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Abstract Due to recent increase in the usage of 3-D

magnetic resonance images (MRI) and analysis of func-

tional magnetic resonance images (fMRI), research on

3-D image processing becomes important. Observed 3-

D images often contain noise which should be removed

in such a way that important image features, e.g., edges,

edge structures, and other image details should be pre-

served, so that subsequent image analyses are reliable.

Most image denoising methods in the literature are for

2-D images. However, their direct generalizations to 3-

D images can not preserve complicated edge structures

well. Because, the edge structures in a 3-D edge surface

can be much more complicated than the edge structures

in a 2-D edge curve. Moreover, the amount of smooth-

ing should be determined locally, depending on local

image features and local signal to noise ratio, which

is much more challenging in 3-D images due to large

number of voxels. This paper proposes an efficient 3-

D image denoising procedure based on local clustering

of the voxels. This method provides a framework for

determining the size of bandwidth and the amount of

smoothing locally by empirical procedures. Numerical

studies and a real MRI denoising show that it works

well in many medical image denoising problems.

Keywords 3-D image denoising · Adaptive smooth-

ing · Local clustering · Local smoothing · Multi-

resolution · Non-parametric regression
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1 Introduction

Over the last few years, 3-D magnetic resonance images

(MRI) of various body parts (e.g., brain) are being used

extensively in medical diagnosis. However, those 3-D

images often contain noise due to hardware imperfec-

tions and other reasons. Efficient noise removal is nec-

essary for subsequent image analyses to be reliable. The

focus of this paper is to remove noise from those 3-D

images in such a way that important image features,

e.g., edges, edge structures, and other image details are

preserved well.

Most image denoising methods in the literature are

for 2-D images. For example, the methods based on

Markov random field (MRF) modeling, (e.g., Geman

and Geman 1984, Besag 1986, Godtliebsen and Sebas-

tiani 1994), local median and other robust filtering (e.g.,

Sun et al. 1994, Hillebrand and Müller 2007), bilateral

filtering (e.g., Chu et al. 1998, Tomasi and Manduchi

1998), adaptive smoothing (e.g., Polzehl and Spokoiny

2000, Takeda et al. 2007), diffusion filtering (e.g., Per-

ona and Malik 1990, Barash 2002), minimization of to-

tal variation (e.g., Rudin et al. 1992), wavelet trans-

formation (e.g., Chang et al. 2000, Portilla et al. 2003,

Om and Biswas 2015), jump curve/surface estimation

(e.g., Qiu 1998, Gijbels et al. 2006, Qiu and Mukherjee

2010), modified non-local means (e.g., Kumar 2013),

and many more (e.g., Arivazhagan et al. 2015). See Qiu

(2005, 2007) and Katkovnik et al. (2006) for detailed

information on this topic.

Many of those 2-D image denoising methods can be

generalized for denoising 3-D images, and some of those

methods are in the literature as well. For instance, 3-D

image denoising based on minimization of Total Varia-

tion (TV) is popular in the computer sciences literature

(e.g., Keeling 2003, Wang and Zhou 2006). However, the
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abilities of those methods to preserve important edge

structures and image details are limited. This is because

3-D edge surfaces can have more complicated structures

than 2-D edge curves. Examples of complicated edge

structures in 3-D images include the structures around

a point where many edge surfaces meet (e.g., Figure 1,

left panel), vertex of an irregularly shaped cone, ver-

tex of a two-sided cone, and many more. Generalized

version of many 2-D image denoising methods can not

preserve those structures because the methods are not

designed to do so.

Fig. 1 One cross section from each of three 3-D images: one
artificial, one noiseless T2 phantom, and its noisy version cor-
rupted by Gaussian noise.

In the literature, there are some image denoising

methods that are primarily designed to analyze 3-D im-

ages. Examples include non-local means algorithm (e.g.,

Buades et al. 2005, Coupe 2008), 3-D wavelet transfor-

mations (e.g., Hostalkova et al. 2007), distance weighted

Weiner filtering (e.g., Lu et al. 2001), methods based

on jump regression analysis (e.g., Mukherjee and Qiu,

2011, Qiu and Mukherjee 2012), and so forth. Many of

those methods work well where the edge structure is

relatively simple, e.g., the curvature of the edge sur-

face is small, and a small neighborhood around a voxel

contains at most two image regions. However, those

methods blur the edge structures around the marked

point in the left panel of Figure 1. Medical images often

contain complicated structures and fine image details,

e.g., the distribution of the gray matter and the white

matter in a 3-D brain MRI image provides complicated

structures in many places (Figure 1, middle and right

panels). Recently, Mukherjee and Qiu (2015) propose

an image denoising method based on local pixel/voxel

clustering based on their intensity values. However, one

major disadvantage of this method is that the smooth-

ing extent is not locally adaptive, and hence fails to effi-

ciently preserve many fine details of the image objects.

Therefore, it is imperative that we need to construct 3-

D image denoising methods that can perform this task

well. This paper aims to provide one such method.

This paper proposes a novel 3-D image denoising

method that can preserve complicated edge structures,

even if more than two image regions form those struc-

tures. Moreover, this method uses multi-resolution tech-

nique in the sense that it selects the size of the band-

width parameter locally, by a data-driven approach.

In the background of the image, or around the places

where the edge structures are simple, larger bandwidth

should be more suitable to remove noise. However, in

places where the edge structure is complicated, or there

are lot of image details, smaller bandwidth should be

more suitable to reduce the amount of blur. The pro-

posed method based on multi-resolution technique per-

forms that by a local data driven approach. Also, the

proposed method is adaptive, in the sense that the

smoothing parameter is also selected locally by an em-

pirical procedure. Another major advantage of the pro-

posed method is that it selects the size of the bandwidth

and the smoothing parameter locally by a non-iterative

procedure, unlike the method in Polzehl and Spokoiny

(2000), and thus the computation cost is checked at an

acceptable level, which is very important specially in

3-D image denoising.

The proposed method has two major parts. The

first part is a pilot screening of the whole image. In

this part, overall noise level in the whole image is es-

timated and the complications of the edge structures

are estimated. In the second part, bandwidth parame-

ter is chosen locally from the estimations in the pilot

screening, and then the image intensities are clustered

into several groups based on their numerical values. Fi-

nally, the image intensity at a given voxel is estimated

by appropriately smoothing the image intensities of the

particular group that contains the given voxel.

The remaining part of the paper is organized as

follows. The description of the proposed methodology

is provided in Section 2. Section 3 presents numeri-

cal studies of the proposed method in comparison with

a few state-of-the-art denoising techniques. Section 4

compares the performance of the proposed method on

a real MRI with a few other competing methods. Sec-

tion 5 provides some concluding remarks.

2 Proposed methodology

2.1 The underlying regression model

A monochrome image can be regarded as an image

intensity surface that is usually discontinuous at the

boundaries of the image objects (Qiu 2005). Under the

jump regression model framework, (Mukherjee and Qiu

2011) suppose that a 3-D image follows the regression

model

ξijk = f(xi, yj , zk) + εijk, for i, j, k = 1, 2, . . . , n, (1)

where {(xi, yj , zk) = (i/n, j/n, k/n), i, j, k = 1, 2, . . . , n}
are equally spaced design points or voxels in the design

space Ω = [0, 1]× [0, 1]× [0, 1], {εijk} are i.i.d. random

errors, which may or may not be Gaussian, but with

mean 0 and unknown variance σ2, f(x, y, z) is an un-

known regression function denoting the image intensity
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function, and N = n3 is the sample size. We further as-

sume that there exists a partition {Λl, l = 1, 2, . . . , s}
of the design space Ω such that: (i) each Λl is a con-

nected region in Ω; (ii)
⋃s

l=1 Λl = Ω; (iii) f(x, y, z)

is continuous in Λl\∂Λl, for l = 1, 2, . . . , s, where ∂Λl

is the boundary point set of Λl, and (iv) there ex-

ist at most finite number of line segments {�l, l =

1, 2, . . . , s∗} in [
⋃s

i=1 ∂Λi]
⋂
Ω such that for each line

segment �l there are Λl1 ,Λl2 ∈ {Λl, l = 1, 2, . . . , s} sat-

isfying �l ⊆ ∂Λl1

⋂
∂Λl2 and for any (x∗, y∗, z∗) ∈ �l

lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl1

f(x, y, z) =

lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl2

f(x, y, z).

Then, we call D := [
⋃s

l=1 ∂Λl]
⋂
Ω the jump location

surfaces (JLSs) of f(x, y, z). Obviously, JLSs describe

the places where f has jumps. In image processing lit-

erature, they are called edge or jump surfaces.

2.2 Pilot screening

This stage of the proposed method serves two purposes.

Firstly, it finds a rough estimate of σ, and secondly,

it estimates the number of Λl’s that intersect a small

neighborhood around each voxel. In the second stage

of the proposed method, these information are used to

select the bandwidth and smoothing parameters locally.

2.2.1 Estimation of σ

To get a rough estimate of σ, we can first apply a stan-

dard image denoising filter to get a denoised image and

the residual image. Since we only want a rough esti-

mate of σ, we prefer to choose a simple denoising filter

so that the computation is fast. The performance of

the proposed method is quite robust to the choice of

the denoising filter. In this paper, we suggest using a

local constant kernel (LCK) smoothing. The procedure

is described below.
At a given voxel (x, y, z) ∈ Ω, let us consider its

spherical neighborhood Ohps(x, y, z) where the radius
hps is a bandwidth parameter for pilot local smoothing.
Since we want a rough estimate of σ, hps = 1.0/n serves
the purpose. To keep the procedure simple, this value
of hps is used in all numerical studies in this paper. In
O∗(x, y, z), the local constant kernel (LCK) estimator
of f(x, y, z) is obtained by

â(x, y, z) =

∑
(xi,yj,zk)∈O∗(x,y,z)

ξijkK

(
xi − x

hps

,
yj − y

hps

,
zk − z

hps

)
(2)

where K is a 3-D kernel density function defined in

a unit ball. For simplicity, we use 3-D Gaussian kernel

with variance 1.0 in all numerical studies in this paper.

Once we have the LCK estimator of f(x, y, z) for all

voxels, we estimate σ by

σ̂ =

√√√√ 1

N

n∑
i=1

n∑
j=1

n∑
k=1

(ξijk − â(xi, yj , zk))
2
. (3)

2.2.2 Estimation of the number of Λl’s that intersect a

specified neighborhood around each voxel

At a given voxel (x, y, z) ∈ Ω, let us consider its spher-

ical neighborhood Ohpc
(x, y, z) where the radius hpc is

a bandwidth parameter for pilot local clustering. Again

for simplicity, we suggest using a pre-fixed value hpc =

3.0/n. Next, we use observed image intensity values

within this neighborhood to estimate the number of

Λl’s, say Chpc(x, y, z), that intersect Ohpc(x, y, z). If we

have large number of voxels in Ohpc
(x, y, z), then the

voxels within that neighborhood can be clustered into

Chpc(x, y, z) number of well-separated groups, based on

their observed image intensity values. This can be ac-

complished by a standard clustering algorithm. How-

ever, since the image intensities are scalar in this case,

we can estimate Chpc(x, y, z) by a computationally sim-

ple algorithm. If we estimate the probability density

function of the image intensity values in Ohpc
(x, y, z),

then it should have Chpc(x, y, z) number of local peaks,

or local maxima. Moreover, the local minima separate

the clusters from one another. One simple way to es-

timate the probability density function is to use his-

togram.We construct the histogram of ξijk’s inOhpc
(x, y, z),

with B number of bins, and find local minima by the

following search algorithm. Suppose, Hl, l = 1, 2, . . . , B

are the heights of the bins. Then, if Hl−1 ≥ Hl, Hl+1 ≥
Hl, and at least one of Hl−1 and Hl+1 is non-zero, then,

Hl is a local minima. We choose B as a procedure pa-

rameter. Therefore, Chpc(x, y, z) can be estimated by

the number of local minima minus one. Note that if

only one Λl intersects Ohpc
(x, y, z), then the local min-

ima should be two. Moreover, the locations of the local

minima define the clusters of voxels. To demonstrate

this procedure, we artificially create a neighborhood

where four Λl intersect. One such example of a 2-D

image neighborhood corrupted with Gaussian noise is

presented in the left panel of Figure 2. In an actual 3-

D image neighborhood, each cross-section usually have

much lower resolution, but due to an additional dimen-

sion, we have about similar number of voxels as in the

left panel of Figure 2. The right panel of shows the his-

togram of the noisy image intensity values where we

can see four peaks or local maxima.
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Fig. 2 Left panel: A 2-D image neighborhood containing four
regions. Right panel: A histogram of the noisy image intensity
values of the 2-D image neighborhood from the left panel.

2.3 A multi-resolution and adaptive smoothing

At a given voxel (x, y, z) ∈ Ω, we use estimated Chpc
(x, y, z)

to select the size of bandwidth, i.e., the radius of the
spherical neighborhood h(x, y, z). If Chpc

(x, y, z) is small,
then the edge structures are simple in Ohpc(x, y, z), and
so h(x, y, z) should be large. Conversely, if Chpc

(x, y, z)
is large, then the edge structures are complicated in
Ohpc(x, y, z), and so h(x, y, z) should be small. There-
fore, one reasonable approach to select h(x, y, z) is using

a decreasing function of Ĉhpc(x, y, z). In this paper, we
suggest using the following function

h(x, y, z) =
1

n

(
max

(
1.0, (M exp

(
− 1

M
(Ĉhpc (x, y, z) − 1)

)))
,(4)

where the positive number M is a global procedure

parameter controlling the maximum possible neighbor-

hood size. Next, we consider the spherical neighborhood

Oh(x,y,z)(x, y, z) of radius h(x, y, z) around the voxel

(x, y, z) and estimate Ch(x,y,z)(x, y, z), i.e., the number

of Λl’s that intersect Oh(x,y,z)(x, y, z) by the procedure

described in Section 2.2.2. Note that Ĉh(x,y,z)(x, y, z)

can be different from Ĉhpc
(x, y, z), because h(x, y, z)

can be different from hpc. However, the number of his-

togram bins B remains same as the pilot screening stage

as B is used as a procedure parameter. While the per-

formance of the proposed method is dependent on how

we select local bandwidth, the function provided in (4)

performs well in comparison with many other functions.

Next, we identify the cluster, sayG(x, y, z) that con-

tains the voxel (x, y, z). One major advantage of the lo-

cal clustering technique is that G(x, y, z) can be a union

of disconnected regions, or a union of disconnected or

intersecting lines. The true image intensity f(x, y, z)

can be estimated by a weighted average of all ξij in

G(x, y, z). One similarity measure can be quantified

by considering small neighborhoods of size h̃ (usually

smaller than h(x, y, z)) around the two voxels (xi, yj , zk)

and (x, y, z), and then calculating the L2 distance of

the observed intensity values in those neighborhoods.

In this paper, we choose similarity measure W̃ijk =

exp

(
− ‖Õ(xi,yj ,zk)−Õ(x,y,z)‖2

2

2TL(x,y,z)σ̂2
L
(x,y,z)|Õ(xi,yj ,zk)|

)
, where ‖Õ(xi, yj , zk)−

Õ(x, y, z)‖2 is the L2 distance of the observed inten-

sity values in the spherical neighborhoods of radius h̃

around (x, y, z) and (xi, yj , zk), TL(x, y, z) > 0 is a

local tuning parameter controlling the smoothness of

the denoising procedure, and σ̂L(x, y, z) is the sample

standard deviation of ξijk in G(x, y, z). Note that if

TL(x, y, z) is small, then W̃ijk values are small, and

if TL is large, then W̃ijk values are large. Therefore,

TL(x, y, z) is a smoothing parameter controlling the

smoothness locally. If σ̂L(x, y, z) is large compared to

σ̂, then it is likely that there are some fine image details

in G(x, y, z). Therefore, to preserve those image details,

TL(x, y, z) should be small. Conversely, if σ̂L(x, y, z) is

small compared to σ̂, then it is likely that there is little

image details in G(x, y, z), and so TL(x, y, z) should be

large. For this reason, we can choose TL(x, y, z) as a

decreasing function of σ̂L(x, y, z)/σ̂. In this paper, we

suggest using the following function

TL(x, y, z) = Texp

(
− σ̂L(x, y, z)

σ̂

)
, (5)

where T is a global procedure parameter. Here also, the

performance of the proposed method is dependent on

how we select TL(x, y, z), the function provided in (5)

performs well in comparison with many other functions.

Then, our proposed estimator of f(x, y, z) is

f̂(x, y, z) =

∑
(xi,yj ,zk)∈G(x,y,z)

W̃ijkξijk

∑
(xi,yj ,zk)∈G(x,y,z)

W̃ijk

. (6)

If h̃ is chosen to be too large then a lot of fine details of

the image objects will be blurred. Moreover, computa-

tion time will increase significantly. Based on numeri-

cal simulations, h̃ = 1.0/n works well in most practical

applications. In most images, the performance of the

denoising method worsens quite fast with increase of h̃.

Therefore, in all numerical simulations in this paper,

we use h̃ = 1.0/n. The proposed multi-resolution and

adaptive 3-D image denoising is summarized below.

The proposed multi-resolution and adaptive 3-D image

denoising procedure:

Part 1: Pilot Screening:

– Estimate σ by the method as described in Section 2.2.1.
– For voxel (x, y, z), estimate Chpc (x, y, z) by the histogram method

described in Section 2.2.2.

Part 2: Multi-resolution and adaptive smoothing:

– For voxel (x, y, z), determine the local bandwidth parameter h(x, y, z)
by (4).

– Estimate Ĉh(x,y,z)(x, y, z) and find G(x, y, z) by the histogram
method.

– For voxel (x, y, z), determine the local smoothing parameter TL(x, y, z)
by (5).

– For voxel (x, y, z), estimate f(x, y, z) by (6).
– Repeat all steps, except the estimation of σ, for each voxel.
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2.4 Selection of procedure parameters:

In the proposed denoising method there are three pro-

cedure parameters to choose: B, M and T . In image

denoising literature there are several parameter selec-

tion approaches such as methods based on (i) mini-

mizing cross-validation, (ii) bootstrap, (iii) visual ap-

pearances, (iv) comparing structural similarity index

measurements, (v) computationally fast ad-hoc proce-

dures, and so on. In this paper, we suggest using struc-

tural similarity index measurement (SSIM) based ap-

proach to select the procedure parameters of the pro-

posed method. Wang et al. (2004) introduce this ap-

proach to assess image quality. Since our goal is to pre-

serve local image features, this is a reasonable approach.

The algorithm goes like this: First, using an arbitrary

choice of the procedure parameters we denoise the im-

age and then calculate the SSIM between the denoised

image f̂ and the estimated noise (ξ − f̂). There should

be no structural similarity between f̂ and (ξ− f̂) if the

performance of the denoising method is good. There-

fore, we select the parameter values that minimize SSIM

between f̂ and (ξ − f̂). Here are some guidelines for

possible choices of the parameter values: B values from

2 to 6 are good enough for most images because the

number of Λl’s in a neighborhood is rarely more than

3 or 4. Obviously, B should be integers only. M values

between 1.8 and 6.0 work for most images as well. M

can be both integers and fractions. Numerical studies

in Section 3 and 4 show that the SSIM approach works

well in many applications where the amount of noise

does not depend heavily on image intensity.

3 Numerical Studies

In this section, we present some numerical results con-

cerning the performance of the proposed multi-resolution

and adaptive image denoising method, denoted as NEW,

in comparison with three state-of-the-art image denois-

ing methods that are widely used in the literature. The

three competing methods include the image denoising

method based on non-local means algorithm (Buades et

al., 2005), denoted as NLM, the edge structure preserv-

ing 3-D image denoising method (Mukherjee and Qiu,

2011), denoted as ESPID, a denoising method based

on total variation minimization (Rudin et al., 1992), de-

noted as TV. The NLM method has two bandwidth pa-

rameters and another smoothing parameter to choose.

The ESPID method has a threshold parameter for edge

detection and two bandwidth parameters: one for edge

detection and another for smoothing. The TV method

has a regularization parameter that controls the amount

of smoothing and edge preservation. The proposed method

NEW has three parameters to choose: B, i.e., the num-

ber of bins in the histograms of local image intensity

values; M controlling the maximum possible radius of

local neighborhoods; and T , i.e., the global procedure

parameter controlling the local smoothing parameters.

The numerical study presented here includes one ar-

tificial image, one T1-weighted magnetic resonance im-

age (MRI) phantom and one T2-weighted MRI phantom

of human brain. The phantom images are collected from

‘BrainWeb’. One cross-section from each image is pre-

sented in Figure 3. The first row presents noiseless im-

ages, and the second row presents their noisy versions

corrupted by Gaussian noise. The artificial image has

resolution 32×32×32, its image intensity values range

from 0.0 to 3.0. This image has many complicated edge

structures like intersection of two, three and four edge

surfaces, some of which are curved and some are planes.

Then, we generate noisy versions of the true artificial

image by adding i.i.d. noise from the N(0, σ2) distri-

bution with σ = 0.05, 0.10, and 0.15 representing low,

medium and high levels of noise.

Fig. 3 The first row presents one cross-section from each of
the artificial image, and T1 and T2 phantom images. The sec-
ond row presents their noisy versions corrupted by Gaussian
noise, when σ is 0.10, 20 and 100, respectively.

Because the methods TV and NLM do not provide

data-driven procedures to chose their procedure param-

eters, to make fair comparisons, we search their pro-

cedure parameters by minimizing the estimated MISE

value, defined to be the sample mean of integrated square

error (cf., Mukherjee and Qiu, 2011) computed from

100 replicated simulations. While the MISE criterion

measures the overall performance of an image denois-

ing procedure, it cannot measure how well the edges

and other fine details of the image are preserved. To

measure the preservation of such fine details of the im-

age, Hall and Qiu (2007) defined a measure of jump size

(JS) of an image. Its discretized version for the true im-

age intensity function f can be written as

JS(f) =
1

(n− 2)3

n−1∑
i=2

n−1∑
j=2

n−1∑
k=2

|f(x′
i, y

′
j , z

′
k)− f(x′′

i , y
′′
j , z

′′
k )|,

where (x′
i, y

′
j , z

′
k) and (x′′

i , y
′′
j , z

′′
k ) are two immediately

neighboring voxels of (xi, yj , zk) on its two different

sides along the estimated gradient direction of f at

(xi, yj , zk). Obviously, if (xi, yj , zk) is an edge voxel,
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then |f(x′
i, y

′
j , z

′
k) − f(x′′

i , y
′′
j , z

′′
k )| is close to the jump

size of f at (xi, yj , zk). If (xi, yj , zk) is a continuity

voxel of f , then |f(x′
i, y

′
j , z

′
k) − f(x′′

i , y
′′
j , z

′′
k )| is close

to 0. Thus, EP(f̂) = |JS(f)− JS(f̂)|/JS(f) is a reason-

able measure of the edge and details preservation for

the image denoising method in question. Since we are

interested in the gradient directions rather than their

magnitudes, a computationally simple 3 × 3 × 3 Sobel

filter (cf., Qiu 2005, Section 4.4.3) is used in this paper

when estimating f ′
x, f

′
y and f ′

z.

In the numerical studies, we also include the pro-

posed method when the parameters are selected by the

data driven procedure described at Section 2.4, denoted

as NEW-SSIM. We select the parameters of the pro-

posed method that minimizes the average SSIM be-

tween f̂ and (ξ − f̂) based on 100 replicated simula-

tions. However, for all other methods, the parameters

are selected by minimizing the estimated MISE com-

puted from 100 replicated simulations.

The numerical results for the artificial image is pre-

sented in Table 1. When comparing two methods in

terms of MISE, if their estimated MISE values are MISE1

and MISE2 with standard errors SE1 and SE2, respec-

tively, and if MISE1 < MISE2, then a commonly used

practical guideline is that we conclude that method 1

is significantly better than method 2 when MISE2 −
MISE1 > 2(SE1 + SE2). Similar comparisons can be

made among different methods in terms of EP.

Table 1 In each entry, the first line presents the estimated
MISE value based on 100 simulations and the corresponding
standard error (in parenthesis), the second line presents the
value of EP and its standard error (in parenthesis), and the
third line presents the searched procedure parameter values.
This table is about the artificial image shown in Figure 3
when the noise is Gaussian.

σ = 0.05 σ = 0.10 σ = 0.15

0.0112 (0.0003) 0.0116 (0.0003) 0.0126 (0.0004)
ESPID 0.0820 (0.0018) 0.1580 (0.0027) 0.2352 (0.0033)

0.0375, 12.0, 0.0469 0.0375, 18.0, 0.0469 0.0375, 18.0, 0.0469

0.0005 (0.0000) 0.0019 (0.0000) 0.0039 (0.0001)
TV 0.0363 (0.0007) 0.0618 (0.0015) 0.1099 (0.0025)

32.0 15.0 11.0

0.0018 (0.0002) 0.0020 (0.0002) 0.0025 (0.0002)
NLM 0.0339 (0.0008) 0.0705 (0.0018) 0.1018 (0.0024)

4, 1, 0.10 5, 1, 0.15 7, 1, 0.20

0.0003 (0.0000) 0.0007 (0.0001) 0.0014 (0.0002)
NEW 0.0380 (0.0008) 0.0492 (0.0012) 0.0612 (0.0017)

4.5, 12.0, 6 5.5, 15.0, 6 6.0, 20.0, 6

0.0008 (0.0001) 0.0008 (0.0001) 0.0162 (0.0003)
NEW-SSIM 0.0226 (0.0007) 0.0406 (0.0011) 0.0595 (0.0013)

6.0, 20.0, 6 6.0, 20.0, 6 6.0, 20.0, 2

From Table 1, we see that NEW outperforms its

competitors in all cases. In this comparison, ESPID is

worst by a large margin because it is designed to pre-

serve only a few types of edge structures. When more

than two edge surfaces intersect, ESPID fails to pre-

serve those structures. NEW-SSIM also performs quite

well in comparison with estimated MISE-wise optimal

performances of other methods, except the case when

σ = 0.05 when TV performs better than NEW-SSIM.

One realization of each of the denoised images by NEW

and its three competitors when σ = 0.10 are presented

in the first row of Figure 4. Their deviation images,

defined as f̂ − f , are presented in the second row of

Figure 4. If an image denoising method performs well,

then there should not be any non-random pattern in

the corresponding deviation image. From Figure 4 we

see that NEW and NEW-SSIM indeed performs better

than its competitors in this case.

Fig. 4 The first row shows one cross-section from the de-
noised artificial images by the methods ESPID, TV, NLM,
NEW and NEW-SSIM when the noise is Gaussian with
σ = 0.10. The second row shows their deviation images.

Next, we consider one T1 weighted MRI phantom

and one T2 weighted MRI phantom and focus on one

region with many image details from each of those im-

ages. Their resolutions are 90 × 70 × 70, the image

intensity values of the T1 weighted image range from

0.3 to 1053.2, and the image intensity values of the T2

weighted image range from 4.5 to 5040.2. We add noise

from the distribution N(0, σ2), where σ is chosen to be

20 and 50 for the T1 image, and 100 and 200 for the T2

image. Then, we apply the four image denoising proce-

dures to these two examples, and their parameters are

chosen in the same way as those in the artificial image.

The results are presented in Table 2 and Figures 5 and

6.

Table 2 In each entry, the first line presents the estimated
MISE value based on 100 simulations and the corresponding
standard error (in parenthesis), the second line presents the
value of EP and its standard error (in parenthesis), and the
third line presents the searched procedure parameter values.
This table is about T1 and T2 weighted MRI phantoms shown
in Figure 3 when the noise is Gaussian.

T1, σ = 20 T1, σ = 50 T2, σ = 100 T2, σ = 200

197.2 (0.7) 519.4 (2.6) 7246.2 (40.2) 16180.6 (57.3)
ESPID 0.0388 (0.0006) 0.0197 (0.0015) 0.0015 (0.0005) 0.0530 (0.0009)

0.0167, 3500, 0.0167 0.0167, 6000, 0.0200 0.0112, 40000, 0.0114 0.0167, 35000, 0.0167
170.7 (0.6) 585.8 (2.0) 4828.3 (15.4) 13660.3 (48.3)

TV 0.0441 (0.0005) 0.0905 (0.0012) 0.0353 (0.0004) 0.0641 (0.0008)
0.105 0.037 0.022 0.010

117.7 (0.4) 338.8 (1.7) 5730.6 (17.6) 9836.4 (44.2)
NLM 0.0449 (0.0006) 0.0548 (0.0011) 0.0338 (0.0003) 0.0614 (0.0009)

3, 1, 20 3, 1, 40 3, 1, 100 3, 1, 200
116.3 (0.4) 380.6 (1.4) 4643.8 (15.1) 10482.2 (39.6)

NEW 0.0249 (0.0006) 0.0271 (0.0013) 0.0009 (0.0004) 0.0306 (0.0007)
1.8, 12.0, 2 2.0, 12.0, 2 2.2, 3.0, 4 2.2, 10.0, 2
121.0 (0.4) 411.3 (1.6) 5632.8 (18.8) 16617.4 (56.9)

NEW-SSIM 0.0271 (0.0006) 0.0171 (0.0014) 0.0359 (0.0006) 0.0863 (0.0009)
2.2, 10.0, 2 3.0, 3.0, 2 2.2, 2.0, 6 2.2, 3.0, 6

From Table 2, we see that NEW outperforms its

competitors when noise level is low. When noise level
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Fig. 5 The first row shows one cross-section from the de-
noised T1 weighted MRI phantom by the methods ESPID,
TV, NLM, NEW and NEW-SSIM when the noise is Gaussian
with σ = 20. The second row shows their deviation images.

is higher, then NLM is the best in terms of MISE, but

NEW still outperforms ESPID and TV. NEW-SSIM

performs reasonably well on T1 phantom, but not on

T2 phantom when noise level is high. From Figures 5

and 6 also, NEW and NEW-SSIM seems to preserve

image details better than its competitors when noise

level is low.

Fig. 6 The first row shows one cross-section from the de-
noised T2 weighted MRI phantom by the methods ESPID,
TV, NLM, NEW and NEW-SSIM when the noise is Gaus-
sian with σ = 100. The second row shows their deviation
images.

Next, we consider Rician noise which is commonly

observed in magnitude resonance images. The observed

image Z can be described by:

Z(x, y, z) =
√

[f(x, y, z) +N1(x, y, z)]2 + [N2(x, y, z)]2

where N1(x, y, z) and N2(x, y, z) are two independent

random variables with normal distribution N(0, σ2).

We artificially generate noisy images corrupted by Ri-

cian noise where σ = 0.15 for the artificial image, σ =

20 and 50 for T1 phantom, and σ = 100 and 200 for T2

phantom. Since conventional denoising methods leave

positive bias while estimating the true image intensity

function (c.f., Mukherjee and Qiu, 2013), an efficient

bias correction procedure (e.g., Gudbjartsson and Patz

1995, Wiest-Daessle (2008), Mukherjee and Qiu 2013)

is imperative. In this paper, we use the bias correction

method suggested by Mukherjee and Qiu (2013). The

performances of the competing methods are presented

in Table 3 and Figs 7 and 8. To calculate SSIM be-

tween the estimated noise and the denoised image, bias

correction method for Rician noise is not used because

E[Z(x, y, z)] �= f(x, y, z). In the Rician noise case also,

NEW works well on artificial images. In cases of T1 and

T2 phantom images, NEW works well when the noise

level is low. However, NEW-SSIM does not work well

on T2 phantom images when Rician noise level is high.

Table 3 In each entry, the first line presents the estimated
MISE value based on 100 simulations and the corresponding
standard error (in parenthesis), the second line presents the
value of EP and its standard error (in parenthesis), and the
third line presents the searched procedure parameter values.
This table is about the Rician noise case.

Artificial, σ = 0.15 T1, σ = 20 T1, σ = 50 T2, σ = 100 T2, σ = 200

0.0135 (0.0004) 200.1 (0.6) 544.3 (2.1) 7352.7 (35.4) 16369.7 (55.5)
ESPID 0.2006 (0.0039) 0.0383 (0.0006) 0.0292 (0.0013) 0.0015 (0.0005) 0.0485 (0.0009)

0.0375, 15.0, 0.0469 0.0167, 3500, 0.0167 0.0167, 6500, 0.200 0.0112, 40000, 0.0114 0.0167, 28000, 0.0167
0.0050 (0.0001) 172.9 (0.5) 601.0 (2.3) 4876.1 (13.5) 13752.5 (44.0)

TV 0.1358 (0.0030) 0.0529 (0.0005) 0.0975 (0.0013) 0.0361 (0.0004) 0.0624 (0.0008)
13.0 0.100 0.036 0.022 0.010

0.0027 (0.0002) 120.4 (0.5) 368.9 (1.8) 5749.2 (19.4) 9988.9 (40.6)
NLM 0.0760 (0.0021) 0.0451 (0.0006) 0.0460 (0.0015) 0.0340 (0.0004) 0.0580 (0.0007)

7, 1, 0.20 3, 1, 20 3, 1, 40 3, 1, 100 3, 1, 100
0.0025 (0.0001) 118.6 (0.4) 408.4 (1.5) 4686.4 (14.6) 10674.0 (38.7)

NEW 0.1085 (0.0027) 0.0192 (0.0006) 0.0143 (0.0013) 0.0008 (0.0004) 0.0258 (0.0007)
5.0, 5.0, 6 1.8, 10.0, 2 2.0, 12.0, 2 2.2, 3.0, 4 2.2, 10.0, 2

0.0031 (0.0001) 125.0 (0.4) 436.0 (1.6) 4725.9 (13.1) 17225.2 (60.7)
NEW-SSIM 0.0744 (0.0015) 0.0426 (0.0005) 0.0093 (0.0012) 0.0064 (0.0005) 0.0937 (0.0010)

5.0, 20.0, 6 2.2, 18.0, 2 2.4, 5.0, 2 2.2, 2.0, 4 2.2, 3.0, 6

Fig. 7 The first row shows one cross-section from the de-
noised T1 weighted MRI phantom by the methods ESPID,
TV, NLM, NEW and NEW-SSIM when the noise is Rician
with σ = 20. The second row shows their deviation images.

Fig. 8 The first row shows one cross-section from the de-
noised T2 weighted MRI phantom by the methods ESPID,
TV, NLM, NEW and NEW-SSIM when the noise is Rician
with σ = 100. The second row shows their deviation images.

Additional numerical results are provided in “Sup-

plementary File”.

4 Real MRI denoising

In this section, we consider a real MRI for which the

true image intensity function f is unknown. The real

MRI is collected from http://www.osirix-viewer.com/

datasets/. The first image in Figure 9 shows one slice

of a region of the brain MRI. The selected region has

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Signal, Image and 
Video Processing, published by Springer. Copyright restrictions may apply. doi: 10.1007/s11760-017-1096-5



8 Mukherjee, P.S.

resolution 80× 80× 20. All competing denoising meth-

ods are applied. Since the true noiseless image intensi-

ties are unknown, we can not calculate estimated MISE.

Therefore, the parameters are selected based on visual

appearances of the denoised images. For the proposed

method, we also used the parameter selection based on

SSIM. In Figure 9, we see that NEW and NLM perform

better than other methods.

Fig. 9 The first row shows one cross-section from the real
MRI, denoised images by the methods ESPID and TV. The
second row shows the same cross-section from the denoised
images by NLM, NEW and NEW-SSIM.

5 Concluding Remarks

We have presented a framework for 3-D image denoising

procedure that is multi-scale and adaptive by selecting

bandwidth and smoothing parameters locally by data

driven methods. This kind of 3-D image denoising pro-

cedure can be applied in many fMRI analyses used in

many medical studies. However, the parameter selec-

tion criterion based on SSIM does not work on images

where the noise is heavy and it depends on intensity

values e.g., Rician noise. Therefore, future research on

this issue of parameter selection need to be conducted.

The proposed denoising framework can be successfully

applied to diffusion tensor images where image segmen-

tation by edge detection is difficult.
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