNA origami has grown dramatically. Currently, DNA origami can provide 

not only arbitrary 2D nanostructures but also nano-sized breadboards, a term coined by 

Bernard Yurke (as cited in Ref.17), for the arraying of nanomaterials and 3D 

nanostructures, such as hollow polyhedrons or even more complicated nano-objects
18

. 
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Fig.1.3: Schematic of a DNA origami arbitrary shape adopted from Ref.17. The 

scaffold is depicted in a long black strand, whereas the staples are displayed in short 

colored strands. 

 

Realizing the advantages of DNA origami, one of which is the nano-sized 

breadboards for arraying nanomaterials, Stein et al. reported the first construction of 

FRET-based waveguides using DNA origami rectangles they decorated with several 

different fluorophores
19

, as illustrated in Fig.1.4. Using a single-molecule technique, they 

successfully demonstrated that the photon energy was diffusively transferred with up to 

36% efficiency. 
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Fig.1.4: Arrangement of fluorophores (different colored dots) on the DNA origami 

rectangle adopted from Ref.19. 

 

To overcome the limitation of a single duplex DNA and to take advantage of both 

branched DNA junctions as well as DNA origami, this thesis explains the efforts towards 

the design of FRET-based waveguides and the investigation of the device’s operation by 

optical means. Specifically, Chapter 2 reports the design of DNA tiles as scaffolds for the 

arrangement of fluorophores and the investigation of FRET on dye-labeled DNA tiles. 

Chapter 3 describes the design of DNA origami nanotubes as scaffolds for the 

arrangement of fluorophores and the investigation of FRET on dye-labeled DNA origami 

nanotubes. Chapter 4 explains the design of DNA origami nanotubes as scaffolds for the 

arrangement of semiconductor nanoparticle arrays and the surface topography 

characterization of nanoparticle arrays via atomic force microscopy (AFM).   



9 

 

CHAPTER 2: DNA TILE DIFFUSIVE WAVEGUIDE 

2.1 Experimental 

The experimental section is organized in the following manner: (1) a brief 

background on DNA is discussed, (2) an explanation of the design procedure is given, 

and (3) materials and methods used to characterize the design are described. 

2.1.1. Background on DNA 

It is useful to provide a brief background on the molecular structure of DNA prior 

to examining DNA design. The following provides this information. Nucleotides are 

molecules that when joined together form the structural units of RNA and DNA. Each 

nucleotide is comprised of approximately 20 atoms, such as carbon, nitrogen, and 

oxygen, and contains three components: a five-carbon sugar (either ribose or 

deoxyribose), a nitrogenous base, and one or more phosphate groups as shown in Fig.2.1. 

The nitrogenous bases are heterocyclic aromatic rings with a variety of substituents
20

. 

There are two classes of base as shown in Fig.2.2: the bicyclic purines (a) and the 

monocylic pyrimidines (b). A chain of a definite nucleotide sequences is called a single-

stranded DNA or a DNA oligomer with spacing between nucleotides of ~ 0.43 nm. An 

oligomer can be synthesized or harvested from an infected bacteriophage (i.e., 

M13mp18). 
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Fig.2.1: A schematic showing the three major constituents of a nucleotide:  a 

nitrogenous base (adenine), a pentose sugar (ribose), and one or more phosphates. 

The schematic is adopted from Ref.20. 

 

 

Fig.2.2:  Schematics of the nitrogenous bases that distinguish DNA nucleotides. (a) 

Purines - adenine and guanine; (b) Pyriminides - thymine and cytosine. These 

schematics were adopted from Ref.20. 
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Formation of a DNA double helix occurs when a single-stranded oligomer binds 

to its complementary sequence through hydrogen bonding between base pairs. The most 

common binding between bases occurs when adenine binds to thymine (A-T) or cytosine 

binds to guanine (C-G), shown in Fig.2.3. In addition to possessing a complementary 

sequence, formation of a double helix requires the two sequences to be formed with 

opposite directionality, as determined by the phosphate bonds that connect the 

deoxyribose sections of each nucleotide. In the form of DNA used in this work, the DNA 

double helix rotates through 360
o
 every 10.5 nucleotides with a spacing between 

nucleotides of ~0.34 nm and double helix diameter of ~2 nm. The angular separation of 

adjacent nucleotides in a DNA double helix is ~ 34
o
. 

 

Fig.2.3: (a) A diagrammatic view of DNA double helix. The sugar-phosphate 

backbones of the double helix are represented by colored ribbons. The bases 

attached to the sugar deoxyribose are on the inside of the helix. (b) An enlarged view 

of two base pairs. Note that the two DNA strands run in opposite directions defined 

by the 5’ and 3’ groups of deoxyribose. The bases on opposite strands form pairs 
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because of hydrogen bonds. Cytosine pairs with guanine; thymine pairs with 

adenine
20

. 

 

2.1.2 Design 

In the design assessment process, designs were evaluated based on the following 

design constraints: (1) the design simplicity, (2) the ability to control the distance 

between fluorophores, (3) the ease to optimize the device operation, (4) the ability to 

perform troubleshooting as a design feedback mechanism, and (5) the design flexibility 

for future enhancement. The subsequent section examines the designs that were 

ultimately chosen using this design assessment approach. 

Using the sequence-dependent binding properties of DNA (i.e., G binds to C, A 

binds to T), a DNA tile was designed consisting of three parallel double helices bound 

together with six crossovers, as illustrated in Fig.2.4. The tile is composed of six strands; 

a strand is a short segment of DNA composed of known nucleotide sequences. Three 

straight strands (i.e., X, Y, and Z) are composed of 42 nucleotides and are used as 

scaffold strands; recall that a scaffold strand is the backbone for forming DNA 

nanostructures. Three strands are in the shape of an S (i.e., F, T, and C) are composed of 

42 nucleotides and used as staple strands, which is a small segment of DNA for holding 

the DNA nanostructures in place. The staple strands are programmed to be 

complementary to three separate 14-nucleotide regions of the scaffold strand. It is 

predicted that the staple strands self-assemble with the scaffold strand into the tile shape 

of three parallel double helices. Arrowheads indicate the three prime (3’) end of strands 

where the “3’ end” is the third carbon positioning in the sugar structure of DNA. In its 
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ideal form, the tile dimension is 14.28 nm x 6 nm, assuming a spacing of 0.34 nm per 

base pair. 

 

Fig.2.4: Dye-labeled (dots) strands within the tile. FAM is attached to the left strand 

(labeled F), TAM is attached to the middle strand (labeled T), and Cy5 is attached 

to the right strand (labeled C). X, Y, and Z strands are illustrated as the straight 

lines that act as the scaffold strands. Arrowheads indicate 3’ end of strands. 

 

For studying FRET-based waveguides, DNA tiles were used to construct a stable 

sequential arrangement of fluorescent dyes separated by a regulated distance. The F, T, 

and C strands were labeled with three different fluorophores: 6-carboxyfluorescein 

(FAM), carboxy-tetramethyl-rhodamine (TAM), and cyanine (Cy5), respectively. The 

three fluorophores were chosen such that they formed a linear chain in the tile, ordered in 

terms of absorption energy from the primary donor (FAM) to the final acceptor (Cy5) via 

the intermediate acceptor-donor (TAM). The expected distance between fluorophores is 

2.38 nm, equivalent to the distance of a chain of 7 nucleotides. 

Fig.2.5 illustrates the spectral overlap (not to scale) between fluorophores and the 

spectral characteristics of each fluorophore used in this study. For the FAM-TAM 

fluorophore pair, the excitation spectrum of TAM (dark, dashed) partially overlaps with 
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the emission spectrum of FAM (gray, solid). The excitation spectrum of Cy5 (dark, 

dotted) coincides in part with the emission spectrum of TAM (gray, dashed). The 

excitation (dark) and emission (gray) spectra for each fluorophore are also plotted in 

Fig.2.5. The maximum wavelength values of excitation and emission spectra for FAM, 

TAM, and Cy5 are listed in Table 2.1. 

  

Fig.2.5: The spectral overlap between fluorophores (shaded areas) are shown with 

excitation and emission spectra of FAM (solid), TAM (dashed), and Cy5 (dotted) 

fluorophores. 

 

Table 2.1: Measured excitation and emission maxima of the dyes used in this work 

 Dye-labeled oligomer 

 Excitation peak (nm) Emission peak (nm) 

FAM 496 517 

TAM 561 583 

Cy5 656 667 
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2.1.3 Materials and Methods 

The dye-labeled strands and their complementary strands were purchased from 

Integrated DNA Technologies
21

 and the sequences are listed in Table 2.2. Fluorophores 

were attached as follows: FAM to the 3’ end of strand F; TAM to the 7th base of strand 

T; Cy5 to the 28th base of strand C. All strands were also available unlabeled, which 

allowed for the construction tiles with different fluorophore combinations. The other dye-

labeled DNA tiles were synthesized for control experiments; the schematics are not 

shown. 

Table 2.2: DNA sequences used to construct dye-labeled DNA tiles 

Name Sequence (5’ to 3’) Length (bp) 

F TGA CAA CAA CCA TCG GCT TGA GAT GGT TAA GCG AAC CAG ACC 42 

T CGA GTA GTA AAT TGG CCC ACG CAT AAC CAG AGG CTG AGA CTC 42 

C ATC AGT AGC GAC AGA CAT GAA AGT ATT AGA TAT ATT CGG TCG 42 

X CGA CCG AAT ATA TCC AAT TTA CTA CTC GGG TCT GGT TCG CTT 42 

Y AAC CAT CTC AAG CCG GTT ATG CGT GGG CTA ATA CTT TCA TGT 42 

Z CTG TCG CTA CTG ATG AGT CTC AGC CTC TGA TGG TTG TTG TCA 42 

 

To synthesize DNA tiles containing FAM, TAM, and Cy5, equimolar amounts of 

the DNA strands were mixed in a solution of 1×TAE, Mg
2+

 (40 mM tris, 20 mM acetic 

acid, 2 mM ethylenediaminetetracetic acid [EDTA], and 12.5 mM magnesium acetate; 

pH 8.0). TAE, magnesium acetate tetrahydrate, and laboratory grade water [Milli-Q 

Water, Millipore] were purchased from Sigma Aldrich). The solution was annealed by 

heating the samples to 90 
o
C for 20 min, followed by a slow cooling to room temperature 

(~ 2.0 h) using a thermal cycler (Eppendorf Mastercycler Personnal). To remove 

malformed dye-labeled DNA tiles, gel electrophoresis was employed; the detail of 

experimental approach is discussed in Appendix B.1.  
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To measure the emission of fluorophores, fluorescence measurements were 

performed using a Cary Eclipse fluorescence spectrophotometer (Agilent Inc.). A 100 µL 

of a 100 nM DNA tile solution was placed in a 350 µL special optical glass (SOG) cell 

with 3 mm path length and kept at ambient temperature during the measurement. All 

emission spectra were collected using an excitation wavelength of 480 nm. The spectral 

bandwidths for excitation and emission monochromators were both chosen to be 10 nm. 

The emission spectra of the dye-labeled DNA tiles were recorded over the range of 500 

to 800 nm. 

 2.2 Results and Discussion  

To understand the energy transport in dye-labeled DNA tiles, the transition energy 

diagram of two FRET pairs (i.e., left and middle fluorophore pair and middle and right 

fluorophore pair) is illustrated in Fig.2.6, assuming that the distance between 

fluorophores is less than 10 nm. Note that single FRET occurs between a pair of 

fluorophores, whereas multiple FRET (e.g., double and triple FRET) occurs between 

multiple pairs of fluorophores (e.g., two FRET pairs and three FRET pairs). Fig.2.6 

illustrates double FRET. Upon excitation from an incident photon with energy greater 

than the energy band gap of the first donor, a single FRET event occurs when the first 

donor (FAM) quickly relaxes to the ground state, releasing energy to and subsequently 

exciting the center fluorophore (TAM), which first acts as acceptor. This fluorophore in 

turn becomes the donor of the second FRET pair that transfers the energy to the third 

fluorophore (Cy5). Under optimal conditions, only the last fluorophore relaxes by 

emitting a longer wavelength photon (due to the Stokes shift effect
2
). For dye-labeled 

DNA tiles, the FAM fluorophore acts as an optical input, absorbing the incident radiation 
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and transferring it as an excitation energy into the waveguide. The TAM fluorophore 

functions as a diffusive optical transmission channel between FAM (the input 

fluorophore) and Cy5 (the output fluorophore). Here, the term “diffusive” is used to 

describe the optical energy transfer due to its gradient (i.e., the energy is not conserved). 

The efficiency of energy transmission through the waveguide can be assessed by exciting 

the FAM fluorophore and measuring the emission from the Cy5 molecule. 

 

 

Fig.2.6: Interaction of two FRET pairs (i.e., left and middle fluorophore pair and 

middle and right fluorophore pair) demonstrating double FRET. Upon excitation, 

the first donor, FAM, relaxes to the ground state, thus exciting the center 

fluorophore, TAM, which first acts as an acceptor. This fluorophore then becomes 

the donor of the second FRET pair that transfers the energy to the third 

fluorophore, Cy5. Ideally, only the last fluorophore relaxes by emitting a longer 

wavelength photon
3
. 

 

In the three-fluorophore system designed for the studies described in this thesis, 

the fluorescence emission spectra are measured and used to calculate the performance of 

the FRET system. In theory, FRET is a radiationless energy transfer process, so ideally, a 

single emission spectrum of the output fluorophore should be observed, as illustrated in 

Fig.2.7 (“Ideal FRET”), this spectrum corresponds to hundred percent energy transfer 

efficiency. However, it is most typical to observe an emission spectrum with the 
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combination of the input, intermediate and output fluorophores, as illustrated in Fig.2.7 

(“Typical FRET”), this spectrum corresponds to imperfect energy transfer efficiency as 

some of the energy is lost via emission of radiation. In addition, Fig.2.7 illustrates two 

other cases in which no energy transfer should occur as labeled “No FRET.” In one case, 

the three-fluorophore system has a missing input fluorophore, as indicated with a dashed 

black line; this spectrum results in no emission. In the other case, the three-fluorophore 

system has a missing intermediate fluorophore, as indicated by the blue curve; this 

spectrum results a single emission spectrum of the input fluorophore because the energy 

transfer path is disrupted due to the missing intermediate fluorophore. 

 

Fig.2.7: Schematic of various expected and observed fluorescence emission spectra 

in the three fluorophore system; 1, 2, and 3 are the emission peaks of the input, 

intermediate, and output fluorophores, respectively. 

 

FRET-based waveguides were successfully synthesized using DNA tiles 

containing a sequential chain of FAM, TAM, and Cy5 fluorophores. All control devices 
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were also synthesized with various fluorophore combinations. The solution of DNA tiles 

containing FAM, TAM, and Cy5 fluorophores was analyzed by using spectrophotometry. 

The solution was illuminated at 480 nm (2.58 eV), an excitation wavelength of FAM 

fluorophore. The bulk fluorescence shows three peaks in the emission spectrum, as 

illustrated in Fig.2.8. These peaks correspond to the emission of FAM fluorophore (left 

peak at 517 nm or 2.40 eV), TAM fluorophore (middle peak at 583 nm or 2.13 eV), and 

Cy5 fluorophore (right peak at 667 nm or 1.86 eV).  

 

Fig.2.8: FRET emission spectrum from the tiles with all three fluorophores. The 

inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 nm) 

Assuming perfect FRET along the fluorophore chain, only the emission spectrum 

of the last fluorophore (i.e., Cy5) should be observed. Instead, an emission spectrum with 

three peaks is observed. Since only the FAM is efficiently excited by 480 nm (direct 

absorption from the other fluorophores at 480 nm is negligible), the resulting three 

emission peaks must exclusively result from two successive FRET events between the 

fluorophores composing the structure, as observed previously with duplex DNA
5
. For 
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each fluorophore, a portion of the excitation energy is emitted into free space (hence, the 

three emission peaks), and a portion is directly transferred to the adjacent fluorophore. 

The partial emission of the excitation energy is an indication of an inefficiency in the 

FRET process. 

In order to determine the overall efficiency of direct energy transfer from FAM to 

Cy5, a control experiment was conducted using DNA tiles missing the intermediate TAM 

fluorophore. It is predicted that the TAM fluorophore should in theory absorb energy 

from the FAM fluorophore and transfer its absorption energy to the Cy5 fluorophore. By 

removing the TAM fluorophore, the peak at 583 nm (Fig.2.8) should not appear. The 

schematic of the fluorophore-labeled DNA tile is illustrated in the inset of Fig.2.9. The 

solution of DNA tiles containing only FAM and Cy5 (i.e., without TAM) was illuminated 

at 480 nm by the incident excitation light source. As expected, the bulk fluorescence does 

not show an emission peak of TAM, as indicated in Fig.2.9. Instead, the bulk 

fluorescence shows a dominate peak by the FAM fluorophore at 517 nm and a small peak 

by the Cy5 fluorophore at 667 nm, as illustrated in Fig.2.9. With the absence of the TAM 

fluorophore, most of the FAM excitation energy is emitted into free space while an 

insignificant percentage of the FAM fluorophore energy transfers to the Cy5 fluorophore. 

If FAM was substantially exciting Cy5 (i.e., FRET was occurring), then the Cy5 peak 

would be similar to the peak in Fig.2.8, demonstrating that direct excitation of Cy5 is 

taking place. Because the Cy5 emission peak is significantly reduced in this experiment, 

there is little direct excitation from FAM to Cy5. Hence, the exclusion of TAM 

demonstrates the disruption of FAM to Cy5 FRET. 
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Fig.2.9: FRET emission spectrum from the tiles missing a TAM fluorophore. The 

inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 nm) 

 

Another control experiment was performed using DNA tiles excluding the input 

FAM fluorophore for several reasons. The first reason is to determine the extent to which 

the FAM acts as the energy input channel. The second reason is to eliminate the 

possibility of direct excitation of the TAM or Cy5 by the 480 nm incident excitation light 

source. It is predicted that the FAM fluorophore, after absorbing an incident photon, 

should transfer energy to the TAM fluorophore. By removing the FAM fluorophore and 

using the same FAM excitation light source at 480 nm, the peak at 517 nm (Fig.2.8), 

should not appear. Additionally, both the excitation of the TAM and FRET from TAM to 

Cy5 should be significantly interrupted resulting in minimal fluorescence peaks at 583 

nm and 667 nm. Experimentally, this was confirmed. The solution was illuminated at 480 

nm, the excitation wavelength of FAM. As expected, the bulk fluorescence does not show 
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an emission peak of FAM, as indicated in Fig.2.10. Instead, the bulk fluorescence shows 

two insignificant peaks of TAM fluorophore at 583 nm and of Cy5 fluorophore at 667 

nm, as illustrated in Fig.2.10. These results indicate that (1) without the input FAM 

fluorophore, the incident 480 nm photon from the excitation light source cannot be 

coupled into the waveguide thereby negating the occurrence of FRET, and (2) the direct 

excitation of TAM or Cy5 fluorophore is negligible. 

 

Fig.2.10: FRET emission spectrum from the tiles missing a FAM fluorophore. The 

inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 nm) 

 

To determine the extent to which Cy5 acts as the energy output channel, a control 

experiment was conducted using DNA tiles missing Cy5 fluorophore. The Cy5 

fluorophore should in theory absorb energy from the TAM fluorophore (resulting from 

the first FRET event as indicated in Fig.2.6) and emit energy, resulting in an expected 

spectrum, as indicated in Fig.2.8. Hence, it is predicted that by removing the Cy5 

fluorophore, the peak at 667 nm (Fig.2.8) should not appear. In the control experiment, 
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the solution was illuminated at 480 nm by the incident excitation light source. As 

expected, the bulk fluorescence does not show an emission peak of Cy5, as indicated in 

Fig.2.11. Instead, the bulk fluorescence shows two peaks in the emission spectrum that 

correspond to the emission of the FAM fluorophore (left peak at 517 nm) and TAM 

fluorophore (right peak at 583 nm). These results indicate that (1) Cy5 emission peak 

observed in Fig.2.8 is the consequence of energy transfer from TAM, and (2) the 

emission spectrum observed in this control experiment is the result of the first FRET 

event between FAM and TAM fluorophores. 

 

Fig.2.11: FRET emission spectrum from the tiles missing a Cy5 fluorophore. The 

inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 nm) 

It is useful to briefly summarize the experimental results as presented previously. 

The emission spectra of the dye-labeled DNA tile solutions were measured under equal 

excitation conditions with: (1) all three fluorophores (Fig.2.8), (2) missing the 

intermediate fluorophore (Fig.2.9), (3) missing the input fluorophore (Fig.2.10), and (4) 

missing the output fluorophore (Fig.2.11). With all three fluorophores, a single emission 
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peak of the output fluorophore (667 nm) is expected under perfect FRET conditions. 

Rather, the observed emission spectrum shows a pronounced peak of the output 

fluorophore (667 nm) and emission peaks of the input (517 nm) and intermediate (583 

nm) fluorophores (Fig.2.8). Although the observed emission spectrum is the result of the 

FRET process, it is extremely difficult to obtain the perfect FRET conditions due to the 

use of different fluorophores with different quantum efficiency, spectral overlap, and 

dipole orientation
2
. Clearly understanding the physics of the FRET process is an ongoing 

effort in the literature. In theory, without the intermediate fluorophore (i.e., TAM), no 

emission peak of the output fluorophore (667 nm) and an emission peak of the input 

fluorophore (517 nm) are expected resulting in a disruption of the FRET process. In 

reality, a minimal emission peak of the output fluorophore (667 nm) and a pronounced 

emission peak of the input fluorophore (517 nm) are observed (Fig.2.9), indicating that 

only a small percentage of the input fluorophore energy transfers to the output 

fluorophore and thus FRET is significantly but not fully disrupted. Without the input 

fluorophore (i.e., FAM), no emission peak of the output fluorophore (667 nm) as well as 

the intermediate fluorophore (583 nm) are theoretically expected. Indeed, the observed 

fluorescence spectrum (Fig.2.10) shows no indication of emission from both the output 

and intermediate fluorophores. Without the output fluorophore (i.e., Cy5), no emission 

peak of the output fluorophore (667 nm) is theoretically expected. Instead, the observed 

emission spectrum (Fig.2.11) shows emission peaks of the input (517 nm) and 

intermediate (583 nm) fluorophores without the emission peak of the output fluorophore 

(667 nm); this also confirms the first FRET event according to the design.  
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From the experimental fluorescence results as displayed in Fig.2.8, the dominant 

peak at 667 nm of the Cy5 fluorophore can only be explained through double FRET 

events (Fig.2.6) for several reasons. First, the direct excitation of Cy5 fluorophore is not 

possible at the 480 nm incident excitation wavelength. Second, FRET via direct 

excitation of the TAM fluorophore cannot solely account for this substantial increase, as 

indicated in Fig.2.10. And finally, a direct transfer of energy from the FAM fluorophore 

to the Cy5 fluorophore is insignificant, as indicated in Fig.2.9. 

To determine the overall efficiency of the three fluorophore system, least-squares 

curve fitting (details in Appendix C.1) was performed for fluorophore-labeled DNA tiles 

in three configurations: (1) three fluorophores (FAM, TAM, Cy5), (2) missing output 

fluorophore (Cy5), and (3) excluding intermediate and output fluorophores (TAM, Cy5). 

As a result of the fitting procedure (Appendix A.1 and C.1), the contribution of each 

fluorophore to the overall spectrum is calculated. The energy transfer efficiency from the 

input fluorophore to the intermediate fluorophore is determined by
3
 

F

FT

k

k
E 11

 

(2.1) 

where 𝑘𝐹𝑇  is the fluorescent contribution of input fluorophore in the presence of 

the intermediate fluorophore and 𝑘𝐹  is the fluorescent contribution of input fluorophore 

in the absence of the intermediate fluorophore. The energy transfer efficiency from the 

intermediate fluorophore to the output fluorophore is determined by
3
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where 𝑘𝐹𝑇𝐶  is the fluorescent contribution of intermediate fluorophore in the 

presence of the output fluorophore and 𝑘𝐹𝑇  is the fluorescent contribution of intermediate 

fluorophore in the absence of the output fluorophore. The overall efficiency is determined 

by
3
  

21 EEE   (2.3) 

Hence, Equation (2.3) indicates a total amount of the energy transfer to the output 

fluorophore from the input fluorophore via the intermediate fluorophore. 

By analyzing the fluorescence spectra for DNA tiles with three fluorophores 

(Fig.2.8) and missing Cy5 fluorophore (Fig.2.11), the TAM to Cy5 efficiency can be 

calculated, providing more proof that the energy transfer occurs from the FAM to the 

Cy5 via the TAM intermediary. A least-squares fitting procedure (details in Appendix 

C.1) was used to extract the contribution of the TAM to the fluorescence spectra in 

Fig.2.8 and Fig.2.11. The results are summarized in Fig.2.12. The decrease in 

fluorescence of the TAM is clearly observed when Cy5 is proximal, demonstrating that 

energy transfer to the Cy5 from the TAM is occurring. The FAM fluorescence for the two 

structures was roughly equal, indicating that after absorbing an incident photon, the FAM 

fluorophore emitted the same photon energy into free space independent of the Cy5 

fluorophore’s presence. Using Equation (2.2), the energy transfer efficiency from TAM 

to Cy5 was determined to be 57.8%.  
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Fig.2.12: TAM fluorescence from DNA tiles containing FAM-TAM (FT) and  FAM-

TAM-Cy5 (FTC). Each bar in the graph was created using five trial measurements 

from the same solution. The TAM fluorescence from emission spectra was 

normalized for molecular concentration. There is a considerable drop in TAM 

fluorescence when the Cy5 is present, indicating FRET behavior. 

 

By analyzing the fluorescence spectra for DNA tiles with the FAM fluorophore 

only and with FAM and the TAM fluorophores, the FAM to TAM FRET efficiency can 

be calculated. Applying Equation (2.1), the energy transfer efficiency from FAM to TAM 

was determined to be 44.3%. Through analysis of the spectral data for the double FRET 

process on dye-labeled DNA tiles and Equation (2.3), an efficiency of ~25.3% was 

determined. This efficiency is most likely reasonable as it is comparable to the calculated 

value reported by Haustein et al.
3
 with duplex DNA. 

From the fluorescence results and subsequent discussion described in this section, 

it is evident that FRET-based waveguides were successfully designed and fabricated 

using fluorophore-labeled DNA tiles. The optical results indicate that the photonic energy 
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was diffusively transferred along the sequential chain of fluorophores via double FRET 

events. It has been established that the photonic energy transfer performance of FRET-

based waveguides using fluorophore-labeled DNA tiles is comparable to FRET-based 

waveguides using fluorophore-labeled duplex DNA. As a result, more complex FRET-

based waveguides can be built beyond the use of duplex DNA, perhaps not only using 

DNA tiles, but various branched DNA junctions can be implemented as well.  
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CHAPTER 3: DNA ORIGAMI NANOTUBE DIFFUSIVE WAVEGUIDE 

3.1 Experimental 

3.1.1 Design 

DNA origami nanotubes were previously designed and fabricated
22

 with the idea 

of being used as nanoparticle scaffolds. In this work, DNA nanotubes that incorporate 

fluorophores provide another design concept for building larger area waveguides. The 

following section explores the designs for building FRET-based waveguides using 

fluorophore-labeled DNA origami nanotubes. 

DNA origami nanotubes were designed using the principles reported by Mathieu 

et al.
23

 and Douglas et al.
24

, where the circular single-stranded M13mp18 DNA molecule 

was folded into a six-helix nanotube bundle using the DNA origami method developed 

by Rothemund
17

. The design reported here uses 170 unique staple strands to fold the 

single-stranded M13mp18 scaffold, resulting in DNA nanotubes with blunt ends. The 

nanotube design is illustrated and described in detail in Appendix D.1. 

For studying FRET-based waveguides, DNA origami nanotubes were used to 

construct a stable sequential arrangement of fluorescent dyes separated by a distance 

dictated to maximize the probability of FRET. Three different fluorophores identical to 

those of the dye-labeled DNA tiles were incorporated at specific locations on three of the 

unique staple strands used to fold the DNA origami nanotube scaffold as illustrated in 

Fig.3.1. The fluorophore locations were chosen to form a descending fluorophore chain 
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relative to absorption energy from the primary donor (FAM) to the final acceptor (Cy5) 

via the intermediate acceptor-donor (TAM). The designed distance between fluorophores 

is ~3.1 nm; equivalent to a chain of 7 nucleotides in horizontal direction and 2 nm in 

vertical direction. 

 

Fig.3.1: Dye-labeled (dots) staple strands within the nanotube. FAM is attached to 

the left staple strand (labeled F), TAM is attached to the middle strand (labeled T), 

and Cy5 is attached to the right strand (labeled C). 

 

3.1.2 Materials and Methods 

The dye-labeled staple strands used were identical to those of the dye-labeled 

DNA tiles. Staple strands used to fold the long M13mp18 strand are listed in Appendix 

D.3. All strands were purchased from Integrated DNA Technologies
21

. All strands were 

available unlabeled, which permitted a variety of fluorophore combinations to be 

incorporated in the nanotubes. DNA origami nanotubes with a variety of dye 

combinations were synthesized for control experiments (schematics are not shown). To 
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synthesize the nanotubes, M13mp18 viral DNA was combined with 170 staple strands 

(i.e., regular staple strands and dye-labeled staple strands) in a molar ratio of 1:5 in a 

solution of 1×TAE, Mg
2+

. The concentration of the M13mp18 genomic DNA was 

approximately 50 nM. The volume of prepared solution was 30 µL. All DNA strands 

were used without further purification. The DNA solution was thermally annealed at 

90
o
C for 20 minutes and subsequently cooled to 20

o
C at approximately 1

o
C per minute 

using a thermal cycler. Following nanotube synthesis, the solution was filtered using gel 

electrophoresis to remove excess staple strands and fluorophores. Appendix B.2 shows 

the details of the procedure to perform the gel electrophoresis for fluorophore-labeled 

DNA origami nanotubes. 

To assess the formation of nanotubes, AFM was performed. During AFM sample 

preparation, 5 µL of nanotube solution was dispersed onto freshly cleaved mica with 20 

µL of 1×TAE, Mg
2+

 buffer and allowed to adsorb onto the surface for 5 minutes. Then, 

the surface was washed with Milli-Q water and dried with forced nitrogen gas. Images of 

nanotubes were acquired using AFM (Veeco Multimode PicoForce with a Nanoscope IV 

controller) under ambient conditions, in AC mode / tapping mode, using silicon 

cantilever-based tips (Nanosensors PPP-NCH). Cantilevers had a nominal spring constant 

of 42 N/m with a range of 10 – 130 N/m. 

To measure the emission of dye-labeled DNA origami nanotubes, 100 µL of a 2 

nM DNA nanotube solution was placed in a 350 µL special optical glass (SOG) cell with 

a 3 mm path length and kept at ambient temperature during the measurement. 

Fluorescence measurements were performed similar to the method that was described for 

the dye-labeled DNA tiles in Chapter 2. 
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3.2 Results and Discussion 

AFM was a primary method to confirm that the nanotube synthesis was 

successful. DNA origami six-helix nanotubes were designed to be 412 nm in length and 6 

nm in diameter. Using AFM Fig.3.2, the length was measured to be 418 ± 5 nm and the 

height was measured to be 2.55 ± 0.5 nm (Fig.3.2). This measured length is in good 

agreement with the design length. The diameter differences between the design and the 

experiment suggests that the nanotubes were compressed either by the drying processes 

or by the tapping force inducing from AFM’s probe tip as previously observed by 

Weisonhorn et al.
25

. 

 

Fig.3.2: AFM height image acquired under ambient conditions for DNA origami 

nanotubes deposited on an atomically flat mica surface (a); a nanotube’s length (b) 

and diameter (c) of the dotted circle. 

 

Understanding the energy transport in dye-labeled DNA origami nanotubes can be 

explained in the schematic shown in Fig.2.6. In brief, the incident photons are absorbed 
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by the input fluorophore and transferred to the output fluorophore through the 

intermediate fluorophore through double FRET events. FRET-based waveguides were 

successfully synthesized using DNA origami nanotubes containing a sequential chain of 

FAM, TAM, and Cy5 fluorophores. DNA origami nanotubes labeled with various 

fluorophore combinations were synthesized for control purposes. Spectrophotometry was 

used to analyze the solution of DNA origami nanotubes containing fluorophores. The 

solution of fluorophore-labeled DNA origami nanotubes with three fluorophores (FAM, 

TAM, and Cy5) was excited at 480 nm by the incident light source. The ensemble 

fluorescence spectrum displays three emission peaks, as indicated in Fig.3.3. The left 

peak at 517 nm (2.40 eV) is the emission of FAM fluorophore; the middle peak at 583 

nm (2.13 eV) is the emission of TAM fluorophore; and the right peak at 667 nm (1.86 

eV) is the emission of Cy5 fluorophore. 

 

Fig.3.3: FRET emission spectrum from the nanotubes with all three fluorophores. 

The inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 

nm) 
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It is predicted that under the perfect FRET condition, the ensemble fluorescence 

spectrum illustrated in Fig.3.3 should in theory display a single emission peak at 667 nm 

(Cy5). Rather, the fluorescence spectrum with three peaks is observed.  The direct 

excitation by the incident light source at 480 nm of the TAM and Cy5 should be 

negligible and only the FAM is efficiently excited at 480 nm. Hence, the resulting 

fluorescence spectrum must arise from two successive FRET events between the 

fluorophores contained in the structures, as was also observed for the spectrum (Fig.2.8) 

of the dye-labeled DNA tiles. 

A control experiment was carried out for nanotubes missing the intermediate 

TAM fluorophore to determine the percentage of direct energy transfer from FAM to 

Cy5. It is anticipated that the TAM fluorophore should absorb energy from the FAM 

fluorophore and transfer its absorption energy to the Cy5 fluorophore. By excluding the 

TAM fluorophore, the emission peak at 583 nm in Fig.3.3 should disappear and the path 

to directly transfer energy from FAM to Cy5 should be interrupted. The schematic of the 

design is illustrated in the inset of Fig.3.4. The dye-labeled DNA origami nanotubes 

solution was excited at the incident light source wavelength of 480 nm. As expected, no 

emission peak of TAM appears in the bulk fluorescence spectrum as shown in Fig.3.4.  

Instead, a dominant peak at 517 nm (FAM) and an insignificant peak at 667 nm (Cy5) are 

observed. The control experimental results indicate that the majority of the FAM 

excitation energy is emitted into free space and an insignificant percentage of the FAM 

fluorophore energy transfers to the Cy5 fluorophore in the absence of the intermediate 

TAM fluorophore. Hence, the interruption of FRET was achieved. 
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Fig.3.4: FRET emission spectrum from the nanotubes missing TAM fluorophore. 

The inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 

nm) 

 

Another control experiment was performed for fluorophore-labeled DNA origami 

nanotubes without the input fluorophore (FAM) to eliminate the possibility that TAM or 

Cy5 are excited directly at 480 nm by the incident light source. In theory, the FAM 

fluorophore after absorbing an incident photon should only be transferring energy to 

excite the subsequent fluorophore. By excluding the FAM fluorophore, the emission peak 

at 517 nm (Fig.3.3) should disappear and no emission should be observed due to direct 

excitation of TAM and/or Cy5. The schematic of the control experiment is illustrated in 

the inset of Fig.3.5. The solution of fluorophore-labeled DNA origami nanotubes was 

excited at 480 nm. As expected, the ensemble fluorescence spectrum displays no 

emission peak at 517 nm as indicated in Fig.3.5. Rather, two insignificant peaks of TAM 
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fluorophore at 583 nm and of Cy5 fluorophore at 667 nm are observed. The experimental 

results indicate that the direct excitation of TAM and/or Cy5 is insignificant in the 

absence of the FAM fluorophore. 

 

Fig.3.5: FRET emission spectrum from the nanotubes missing FAM fluorophore. 

The inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 

nm) 

 

A final control experiment was conducted for fluorophore-labeled DNA origami 

nanotubes without the Cy5 fluorophore to determine the extent to which Cy5 acts as the 

energy output channel. It is anticipated that the Cy5 should be excited from the TAM 

fluorophore (resulting from the FRET between FAM and TAM, as indicated in Fig.2.6) 

and emit energy resulting in an expected 667 nm emission peak, as depicted in Fig.3.3. 

By removing the Cy5 fluorophore, the emission peak at 667 nm (Fig.3.3) should 

disappear and the emission peak of TAM fluorophore should release more energy into 

free space than the 583 nm emission peak, as shown in Fig.3.3. The schematic of the 
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control experiment is illustrated in the inset of Fig.3.6. The solution of fluorophore-

labeled DNA origami nanotubes was illuminated at 480 nm. As expected, no emission 

peak of Cy5 is observed in the ensemble fluorescence spectrum, as indicated in Fig.3.6. 

Instead, two emission peaks of FAM fluorophore at 517 nm and of TAM fluorophore at 

583 nm are observed in the ensemble fluorescence spectrum. The experimental results 

indicate that (1) Cy5 emission peak observed in Fig.3.3 is the consequence of the energy 

transfer from the TAM fluorophore, and (2) the fluorescence spectrum exhibited in this 

control experiment demonstrates the first FRET event between FAM and TAM 

fluorophores on DNA nanotube origami. 

 

Fig.3.6: FRET emission spectrum from the nanotubes missing Cy5 fluorophore. The 

inset illustrates a schematic of the structure. (Note: excitation wavelength = 480 nm) 

 

A brief summary of all experimental results presented in the previous section is 

discussed in the following section. The fluorophore-labeled DNA origami nanotube 
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solutions were characterized under the same excitation conditions while measuring the 

fluorescence emission spectrum of the following fluorophore configuration on nanotubes: 

all three fluorophores (Fig.3.3), without the intermediate fluorophore (Fig.3.4), without 

the input fluorophore (Fig.3.5), and without the output fluorophore (Fig.3.6). It is 

predicted that a single emission peak of the output fluorophore (Cy5) is expected in 

fluorophore-labeled DNA origami nanotubes with three fluorophores. Instead, the 

observed emission spectrum displays a dominant peak of the output fluorophore (667 nm) 

and emission peaks of the input (517 nm) and intermediate (583 nm) fluorophores 

(Fig.3.3). Although the observed spectrum is the result of the FRET process, it is 

extremely difficult to obtain the perfect FRET conditions, as mentioned previously. In 

theory, no emission peak of the output fluorophore (Cy5) and a pronounced peak of the 

input fluorophore (FAM) are expected in the absence of the intermediate fluorophore 

(TAM) in fluorophore-labeled DNA origami nanotubes. In fact, a minimal emission peak 

of the output fluorophore (667 nm) and a dominant emission peak of the input 

fluorophore (517 nm) are observed (Fig.3.4), indicating that only a small amount of the 

input fluorophore energy transfers to the output fluorophore. By excluding the input 

fluorophore (i.e., FAM) from the fluorophore-labeled DNA origami nanotubes, it is 

predicted that no emission peak of the intermediate (583 nm) and output (667 nm) 

fluorophores is anticipated. Indeed, the observed fluorescence spectrum (Fig.3.5) shows 

no indication of emission from both the intermediate and output fluorophores, indicating 

that the direct excitation of the intermediate or output fluorophore is negligible in the 

absence of the input fluorophore. Without the output fluorophore (i.e, Cy5), no emission 

peak of the output fluorophore (667 nm) is theoretically expected from fluorophore-
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labeled DNA origami nanotubes. Hence, the observed fluorescence spectrum (Fig.3.6) 

displays no emission peak of the output fluorophore. Instead, the spectrum shows 

emission peaks of the input (517 nm) and intermediate (583 nm) fluorophores. In 

summary, the experiments demonstrate the first observation of FRET waveguide on DNA 

origami nanotubes. 

The configuration difference between the fluorophore-labeled DNA origami 

nanotubes in Fig.3.3 and Fig.3.6 results in the presence of an output fluorescence peak 

that appears in Fig.3.3 but not in Fig.3.6. It is then predicted that the input fluorescence 

intensity in Fig.3.3 should be same or less than the input fluorescence intensity in Fig.3.6. 

Experimentally, the input fluorescence intensity in Fig.3.3 is higher than the input 

fluorescence intensity in Fig.3.6. This difference could be attributed to the systematic 

errors, such as (1) the variation in the concentrations, (2) the variation in the solutions, 

and (3) the variation in the instrument. 

It is worth noticing that there is a slight variation in the ratios of the peak height 

fluorescence emission spectra in Fig.2.11 and Fig.3.6. From spectral analysis, the input 

emission peak is higher than the intermediate emission peak in Fig.2.11, whereas the 

input emission peak is lower than the intermediate emission peak in Fig.3.6. The 

difference in the emission peak in fluorescence spectra can be explained based on the 

energy transfer efficiency, as illustrated in Fig.A.3. Three cases can be examined to 

illustrate this point. In one case, no emission peak of the intermediate fluorophore 

corresponds to zero percent efficiency and thus no FRET occurs. For another case, no 

emission peak of the input fluorophore and a single emission peak of the intermediate 

fluorophore correspond to one hundred percent efficiency, which indicates perfect FRET. 
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In the last case, a combination of both emission peaks of the input and intermediate 

fluorophores can occur and is most typical. This last case corresponds to the variation in 

the efficiency such that (a) if the emission peak of the input fluorophore is higher than the 

emission peak of the intermediate fluorophore, then the energy transfer efficiency is 

typically lower than 50% (e.g., Fig.2.11), and (b) if the emission peak of the input 

fluorophore is lower than the emission peak of the intermediate fluorophore, then the 

energy transfer efficiency is typically greater than 50% (e.g., Fig.3.6). Hence, the last 

case provides a general indication of the efficiencies expected in Fig.2.11 and Fig.3.6. 

And from the spectral analysis, this is found to be the case. Spectral analysis of the data 

in both figures Fig.2.11 and Fig.3.6, respectively, determined that the energy transfer 

efficiencies are 44.3% and 66.2%.  

As FRET is a diffusive process and thus energy is lost during the process, 

quantification of the FRET efficiency is necessary to establish a base-line value. To 

quantitatively determine the overall FRET efficiency occurring between the input 

fluorophore to the output fluorophore via the intermediate fluorophore, a least-squares 

fitting procedure (details in Appendix C.1) was used. Fluorophore-labeled DNA origami 

nanotubes with all three fluorophores and without the output fluorophore were analyzed 

together to provide the quantitative efficiency. The results are summarized in Fig.3.7. The 

reduction in fluorescence of the intermediate fluorophore (TAM) is clearly observed 

when the output fluorophore (Cy5) is abutting the intermediate fluorophore, 

demonstrating that energy transfer to the output fluorophore from the input fluorophore 

(FAM) occurs via the intermediate fluorophore. Using the efficiency calculation 

presented previously in Chapter 2, an efficiency of ~28.3% was determined through 



41 

 

analysis of the spectral data. This efficiency is comparable to the value reported for 

fluorophore-labeled DNA tiles as established in Chapter 2. 

 

Fig.3.7: TAM fluorescence from DNA origami nanotubes containing FAM-TAM 

(FT) and FAM-TAM-Cy5 (FTC). Each bar in the graph was made using five trial 

measurements from the same solution. The TAM fluorescence from emission 

spectra was normalized for molecular concentration. There is a considerable drop in 

TAM fluorescence when the Cy5 is present, indicating FRET behavior. 

 

From the design specification, the distance between fluorophores on the DNA 

tiles is smaller than the distance of those on the DNA origami nanotubes. In addition, the 

rotational angle between the fluorophores is zero for the DNA tile structure and non-zero 

for the DNA origami nanotube structure. Since the energy transfer efficiency is inversely 

proportional to the effective distance between the fluorophores and directly proportional 

to the cosine of the rotational angle between fluorophores (i.e., FRET orientation factor - 

see Appendix A.1), then one would expect that the energy transfer efficiency should be 
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greater for the fluorophore-labeled DNA tiles. However, the experimental results indicate 

that the energy transfer efficiency in fluorophore-labeled DNA origami nanotubes is 

greater than that in fluorophore-labeled DNA tiles. This difference may be explained in 

terms of the dynamics of the DNA structures. The energy transfer efficiency calculations 

assume that the DNA tiles and nanotubes are rigid, non-dynamic structures. Since the 

fluorescence measurements are performed in solution, the DNA structures are not rigid at 

all but are rotationally active due to thermal and concentration fluctuations. Hence, the 

more structurally rigid a DNA structure, the less rotational and torsional activity that will 

be experienced by a DNA structure. The less rotational torsional activity a structure 

experiences, the less deviation the structure will encounter in the effective distance and 

FRET orientation factor, which in theory will provide a greater energy transfer efficiency. 

Cursory finite element analyses were performed using CanDo
26

 on the DNA tile and 

DNA origami nanotube to examine their stiffness or rigidity. It was found that the DNA 

origami nanotube was more rigid than the DNA tile. Hence, the fact that the DNA tile is 

less rigid than the DNA origami nanotube may explain why the fluorophore-decorated 

DNA tile has a lower energy transfer efficiency than fluorophore-decorated DNA origami 

nanotube.  

From the fluorescence results and subsequent discussion described in this section, 

it is evident that FRET-based waveguides were successfully designed and fabricated 

using fluorophore-labeled DNA origami nanotubes. The optical results indicate that the 

photonic energy was diffusively transferred along the sequential chains of fluorophores 

via double FRET events. It is also apparent that FRET-based waveguides can be extended 

beyond DNA tiles or branched DNA junctions. As a result, more complex FRET-based 
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waveguides can be built using not only DNA origami nanotubes but various DNA 

origami nanostructures.  
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CHAPTER 4: DNA ORIGAMI NANOTUBE QUANTUM DOT ARRAYS 

“Reproduced in part with permission from Hieu Bui, Craig Onodera, Carson 

Kidwell, YerPeng Tan, Elton Graugnard, Wan Kuang, Jeunghoon Lee, William B. 

Knowlton, Bernard Yurke, William L. Hughes, “Programmable Periodicity of Quantum 

Dot Arrays with DNA Origami Nanotubes,” Nano Letters 10, no. 9 (2010): 3367-3372. 

Copyright 2010 American Chemical Society.” Link to the article can be found in the 

following: http://pubs.acs.org/doi/abs/10.1021/nl101079u or DOI: 10.1021/nl101079u. 

4.1 Experimental 

A brief background on the properties of semiconductor quantum dots prior to 

examining the design is provided in this section. Quantum dots are now popularly 

employed for biomolecular and cellular imaging as a result of their photophysical 

stability and their intense fluorescent emission. Moreover, their large Stokes’ shifts 

facilitate the detection of emitted light without collecting scatter excitation light
27

. Their 

emission wavelength is also tunable by controlling their particle size
27

. These properties 

have made quantum dots one of the most promising fluorescence labeling agents
28

. In 

contrast, fluorescent fluorophores are also commonly used for labeling biomolecules 

because of their usability and wide variety. However, emission from fluorescent dyes is 

usually weaker than that from quantum dots due to their low extinction coefficients
29

. 

Hence, an effort to design and fabricate quantum dot-labeled DNA origami nanotubes 

was carried out. In the following sections, the design and fabrication DNA origami as 

http://pubs.acs.org/doi/abs/10.1021/nl101079u
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scaffolding for the periodic arrangements of quantum dots are related. Much of the work 

described in this chapter has been subsequently published by the author
22

. 

4.1.1 Design 

The following designs were chosen because of (1) the ability to precisely arrange 

nanoparticles via the inherent programmability of DNA and the advanced DNA labeling 

techniques, and (2) semiconducting quantum dots are predicted to be the ideal fluorescent 

donors for later FRET studies.  

To incorporate quantum dot binding sites, prior to nanotube synthesis, selected 

staple strands were extended with a 2.2 nm tether consisting of 5 thymine nucleotides and 

modified with biotin at the 3’ end. The resulting DNA nanotubes possessed precisely 

spaced biotin binding sites for controlled positioning of streptavidin-conjugated quantum 

dots (hereafter referred as QD) along the length of the nanotube. To test controlled 

nanoparticle patterning, four distinct DNA nanotubes were synthesized with evenly 

spaced binding sites designed to attach 5, 9, 15, or 29 QDs in order to form arrays with 

periodicities of 71, 43, 29, or 14 nm, respectively. The biotin-labeled DNA nanotubes 

were designed by functionalizing the appropriate staple strands as described detail in 

Appendix D.4.  

4.1.2 Materials and Methods 

The nanotubes were synthesized by combining M13mp18 viral DNA with 

unmodified and biotin-labeled staple strands in a molar ratio of 1:10:10 in a solution of 

1xTAE, Mg
2+

. The concentration of the M13mp18 viral DNA was approximately 50 nM. 

The volume of prepared solution was 80 µL. Staple strands used to fold the long 
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M13mp18 strand are listed in Appendix D.3 and D.4. All DNA strands were used without 

further purification. To form nanotubes, the DNA solution was thermally annealed at 

90
o
C for 20 minutes, then cooled to 20

o
C at approximately 1

o
C per minute using a 

thermal cycler. After the nanotubes were synthesized, the solution was centrifuged using 

a centrifugal filter (Amicon-Ultra-0.5-100k, Millipore Inc.) at 14,000 g for 10 minutes to 

remove excess staple strands and small, unbound DNA fragments. To assess the 

successful formation of functional DNA origami nanotubes, AFM was used as described 

in the Materials and Methods section in Chapter 3. 

4.2 Results and Discussion 

Fig.4.1 shows DNA origami nanotubes with 9 biotin binding sites as synthesized 

(a-e), after functionalization with streptavidin (f-j), and after functionalization with 

streptavidin-conjugated quantum dots (k-o). Fig.4.1a illustrates the biotin-labeled 

nanotube structure, while (b,c) show low and high magnification AFM height images, 

respectively. The dashed line in (c) indicates the location of the cross-sectional height 

profile in (d). From this profile, a nanotube height of ~ 2.6 nm is measured. The mean 

nanotube height ranged from 1.7 ± 0.4 to 3.5 ± 0.1 nm. The axial profile shown in (e) 

emphasizes relative height variations along the nanotube length. The mean nanotube 

length was measured to be 436 ± 14 nm from 100 samples and was independent of the 

imaging conditions.  
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Fig.4.1: Schematics, AFM images at low magnification (upper) and high 

magnification (lower), and cross-sectional (upper) and axial (lower) height profiles 

of functionalized DNA origami nanotubes with 9 biotin binding sites with: (a-e) no 

attached nanoparticles; (f-j) attached streptavidin; (k-o) attached streptavidin-

conjugated quantum dots. The dashed lines in the high magnification AFM images 

indicate the location of the cross-sectional profiles. Axial profiles represent the 

average of multiple profiles across the width of the nanotube. (Reprinted with 

permission from Ref.22. Copyright 2010 American Chemical Society). 

 

Once biotin-labeled DNA nanotubes were verified via AFM, the accessibility and 

reactivity of the biotin attachment sites were examined by combining a 1 nM solution of 
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biotin-labeled nanotubes with pure, lyophilized streptavidin (Sigma Aldrich). The 

components were allowed to react for 2 hours at room temperature prior to AFM 

characterization. Fig.4.1f illustrates the biotin-labeled DNA nanotubes with attached 

streptavidin. The successful attachment of 9 streptavidin molecules is clearly observed by 

comparing the small scan AFM images without streptavidin in (c) and with streptavidin 

in (h). The cross-sectional profile in (i), obtained at an apparent streptavidin site, reveals 

a height increase of ~0.5 nm relative to the nanotube shown in (d). The axial profile in (j) 

clearly displays 9 peaks with a periodicity of 45 nm, very close to the expected value of 

43 nm. While the measured height increase at a streptavidin site was ~0.5 nm, the mean 

height of free streptavidin, dispersed onto freshly-cleaved mica, was measured to range 

from 0.7 ± 0.2 to 2.3 ± 0.5 nm under various imaging conditions. The streptavidin heights 

measured here are consistent with previous studies
25

. 

CdSe/ZnS core/shell streptavidin conjugated quantum dots (Qdot 585, Invitrogen) 

with an average diameter of 15-20 nm were chosen to test nanoparticle attachment. To 

ensure a high attachment yield, a 1 nM solution of functionalized DNA nanotubes was 

combined at room temperature with a 200 nM solution of quantum dots for 2 hours. The 

reacted DNA nanotubes, with attached quantum dots, were dispersed onto mica surface 

and dried as described above. Fig.4.1k illustrates the attachment of the quantum dots to 

the biotin-labeled DNA nanotubes. Fig.4.1(l,m) respectively show low and high 

magnification AFM height images of the DNA nanotubes with attached quantum dots. 

When compared to (c) and (h), quantum dots attach to biotin-labeled DNA nanotubes 

with the same periodic spacing. The cross-sectional profile across an apparent quantum 

dot in (n) yields a height of 5.5 nm, nearly twice the measured height of the nanotube 



49 

 

without attached particles.  The mean height of free quantum dots, dispersed onto freshly-

cleaved mica, was measured to range from 4.7 ± 0.7 to 5.5 ± 0.6 nm under various 

imaging conditions. Although the diameter of the streptavidin-conjugated quantum dots 

is ~20 nm in solution according to manufacture specifications, the AFM height 

measurements of the dehydrated quantum dots corresponding to the approximate 

diameter of the CdSe/ZnS core/shell quantum dot, as measured by TEM (data not 

shown).  

To illustrate the flexibility of the design and confirm control over nanoparticle 

attachment, functionalized DNA nanotubes were synthesized with 5, 9, 15, and 29 biotin 

attachment sites to enable the formation of quantum dots arrays with periodicities of 71, 

43, 29, and 14 nm, respectively. These nanotubes were reacted with quantum dots and 

dispersed onto mica in the same manner described above. Fig.4.2 shows height AFM 

images of quantum dots attached to DNA nanotubes with (a) 5, (b) 9, (c) 15, and (d) 29 

biotin binding sites. Successful attachment to each biotin binding site was observed for 

nanotubes with 5 or 9 available sites; however, attached quantum dots were not observed 

at each site for nanotubes with 15 and 29 available sites, respectively. The average 

distance between two adjacent quantum dots were measured to be approximately 71 ± 3, 

49 ± 4, 46 ± 5, and 31 ± 4 nm for nanotubes with 5, 9, 15, and 29 available biotin binding 

sites, respectively. The measured spacing for 5 and 9 binding sites agree well with the 

predicted periods of 71 and 43 nm. However, the arrays seen in Fig.4.2(c,d) formed with 

a reduced number of quantum dots, and consequently, a larger spacing than expected, i.e. 

29 and 14 nm, respectively.  
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Fig.4.2: High magnification AFM images of streptavidin-conjugated quantum dots 

attached to functionalized DNA origami nanotubes with: (a) 5 binding sites, 71 nm 

period; (b) 9 binding sites, 43 nm period; (c) 15 binding sites, 29 nm period; and (d) 

29 binding sites, 14 nm period. All scale bars are 100 nm.  Note (c) and (d) have 

fewer attached quantum dots than available binding sites.  In addition, the diameter 

of quantum dots varies between images because of variation in tip radii between 

scans. (Reprinted with permission from Ref.22. Copyright 2010 American Chemical 

Society).  

 

Functionalized DNA origami nanotubes were designed with biotin-labeled staple 

strands spaced evenly along the axis of the nanotubes. The nanotubes were synthesized 

and combined with streptavidin-conjugated quantum dots to form nanoparticle arrays 

with controlled periodicities. AFM results of the synthesized arrays revealed successful 

attachment of quantum dots at locations along the nanotube axes that corresponded to 

available biotin binding sites. Statistical analysis is described in detail in Appendix E.10. 

However, the analysis indicates that steric hindrance strongly affects the arrays with 

smaller distance separation between nanoparticles. Although steric hindrance seems to 

affect nanoparticle attachment, it is predicted that with molecular particle size (e.g., 

fluorescent fluorophores), hybrid FRET-based waveguides can be built to study the 
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photonic energy transport between quantum dot (inorganic light emitting semiconductor) 

and fluorophore (organic fluorescent dyes). 
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CHAPTER 5: SUMMARY & FUTURE WORK 

In summary, two FRET-based waveguides and a systematic approach to fabricate 

four different nanoparticle arrays have been demonstrated. FRET-based waveguides have 

been successfully designed, fabricated, and characterized using DNA tiles, DNA origami 

nanotubes, and fluorophore-labeled DNA. It has been established that the photonic 

energy was diffusively transferred from one end of the devices to the other through the 

FRET processes. The limitation of the persistent length of a single duplex DNA has been 

overcome by using larger DNA scaffolds (e.g., branched DNA junctions and DNA 

origami). The strengths of these approaches are (1) DNA materials are capable of self-

assembly, molecular recognition, and programmability, (2) the flexibility of choosing 

fluorophores to form the energy cascade as the driving force in order to transfer photon 

energy through FRET, (3) the synthetic simplicity, and (4) the design flexibility of the 

structure for future enhancement for more complex circuitries. However, the current 

fluorescence measurements only provided the average representation of all FRET-based 

waveguides contained in the tested solution. To gain more insight on the complex 

photophysical behavior of the FRET-based waveguides, time-resolved fluorescence 

spectroscopy, single-molecule fluorescence spectroscopy, or total internal reflection 

fluorescence microscopy is needed.  

In addition to FRET-based waveguides, it has been demonstrated that four 

different nanoparticle arrays have been successfully designed, fabricated, and 
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characterized using DNA origami nanotubes, biotin-labeled DNA, and streptavidin-

conjugated quantum dots. The ability to control nanoparticle patterning has been 

explored. In the quantum dot-labeled DNA origami nanotube alone, there are 170 unique 

staple strands that can be functionalized by various means at either end, or even within 

the strand itself. Hence, the possibilities for variations in nanoparticle arrangements are 

significantly enormous.  

The significance of this thesis work includes (1) the use of different DNA 

nanostructures (DNA tile and DNA origami nanotube) to build FRET-based waveguides 

with comparable efficiencies and (2) the ability to systematically design and incorporate 

various arrays of semiconductor nanoparticles onto the same DNA origami nanotubes. To 

minimize the design time and costs, the same fluorophore-labeled DNA strands can be 

used in two different DNA template designs. Ultimately, the results from this thesis 

create more opportunities to investigate novel near-field optical interactions between 

nanoparticles (i.e., organic and/or inorganic) where such interactions are largely 

unexplored. 

The future work from the presented studies can be pursued on developing (1) the 

extension of the energy transfer to longer distance on the entire DNA origami 

nanostructures, (2) the insertion of a photo switches to enable the controlled switching of 

the photonic waveguide, and (3) the construction of novel optical transistors. To improve 

the current performance of FRET-based waveguides, the distance between fluorophores 

and the alignment of dipole orientation can be investigated. FRET-based waveguides 

using DNA nanostructures as scaffolding (e.g., tiles and nanotubes) have been 

demonstrated with fluorophores and is underway using quantum dots. The goal of this 
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device concept is to build broadband input FRET-based waveguides by utilizing the large 

absorption cross section of quantum dots and their ability to be excited in the ultraviolet 

spectrum.  
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APPENDIX A 

FRET Background and Fluorophores 
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A.1 FRET Background 

 Fluorescence resonance energy transfer (FRET) is the radiationless transfer of 

energy between two weakly interacting dipoles – in the context of this thesis, the dipoles 

are referred to as the two fluorophores. FRET is also referred to as a Förster energy 

transfer after Theodor Förster, who first derived the equation for the energy transfer 

rate
30

. The following explains the relationships between (1) dipole-dipole interaction, (2) 

the FRET relative orientation, (3) the energy transfer rate, (4) Förster radius, and (5) the 

FRET efficiency. 

The interaction energy in the transition dipole moments between two fluorophores 

through electrostatic means is determined by
29
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where 𝜇1 and 𝜇2 are the dipole moments of the two fluorophores, respectively. 

Two fluorophores are placed on the same DNA structure at a distance R and at an angle 

𝜃𝑇  from one to the other as illustrated in Fig.A.1. Each fluorophore has an angle relative 

to the DNA structure itself (i.e. 𝜃1 and 𝜃2). From Equation (A.1), the FRET relative 

orientation constant of the two fluorophores to the interaction energy can be expressed 

by
30

 

     21 coscos3cos   T  (A.2) 

The quantity 2
 ranges from 0 (perpendicular transition moments) to 4 (collinear 

transition moments) as illustrated in Fig.A.1. For instance, when the transition moments 
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are parallel, but opposed, 
2
 = 1. In the literature

31
, the average value of 2 is 2/3, which 

corresponds to the assumption that the fluorophores are free to randomly rotate. 

 

  

Fig.A.1: Illustration of the dipole-dipole coupling between two transition dipole 

moments of two given fluorophores and typical values of the factor (
2
) for specific 

dipole orientations
30 

 

By invoking the general form of Fermi’s golden rule for the transition rate 

between two fluorophores
31

 and using Equation (A.1), Förster derived an expression for 

the rate constant kET for dipole-dipole induced energy transfer (as cited in Ref.32): 
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Equation (A.3) expresses the rate constant for energy transfer in measureable 

spectroscopic quantities such as: the refractive index of the medium, n; the fluorescence 

quantum yield of the donor, D; its fluorescence lifetime, D; Avogadro’s number, NA; 
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the normalized fluorescence spectrum of the donor, FD(); the absorption spectrum of the 

acceptor, expressed by its extinction coefficient, A(); and the  wavelength  in nm.  

Equation (A.3) can be written in terms of the Förster critical transfer radius R0, the 

distance at which the transfer efficiency (as cited in Ref.32) equals 50%: 

6
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where R0 is given by
30

: 
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The FRET efficiency is related to the distance, R, between the fluorophores and is 

given by
32

: 
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The FRET efficiency between fluorophores defines the transfer rate, or latency, of 

an exciton passing through the system. This efficiency also defines important system-

level properties such as power consumption, heat dissipation requirements, gain, and the 

signal-to-noise ratio
2
. Four important parameters relate specific fluorophore properties 

(and relative positions on a nanostructure) to FRET efficiency: fluorophore separation, 

spectral overlap, Förster radius, and FRET relative orientation or rotational angle 

between fluorophores. 

To define the Förster distance from the transfer rate Equation (A.3), we let 
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Equation (A.3) can be rewritten as 
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When 0RR  , Equation (A.8) simplifies to 
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which states that the transfer rate between a donor and an acceptor is equal to the 

fluorescence rate of a donor in the absence of an acceptor.  

Equate Equation (A.8) and (A.9) when 0RR  , we obtain 

DD R 

 1
6

0



 

(A.10) 

or 

6
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(A.11) 

From Equation (A.11) and (A.7), it has been shown that the Förster distance is 

equivalent to the expression in Equation (A.5). 

Fig.A.2 illustrates the transition energy diagram of the FRET process between 

fluorophores. The donor fluorophore is first excited by the absorption of a photon with 

energy hv. The excited-state donor energy, also called an exciton, is transferred to the 

acceptor fluorophore, which becomes excited via FRET and, through spontaneous decay 
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of the excited state, emits a photon with lower energy
2
 hv’. The energy of the acceptor 

excited state is always lower than the energy of the donor excited state. Without 

additional energy, this constrains FRET to a single direction: from donor to acceptor
2
. 

Förster derived the FRET efficiency transfer rate on the basis of classical charge dipole-

dipole coupling and quantum mechanics; it is in the 10
-11

 second to 10
-9

 second time 

scale
2
.  

 

  

Fig.A.2: Transition energy diagram of the FRET process. The energy is 

corresponding to the vertical direction. 

 

Fig.A.3 illustrates the variation in energy transfer efficiency shifts and its 

corresponding fluorescence emission spectrum of the input and intermediate 

fluorophores. It is predicted that (1) no intermediate emission peak (2) corresponds to 

zero percent energy transfer (i.e., no FRET), (2) no input emission peak (1) and a single 

emission peak of the intermediate fluorophore (2) correspond to one hundred percent 

energy transfer (i.e., ideal FRET), and (3) a combination between input and intermediate 

emission peaks corresponds to various percent energy transfers such that (a) if the input 

emission peak is higher than the intermediate emission peak, then the energy transfer 

efficiency is less than 50% and (b) if the input emission peak is lower than the 

intermediate emission peak, then the energy transfer efficiency is greater than 50%.  
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Fig.A.3: Illustration of variation in energy transfer efficiency and the corresponding 

fluorescence emission spectrum of the two fluorophores system. 
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A.2 Fluorophores 

Fluorophores (or dyes) absorb light at a characteristic wavelength and re-emit 

light at a lower energy, or longer wavelength, as illustrated in Fig.A.4. The wavelength 

where photon energy is most efficiently captured is defined as the absorbance maximum 

whereas the wavelength where light is most efficiently released is defined as the emission 

maximum
33

. Each fluorophore has four (possibly unique) dipoles: two permanent and two 

transient. The permanent dipoles coincide to the ground state (S0) and the excited state 

(S1), and the transient dipoles describe the transitions between those two states. The 

transient dipoles include an absorption dipole, which appears during the transition from 

the ground state to the excited state, and an emission dipole, which appears during the 

transition from the excited state back to the ground state
2
. The transition from a ground 

state dipole to an excited state dipole typically occurs in less than 10
-15

 seconds because 

of the purely electronic nature of this process
2
. 

 

 

Fig.A.4: Spectral characteristics of a fluorophore. 

 

The molecules 6-carboxyfluorescein (FAM), carboxy-tetramethyl-rhodamine 

(TAM) and Cy5 are fluorescent dyes and are exclusively used in this work as the energy 
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transfer elements. FAM is a derivative of fluorescein dye family, TAM is a derivative of 

rhodamine dye family, and Cy5 is a derivative of cyanine dye family. Dye molecular 

structures are illustrated in Fig A.5. 

 

Fig A.5: Molecular structures of FAM, TAM, and Cy5; the three fluorophores used 

in the construction of DNA-based diffusive waveguides
21

. 

 

Table A.1 lists the absorbance and emission maxima of FAM, TAM, and Cy5 

measured in different buffer conditions as well as in different structural templates (e.g., 

individual dye or dye-labeled DNA oligonucleotides) 

Table A.1: Absorbance (Abs) and emission (Em) maxima of three fluorophores from 

different buffer conditions 

 Unconjugated dyes  

Abs(nm)/Em(nm)* 

Conjugated dyes  

Abs(nm)/Em(nm)** 

Conjugated dyes  

Abs(nm)/Em(nm)*** 

FAM 492/515 492/514 496/517 

TAM 565/580 557/578 561/583 

Cy5 643/667 648/657 656/667 

* 10 mM Tris, 50 mM KCl, 5 mM MgCl2, pH 8.3
34

 

** 50 mM Tris, 50 mM KCL, 5 mM MgCl2, pH 8.0
33

 

*** 40 mM Tris, 20 mM Acetic acid, 2 mM EDTA, 12.5 mM Magnesium acetate,  

 pH 8.0 
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Bogh et al. reported that the absorbance or emission properties of fluorescent dyes 

are affected by their environment, including solvent, pH, and conjugation to other 

macromolecules
33

. 
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APPENDIX B 

PAGE Gel Filtration and Agarose Gel Filtration 
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B.1 PAGE Gel Filtration 

The following description outlines the procedure for the PAGE gel filtration 

process used in this thesis work. A typical gel image of the assemblies formed by tiles 

with 1) FAM, 2) TAM, 3) Cy5, 4) FAM-TAM, 5) FAM-Cy5, 6) TAM-Cy5, and 7) FAM-

TAM-Cy5 is illustrated in Fig.B.1. 10% polyacrylamide (PAGE) in 1x TAE Mg
2+

 buffer 

filled into the gel cask. Each gel lane was filled with 16 µL of about 1 µM dye-labeled 

DNA tiles and 4 µL of bromophenol blue loading buffer. The PAGE gel was run in 1x 

TAE Mg
2+

 buffer at 15 V/cm for 2.0 h. The gel was imaged with an AlphaImager© 

(Alpha Inotech, San Leandro, CA). The fluorescence AlphaImager was used to show the 

emission response of FAM, TAM, Cy5, and the combination of dyes. Discrete bands are 

apparent and can be assigned to DNA tiles labeling with FAM, TAM, Cy5, and so on. 

Judging from the band position, all bands closed to the wells were well-formed dye-

labeled DNA tiles, all bands away from the wells were malformed dye-labeled DNA 

tiles, and all bands at the right of the gel were the mixture of dye-labeled oligomers and 

their complementary strands. The structures from these bands were excised from the gel 

and analyzed by spectrophotometer.  
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Fig.B.1: 10% PAGE gel in 1x TAE Mg
2+

 dye-labeled DNA tiles with (1) FAM, (2) 

TAM, (3) Cy5, (4) FAM-TAM, (5) FAM-Cy5, (6) TAM-Cy5, and (7) FAM-TAM-

Cy5 
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B.2 Agarose Gel Filtration 

The following description outlines the procedure on how to perform agarose gel 

filtration. 2% agarose in 1x TAE Mg
2+

 buffer was microwave heated to boiling for 90 

seconds and cooled for 5 minutes and filled into the gel cask. Each gel lane was filled 

with 16 µL of about 15 nM DNA nanotubes and 4 µL of bromophenol ficol loading 

buffer. The agarose gel was run in 1x TAE Mg
2+

 buffer at 8.33 V/cm for 90 minutes. 

After running, the gel was imaged with the AlphaImager. A typical gel image is shown in 

Fig.B.2.  Judging from the band position, all middle bands were well-formed dye-labeled 

nanotubes; all bands on the right were the mixture of dye-labeled staple strands and 

unlabeled staple strands. The structures from these bands were excised from the gel and 

analyzed by spectrophotometer. To excise the band from the gel, a scalpel was used to 

cut all gel bands labeled “nanotubes” (Fig.B.2).  Each gel band was crushed into small 

pieces using a micropestle (Eppendorf Inc.) and 1x TAE Mg
2+

 buffer (200 µL) was 

subsequently added. The dye-labeled DNA origami nanotube solutions were kept at 

ambient conditions and the structures were left to diffuse from the crushed gel pieces into 

the buffer over the course of 12 hours. The nanotube solutions were separated from the 

crushed gel pieces using a pipette (Eppendorf Inc.).  
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Fig.B.2: 2% agarose gel in 1x TAE Mg
2+

 dye-labeled nanotubes with (1) FAM, (2) 

TAM, (3) Cy5, (4) FAM-TAM, (5) FAM-Cy5, (6) TAM-Cy5, and (7) FAM-TAM-

Cy5. The majority of DNA nanotubes migrate as a single band in agarose-gel 

electrophoresis. This population presumably represents well formed nanotubes, 

whereas slower migrating species apparent on the gel presumably represent 

misfolded structures. 
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APPENDIX C 

A Least-Squares Curve Fitting 
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C.1 A Least-Squares Curve Fitting 

A Matlab script was used to determine the contribution of individual fluorophores 

to the bulk fluorescence measurement. The code was written based upon the least squares 

curve-fitting equation adopted from Ref.5: 

        CcTtFfS   (C.1) 

where S() is the data spectrum and F(), T(), and C() are the emission spectra 

of FAM, TAM, and Cy5 fluorophores, respectively. The three constant f, t, and c were 

determined using a least-squares fit in the regions which the spectra were measured.  

Matlab Script: 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%        %% 
%%  A least square curve fitting (BSU)   %% 
%%        %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all, close all 
  
load filename.csv  %format of csv: wavelength, intensity, intensity, intensity, intensity 
 
I=filename; 
 
 FAM=[I(:,1),I(:,2)];      %extract data for FAM from I 
TAM=[I(:,1),I(:,3)];       %extract data for TAM from I 
CY5=[I(:,1),I(:,4)];        %extract data for CY5 from I 
DATA=[I(:,1),I(:,5)];     %extract spectrum data from I 
 
 %%% begin fitting 
tic  
k=1e12; 
sum=0;  
for f=0:0.1:1 
    for t=0:0.1:1 
        for c=0:0.1:1 
            for i=1:length(FAM) 
                S=(f*FAM(i,2)+t*TAM(i,2)+c*CY5(i,2))^2; 
                D=DATA(i,2)^2; 
                diff=abs(D-S); 
                sum=sum+diff; 
            end 
            if sum < k 
                s1=f;  
                s2=t;  
                s3=c; 
                k=sum; 
            end 
            sum=0; 
        end  



75 

 

    end  
end  
toc  
 
% display fitting parameters 
s1, s2, s3 
B=[FAM(:,1),FAM(:,2)*s1+TAM(:,2)*s2+CY5(:,2)*s3]; 
% display the result fitting curve and the data 
plot(DATA(:,1),DATA(:,2),'r',B(:,1),B(:,2),'k') 
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APPENDIX D 

6-Helix Bundle Nanotube Design, Sequence Generator, Sequence List, Position of 

Biotin-Labeled Staple Strands, and Statistical Analysis of Quantum Dot Arrays 
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D.1. 6-Helix Bundle Nanotube Design 

The design of the 6-helix bundle nanotube is provided in the following. As shown 

in Fig.D.1(a), the scaffold strand is arranged into six numbered helices with the ends of 

the M13mp18 located in the middle of helix 1. From the 5’ end, the scaffold strand 

proceeds to the left with crossovers at the ends of the nanotube and two staggered 

crossovers near the middle. The nucleotide numbers for the crossovers are indicated in 

Fig.D.1(a). Staple strands are grouped into 86 columns and numbered from the left end, 

as shown in Fig.D.1(b). Staples strands are labeled according to the helix and column 

location of their 5’ end. The first column of staple strands begins 14 nucleotides from the 

left end scaffold crossovers. Columns 11-13 show the 3 column repeating motif in which 

each staple strand consists of three 14 nucleotide domains complementary to a section of 

the M13mp18 scaffold strand and spans 3 helices. Although not used in the current study, 

three random 20 nucleotide sticky-ends, label A, B, and C, are added to staples in 

columns 4, 7, and 10 of helix 3. For each sticky-end, the helix 3 domain complementary 

to M13mp18 is lengthened by 7 nucleotides and the adjacent staple domain is 

correspondingly shortened, as illustrated in the figure. 

The staple strand layout in the middle of the nanotube is shown in Fig.D.1(c). The 

5’ and 3’ ends of the M13mp18 scaffold are located in helix 1 and staple column 43. 

Mid-nanotube scaffold crossovers are located in staple columns 39 and 41. The same A, 

B, and C sticky-ends are added to staples in columns 41, 45, and 48 of helix 3. Fig.D.1(d) 

illustrates the staple layout for the right end of the nanotube. A, B, and C sticky-ends are 

added to staple of columns 77, 80, and 83 of helix 3. Four nucleotides remain 
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unhybridized at the end of each helix. A schematic of the formed DNA nanotube with A, 

B, and C sticky-ends is shown in Fig.D.1(e).  

 

Fig.D.1: Two-dimensional layout of the scaffold and staple strands of the DNA 

nanotube and 3D schematic. (a) Layout of the scaffold showing nucleotide numbers 

at the crossovers. (b) Staple layout for the left end of the tube. The staple motif is 

shown in columns 11-13. In helix 3, staples in columns 4, 7, and 10 are extended with 

sticky-ends labeled A, B, and C. (c) Staple layout in the middle of the tube. The 

M13mp18 scaffold begins and ends in helix 1, column 43. Scaffold crossovers are 

located at the ends and in columns 39 and 41. A, B, and C sticky-ends are added to 
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staples 41, 45, and 48 of helix 3. (d) Staple layout for the right end of the tube. 

Sticky-ends are added to staples in helix 3 in columns 77, 80, and 83. Four 

nucleotides remain at the end of each helix. (e) Schematic of the formed tube 

illustrating the A, B, and C sticky-ends along helix 3 of the formed nanotube. 

(Reprinted with permission from Ref.22. Copyright 2010 American Chemical 

Society). 
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D.2 Sequence Generator 

To facilitate generation of the staple strands required to form a 6-helix DNA 

nanotube, a Perl script was written to layout the scaffold sequence into the geometric 

raster pattern according to a given set of turning points
22

. The script accepts the 

M13mp18 sequence as an input, divides the sequence into regions demarcated by turning 

points, and then outputs the scaffold and its complement according to the designed 

pattern. The complementary sequence is then easily divided into staple strands according 

to the desired motif. 

Perl Script: 

################################################################# 

#                                                               # 

#               DNA Origami Design Helper Program               # 

#                                                               # 

#               Boise State University - May 2008               # 

#                                                               # 

################################################################# 

 

use strict; 

use warnings; 

use English; 

use Carp; 

 

exit(main());                          # a nice technique for avoiding global 

variables in Perl 

 

 

sub main { 

 

    my $DNA_SEQUENCE_FILENAME = 'M13mp18BP.txt'; 

 

    # Read the dna sequence data from the file named in $DNA_SEQUENCE_FILENAME. 

    my $DNA_SEQUENCE_FILE; 

    if (!open($DNA_SEQUENCE_FILE, "< $DNA_SEQUENCE_FILENAME")) { 

        print "Unable to open data file $DNA_SEQUENCE_FILENAME\n"; 

        return 1;                                   # failure 

    } 

    my @seqLines = <$DNA_SEQUENCE_FILE>;            # read the dna sequence data 

lines into  

                                                    # the seqLines array 

    close $DNA_SEQUENCE_FILE; 

    {   # Temporarily change the record separator so that we can 

        # get rid of the line ending characters that are found in 

        # text files created on Windows. 

        local $INPUT_RECORD_SEPARATOR = "\r\n"; 

        chomp (@seqLines); 

    } 

    my $n = scalar(@seqLines); 

    print "Read $n lines from file $DNA_SEQUENCE_FILENAME.\n"; 

 

    # Convert the file data into an array of bases. 

    shift @seqLines;                              # discard the header line 
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    map { $_ =~ s/[^GATC]+//g } @seqLines;        # discard everything that isn't 

a G, A, T, or C 

    my $dnaSequence = join '', @seqLines;         # concatenate the lines into one 

big string 

    print 'dnaSequence has ' . length($dnaSequence) . " bases.\n"; 

 

    # The scaffold structure is described as a set of lines and turnaround points. 

    # Data structure:  arefSubsequenceLines -> arefSubsequenceRanges -> [startPos, 

endPos] 

    my $arefSubsequenceLines = [ 

        [ [ 595,    1], [7249, 6637] ], 

        [ [ 596, 1162], [5996, 6636] ], 

        [ [1729, 1163], [5995, 5355] ], 

        [ [1730, 2268], [4686, 5354] ], 

        [ [2807, 2269], [4685, 4017] ], 

        [ [2808, 4016],              ], 

    ]; 

 

    # Use the position data to divide the DNA sequence into the 

    # base pair sequences that make up each line of the structure. 

    my @designLines; 

    foreach my $arefSubsequenceRanges (@$arefSubsequenceLines) { 

        my $designLine = ""; 

        foreach my $arefSubsequenceRange (@$arefSubsequenceRanges) { 

            my ($p1, $p2) = @$arefSubsequenceRange;i8i8sx 

            print "p1=$p1, p2=$p2; "; 

            if ($p1 <= $p2) {           # don't need to reverse the subsequence?  

                                        # (i.e., should appear left to right?) 

                $designLine .= "*" if length($designLine) && $p1 != 1;  # separate 

subsequences  

                                                                        # with an 

asterisk 

                $designLine .= substr $dnaSequence, $p1-1, $p2-$p1+1; 

            } 

            else {                      # must reverse the subsequence because it 

must  

                                        # appear right to left 

                $designLine .= "*" if length($designLine) && $p2 != 1;  # separate 

subsequences 

                                                                        # with an 

asterisk 

                $designLine .= reverse substr $dnaSequence, $p2-1, $p1-$p2+1; 

            } 

            print "length(designLine)=" . length($designLine) . "\n"; 

        } 

        push @designLines, $designLine; 

        print "\n"; 

    } 

 

    my $DESIGN_OUTPUT_FILE; 

    if (!open($DESIGN_OUTPUT_FILE, "> tubedesign.txt")) { 

        print "Unable to open output file tubedesign.txt\n"; 

        return 1;                           # failure 

    } 

 

    my $COMP_DESIGN_OUTPUT_FILE; 

    if (!open($COMP_DESIGN_OUTPUT_FILE, "> comptubedesign.txt")) { 

        print "Unable to open output file comptubedesign.txt\n"; 

        return 1;                           # failure 

    } 

 

    # Format the output lines as needed for the next design step. 

    foreach my $designLine (@designLines) { 

 

        my $outputLine = $designLine; 

 

        $outputLine =~ s/([GATC]{7})\*([GATC]{7})/ $1*$2 /;     # create a 7+7 

subsequence at  

                                                                # the turnaround 

points 
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        $outputLine =~ s/([GATC]{14})/$1 /g;                    # break everything 

else into  

                                                                # 14-base 

subsequences 

        $outputLine =~ s/ {3,}/  /g;                            # make sure there 

are no more  

                                                                # than 2 

consecutive spaces 

        $outputLine =~ s/  $//;                                 # get rid of the 

dangling spaces 

                                                                # at the end of 

the line 

 

        # Create the complements. 

        my $complementLine = $outputLine; 

        $complementLine =~ s/G/c/g; 

        $complementLine =~ s/C/g/g; 

        $complementLine =~ s/A/t/g; 

        $complementLine =~ s/T/a/g; 

        $complementLine = uc $complementLine; 

 

        print $DESIGN_OUTPUT_FILE "$outputLine\n$complementLine\n\n"; 

        print $COMP_DESIGN_OUTPUT_FILE "$complementLine\n\n"; 

    } 

 

    close $DESIGN_OUTPUT_FILE; 

    close $COMP_DESIGN_OUTPUT_FILE; 

 

    return 0;                               # success 

} 
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D.3 Sequence List 

The following shows the staple strand sequence list for forming the 6-helix bundle 

nanotube. Staple strands include 9 strands with 69 nucleotides, 9 strands with 35 

nucleotides, and 152 strands with 42 nucleotides, the total of 170. 

 

Table D.1: Name and sequence for the 170 staple strands used for the 6-helix DNA 

nanotube 

Helix Column Sequence 

1 2 GCCAGAGGGGGTAAAGACTCCTTATTACAACGCAAAGACACC 

1 5 CAATACTGCGGAATAACGCAATAATAACATAGAAAATTCATA 

1 8 AAATGCTTTAAACATAAGCAGATAGCCGCGACATTCAACCGA 

1 11 AAAAATCAGGTCTTAAATAGCAATAGCTAAATTATTCATTAA 

1 14 GCGGATTGCATCAACAAGAATTGAGTTAGCCATTTGGGAATT 

1 17 CAAATATCGCGTTTAGTCAGAGGGTAATTTACCATTAGCAAG 

1 20 GGAAGCAAACTCCAGAAGCGCATTAGACATAGCAGCACCGTA 

1 23 TTGCTCCTTTTGATTGAAAATAGCAGCCTTAGCGTCAGACTG 

1 26 GCTTAATTGCTGAACCCAATCCAAATAAATAGCCCCCTTATT 

1 29 ATATGCAACTAAAGGCCTAATTTGCCAGTCACCGGAACCAGA 

1 32 AACAGTTGATTCCCTTTATCCTGAATCTCCGCCACCCTCAGA 

1 35 ACCATTAGATACATCCTTAAATCAAGATGAGCCGCCACCAGA 

1 38 TATATTTTCATTTGAGGCGTTTTAGCGAACAGGAGTTAGACT 

1 41 TCTACTAATAGTAGCAAATCAGATATAGATCCTTTGCCCGAA 

1 44 GCAAGGCAAAGAATTTTATTTTCATCGTATTATCATTTTGCG 

1 47 GCATAAAGCTAAATATTAAACCAAGTACATTATCATCATATT 

1 50 TAATACTTTTGCGGATCAATAATCGGCTAATATAATCCTGAT 

1 53 AAAATTTTTAGAACAAAAATAATATCCCAGGGTTAGAACCTA 

1 56 GTAATGTGTAGGTAAGAACGCGCCTGTTAGAAATAAAGAAAT 

1 59 GACAGTCAAATCACTCTGTCCAGACGACTGAATATACAGTAA 

1 62 TGATAAATTAATGCAGTAATAAGAGAATAACGGATTCGCCTG 

1 65 TACAAAGGCTATCAAACAACGCCAACATGCGCAGAGGCGAAT 

1 68 AAGAGAATCGATGACCAACGCTCAACAGAGATGATGAAACAA 

1 71 CATATGTACCCCGGTTTAGTATCATATGTAACAATTTCATTT 

1 74 GAAGATTGTATAAGATAAGAATAAACACATAAATCAATATAT 

1 77 TTTGTTAAAATTCGTAATGGTTTGAAATCGTCGCTATTAATT 

1 80 TTTTAACCAATAGGTTTCAAATATATTTAGCGATAGCTTAGA 

1 83 CCTTCCTGTAGCCATGATGCAAATCCAAATTTATCAAAATCA 

2 2 TATCATAACCCTCGCGTCTTTCCAGACGGTACAAACTACAAC 

2 5 CATAACGCCAAAAGTTGCTAAACAACTTCCAATAGGAACCCA 

2 8 TCAGTTGAGATTTAAAGGAACAACTAAACCACCCTCAGAGCC 

2 11 AACGAACTAACGGATGAAAATCTCCAAAGGTTTAGTACCGCC 

2 14 TATACCAGTCAGGAGTATCGGTTTATCAATATAAGTATAGCC 

2 17 ATCATTGTGAATTAAGCTTGATACCGATTTTTGCTCAGTACC 

2 20 CGAGTAGTAAATTGGCCCACGCATAACCAGAGGCTGAGACTC 

2 23 TCATTCAGTGAATAGAGTTAAAGGCCGCTGCCTATTTCGGAA 

2 26 AGAACCGGATATTCAAAGACAGCATCGGGTGCCTTGAGTAAC 

2 29 GGCGCATAGGCTGGTTGAGGACTAAAGAGATGATACAGGAGT 

2 32 TGACCAACTTTGAAGGGTAAAATACGTATCTCTGAATTTACC 

2 35 GCCGGAACGAGGCGCGAAAGAGGCAAAACAAACAAATAAATC 

2 38 GATAAATTGTGTCGCCCAGCGATTATACAGAAGTAGTTGAGG 

2 41 TTTGCGTATTGGGCTCTTTTCACCAGTGTAATAGATTAGAGC 

2 44 CCAGCTGCATTAATCGCCTGGCCCTGAGTTGAGGAAGGTTAT 

2 47 GTTGCGCTCACTGCTTGCCCCAGCAGGCAATCAATATCTGGT 

2 50 AGCCTGGGGTGCCTATCGGCAAAATCCCATCTAAAGCATCAC 

2 53 CACAATTCCACACAGGGTTGAGTGTTGTGCCTGCAACAGTGC 

2 56 ATCATGGTCATAGCAAGAACGTGGACTCAGCAGAAGATAAAA 
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2 59 GTCGACTCTAGAGGCAGGGCGATGGCCCTAGCCCTAAAACAT 

2 62 CGTTGTAAAACGACTTTTTGGGGTCGAGCAATATTTTTGAAT 

2 65 AGGCGATTAAGTTGAAAGGGAGCCCCCGAGAACCCTTCTGAC 

2 68 TCTTCGCTATTACGAACGTGGCGAGAAACACACGACCAGTAA 

2 71 TTCAGGCTGCGCAAGCTAGGGCGCTGGCAATCGTCTGAAATG 

2 74 ACCGCTTCTGGTGCACCACACCCGCCGCAACAGGAAAAACGC 

2 77 GTATCGGCCTCAGGTATGGTTGCTTTGACTTGCTGGTAATAT 

2 80 GCATCGTAACCGTGAGAATCAGAGCGGGAATAACATCACTTG 

2 83 GGATTGACCGTAATTTTAGACAGGAACGATCACGCAAATTAA 

3 1 ATCTAAAGTTTTGTTTTACCAGACGACGGCAAAAGAAGTTTT 

3 4 GAACGCACTTGGTCTACTGAATGAATTTTCTGTATGGGATTGAATTACGAGGCATGACTGGATAGCGTC 

3 7 GTGACATACCTTCGGAGCATTTTCAGCGGAGTGAGAATAGAGGAATACCACATTCATTGAATCCCCCTC 

3 10 CGCTTCACGAGGTTACAATGCGAATAATAATTTTTTCACGTACAACATTATTACAAATGACCATAAATC 

3 13 AGGAGCCTTTAATTCGTTGGGAAGAAAATAGTCAGAAGCAAA 

3 16 TGAATTTCTTAAACCCTTATGCGATTTTAGCCCGAAAGACTT 

3 19 TGACAACAACCATCGGCTTGAGATGGTTAAGCGAACCAGACC 

3 22 CTGAGGCTTGCAGGAGGCTTGCCCTGACGAGAGTACCTTTAA 

3 25 CACCCTCAGCAGCGATTACCCAAATCAAGCGGATGGCTTAGA 

3 28 CGGCTACAGAGGCTCTGACCTTCATCAATCAACATGTTTTAA 

3 31 AGTTTCCATTAAACAGAGGACAGATGAAGTTTCATTCCATAT 

3 34 GCACCAACCTAAAACAGACGGTCAATCAGTAGATTTAGTTTG 

3 37 ACTCATCTTTGACCAAATCCGCGACCTGATAACCTGTTTAGC 

3 40 GAACGCACTTGGTCTACTGAGAAACAAAGTACAATGGTTTTGCCAGGGCGGAGATAAGGTGGCATCAAT 

3 43 GTGACATACCTTCGGAGCATCAACAGCTGATTGCCCTTCACGAATCGGCCAACGCAATAAATCATACAG 

3 46 CGCTTCACGAGGTTACAATGCAGCAAGCGGTCCACGCTGGTCCGCTTTCCAGTCGAATAAAGCCTCAGA 

3 49 ATGGTGGTTCCGAAAATGAGTGAGCTAAACATTATGACCCTG 

3 52 AATAGCCCGAGATAACATACGAGCCGGATCAACGCAAGGATA 

3 55 AGAGTCCACTATTATGTTTCCTGTGTGAAATGCAATGCCTGA 

3 58 GAAAAACCGTCTATATCCCCGGGTACCGTGAGAAAGGCCGGA 

3 61 CACCCAAATCAAGTGGCCAGTGCCAAGCTCAACCGTTCTAGC 

3 64 TAAATCGGAACCCTGGTAACGCCAGGGTATTTTTGAGAGATC 

3 67 GGGGAAAGCCGGCGCCAGCTGGCGAAAGAGTCTGGAGCAAAC 

3 70 CGAAAGGAGCGGGCCTGTTGGGAAGGGCACTAGCATGTCAAT 

3 73 CGCTGCGCGTAACCCGGAAACCAGGCAAAGCCCCAAAAACAG 

3 76 GAACGCACTTGGTCTACTGAGCGCCGCTACAGGGCGCGTACAAGATCGCACTCCAGTAAACGTTAATAT 

3 79 GTGACATACCTTCGGAGCATGTATAACGTGCTTTCCTCGTTCATCTGCCAGTTTGTAAATCAGCTCATT 

3 82 CGCTTCACGAGGTTACAATGCAGGAGGCCGATTAAAGGGATGGGATAGGTCACGTTAATTCGCGTCTGG 

3 85 TGAGAAGTGTTTTTCGTCGGATTCTCCGTAAATGTGAGCGAG 

4 1 GCCTGTAGCATTCCCAACATATAAAAGAGCAGTATGTTAGCA 

4 4 TGTACCGTAACACTTTTTGTCACAATCAGGAATACCCAAAAG 

4 7 ACCACCCTCATTTTCAAAGACAAAAGGGAACAAAGTTACCAG 

4 10 ACCCTCAGAACCGCGTAAATATTGACGGATCTTACCGAAGCC 

4 13 CGGAATAGGTGTATCGTCACCGACTTGAAGCCCAATAATAAG 

4 16 AGGCGGATAAGTGCCACCAGTAGCACCATGAGCGCTAATATC 

4 19 CTCAAGAGAAGGATCAATGAAACCATCGGGGAGAATTAACTG 

4 22 CCTATTATTCTGAAAATCAAGTTTGCCTTTTACAGAGAGAAT 

4 25 AGTGCCCGTATAAACGGCATTTTCGGTCGAAACGATTTTTTG 

4 28 GTACTGGTAATAAGTTTCATAATCAAAATTACAAAATAAACA 

4 31 GTTCCAGTAAGCGTCGCCTCCCTCAGAGTACCAACGCTAACG 

4 34 CTCATTAAAGCCAGAGCCACCACCCTCATAGTTGCTATTTTG 

4 37 CAGGTCAGACGATTCGCCGCCAGCATTGACCTCCCGACTTGC 

4 40 CGTCAATAGATAATACAACTCGTATTAAAAGGCTTATCCGGT 

4 43 CTAAAATATCTTTAAAAGTTTGAGTAACAGGAATCATTACCG 

4 46 CAGTTGGCAAATCACCAGAAGGAGCGGACGCACTCATCGAGA 

4 49 CTTGCTGAACCTCAGATGGCAATTCATCGTCTTTCCTTATCA 

4 52 CACGCTGAGAGCCATTCTGAATAATGGAATCCTAATTTACGA 

4 55 CAGAGGTGAGGCGGTTTGCACGTAAAACTATCAACAATAGAT 

4 58 CGCCATTAAAAATAGGTTTAACGTCAGAGACAATAAACAACA 

4 61 GGCTATTAGTCTTTTCGGGAGAAACAATATAAAGTACCGACA 

4 64 CTGAAAGCGTAAGACAAGTTACAAAATCGTAATTTAGGCAGA 

4 67 TAAAAGGGACATTCACCTGAGCAAAAGATAGGGCTTAATTGA 

4 70 GATTATTTACATTGAAATTAATTACATTCGTTATACAAATTC 

4 73 TCATGGAAATACCTAATGGAAACAGTACCGGAATCATAATTA 

4 76 CCAGAACAATATTATTGCTTCTGTAAATACCGACCGTGTGAT 

4 79 CCTGAGTAGAAGAAATCCTTGAAAACATTAGTTAATTTCATC 

4 82 CCGTTGTAGCAATAAGAGTCAATAGTGATCGCAAGACAAAGA 

4 85 TGAGGCCACCGAGTTACCTTTTTAACCTGTTGGGTTATATAA 
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5 3 ACGGAATAAGTTTAGAGTTTCGTCACCATTAGTAA 

5 6 TGGTTTACCAGCGCCAGGGATAGCAAGCTCAACAG 

5 9 TTGAGGGAGGGAAGCACCCTCAGAACCGGGAATTG 

5 12 AGGTGAATTATCACCACCGTACTCAGGAAAAAAGGCTCCAAA 

5 15 AGAGCCAGCAAAATCGTCGAGAGGGTTGGCTTGCTTTCGAGG 

5 18 GCCGGAAACGTCACTAGGATTAGCGGGGAGTTGCGCCGACAA 

5 21 ATCAGTAGCGACAGACATGAAAGTATTAGATATATTCGGTCG 

5 24 TAGCGCGTTTTCATCAGTTAATGCCCCCTTTTGCGGGATCGT 

5 27 AGCGTTTGCCATCTTTTTAACGGGGTCAAACGAGGGTAGCAA 

5 30 GCCACCACCGGAACCATACATGGCTTTTCTTTTTCATGAGGA 

5 33 ACCGCCACCCTCAGAATGGAAAGCGCAGATGCCACTACGAAG 

5 36 ACCACCACCAGAGCGGCCTTGATATTCAGAATACACTAAAAC 

5 39 TTACAAACAATTCGACATTTGAGGATTTCAAGCGC 

5 42 CGTTATTAATTTTAGGAGCACTAACAACAGACGGG 

5 45 GAACAAAGAAACCAACAGTTGAAAGGAAAGAGTTG 

5 48 CCTGATTATCAGATAATATCAAACCCTCGAAAATCCTGTTTG 

5 51 TGTTTGGATTATACGCAGCAAATGAAAATTATAAATCAAAAG 

5 54 CCATATCAAAATTATCAGTATTAACACCTCCAGTTTGGAACA 

5 57 TGCGTAGATTTTCACCGAACGAACCACCCAACGTCAAAGGGC 

5 60 CAGTACCTTTTACAAATGCGCGAACTGAACTACGTGAACCAT 

5 63 ATTGCTTTGAATACATACGTGGCACAGAGTGCCGTAAAGCAC 

5 66 TATTCATTTCAATTTGGCCAACAGAGATATTTAGAGCTTGAC 

5 69 ACATCAAGAAAACAGCAGATTCACCAGTGGAAGGGAAGAAAG 

5 72 GAATTACCTTTTTTACATTTTGACGCTCAAGTGTAGCGGTCA 

5 75 GTGAGTGAATAACCCCGCCAGCCATTGCGCTTAAT 

5 78 AATTTTCCCTTAGACTCAAACTATCGGCCGAGCAC 

5 81 TTAAGACGCTGAGACTTCTTTGATTAGTAGCTAAA 

5 84 TAGGTCTGAGAGACAAAAGAGTCTGTCCGTACGCCAGAATCC 

6 3 AACTGGCATGATTATAGTAAAATGTTTAAGTAAGAGCAACAC 

6 6 AAGGAAACCGAGGACGTCATAAATATTCAACTAATGCAGATA 

6 9 CTTTTTAAGAAAAGGTTCAGAAAACGAGGGTAGAAAGATTCA 

6 12 AGCAAGAAACAATGTACCCTGACTATTAATCTACGTTAATAA 

6 15 AGAGAGATAACCCAAAAGATTAAGAGGAAAGAACTGGCTCAT 

6 18 AACACCCTGAACAATAATTCGAGCTTCATAATTTCAACTTTA 

6 21 AACATAAAAACAGGACAGGTCAGGATTAGAGAAACACCAGAA 

6 24 TTTAACGTCAAAAAAAGAGGTCATTTTTCGTAACAAAGCTGC 

6 27 GCCATATTATTTATTATAATGCTGTAGCGAGTAATCTTGACA 

6 30 AGCGTCTTTCCAGATACGGTGTCTGGAACGGTGTACAGACCA 

6 33 CACCCAGCTACAATAATTCTGCGAACGATAAGGGAACCGAAC 

6 36 GGGAGGTTTTGAAGTTCGCAAATGGTCACTCCATGTTACTTA 

6 39 ATTCTAAGAACGCGGGGCGCGAGCTGAATTGTATCATCGCCT 

6 42 CGCCCAATAGCAAGTAGCATTAACATCCGCGGGGAGAGGCGG 

6 45 ACAAGCAAGCCGTTTAGCAAAATTAAGCGGAAACCTGTCGTG 

6 48 TTCCAAGAACGGGTCGGTTGTACCAAAACTCACATTAATTGC 

6 51 GCATGTAGAAACCAGAGAAGCCTTTATTAGCATAAAGTGTAA 

6 54 AAGTCCTGAACAAGCCTCATATATTTTAAATTGTTATCCGCT 

6 57 TGTTCAGCTAATGCAAGATTCAAAAGGGAGCTCGAATTCGTA 

6 60 AAAGGTAAAGTAATCATCAATATGATATTTGCATGCCTGCAG 

6 63 GGCATTTTCGAGCCCGGAGAGGGTAGCTTTTCCCAGTCACGA 

6 66 GAATCGCCATATTTGGTCATTGCCTGAGGGGGATGTGCTGCA 

6 69 TTACCAGTATAAAGACGGTAATCGTAAAGATCGGTGCGGGCC 

6 72 CTAGAAAAAGCCTGTTGATAATCAGAAAAGCGCCATTCGCCA 

6 75 AAATAAGGCGTTAACAAATATTTAAATTGCCAGCTTTCCGGC 

6 78 TTCTGACCTAAATTCATTAAATTTTTGTAGGGGACGACGACA 

6 81 ACGCGAGAAAACTTAACGCCATCAAAAATGGTGTAGATGGGC 

6 84 CTATATGTAAATGCGCTTTCATCAACATTGGGAACAAACGGC 
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D.4 Position of Biotin-Labeled Staple Strands 

To form functionalized DNA nanotubes with 29 attachment sites for streptavidin 

conjugated nanoparticles, all 29 staple strands of helix 4 (H4-C1 to H4-C85) were 

modified by adding a 5 thymine tether to the 3’ end followed by a biotin molecule. 

During synthesis of the nanotubes, these strands were substituted for the corresponding 

unmodified staple strands. Note that the strands are labeled in helix 4 by the location of 

their 5’ end, but the biotin modified 3’ ends are located in helix 6. To synthesize 

nanotubes with 15, 9 and 5 available binding sites, the subsets of the helix 4 staple 

strands were substituted. The column numbers of the substituted staple strands are listed 

below. 

For 15 binding sites, every other staple of helix 4 was substituted:  

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85. 

For 9 binding sites, every third staple of helix 4 was substituted, starting with 

column 7:  

7, 16, 25, 34, 43, 52, 61, 70, 79. 

For 5 binding sites, every fifth staple of helix 4 was substituted, starting with 

column 5:  

13, 28, 43, 58, 73.  
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Fig.D.2: Biotin-labeled DNA origami nanotube arrays (a) 29 particles, (b) 15 

particles, (c) 9 particles, (d) 5 particles  
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APPENDIX E 

Statistical Analysis of Quantum Dot Arrays 
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E.1 Statistical Analysis of Quantum Dot Arrays 

Histograms of the number of streptavidin-conjugated quantum dots attached to 

biotin-labeled DNA origami nanotubes with (a) 5, (b) 9, (c) 15, and (d) 29 binding sites 

are shown in Fig.E.1. The histogram data were gathered from AFM image analyses for 

over 225 individual nanotubes for each case. In theory, it is predicted that the number of 

particle attachment in 5, 9, 15, and 29 available binding sites should peak at 5, 9, 15, and 

29, respectively. Experimentally, the number of particle attachment in 5, 9, 15, and 29 

available binding sites peak at 4, 7, 10, and 17, respectively. The histogram data suggest 

that attachment to each available binding site is much more likely for nanotube 

functionalized with 5 or 9 binding sites than for 15 and 29 binding sites. 

 

Fig.E.1: Histograms (bars) and calculated binomial distributions (lines) for the 

number of attached quantum dots for DNA nanotubes with (a) 5, (b) 9, (c) 15, and 

(d) 29 biotin binding sites. Data for each histogram were compiled from AFM image 

analysis for over 225 separate nanotubes, with the exact number, N, shown for each 

histogram. The average attachment probabilities, p, used to generate the calculated 
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binomial distributions are indicated for each case. (Reprinted with permission from 

Ref.22. Copyright 2010 American Chemical Society). 

 

Assuming that quantum dot binding events occur with an equal average 

attachment probability, p, for each site, the attachment histograms would be expected to 

follow a binomial distribution, P(m), given by 

 
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where n is the given number of available biotin binding sites per nanotube and m 

is the number of attached quantum dots per nanotube
35

. The average attachment 

probability, p, is given by 
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 (E.2) 

where the numerator is the total number of attached quantum dots, and the 

denominator is the total number of available attachment sites
35

. 

Applying Equation (E.2), the average attachment probabilities were calculated 

from the histogram data to be 0.77, 0.76, 0.65, and 0.64 for 5, 9, 15, and 29 sites, 

respectively. The solid lines in Fig.E.1 plot the calculated binomial distribution of 

Equation (E.1) for each case. Overall, the calculated distributions agree with the 

histogram data, indicating equal average attachment probabilities. However, the 

histogram data in (c) and (d) display a slight shift toward lower attachment relative to the 

calculated distribution data, providing some evidence for steric hindrance or site 

bridging.  
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Fig.E.2: Histograms (bars) and calculated geometric distributions (lines) for 

nearest-neighbor (N-N) separation of bound quantum dot pairs for DNA nanotubes 

with (a) 5, (b) 9, (c) 15, and (d) 29 biotin binding sites.  The numbers of separations, 

N, measured for each case are provided in the figures, along with the average 

attachment probabilities, p.  N-N separation of zero indicates two nearest neighbors 

with a separation less than one-half of a period. (Reprinted with permission from 

Ref.22. Copyright 2010 American Chemical Society). 

 

For evidence of steric hindrance or site bridging, the nearest-neighbor separation 

distances, projected along the nanotube axis, were measured for pairs of bound quantum 

dots. In theory, the nearest-neighbor separation histogram would be expected to follow a 

geometric distribution peaked at the designed nanotube binding site periodicity in the 

absence of steric hindrance or site bridging. The geometric distribution, P(l), of nearest-

neighbor separations is given by
35
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where l is the integer number of periods between nearest-neighbors and p is the 

average attachment probabilities obtained from Equation (E.2). Fig.E.2 shows histograms 

of the nearest-neighbor separations and the geometric distributions for each of the four 

cases. For each case, the measured nearest-neighbor separation distances were 

normalized to represent the number of designed binding sites periods between particles. 

The data were sorted into bins of width a centered on the nth period, where a is the 

designed nanotube periodicity and n is an integer. Hence, nearest-neighbor separations of 

less than a/2 were indicated as a zero separation. Experimentally, the nearest-neighbor 

separation histograms are peaked at 1, 1, 2, and 3 for 5, 9, 15, and 29 binding sites; “1” 

means that the nearest-neighbor separation agrees with the designed binding site 

periodicity, “2” and “3” mean that the nearest-neighbor separations are twice and triple 

the designed binding site periodicity, respectively. The analysis demonstrates that the 

calculated geometric distributions match the data for the nanotubes with 5 and 9 available 

sites, but deviate significantly for the nanotubes with 15 and 29 available sites. Hence, 

the data indicate that steric hindrance or site bridging is reducing the number of quantum 

dots attached to the nanotubes.  
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APPENDIX F 

Experimental Equipment 
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F.1 Experimental Equipment 

 

Fig.F.1: Eppendorf Centrifuge 5418, used for filtering DNA solutions 

 

Fig.F.2: Eppendorf Mastercycler Personal, used for annealing DNA solutions 
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Fig.F.3: Hoefer gel electrophoresis apparatus, used for purifying DNA solutions 

 

Fig.F.4: Agilent Varian Spectrophotometry, used for measuring fluorescence 
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Fig.F.5: Veeco atomic force microscope multimode, used for characterizing 

topography of DNA nanostructures. 
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