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CARDINAL CHARACTERISTICS AND COUNTABLE BOREL EQUIVALENCE
RELATIONS

SAMUEL COSKEY AND SCOTT SCHNEIDER

ABSTRACT. Boykin and Jackson recently introduced a property of countable Borel equiva-
lence relations called Borel boundedness, which they showed is closely related to the union
problem for hyperfinite equivalence relations. In this paper, we introduce a family of prop-
erties of countable Borel equivalence relations which correspond to combinatorial cardinal
characteristics of the continuum in the same way that Borel boundedness corresponds to
the bounding number b. We analyze some of the basic behavior of these properties, show-
ing for instance that the property corresponding to the splitting number s coincides with
smoothness. We then settle many of the implication relationships between the properties;
these relationships turn out to be closely related to (but not the same as) the Borel Tukey
ordering on cardinal characteristics.

1. INTRODUCTION

A Borel equivalence relation E on the standard Borel space X is called hyperfinite if it
can be written as the union of an increasing sequence of Borel equivalence relations with
finite equivalence classes. Dougherty, Jackson, and Kechris developed the basic theory of
hyperfinite equivalence relations in [DJK94], where they asked the following fundamental
question which remains open:

1.1. Question ([DJK94]). Is the union of an increasing sequence of hyperfinite equivalence
relations hyperfinite?

We refer to this as the union problem. In [BJ07], Boykin and Jackson introduced the
notion of Borel boundedness and showed that it is closely related to the union problem.

1.2. Definition ([BJ07]). Let E be a countable Borel equivalence relation on the standard
Borel space X. Then E is Borel bounded if for every Borel function φ : X → ωω, there exists
a Borel function ψ : X → ωω satisfying x E x′ ⇒ ψ(x) =∗ ψ(x′) and such that for all
x ∈ X, φ(x) ≤∗ ψ(x).

2000 Mathematics Subject Classification. 03E15; 03E17.
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CARDINAL CHARACTERISTICS AND COUNTABLE BOREL EQUIVALENCE RELATIONS 2

Here =∗ and ≤∗ are the relations of eventual equality and eventual domination on ωω.
Recall that a family of functions F ⊂ ωω is unbounded if there is no function β ∈ ωω such
that α ≤∗ β for all α ∈ F . The bounding number, b, is defined to be the minimal cardinality
of an unbounded family F ⊂ ωω.

Of course, no countable family F = {αn ∈ ωω : n ∈ ω} can be unbounded, since the
function β ∈ ωω defined by

(1) β(n) = max
k≤n

αk(n)

eventually dominates each αn ∈ F . Hence for each Borel function φ : X → ωω there
trivially exists an E-invariant function ψ : X → ωω such that φ(y) ≤∗ ψ(x) for every
x ∈ X and y ∈ [x]E. But for E to be Borel bounded, the bounding functions ψ(x) cannot
depend in an essential way on the enumeration of the equivalence class [x]E.

Boykin and Jackson observed that every hyperfinite equivalence relation is Borel bound-
ed, and then established the following basic link between Borel boundedness and the
union problem.

1.3. Theorem ([BJ07]). If E is the union of an increasing sequence of hyperfinite equivalence
relations and E is Borel bounded, then E is hyperfinite.

What they left open, however, in addition to the union problem itself, is the following
important question.

1.4. Question. Is Borel boundedness equivalent to hyperfiniteness?

There is no known example of a non-hyperfinite countable Borel equivalence relation
that is Borel bounded, and the only known examples of countable Borel equivalence rela-
tions that are not Borel bounded have been established by Thomas under the additional
assumption of Martin’s Conjecture on degree invariant Borel maps [Tho09].

After seeing Theorem 1.3, Thomas asked whether other cardinal characteristics could
be used in a role similar to that played by b in the definition of Borel boundedness. To
explain, suppose that E is a countable Borel equivalence relation on the standard Borel
space X. Many cardinal characteristics of the continuum can be defined as the minimal
cardinality of a subset of ωω (or of P(ω), or [ω]ω) having some given combinatorial prop-
erty P. Since each such cardinal is uncountable, it will trivially be the case that for every
Borel function φ : X → ωω there is an E-invariant function ψ : X → ωω such that for each
x ∈ X, ψ(x) witnesses the fact that the countable family φ([x]E) does not have property
P. However, if we require ψ to be a Borel function that does not depend essentially on
the representative in [x]E, then such a function may or may not exist, depending on E.
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CARDINAL CHARACTERISTICS AND COUNTABLE BOREL EQUIVALENCE RELATIONS 3

Thus for each cardinal characteristic whose definition fits our framework, we obtain a
new combinatorial property of equivalence relations that corresponds to the given cardi-
nal in the same way that Borel boundedness corresponds to b. Our goal in this paper is to
introduce and investigate these combinatorial properties.

This paper is organized as follows. We first recall some basic facts about countable Borel
equivalence relations in Section 2, and then in Section 3 we consider the union problem
and its connection to Borel boundedness in greater detail. In Section 4, we introduce a
slew of combinatorial properties of countable Borel equivalence relations that are derived
from familiar cardinal characteristics of the continuum. For the sake of the general theory,
we propose a slight alteration in the definition of Borel boundedness that we show to be
equivalent to the one introduced in [BJ07]. In Section 5, we situate the preceding discus-
sion in the abstract setting of relations and morphisms as developed by Vojtáš and Blass,
and prove some general results concerning the properties that correspond to the so-called
“tame” cardinal characteristics. We also show that Thomas’s argument that Martin’s Con-
jecture implies there exist non-hyperfinite, non-Borel bounded equivalence relations can
be generalized to a large class of our combinatorial properties. In Section 6, we discuss the
special case of the splitting number s, and show that its corresponding property coincides
with smoothness. Finally, in Section 7 we establish a diagram of implications.

We wish to thank Simon Thomas for posing the questions that led to this paper.

2. PRELIMINARIES

In this section, we recall some basic facts and definitions from the theory of Borel equiv-
alence relations. For a more complete resource on the subject, we refer the reader to
[Gao09].

A standard Borel space is a measurable space (X,B) such that B arises as the Borel σ-
algebra of some Polish topology on X. Here a topological space is Polish if it admits a
complete, separable metric. For example, Cantor space 2ω and Baire space ωω are Pol-
ish, as is R. The set [ω]ω of infinite subsets of ω can be viewed as a Borel subset of 2ω,
and hence as a standard Borel space in its own right. The appropriate notion of isomor-
phism in the context of standard Borel spaces is bimeasurable bijection, which we call
Borel isomorphism. By a classical result, any two uncountable standard Borel spaces are
Borel isomorphic. This will allow us to view the standard Borel spaces R, 2ω, ωω, and
[ω]ω as equivalent, so that we may work on whichever is most convenient.

An equivalence relation E on the standard Borel space X is called Borel if E is Borel as
a subset of X × X. The Borel equivalence relation E is countable if each of its equivalence
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CARDINAL CHARACTERISTICS AND COUNTABLE BOREL EQUIVALENCE RELATIONS 4

classes is countable, finite if each E-class is finite, and hyperfinite if it can be expressed as
the union E = ∪nFn of an increasing sequence of finite Borel equivalence relations Fn.

If E and F are equivalence relations on standard Borel spaces X and Y, a Borel function
f : X → Y is said to be a Borel homomorphism from E to F, written f : E → F, if for all
x, x′ ∈ X, x E x′ implies f (x) F f (x′). If f has the stronger property that

x E x′ ⇐⇒ f (x) F f (x′)

then f is called a Borel reduction from E to F. If there exists a Borel reduction from E to F,
then we say that E is Borel reducible to F and write E ≤B F. If E ≤B F and F ≤B E, then we
say that E and F are Borel bireducible and write E ∼B F.

A Borel equivalence relation E is said to be smooth if there is a standard Borel space Y
such that E ≤B Δ(Y), where Δ(Y) denotes the identity relation on Y. If E is a countable
Borel equivalence relation, then E is smooth if and only if E admits a Borel transversal, i.e.,
a Borel set B ⊂ X such that |B ∩ [x]E| = 1 for every x ∈ X. Every finite Borel equivalence
relation is smooth.

Many important countable Borel equivalence relations arise naturally from the action
of a countable group. If Γ is a countable discrete group acting on the standard Borel space
X, we write EX

Γ for the induced orbit equivalence relation defined by

x EX
Γ y ⇐⇒ (∃γ ∈ Γ) y = γx .

If the action of Γ on X is Borel (equivalently, each γ ∈ Γ induces a Borel map x �→ γx)
then EX

Γ will be a Borel equivalence relation. In fact, by a remarkable result of Feldman
and Moore, if E is an arbitrary countable Borel equivalence relation on the standard Borel
space X, then there exists a countable group Γ and a Borel action of Γ on X such that
E = EX

Γ . We shall make frequent use of this representation theorem for countable Borel
equivalence relations.

If X is any one of 2ω, ωω, or [ω]ω, we write E0(X) for the eventual equality relation
on X. All three of these relations are Borel bireducible with one another, so when there
is no danger of confusion or the domain is not important we write simply E0 or =∗. The
relation E0 is the unique non-smooth hyperfinite Borel equivalence relation up to Borel
bireducibility, and by the Glimm-Effros dichotomy [HKL90], if E is any nonsmooth Borel
equivalence relation then E0 ≤B E. For a survey of the general theory of hyperfinite
equivalence relations, see [DJK94] or [JKL02].

We close this section with an important consequence of the Lusin-Novikov uniformiza-
tion theorem (see [Kec95, 18.10]) that will occur frequently in our arguments.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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D0 = E0
0 ∪ E1

0 ∪ E2
0 ∪

⊂

D1 = E0
1 ∪ E1

1 ∪ E2
1 ∪ · · ·

⊂

D2 = E0
2 ∪ E1

2 ∪ E2
2 ∪

...

FIGURE 1. An increasing union of hyperfinite equivalence relations

2.1. Proposition. Suppose X and Y are standard Borel spaces, and suppose that f : X → Y is
a countable-to-one Borel function. Then im( f ) is a Borel subset of Y, and there exists a Borel
function σ : im( f ) → X such that f ◦ σ = idim( f ).

2.2. Remark. The Borel function σ given in Proposition 2.1 is called a Borel section for f . If
E and F are countable Borel equivalence relations with E ≤B F, then any Borel reduction
f from E to F is countable-to-one, and hence admits a Borel section σ : im( f ) → X.

3. BOREL BOUNDEDNESS AND THE UNION PROBLEM

Question 1.1 is perhaps the most basic open problem in the study of hyperfinite equiva-
lence relations. In this section we give an “honest attempt” to answer it, and observe how
such an attempt leads naturally to the notion of Borel boundedness.

To begin, suppose that E =
⋃

n Dn is the union of the increasing sequence of hyperfinite
equivalence relations Dn, where for each n, Dn =

⋃
m Em

n is the union of the increasing
sequence of finite equivalence relations Em

n . This can be pictured as the infinite grid in
Figure 1. Further assume that E is the orbit equivalence relation arising from the Borel
action of the countable group Γ = {γi : i ∈ ω}, with γ0 = id.

As a Borel subset of X × X, E is itself a standard Borel space. Define the Borel function
χE : E → ωω by

χE(x, y)(n) =

⎧⎨
⎩

the least m such that x Em
n y if x En y ;

0 otherwise .

Then χE records exactly when a pair of elements (x, y) ∈ Dn becomes equivalent in the
union Dn =

⋃
m Em

n .
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Now, let us attempt to solve the union problem by expressing E as the union E = ∪kFk

of an increasing sequence of finite Borel equivalence relations Fk. Naively, one might
simply try to “choose the right sequence” through Figure 1 and set each Fk equal to an
appropriate Em

n , moving down and to the right as k increases. Of course, this is bound to
fail, since there is no reason a relation Em

n in row n should contain some Em′
n′ in row n′ just

because n > n′. In fact, it is not too difficult to construct equivalence relations Em
n as in

Figure 1 so that for all n, n′, m, if n′ �= n then Em
n �⊃ E0

n′ .
To ensure that the Fk are increasing, as a next step one might try taking them to be

unions or intersections of the Em
n . Of course, the union of two equivalence relations need

not be transitive, and there is no reason for the transitive closure of the union of two
finite equivalence relations to be finite, so we are led to take intersections of the Em

n . As
each row is increasing, we need only take one from each row. Since the union of the Fk’s
must exhaust E, we should start deleting rows from the intersection as k increases. This
suggests that we let

Fk =
⋂
n≥k

Eψ(n)
n

for some sequence of choices ψ ∈ ωω.
All that is left now is to make sure that the union exhausts E. For this we need precisely

the following condition on ψ: for all (x, y) ∈ E, there exists n ∈ ω such that for every
k ≥ n, ψ(k) ≥ χE(x, y)(k). In other words, we need

(∀z ∈ E) χE(z) ≤∗ ψ .

Since we cannot expect a single ψ to eventually dominate continuum many functions, we
should allow ψ = ψ([x]E) to depend on the equivalence classes. Since we want the Fk to be
Borel, this dependence will have to be Borel as well. Thus we require a Borel, E-invariant
function ψ : X → ωω such that for each (x, y) ∈ E,

χE(x, y) ≤∗ ψ(x) = ψ(y) .

If we define φ0 : X → ωω by

φ0(x)(n) = max
i≤n

{χE(x, γix)} ,

then clearly χE(x, y) ≤∗ φ0(x) for all x ∈ X, and so it will suffice to ask that for each
x ∈ X,

(2) φ0(x) ≤∗ ψ(x) .

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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If we ask ψ to eventually dominate every Borel function φ : X → ωω, we arrive at the
definition of invariant Borel boundedness.

3.1. Definition. Let E be a countable Borel equivalence relation on the standard Borel
space X. Then E is invariantly Borel bounded if for every Borel function φ : X → ωω, there
exists an E-invariant Borel function ψ : X → ωω such that φ(x) ≤∗ ψ(x) for all x ∈ X.

This property is too strong, however, as it is easily seen to be equivalent to smoothness.

3.2. Proposition. Let E be a countable Borel equivalence relation on the standard Borel space X.
Then E is smooth if and only if E is invariantly Borel bounded.

Proof. Let E = EΓ
X be the orbit equivalence relation arising from the Borel action of the

countable group Γ = {γi : i ∈ ω} on X, where γ0 = id. Suppose that E is smooth, and
let B ⊂ X be a Borel transversal for E. Define the Borel function σ : X → X so that for all
x ∈ X, σ(x) is the unique element y ∈ B such that x E y. Let φ : X → ωω be an arbitrary
Borel function. Then we may define the function ψ : X → ωω by

ψ(x)(n) = max
i≤n

{φ(γiσ(x))(n)} .

Clearly ψ is Borel and E-invariant, and φ(x) ≤∗ ψ(x) for all x ∈ X.
For the converse, we show that E0 is not invariantly Borel bounded; the result will then

follow from the fact, noted below in the remark immediately following Proposition 3.4,
that invariant Borel boundedness is closed downward under Borel reducibility. Thus sup-
pose for contradiction that E0 is invariantly Borel bounded. Identify each x ∈ 2ω with the
corresponding subset of ω, and define τ(x) to be the increasing enumeration of x if x is
infinite, and constantly zero otherwise, so that τ(x) ∈ ωω. Let ψ : 2ω → ωω be an E0-
invariant Borel function such that τ(x) ≤∗ ψ(x) for all x ∈ 2ω. Let D ⊂ 2ω be a comeager
subset on which ψ is continuous, so that

D̂ =
⋂

γ∈Γ

γD

is comeager and E0-invariant. Fix x0 ∈ D̂. Since [x0]E0 is dense and ψ is constant on [x0]E0 ,
by continuity of ψ we have ψ(x) = ψ(x0) for all x ∈ D̂. However, the set

{x ∈ 2ω : τ(x) �≤∗ ψ(x0)}
is comeager, a contradiction. �

In Equation 2, we required only that ψ(x) eventually dominate φ0(x) for each x ∈ X,
so in fact there is no reason to insist on ψ being E-invariant; rather, it will suffice to have

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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ψ(x) =∗ ψ(y) whenever x E y, and hence it is more natural to ask for ψ to be quasi-
invariant. This leads to the definition introduced by Boykin and Jackson in [BJ07].

3.3. Definition. Let E be a countable Borel equivalence relation on the standard Borel
space X. Then E is Borel bounded if for every Borel function φ : X → ωω, there exists a
Borel homomorphism ψ : E → E0(ωω) such that for all x ∈ X, φ(x) ≤∗ ψ(x).

This definition is nontrivial, since for instance any hyperfinite equivalence relation is
Borel bounded. Indeed, suppose that E =

⋃
n Fn is the union of the increasing sequence of

finite Borel equivalence relations Fn. Then given any Borel function φ : X → ωω, we can
define

ψ(x)(n) = max {φ(y)(n) : y Fn x} ,

so that ψ is a Borel homomorphism E → E0(ωω) such that φ(x) ≤∗ ψ(x) for all x ∈ X.
As we saw above, Borel boundedness is tailor-made for obtaining Theorem 1.3, and we

now present the proof.

Proof of Theorem 1.3. Let E =
⋃

n Dn be an increasing union, where for each n, Dn =
⋃

m Em
n

is the increasing union of finite Borel equivalence relations Em
n . Also, let E be the orbit

equivalence relation induced by the action of the countable group Γ = {γi : i ∈ ω}, where
γ0 = id.

Now define φ0 as in Equation 2, so that for each x and n, φ0(x)(n) is the least m such
that:

◦ whenever y ∈ {γ0x, . . . , γnx} and y Dn x, then in fact y Em
n x.

Since E is Borel bounded, there exists a Borel homomorphism ψ : E → E0(ωω) such that
for all x ∈ X, φ0(x) ≤∗ ψ(x). We may therefore define Fn by:

◦ x Fn y iff for all k ≥ n, we have ψ(x)(k) = ψ(y)(k) and x Eψ(x)(k)
k y.

(The “for all k ≥ n” is needed to make the Fn increasing, the “ψ(x)(k) = ψ(y)(k)” is
needed to make Fn symmetric, the “Ek” is needed to make Fn finite, and the “ψ(x)(k)” is
needed to ensure the Fn will exhaust E.)

It is clear that Fn is an increasing sequence of finite equivalence relations contained in
E. The last thing to check is that E =

⋃
n Fn. Indeed, if x E y, then write y = γix and

choose some n > i such that for all k ≥ n, we have x Ek y and

max {φ0(x)(k), φ0(y)(k)} ≤ ψ(x)(k) = ψ(y)(k) .

Then by definition of φ0, for each k ≥ n we have x Eφ0(x)(k)
k y and hence x Eψ(x)(k)

k y. �
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E-class F-class

...
...

f

σ

FIGURE 2. σ gives us a base point with which to order each fiber of f .

As mentioned in the introduction, it is not known whether there exist Borel bounded
countable Borel equivalence relations that are not hyperfinite.

We conclude this section with a proof of the fact that Borel boundedness is closed down-
ward under Borel reducibility. This result is Lemma 10 of [BJ07], but we present a proof
that is designed to motivate our subsequent discussion of several analogous combinato-
rial properties.

3.4. Proposition. Let E and F be countable Borel equivalence relations on the standard Borel
spaces X and Y, respectively. If E ≤B F and F is Borel bounded, then E is Borel bounded.

Proof. Let φ : X → ωω be any Borel function. Suppose that f : X → Y is a Borel reduction
from E to F, and define the equivalence relation E′ ⊂ E on X by x E′ y iff f (x) = f (y).
Then E′ is smooth, and therefore Borel bounded. Let φ′ : E → E0(ωω) be a Borel homo-
morphism such that for all x ∈ X, φ(x) ≤∗ φ′(x). Also let B ⊂ X be a Borel transversal
for E′, with σ : im( f ) → X a Borel function such that f ◦ σ = idim( f ) (see figure 2). Now
define the Borel function φ̃ : Y → ωω by

φ̃(y)(n) =

⎧⎨
⎩

φ′(σ(y))(n) if y ∈ im( f ) ;

0 otherwise .

Using the fact that F is Borel bounded, let ψ̃ : F → E0(ωω) be a Borel homomorphism such
that for all y ∈ Y, φ̃(y) ≤∗ ψ̃(y). Finally, let ψ = ψ̃ ◦ f . Then ψ is a Borel homomorphism
from E to E0(ωω) such that for all x ∈ X, φ(x) ≤∗ ψ(x). �

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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FIGURE 3. Size relationships among several cardinal characterisitcs

In the proof of Proposition 3.2, we required that invariant Borel boundedness is also
closed downward under Borel reducibility. Indeed, this follows using the same argu-
ment, since if F is invariantly Borel bounded, then the Borel function ψ̃ in the proof of
Proposition 3.4 can be chosen to be F-invariant, in which case ψ will be E-invariant.

4. COMBINATORIAL PROPERTIES AND CARDINAL CHARACTERISTICS

In the definition of Borel boundedness, the Borel function φ assigns a countable family
of elements of ωω to each E-class [x]E. Since no countable family is unbounded, there is
always a witness ψ(x) which bounds φ([x]E). Borel boundedness means that this witness
can be chosen in an explicit and quasi-invariant manner that does not depend on an enu-
meration of [x]E. An analogous definition can be made in which unbounded families are
replaced by other types of families which appear in the study of cardinal characteristics of
the continuum: splitting families, maximal almost disjoint families, ultrafilter bases, and
so on. We will now introduce combinatorial properties that correspond to these other car-
dinal characteristics in the same way that Borel boundedness corresponds to the bounding
number b.

We focus in this section on a few of the most natural combinatorial cardinal charac-
teristics. The relationship between the sizes of these cardinals is described visually by
(a subset of) the so-called van Douwen diagram, which appears in Figure 3. The article
[Bla10] gives a full discussion of these cardinals and their relationships. As motivating
examples we consider the splitting number s and the pseudo-intersection number p.

Given a subset A ⊂ ω, write Ac = ω � A. Given sets A, B ⊂ ω, we say that A splits B if
|A ∩ B| = |Ac ∩ B| = ℵ0. A family S ⊂ [ω]ω of infinite subsets of ω is a splitting family if
for every infinite set B ⊂ ω there exists A ∈ S such that A splits B. The splitting number s
is defined to be the minimum cardinality of a splitting family.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 
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A family F ⊂ [ω]ω of infinite subsets of ω is centered if every finite subfamily of F has
infinite intersection. The infinite set A ⊂ ω is said to be a pseudo-intersection of the centered
family F if A ⊂∗ B for every B ∈ F . The pseudo-intersection number p is defined to be
the minimum cardinality of a centered family with no pseudo-intersection.

As it will be relevant later, we briefly sketch a proof of the fact that no countable family
of subsets of ω can be a splitting family.

4.1. Proposition. ℵ0 < s.

Proof. Let {An : n ∈ ω} be a countable family of subsets of ω. Given some nonprincipal
ultrafilter U on ω, we can set B−1 = ω and then inductively define Bn+1 to be whichever
of the sets Bn ∩ An, Bn ∩ Ac

n is in U . Then each Bn is infinite, and if we inductively choose
bn+1 ∈ Bn+1 distinct from b0, . . . , bn, then {bn : n ∈ ω} is not split by any An. �

It follows that if E is a Borel equivalence relation on the standard Borel space X, then
for each Borel function φ : X → [ω]ω, there trivially exists an E-invariant function ψ : X →
[ω]ω such that for each x ∈ X, ψ(x) witnesses the fact that φ([x]E) is not a splitting family;
i.e., such that for each x ∈ X, ψ(x) ⊂∗ φ(x) or ψ(x) ⊂∗ φ(x)c. In analogy with Borel
boundedness, we might therefore call E Borel non-splitting if such a function ψ can be
chosen in an explicit and quasi-invariant fashion.

4.2. Definition (temporary). Let E be a countable Borel equivalence relation on the stan-
dard Borel space X. Then E is Borel non-splitting if for every Borel function φ : X → [ω]ω,
there exists a Borel homomorphism ψ : E → E0([ω]ω) such that for all x ∈ X, ψ(x) ⊂∗

φ(x) or ψ(x) ⊂∗ φ(x)c.

Similarly, every countable centered family F ⊂ [ω]ω has a pseudo-intersection; hence
ℵ0 < p, which suggests the following definition.

4.3. Definition (temporary). Let E be a countable Borel equivalence relation on the stan-
dard Borel space X. Then E is Borel pseudo-intersecting if for every Borel function φ : X →
[ω]ω such that the family {φ(y) : y E x} is centered for all x ∈ X, there exists a Borel
homomorphism ψ : E → E0([ω]ω) such that for all x ∈ X, ψ(x) ⊂∗ φ(x).

If these are to be reasonable properties of countable Borel equivalence relations, then it
is highly desirable for them to be closed downward under Borel reducibility, or at least
to be ∼B-invariant. However, two different problems arise if one attempts to prove the
analogue of Proposition 3.4 for the notions just defined.
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Notice that the proof of Proposition 3.4 involved two separate diagonalizations. First,
each fiber f−1({y}) yielded a countable family {φ(x) : f (x) = y} ⊂ ωω that was eventu-
ally dominated by φ′(σ(y)); then the countable family {φ′(σ(z)) : z ∈ [y]F} was eventu-
ally dominated by ψ̃(y) and this served to eventually dominate the entire original family
{φ(x) : x E σ(y)}. Letting x be the cardinal under consideration, it is apparent that this
argument only works if the property of “witnessing that ℵ0 < x” is transitive. It clearly
is in the case of b, but if each Bn ⊂ ω witnesses that {Am

n : m ∈ ω} is not splitting, and if
C ⊂ ω witnesses that {Bn : n ∈ ω} is not splitting, then nevertheless C may very well be
split by some set Am

n .
The pseudo-intersecting property yields an even more fundamental problem. If

{Am
n : m, n ∈ ω}

is a centered family of subsets of ω, and if Bn is a pseudo-intersection of {Am
n : m ∈ ω} for

each n, then there is no reason for {Bn : n ∈ ω} even to be centered, so there is no way to
carry out a second diagonalization.

Consequently we propose the following slight adjustment in the definition of Borel
boundedness, justified below by Proposition 4.5, so that it can properly serve as a model
for the general theory. Recall that if X is a standard Borel space, then we define the equiv-
alence relation Eset(X) on Xω by

〈xn〉 Eset(X)
〈

x′n
〉 ⇐⇒ {xn : n ∈ ω} =

{
x′n : n ∈ ω

}
.

If X is clear from context, we shall often write Eset instead of Eset(X).

4.4. Definition. Let E be a countable Borel equivalence relation on the standard Borel
space X. Then E has property b (E is Borel bounded) if for every Borel homomorphism
φ : X → (ωω)ω from E to Eset(ωω), there exists a Borel homomorphism ψ : X → ωω from
E to E0(ωω) such that for all x ∈ X and for all n ∈ ω, φ(x)(n) ≤∗ ψ(x).

In the original Definition 3.3, the function φ assigns a countable family of functions
φ([x]E) ⊂ ωω to each E-class by associating a single one to each element in the class. In
Definition 4.4, we give each element x ∈ X knowledge of the entire family of functions
that φ associates to [x]E. As we will see below, this slight tweak will enable us to prove
downward closure under ≤B for all of the properties defined below.

4.5. Proposition. Let E be a countable Borel equivalence relation on the standard Borel space X.
Then E is Borel bounded in the sense of Definition 3.3 if and only if E has property b, i.e., is Borel
bounded in the sense of Definition 4.4.
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Proof. Let E be the orbit equivalence relation arising from the Borel action of the count-
able group Γ = 〈γn : n ∈ ω〉. Suppose E has property b, and let φ : X → ωω be a Borel
function. Then for each x ∈ X and n ∈ ω, define φ′(x)(n) = φ(γnx), so that φ′ is a Borel
homomorphism from E to Eset(ωω). If ψ is a Borel homomorphism from E to E0(ωω) such
that φ′(x)(n) ≤∗ ψ(x) for all x ∈ X and n ∈ ω, then φ(x) ≤∗ ψ(x) for all x ∈ X.

Conversely, suppose E is Borel bounded and let φ′ : X → (ωω)ω be a Borel homomor-
phism from E to Eset(ωω). Then for each x ∈ X and n ∈ ω, define

φ(x)(n) = max
k≤n

{
φ′(x)(k)(n)

}
,

so that φ : X → ωω is a Borel function such that for each x ∈ X and n ∈ ω, φ′(x)(n) ≤∗

φ(x). Obtain a Borel homomorphism ψ : E → E0(ωω) such that φ(x) ≤∗ ψ(x) for all
x ∈ X. Then φ′(x)(n) ≤∗ ψ(x) for each x ∈ X and n ∈ ω. �

We are now ready to introduce a zoo of combinatorial properties of countable Borel
equivalence relations, each of which corresponds to a cardinal characteristic of the contin-
uum in the same way that Borel boundedness corresponds to b.

4.6. Definition. Let E be a countable Borel equivalence relation on the standard Borel
space X. In each of the following, φ and ψ always denote Borel homomorphisms.

◦ E has property b (E is Borel bounded) if for every φ : E → Eset(ωω), there exists ψ : E →
E0(ωω) such that for all x ∈ X and n ∈ ω, φ(x)(n) ≤∗ ψ(x).

◦ E has property d (E is Borel non-dominating) if for every φ : E → Eset(ωω), there exists
ψ : E → E0(ωω) such that for all x ∈ X and n ∈ ω, ψ(x) �≤∗ φ(x)(n).

◦ E has property s (E is Borel non-splitting) if for every φ : E → Eset([ω]ω), there exists
ψ : E → E0([ω]ω) such that for all x ∈ X and n ∈ ω, ψ(x) ⊂∗ φ(x)(n) or ψ(x) ⊂∗

φ(x)(n)c.

◦ E has property r (E is Borel reapable) if for every φ : E → Eset([ω]ω), there exists ψ : E →
E0([ω]ω) such that for all x ∈ X and n ∈ ω, |ψ(x)∩ φ(x)(n)| = |ψ(x)c ∩ φ(x)(n)| = ℵ0.

◦ E has property p (E is Borel pseudo-intersecting) if for every φ : E → Eset([ω]ω) such that
{φ(x)(n) : n ∈ ω} is centered for each x ∈ X, there exists ψ : E → E0([ω]ω) such that
for all x ∈ X and n ∈ ω, ψ(x) ⊂∗ φ(x)(n).

◦ E has property t (E is Borel tower-plugging) if for every φ : E → Eset([ω]ω) such that
{φ(x)(n) : n ∈ ω} admits a well-ordering compatible with ⊂∗, there exists ψ : E →
E0([ω]ω) such that for all x ∈ X and n ∈ ω, ψ(x) ⊂∗ φ(x)(n).
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◦ E has property a (E is Borel non-mad) if for every φ : E → Eset([ω]ω) with the property
that {φ(x)(n) : n ∈ ω} is almost disjoint for all x ∈ X, there exists ψ : E → E0([ω]ω)

such that for all x ∈ X and n ∈ ω, |ψ(x) ∩ φ(x)(n)| < ℵ0.

◦ E has property i (E is Borel non-maximally-independent) if for every φ : E → Eset([ω]ω)

such that {φ(x)(n) : n ∈ ω} is independent for all x ∈ X, there exists ψ : E → E0([ω]ω)

such that for all x ∈ X, the set {ψ(x)} ∪ {φ(x)(n) : n ∈ ω} is independent and ψ(x) �=∗

φ(x)(n) for all n ∈ ω.

◦ E has property u if for every φ : E → Eset([ω]ω) such that {φ(x)(n) : n ∈ ω} is centered
for all x ∈ X, there exists ψ : E → E0([ω]ω) such that for all x ∈ X and n ∈ ω,
|ψ(x) ∩ φ(x)(n)| = |ψ(x)c ∩ φ(x)(n)| = ℵ0.

Thus we obtain combinatorial properties for each of the cardinal characteristics b, d, s,
r, p, a, i, t, and u, which for convenience we denote with the same letters in a sans-serif
font. We include both p and t even though p = t; these properties are defined differently
and may not be the same.

It is easy to show that each of these properties is closed downward under containment
and Borel reducibility. This is proved generally in the next section, but we sketch here the
proof for property p to illustrate the motivation behind the use of Eset in Definition 4.6.

4.7. Proposition. Let E and F be countable Borel equivalence relations on the standard Borel
spaces X and Y, respectively. If F has property p and E ≤B F, then E has property p.

Proof. Let E be the orbit equivalence relation arising from the Borel action of the countable
group Γ = {γi : i ∈ ω} on X. Suppose that f : X → Y is a Borel reduction from E to
F, and let σ : im( f ) → X be a Borel function such that f ◦ σ = idim( f ), as depicted in
Figure 2. Note that im( f ) is Borel and that F′ = F � im( f ) has property p (see 5.2(i)).
Suppose φ : E → Eset([ω]ω) is a Borel homomorphism such that for every x ∈ X, the
family {φ(x)(n) : n ∈ ω} is centered. We shall define another homomorphism φ̃ : F′ →
Eset([ω]ω) with the analogous property. First, let n �→ 〈n0, n1〉 denote a fixed pairing
function. Define

φ̃(y)(n) = φ(γn0 σ(y))(n1) .

Then φ̃ is a Borel homomorphism from F′ to Eset([ω]ω) such that {φ̃(y)(n) : n ∈ ω} is
centered for each y, so using property p fix a Borel homomorphism ψ̃ : F′ → E0([ω]ω)

such that ψ̃(y) ⊂∗ φ̃(y)(n) for all y and n. Now define ψ = ψ̃ ◦ f . Since φ(x) and φ̃( f (x))
enumerate the same families, we have ψ(x) ⊂∗ φ(x)(n) for all n. �
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Our aim is now to establish the basic relationships between these properties, and at-
tempt to locate them as far as possible within the hierarchy of countable Borel equivalence
relations under the partial (pre)-order of Borel reducibility.

As we shall see, there is a rough correspondence between ZFC-provable inequalities
among cardinal characteristics and implications among the combinatorial properties we
have introduced. For example, it is immediate from the definitions that every Borel
bounded relation is also Borel non-dominating, for the same reason that b ≤ d. We ex-
press this succinctly by writing b → d. Likewise, the fact that every tower is a centered
family shows both that p ≤ t and also that p → t.

Figure 4 displays the basic implications between properties corresponding to cardinal
characteristics, which will be proved in Section 7. A special case appears to be property
s, which we show in Section 6 to be equivalent to smoothness. At present, most of the
implications in Figure 4 are simply due to “obvious” inequalities between cardinal char-
acteristics. We hope that the diagram can be improved and expanded in the future.

i u

d r

� �

t b

�
�

a

p

� �
�

s

�

FIGURE 4. Relationships among combinatorial properties

It is possible that this forest of definitions will give rise to a varied and interesting family
of properties. It is also conceivable that each of these properties implies hyperfiniteness,
and hence that the whole diagram collapses. If this is the case, then we will be left with a
great number of new characterizations of hyperfiniteness. In light of the challenges in this
subject, if the diagram does not collapse then it may be very difficult to prove that this is
the case.

We conclude this section by discussing briefly some of the motivations for studying and
expanding the diagram in Figure 4, and by considering what meaning the relationships
between these properties might have for the cardinals themselves. The diagram may be
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regarded as being stratified into layers, though we do not know where the boundaries lie
at the moment. At the bottom of the diagram we find the characterizations of smooth-
ness, such as property s. Just above that should be the characterizations of (nonsmooth)
hyperfiniteness. It is not known whether any of the properties in the diagram lie at this
level.

From the perspective of the union problem, the most interesting layer is the one con-
sisting of those properties x that do not imply hyperfiniteness, but additionally have the
Boykin-Jackson property: if E is an increasing union of hyperfinite equivalence relations
and E has property x then E is hyperfinite. Once again, we do not know if this layer is
nonempty, but it is at this layer that we have a solution for the union problem.

The top layer consists of those properties which hold of all countable Borel equivalence
relations. Once again, we do not know any (nontrivial) property which lies at this layer.
But if this layer were to overlap with the previous, then the union problem would be
completely solved.

Finally, we suggest another simple meaning for our combinatorial properties. Each one
concerns a family of a certain type: a dominating family, a maximal tower, a centered
family with no pseudointersection, and so on. None of these families can be countable,
as can usually be established by a straightforward diagonalization argument. However,
the witness constructed in this diagonalization typically depends on a well-ordering of
the family. The corresponding combinatorial property helps us to gauge the extent of this
dependence; the higher the corresponding property lies in the diagram, the easier it is to
diagonalize in a way that does not explicitly depend on the well-order.

As an example, consider the diagonalization that is used to prove that no countable
family can be unbounded, compared to that used in the proof of Proposition 4.1 to show
that no countable family can be a splitting family. The construction given in the latter
argument is less explicit and depends to a greater extent on the ordering of the sets 〈An〉
than that given in Equation (1) to show that ℵ0 < b. In particular, it requires that we make
a sequence of dependent and seemingly arbitrary choices, for which we enlisted the aid
of a nonprincipal ultrafilter. In Section 6 we demonstrate that in fact the diagonalization
cannot be carried out in a Borel and (quasi-)invariant fashion when the countable families
are given by E0-classes.

5. A GENERAL FRAMEWORK FOR COMBINATORIAL PROPERTIES

Most cardinal characteristics, including those considered in Section 4, can be described
abstractly as the norm of a suitable relation. See, for instance, Vojtáš [Voj93] and Blass
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[Bla96] for a development of this approach. We now extend our discussion to this setting,
and define combinatorial properties corresponding to nearly any cardinal of this type.

Following Vojtáš, let a relation be a triple A = (A−, A+, A), where A ⊂ A− × A+. We
think of A− as a set of “challenges,” A+ as a set of “responses,” and A as a “dominating
relation.” We say that a family F ⊂ A+ is dominating with respect to the relation A if for
any challenge x ∈ A− there exists a response y ∈ F such that x A y. Let D(A) consist of
all families F ⊂ A+ that are dominating with respect to A. Then the dominating number
or norm of the relation A is the cardinal characteristic

‖A‖ = min {|F| : F ∈ D(A)} .

For example, the dominating number d is the norm of the relation (ωω, ωω,≤∗), and the
splitting number s is the norm of the relation ([ω]ω,P(ω), “is split by”). Indeed, many
cardinal characteristics can be expressed as the norm of a suitable relation, but a slight
generalization is needed to handle certain others. Let A be a relation, and let Φ be a
property of families F ⊂ A+. Then the norm of A relative to Φ is the cardinal characteristic

‖A‖Φ = min {|F| : Φ(F ) & F ∈ D(A)} .

For instance, the pseudo-intersection number p is the norm of the relation ([ω]ω, 2ω, �⊂∗)
relativized to the property Φ(F ) = “F is centered.”

Cardinal characteristics that can be expressed as the relativized norm of a relation are
said to be tame. (This terminology is usually reserved for the case when additional de-
finability constraints are imposed on A and Φ. At present we shall not have need of any
further precision, but see Appendix B of [Zap04] for a discussion.)

For our purposes, we consider only relations on spaces with an eventual equality re-
lation. Specifically, a relation A is said to be invariant if both A− and A+ are subsets of
either 2ω or ωω, and whenever x E0(A−) x′ and y E0(A+) y′, we have

x A y ⇐⇒ x′ A y′ .

Now we are ready to define the combinatorial property corresponding to the cardinal
characteristic ‖A‖Φ as follows.

5.1. Definition. Let A be an invariant relation, let Φ be a property of families F ⊂ A+, and
suppose that E is a countable Borel equivalence relation on the standard Borel space X.
Then E is said to be Borel non-(A, Φ) if for every Borel homomorphism φ : E → Eset(A+)

such that the family {φ(x)(n) : n ∈ ω} has property Φ for each x ∈ X, there exists a Borel
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homomorphism ψ : E → E0(A−) such that for all x ∈ X and n ∈ ω,

¬(ψ(x) A φ(x)(n)) .

For the “non-relativized” case where Φ holds of all families, we just say Borel non-A.

For example, the property corresponding to d = ‖(ωω, ωω,≤∗)‖ is the Borel non-
dominating property, d. Similarly, the Borel pseudo-intersecting property p is the property
corresponding to the relation ([ω]ω,P(ω), �⊂∗) together with Φ(F ) = “F is centered.” In
fact, one easily checks that each of the nine properties introduced in Definition 4.6 is de-
rived from a tame cardinal characteristic.

We now establish some basic closure results. Recall that if E ⊂ F are countable Borel
equivalence relations on the standard Borel space X, then a Borel set B ⊂ X is full for E
if B intersects each E-class, and that F is smooth over E if there is a Borel homomorphism
f : F → E such that x F f (x) for all x ∈ X.

5.2. Theorem. Let E, F be countable Borel equivalence relations on the standard Borel spaces
X, Y, respectively, and suppose that A is an invariant relation, with Φ a property of families
F ⊂ A+.

(i) If E is Borel non-(A, Φ) and B ⊂ X is Borel, then E � B is Borel non-(A, Φ).
(ii) If E ≤B F and F is Borel non-(A, Φ), then E is Borel non-(A, Φ).

(iii) If B ⊂ X is a Borel subset that is full for E and if E � B is Borel non-(A, Φ), then E is
Borel non-(A, Φ).

(iv) If X = Y, E ⊂ F, F is smooth over E, and E is Borel non-(A, Φ), then F is Borel non-
(A, Φ).

(v) If X = Y, E ⊂ F, F is Borel non-(A, Φ), and the property Φ is closed under unions, then
E is Borel non-(A, Φ).

Proof. Throughout the proofs of (i)–(v) we fix a pairing function n �→ 〈n0, n1〉 of ω onto
ω2.

(i) Fix x0 ∈ B (if B = ∅ there is nothing to prove), and let E be the orbit equivalence
relation arising from the Borel action of the group Γ = {γi : i ∈ ω} on X, where γ0 = id.
Suppose that φ : E � B → Eset(A+) is a Borel homomorphism such that for all x ∈ B,
{φ(x)(n) : n ∈ ω} has property Φ. Let [B] = {x ∈ X : (∃y ∈ B) x E y} be the E-saturation
of B, and define the function σ : [B] → B by

σ(x) = γkx, where k is least such that γkx ∈ B .
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Define the function φ̃ : X → (A+)ω by

φ̃(x)(n) =

⎧⎨
⎩

φ(σ(x))(n) if x ∈ [B] ;

φ(x0)(n) otherwise .

Then φ̃ is a Borel homomorphism E → Eset(A+) such that for all x ∈ X, {φ̃(x)(n) : n ∈ ω}
has property Φ. By hypothesis obtain a Borel homomorphism ψ : E → E0(A−) such that
for all x ∈ X and n ∈ ω, ¬(ψ(x) A φ̃(x)(n)). The restriction of ψ to B is as desired.

(ii) Suppose that E is the orbit equivalence relation arising from the Borel action of the
group Γ = {γi : i ∈ ω} on X. Let f : X → Y be a Borel reduction from E to F, and let
σ : im( f ) → X be a Borel function such that f ◦ σ = idim( f ). Let φ : E → Eset(A+) be a
Borel homomorphism such that for all x ∈ X, {φ(x)(n) : n ∈ ω} has property Φ. Define
the function φ̃ : im( f ) → (A+)ω by

φ̃(y)(n) = φ(γn0 σ(y))(n1) ,

so that φ̃ is a Borel homomorphism F � im( f ) → Eset(A+) such that for all y ∈ im( f ),
{φ̃(y)(n) : n ∈ ω} has property Φ. By hypothesis and using (i), obtain a Borel homomor-
phism ψ̃ : F � im( f ) → E0(A−) such that for all y ∈ im( f ) and n ∈ ω,

¬(ψ̃(y) A φ̃(y)(n)) .

Let ψ = ψ̃ ◦ f . Then ψ is a Borel homomorphism E → E0(A−) such that for all x ∈ X and
n ∈ ω, ¬(ψ(x) A φ(x)(n)).

(iii) Let E be the orbit equivalence relation arising from the Borel action of the group
Γ = {γi : i ∈ ω} on X, and suppose that φ : E → Eset(A+) is a Borel homomorphism such
that for all x ∈ X, {φ(x)(n) : n ∈ ω} has property Φ. Define the function φ̃ : B → (A+)ω

by
φ̃(x)(n) = φ(γn0 x)(n1) ,

so that φ̃ is a Borel homomorphism E � B → Eset(A+) such that for all x ∈ B, {φ(x)(n) :
n ∈ ω} has property Φ. Obtain by hypothesis a Borel homomorphism ψ̃ : E � B → E0(A−)
such that for all x ∈ B and n ∈ ω, ¬(ψ̃(x) A φ̃(x)(n)). Define the function ψ : X → A− by

ψ(x)(n) = ψ̃(γkx)(n), where k is least such that γkx ∈ B .

Then ψ is a Borel homomorphism E → E0(A−) such that for all x ∈ X and n ∈ ω,
¬(ψ(x) A φ(x)(n)).

(iv) Let f : X → X be a Borel homomorphism from F to E such that x F f (x) for all
x ∈ X. Let B = {x ∈ X : x E f (x)}, so that B is a Borel subset of X that is full for F such
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that E � B = F � B. Now if E is Borel non-(A, Φ) then also E � B is Borel non-(A, Φ) by (i),
which implies that F is Borel non-(A, Φ) by (iii).

(v) Let F be the orbit equivalence relation arising from the Borel action of the group
Γ = {γi : i ∈ ω} on X. Let φ : E → Eset(A+) be a Borel homomorphism such that for all
x ∈ X, {φ(x)(n) : n ∈ ω} has property Φ. For all x ∈ X and n ∈ ω, define

φ̃(x)(n) = φ(γn0 x)(n1) ,

so that φ̃ is a Borel homomorphism F → Eset(A+) such that for all x ∈ X, the set

{φ̃(x)(n) : n ∈ ω} =
⋃

y∈[x]F
{φ(y)(n) : n ∈ ω}

has property Φ. Obtain by hypothesis a Borel homomorphism ψ : F → E0(A−) such that
for all x ∈ X and n ∈ ω, ¬(ψ(x) A φ̃(x)(n)). Then ψ is a Borel homomorphism from E to
E0(A−) with the property that ¬(ψ(x) A φ(x)(n)) for all x, n. �

Next we discuss the implication relationships between combinatorial properties de-
rived from cardinal characteristics, which frequently correspond to inequalities between
the cardinals. Many of the inequalities expressed in van Douwen’s diagram are captured
by combinatorial gadgets called generalized Galois-Tukey connections, or morphisms for short.
If A and B are relations, then a morphism from A to B is a pair of functions

ξ− : B− → A−
ξ+ : A+ → B+

such that for all b ∈ B− and a ∈ A+,

ξ−(b) A a =⇒ b B ξ+(a) .

The point of the definition is that if there exists a morphism from A to B, then ‖A‖ ≥ ‖B‖
(indeed, if F is dominating with respect to A then ξ+(F ) is dominating with respect to
B). More generally, if there exists a morphism (ξ−, ξ+) from A to B such that whenever
F has property Φ then ξ+(F ) has property Ψ, then ‖A‖Φ ≥ ‖B‖Ψ.

5.3. Example. To show that p ≤ a, one may simply observe that whenever a {aα} is
maximal almost disjoint (and infinite), then the family {ac

α} is centered and has no pseudo-
intersection. To prove this with morphisms, let ξ−(b) = b and ξ+(a) = ac; then ξ+ takes
infinite almost disjoint families to families with the strong finite intersection property, and
whenever b is not almost disjoint from a, we have b �⊂∗ ac.
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Although the existence of a morphism from A to B implies that ‖A‖ ≥ ‖B‖, in the
study of cardinal characteristics one is ultimately interested in determining which models of
set theory satisfy a given cardinal inequality. Of special importance are those relationships
between cardinal characteristics that are provable in ZFC. In [Bla96], Blass notes that even
if there is a morphism from A to B, the inequality ‖A‖ ≥ ‖B‖ may fail in a forcing
extension (with A and B interperted in the extension). In that paper Blass proposes that
one look instead for definable morphisms, and he establishes the following.

5.4. Theorem (Blass). Suppose that there is a Borel morphism from A to B, meaning that the
components ξ−, ξ+ are Borel functions. Then the inequality ‖A‖ ≥ ‖B‖ cannot be violated by
forcing.

Borel morphisms have been studied in [Bla96], [Mil02] and [CSM13]. The latter article
provides a diagram of all the characteristics in Figure 3 with respect to Borel morphisms.
But for our purposes, even Borel morphisms are insufficient since the existence of such
a morphism from A to B does not yield a proof that Borel non-B implies Borel non-A.
Moreover, it is sometimes the case that Borel non-B implies Borel non-A, and yet there
is no morphism from A to B at all. For instance, we show in the next section that s → r,
even though there are models in which s < r. What we need instead is the following.

5.5. Definition. Let A,B be invariant relations. A Borel morphism (ξ−, ξ+) from A to B

is said to be invariant iff ξ− is a Borel homomorphism E0(B−) → E0(A−).

5.6. Theorem. If there exists an invariant Borel morphism from A to B, then the property Borel
non-B implies Borel non-A.

Proof. Let (ξ−, ξ+) be the invariant Borel morphism from A to B, and suppose that E
is Borel non-B. Given a Borel homomorphism φ : E → Eset(A+), we shall consider the
homomorphism φ′ : E → Eset(B+) defined by

φ′(x)(n) = ξ+(φ(x)(n)) .

Since E is Borel non-B, there exists a Borel homomorphism ψ′ : E → E0(B−) such that for
all x ∈ X and n ∈ ω we have ¬(ψ′(x) B φ′(x)(n)). Letting ψ = ξ− ◦ ψ′, we have that ψ is
a Borel homomorphism E → E0(A−) and for all x ∈ X, n ∈ ω,

¬ (
ψ′(x) B φ′(x)(n)

)
=⇒ ¬ (

ψ′(x) B ξ+(φ(x)(n))
)

=⇒ ¬ (
ξ−(ψ′(x)) A φ(x)(n)

)

=⇒ ¬ (ψ(x) A φ(x)(n)) .
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Hence E is Borel non-A. �

Theorem 5.6 generalizes to properties derived from arbitrary tame cardinal character-
istics. To show that property Borel non-(B, Ψ) implies Borel non-(A, Φ), it suffices to
find an invariant Borel morphism (ξ−, ξ+) from A to B such that ξ+(F ) has property Ψ
whenever F has property Φ.

We now conclude this section with a generalization of a result of Thomas which shows
that under the hypothesis of Martin’s Conjecture, there exists a countable Borel equiva-
lence relation which is not Borel bounded. Recall that ≤T denotes the Turing reducibility
relation on 2ω. The Turing equivalence relation ≡T defined by x ≡T y iff x ≤T y and y ≤T x
is one of the most important countable Borel equivalence relations.

Martin’s Conjecture is the statement that any Borel homomorphism from ≡T to ≡T is
either constant or ≤T-increasing on a cone. (Here, a subset of 2ω is said to be a cone if
it is ≤T-upwards closed). We shall require only the following consequence of Martin’s
Conjecture (for instance, see Theorem 2.1(i) in [Tho09]):

5.7. Lemma. Assuming Martin’s conjecture, if f : ≡T → E0 is a Borel homomorphism then there
exists a cone C such that f (C) is contained in a single E0-class.

Using this, Thomas proved in Theorem 5.2 of [Tho09] that Martin’s Conjecture implies
that ≡T is not Borel bounded. We now show that his argument applies to any (nontrivial)
property corresponding to an invariant relation.

5.8. Theorem. Let A be an invariant relation, and assume that for all z ∈ A− there exists a ∈ A+

such that z A a. Assuming Martin’s Conjecture, the Turing equivalence relation ≡T is not Borel
non-A.

Proof. Suppose towards a contradiction that ≡T is Borel non-A. Let φ : 2ω → A+ be any
Borel function such that for all a ∈ A+, the preimage φ−1(a) is cofinal. (To see that there
exists such a map, let x �→ 〈x0, x1〉 be a pairing function on 2ω and let f be a Borel bijection
between 2ω and A+. Then φ(x) = f (x0) has the desired properties.)

It follows that for all a ∈ A+, the ≡T-saturation [φ−1(a)]T contains a cone. Since ≡T is
Borel non-A, there exists a Borel homomorphism ψ : E → E0(A−) such that for all x ∈ 2ω,

¬(ψ(x) A φ(x)) .

By Lemma 5.7, there exists a cone C such that ψ(C) is contained in a single E0(A−)-class,
say [z]E0 . Since A is nontrivial, there exists a ∈ A+ such that z A a. Since [φ−1(a)]T
contains a cone, it meets C. In particular, there exists x ∈ 2ω such that ψ(x) A φ(x), which
is a contradiction. �
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6. THE NON-SPLITTING PROPERTY

The non-splitting property s would appear to be very special, as it does not hold of any
non-trivial equivalence relations.

6.1. Theorem. If the countable Borel equivalence relation E has property s, then E is smooth.

For the proof we shall require the following standard measure-theoretic fact. Let m
denote the Haar (or “coin-tossing”) measure on 2ω, so that m is the ω-fold product of the
( 1

2 , 1
2 ) measure on {0, 1}. Then [ω]ω is an E0-invariant, Borel, m-conull subset of 2ω, and

we denote the restriction of m to [ω]ω also by m.

6.2. Proposition. Suppose that N ⊂ [ω]ω has the following properties:

(a) N is E0-invariant;
(b) for any x ∈ [ω]ω, exactly one of x or xc is in N.

Then N is not m-measurable.

Proof. Suppose that N is measurable. Property (a) says that N is a tail event, so by Kol-
mogorov’s zero-one law N has measure zero or one. On the other hand, property (b)
implies that N has measure 1

2 , since the map x �→ xc is a measure-preserving bijection
which sends N onto [ω]ω � N. �

Proof of Theorem 6.1. By Theorem 5.2, it suffices to show that there exists a hyperfinite
equivalence relation E which does not have property s. To this end, let E be the hyperfinite
equivalence relation on X = [ω]ω given by

x E x′ ⇐⇒ x E0 x′ or xc E0 x′ ,

and assume that E is the orbit equivalence relation arising from the Borel action of the
countable group Γ = {γi : i ∈ ω} on X.

Now suppose that E is Borel non-splitting, and define the Borel homomorphism φ : E →
Eset by

φ(x)(n) = γnx ,

so that each φ(x) enumerates the family [x]E. Let ψ : E → E0 be a Borel homomorphism
such that for all x and n,

either ψ(x) ⊂∗ φ(x)(n) or ψ(x) ⊂∗ (φ(x)(n))c .

Then in particular, for each x we have either ψ(x) ⊂∗ x or ψ(x) ⊂∗ xc. Now put

N = {x ∈ X : ψ(x) ⊂∗ x} .
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Since ψ is Borel, so is N.
To complete the proof, we show that N satisfies conditions (a) and (b) of Proposition 6.2,

and therefore is not m-measurable, a contradiction. For (a), suppose that x ∈ N, so that
ψ(x) ⊂∗ x, and let x′ be such that x′ E0 x. Then ψ(x′) E0 ψ(x), so that ψ(x′) =∗ ψ(x) ⊂∗

x =∗ x′, and hence x′ ∈ N too. For condition (b), suppose that x ∈ N so that ψ(x) ⊂∗ x.
Then since xc E x, we have ψ(xc) E0 ψ(x), so that ψ(xc) =∗ ψ(x) ⊂∗ x. It follows that
ψ(xc) �⊂∗ xc, and hence xc �∈ N. This shows that x ∈ N implies xc ∈ 2ω

� N, and the
converse is the same. �

We remark that as a consequence, we can also obtain a similar result for the properties
derived from the cardinal characteristics parn discussed in [Bla10, Section 3]. In detail,
let us say that E has property parn if for every Borel homomorphism φ : E → Eset(2ωn

),
there exists a Borel homomorphism ψ : E → E0([ω]ω) such that for all x ∈ X, ψ(x) is
almost homogeneous for each function φ(x)(n). (Here, A ⊂ ω is almost homogeneous for a
function f if A is almost equal to a set which is homogeneous for f .) It is easy to see that
property par1 coincides with property s, and parn → parm for n ≥ m. It follows that if E
has property parn, then E is smooth.

We close this section by noting that the converse of Theorem 6.1 also holds. Indeed,
each of the properties in Definition 4.6 holds of smooth relations. For properties other than
s, this is implicit in Proposition 7.2 together with Theorems 7.1 and 5.2, but intuitively, if E
is a smooth countable Borel equivalence relation on the standard Borel space X with Borel
transversal B ⊂ X, then for a given property x corresponding to the cardinal x, we simply
use the unique point in [x]E ∩ B as the base point for the appropriate diagonalization
argument showing that {φ(x)(n) : n ∈ ω} is not dominating with respect to x. This is
perhaps hardest to carry out in the case of s, so for completeness we do so here.

Thus suppose E is a smooth countable Borel equivalence relation on the standard Borel
space X, with Borel transversal B ⊂ X and Borel function σ : X → X such that for each x ∈
X, σ(x) is the unique element in B ∩ [x]E. Let φ : E → Eset([ω]ω) be a given Borel homo-
morphism. Inductively define the Borel functions φ′

n : X → [ω]ω by φ′
0(x) = φ(σ(x))(0)

and

φ′
n+1(x) =

⎧⎨
⎩
(φ ◦ σ)(x)(n + 1) ∩ φ′(x)(n) if this set is infinite ;

(φ ◦ σ)(x)(n + 1)c ∩ φ′(x)(n) otherwise .

Then inductively define the Borel functions αn : X → ω by

αn(x) = min
[
φ′

n(x)� {αk(x) : k < n}] ,
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and finally set ψ(x)(n) = αn(x). It is easily checked that ψ(x) ⊂∗ φ(x)(n) or ψ(x) ⊂∗

φ(x)(n)c for each x ∈ X and n ∈ ω. Moreover, ψ is not merely a Borel homomorphism
E → E0([ω]ω), but in fact is E-invariant.

7. PROOF OF THE DIAGRAM

In this section, we prove the implications between the combinatorial properties de-
picted in Figure 4.

7.1. Theorem. The arrows in Figure 4 correspond to true implications between properties of
countable Borel equivalence relations.

The first implication, s → p, follows from Theorem 6.1 together with the fact that
smooth equivalence relations have property p. In fact, this implication is not reversible,
since there also exist nonsmooth relations with property p.

7.2. Proposition. If E is hyperfinite, then E has property p.

Proof. Express E as the increasing union of finite Borel equivalence relations Fn, and sup-
pose we are given a Borel homomorphism φ : E → Eset([ω]ω) such that for each x ∈ X,
the family {φ(x)(n) : n ∈ ω} is centered. Set α0(x) = 0 for all x ∈ X, and inductively
define functions an : X → ω as follows. Given a0(x), . . . , an(x), let

an+1(x) = min
(⋂{φ(y)(i) : i ≤ n and x Fn y}� {ai(y) : i ≤ n and x Fn y}

)
.

This construction is just a slight reorganizing of the usual diagonalization, and if we let
ψ(x) = {an(x) : n ∈ ω}, then ψ(x) is a pseudo-intersection of the set {φ(x)(n) : n ∈ ω}.
Moreover, the an have the property that if x E y, then the sequences 〈an(x) : n ∈ ω〉 and
〈an(y) : n ∈ ω〉 will eventually be equal, so that ψ is also a homomorphism from E to
E0([ω]ω). �

Currently, s → p and its consequences are the only implications that we can prove are
nonreversible.

The remainder of the proof of Theorem 7.1 will be given in a series of lemmas. In most
cases the proofs amount to trivial observations, such as noticing that the standard proof of
the corresponding cardinal inequality can be carried out in a Borel and invariant fashion.
However, in a few cases some care is needed to make sure that this can be done.

7.3. Lemma. p → t.

Proof. This holds simply because every tower is a centered family. �
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7.4. Lemma. p → a.

Proof. It suffices to observe that the morphism ξ−(b) = b, ξ+(a) = ac described in Exam-
ple 5.3 is Borel and invariant. �

7.5. Lemma. p → b.

This is a difficult case in which the classical proof that p ≤ b apparently cannot be
carried out in an invariant fashion. We were able to obtain only the weaker result p → u,
and the problem remained open until Tamás Mátrai and Juris Steprāns provided us with
a positive answer. Since the proof appears in [CSM13], we give only a brief outline here.

To establish p → b with a morphism, we require maps ξ− : [ω]ω → ωω, ξ+ : ωω → [ω]ω

such that im(ξ+) is centered and

A ⊂∗ ξ+( f ) =⇒ f ≤∗ ξ−(A) .

To do this one constructs the map ξ+ with the additional property that for every ≤∗-
unbounded subset S ⊂ ωω, the set ξ+(S) does not have a pseudo-intersection. It follows
that for each A ∈ [ω]ω, the set SA = { f ∈ ωω : A ⊂∗ ξ+( f )} is ≤∗-bounded. Letting
ξ−(A) be such a bound, it is easy to see that ξ−, ξ+ satisfy the required properties. Finally,
it is possible to compute the bounds ξ−(A) in a Borel fashion.1

7.6. Lemma. b → d.

Proof. This holds simply using the identity morphism, because any function which bounds
a given family also witnesses that the family is not dominating. �

7.7. Lemma. b → r.

Proof. We follow the proof that b ≤ r that is given in [Bla10]. Given a subset x ⊂ ω,
let fx : ω → ω be a function such that each interval [n, fx(n)) contains an element of x.
Now, given a Borel homomorphism φ : E → Eset([ω]ω), apply property b to the function
φ̃(x)(n) = fφ(x)(n) to obtain a Borel homomorphism ψ : E → E0([ω]ω) such that for all x
and n, ψ(x) eventually dominates fφ(x)(n).

Claim. There exists a Borel homomorphism λ : E0(ωω) → E0(ωω) such that for every
f ∈ ωω, every interval [λ( f )(j), λ( f )(j + 1)) contains an interval of the form [n, f (n)).
1In this construction, ξ− will be E0-invariant. In fact we can obtain this extra property automatically by the
following general observation: If there is a Borel morphism from A to B, ¬A is transitive, and E0 is Borel
non-A, then there is an invariant Borel morphism from A to B.
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Proof of claim. Begin by expressing =∗ as an increasing union of finite Borel equivalence
relations Fi. We inductively define an increasing sequence of functions ji : ωω → ω as fol-
lows. Given ji, define an auxiliary function ki+1 so that for all f , the interval [ji( f ), ki+1( f ))
contains an interval of the form [n, f (n)). Then, let

ji+1( f ) = max {ki+1(g) : g Fi f } .

We now let λ( f ) = 〈ji( f )〉, and it is clear that λ is as desired. �
We now consider the composition λ ◦ ψ, which has the property that for all m, almost

every [λ ◦ ψ(x)(n), λ ◦ ψ(x)(n + 1)) contains an element of φ(x)(m). We may therefore
define

ψ′(x) =
⋃

n odd

[(λ ◦ ψ)(x)(n), (λ ◦ ψ)(x)(n + 1)) ,

and we will have that ψ′(x) splits each member of the family enumerated by φ(x). �

7.8. Lemma. r → u

Proof. Once again the identity morphism suffices, because if some set Y witnesses that a
family F is not unsplittable, then it also witnesses that F is not an ultrafilter base. (Prop-
erty r and u are the same except u has a centered hypothesis on the family.) �

7.9. Lemma. r → i.

Proof. Suppose the Borel homomorphism φ : E → Eset has the property that every φ(x)
enumerates an independent family. Let φ′(x) enumerate all possible intersections of
finitely many sets from φ(x) with the complements of finitely many other sets from φ(x).
Since E has property r, there exists a Borel homomorphism ψ : E → E0 such that for every
x and n ∈ ω, ψ(x) splits φ′(x)(n). Then ψ(x) also witnesses that the family φ(x) is not
maximal independent. �

This completes the proof of Theorem 7.1.
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