
METHODS FOR MULTILEVEL PARALLELISM ON GPU

CLUSTERS: APPLICATION TO A MULTIGRID

ACCELERATED NAVIER-STOKES SOLVER

by

Dana A. Jacobsen

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2011

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Dana A. Jacobsen

Thesis Title: Methods for Multilevel Parallelism on GPU Clusters: Application to a

Multigrid Accelerated Navier-Stokes Solver

Date of Final Oral Examination: 13 October 2010

The following individuals read and discussed the thesis submitted by student Dana A.

Jacobsen, and they evaluated his presentation and response to questions during the final

oral examination. They found that the student passed the final oral examination.

Inanc Senocak, Ph.D. Chair, Supervisory Committee

Amit Jain, Ph.D. Member, Supervisory Committee

Timothy Barth, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Inanc Senocak, Ph.D., Chair of

the Supervisory Committee. The thesis was approved for the Graduate College by John

R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGMENTS

I would like to thank my advisor, İnanç Şenocak, for his continuous guidance

and support throughout this research. I would also like to thank the other committee

members, Amit Jain of Boise State University and Timothy Barth of NASA Ames

Research Center, for serving on my committee — not always an easy task with a

multidisciplinary thesis topic. Thanks as well to Boise State University and Marty

Lukes in particular for help with our local GPU computing infrastructure.

Lastly, I would like to thank my children Alexander, Catherine, and Sophia for

sharing their father with this project.

I am grateful for funding during my graduate studies, partially provided by

research initiation grants from NASA-Idaho EPSCoR and the NASA Idaho Space

Grant Consortium. We utilized the Lincoln Tesla Cluster at the National Center

for Supercomputing Applications under grants number ASC090054 and ATM100032,

without which the multi-GPU plots would have many fewer GPUs shown. Computing

resources from the Texas Advanced Computing Center (TACC) at The University

of Texas at Austin were also used via the National Science Foundation’s TeraGrid

infrastructure.

iii

ABSTRACT

Computational Fluid Dynamics (CFD) is an important field in high performance

computing with numerous applications. Solving problems in thermal and fluid sci-

ences demands enormous computing resources and has been one of the primary

applications used on supercomputers and large clusters. Modern graphics processing

units (GPUs) with many-core architectures have emerged as general-purpose parallel

computing platforms that can accelerate simulation science applications substantially.

While significant speedups have been obtained with single and multiple GPUs on

a single workstation, large problems require more resources. Conventional clusters

of central processing units (CPUs) are now being augmented with GPUs in each

compute-node to tackle large problems.

The present research investigates methods of taking advantage of the multilevel

parallelism in multi-node, multi-GPU systems to develop scalable simulation sci-

ence software. The primary application the research develops is a cluster-ready

GPU-accelerated Navier-Stokes incompressible flow solver that includes advanced

numerical methods, including a geometric multigrid pressure Poisson solver. The

research investigates multiple implementations to explore computation / communica-

tion overlapping methods. The research explores methods for coarse-grain parallelism,

including POSIX threads, MPI, and a hybrid OpenMP-MPI model. The applica-

tion includes a number of usability features, including periodic VTK (Visualization

Toolkit) output, a run-time configuration file, and flexible setup of obstacles to

iv

represent urban areas and complex terrain. Numerical features include a variety

of time-stepping methods, buoyancy-driven flow, adaptive time-stepping, various

iterative pressure solvers, and a new parallel 3D geometric multigrid solver. At each

step, the project examines performance and scalability measures using the Lincoln

Tesla cluster at the National Center for Supercomputing Applications (NCSA) and

the Longhorn cluster at the Texas Advanced Computing Center (TACC). The results

demonstrate that multi-GPU clusters can substantially accelerate computational fluid

dynamics simulations.

v

TABLE OF CONTENTS

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xx

1 Introduction . 1

1.1 Thesis Statement . 3

1.2 Works Published . 4

2 Background . 6

2.1 Clusters and GPU Hardware . 6

2.2 Programming Models . 11

3 Technical Background . 16

3.1 Governing Equations . 16

3.2 Numerical Approach . 17

3.2.1 Projection Algorithm . 17

3.2.2 Time-Stepping Methods . 20

3.2.3 Pressure Poisson Solver . 21

3.3 Validation . 23

vi

3.4 Flow in Urban Environments and Complex Terrain 26

4 Multilevel Parallelism on GPU Clusters . 28

4.1 Introduction . 28

4.2 Multilevel Parallel Implementations . 35

4.2.1 Common Implementation Details . 35

4.2.2 Dual-Level Pthreads-CUDA Implementation 41

4.2.3 Dual-Level MPI-CUDA Implementation 42

4.2.4 Dual-Level MPI-CUDA Performance Results with NCSA Lin-

coln Tesla and TACC Longhorn Clusters 50

4.2.5 Tri-Level MPI-OpenMP-CUDA Implementation 68

4.2.6 Tri-Level MPI-OpenMP-CUDA Performance Results with NCSA

Lincoln Tesla Cluster . 72

4.3 Conclusions . 73

5 Geometric Multigrid for GPU Clusters . 76

5.1 Introduction . 76

5.2 Geometric Multigrid Method . 77

5.3 GPU Implementation . 81

5.3.1 Restriction . 81

5.3.2 Prolongation . 84

5.3.3 Smoother . 84

5.3.4 Coarse-Grid Solver . 86

5.3.5 Computational Overlapping . 88

5.4 Amalgamated Multigrid for GPU Clusters . 90

vii

5.5 Performance Results with NCSA Lincoln Tesla and TACC Longhorn

Clusters . 93

6 Conclusions and Future Work . 98

6.1 Conclusions . 98

6.2 Future Work . 101

REFERENCES . 103

A Time-Stepping Methods . 114

B Turbulence Modeling . 115

C Run-Time Configuration . 117

D CUDA Pressure Kernels . 124

D.1 Jacobi Pressure Kernel . 124

D.2 Red-Black Gauss-Seidel Pressure Kernel . 125

E Multigrid CUDA Code . 127

E.1 Restriction: Laplacian Lernel . 127

E.2 Restriction: Restriction Kernel . 128

E.3 Prolongation: Prolongation Kernel . 130

E.4 Smoother: Weighted Jacobi Kernel . 132

E.5 Smoother: Red-Black Gauss-Seidel Kernel . 133

viii

LIST OF TABLES

2.1 Six selected computing platforms. Street price in US dollars as of

15 September 2010. Sustained GFLOPS numbers are based on the

performance of a 512× 32× 512 incompressible flow lid-driven cavity

simulation with single precision. 8

3.1 Run-time and memory complexity of different solvers for the discrete

Poisson equation, with convergence to a fixed small error with iterative

methods. N = n3 for a n×n×n 3D grid, N = n2 for a n×n 2D grid.

From Demmel [27]. 22

4.1 Thread block sizes used for compute capability 1.3 and compute capa-

bility 2.0 devices. 37

4.2 Kernels with 30 Jacobi iterations for the pressure Poisson solver. Ex-

ample problem is 384×384×384 on a single Tesla S1070 GPU. Using the

compute capability 1.3 thread-block size from Table 4.1, 32 registers

are available with full occupancy. Measurements indicated that for

the two kernels using more than that number of registers, performance

decreased if the compiler was told to limit usage to 32. 39

4.3 Kernels with 4 multigrid V-cycles for the pressure Poisson solver. Ex-

ample problem is 385× 385× 385 on a single Tesla S1070 GPU. 39

ix

A.1 Some of the time-stepping methods implemented and selectable. Reg-

ister usage shows how many extra per-cell values of momentum, turbu-

lence, and temperature must be kept, which has a fairly large impact

on GPU memory use. 114

x

LIST OF FIGURES

2.1 Three performance metrics on six selected CPU and GPU devices based

on incompressible flow computations on a single device. Actual sus-

tained performance for the single-node CFD code used in the present

research is used rather than peak device performance. (a) Sustained

GFLOPS, (b) MFLOPS/Watt, (c) MFLOPS/Dollar 9

2.2 Relative performance of the Pthreads and baseline MPI models on a

single machine with 1, 2, and 4 GPUs. Domain sizes are 128×32×128

(“Small”), 256×32×256 (“Medium”), and 512×32×1024 (“Large”).

For each domain size, all results are relative to the single GPU Pthreads

implementation, which is assigned a value of 1.0. 13

3.1 Staggered grid arrangement (Arakawa type C grid [1]), showing place-

ment of momentum and pressure spatial variables. Pressure P is

located in the cell center, while momentum components u and v are

located in the edge midpoints. Temperature T is cell centered similar

to pressure. 17

3.2 Lid-driven cavity simulation with Re = 1000 on a 256× 32× 256 grid.

3D computations were used and a 2D center slice is shown. (a) Velocity

streamlines and velocity magnitude distribution. (b) Comparison to

the benchmark data from Ghia et al. [37]. 23

xi

3.3 Natural convection in a cavity using a 128× 16× 128 grid and Prandtl

number 7, with a 2D center slice shown. a-d) Streamlines and tem-

perature isotherms for Pr = 7 and Ra = 140. e-f) Streamlines and

temperature isotherms for Pr = 7 and Ra = 200, 000. The simulation

uses parameters shown in Griebel et al. [44, Section 9.7.1], and results

can be seen to closely match. 24

3.4 Centerline temperature for natural convection in a cavity with Prandtl

number 7 and Rayleigh number 100,000, using a 256 × 16 × 256 grid

with a 2D center slice used. Comparison is shown to data from Wan

et al. [108]. 25

3.5 Natural convection in a 3D cavity with aspect ratio 8:1:2, following the

example of Griebel et al. [44, Section 11.4.4]. Parameters are set to

Pr = 0.72, Ra = 30000, and Re = 4365. The mesh used was 65×9×17

with a 2D center slice shown. 26

3.6 A view of the simulation showing air flow in the Oklahoma City down-

town area at time step 4000. 27

3.7 A view of instantaneous airflow around complex terrain. 27

4.1 Host code for the projection algorithm to solve buoyancy-driven in-

compressible flow equations on multi-GPU platforms. The outer loop

is used for time stepping, and indicates where the time-step size can

be adjusted. The EXCHANGE step updates the ghost cells for each GPU

with the contents of the data from the neighboring GPU. 36

xii

4.2 Template for CUDA kernel performing stencil operation. A bit mask

is handed in, indicating which sections (top, bottom, middle) should

be computed. The borders will never be computed in this kernel. Note

the use of constant memory, which can alternately be done as variables

passed into the kernel. 38

4.3 The decomposition of the full domain to the individual GPUs. 43

4.4 An overview of the MPI communication, GPU memory transfers, and

the intra-GPU 1D decomposition used for overlapping. 43

4.5 An EXCHANGE operation overlaps GPU memory copy operations with

asynchronous MPI calls for communication. 45

4.6 An example Jacobi pressure loop, showing how the CUDA kernel is

split to overlap computation with MPI communication. 46

4.7 CUDA streams are used to fully overlap computation, memory copy

operations, and MPI communication in the pressure loop. 47

4.8 Speedup on the NCSA Lincoln Tesla cluster from the three MPI-CUDA

implementations relative to the Pthreads parallel CPU code using all

8 cores on a compute-node. The lid-driven cavity problem is solved on

a 1024× 64× 1024 grid with fixed number of iterations and time steps. 52

4.9 Efficiency on the NCSA Lincoln Tesla cluster of the three MPI-CUDA

implementations with increasing number of GPUs (strong scalability

presentation). The lid-driven cavity problem is solved on a 1024×64×

1024 grid with fixed number of iterations and time steps. 53

xiii

4.10 Sustained cluster performance of the three MPI-CUDA implementa-

tions measured in GFLOPS. Growth is in one dimension. The size of

the computational grid is varied from 512× 512× 256 to 512× 512×

65536 with increasing number of GPUs. (a) 4.1 TeraFLOPS with 128

GPUs on the NCSA Lincoln Tesla cluster, (b) 8.4 TeraFLOPS with

256 GPUs on the TACC Longhorn cluster. 55

4.11 Efficiency of the three MPI-CUDA implementations with increasing

number of GPUs (weak scalability presentation). Growth is in one

dimension. The size of the computational grid is varied from 512 ×

512× 256 to 512× 512× 65536 with increasing number of GPUs. (a)

NCSA Lincoln Tesla cluster, (b) TACC Longhorn cluster. 56

4.12 Sustained cluster performance of the three MPI-CUDA implementa-

tions measured in GFLOPS. Growth is in two dimensions, with the

Y dimension fixed. The size of the computational grid is varied from

1024×64×1024 to 16384×64×16384 with increasing number of GPUs.

(a) 2.9 TeraFLOPS with 128 GPUs on the NCSA Lincoln Tesla cluster,

(b) 4.9 TeraFLOPS with 256 GPUs on the TACC Longhorn cluster. . . . 58

4.13 Efficiency of the three MPI-CUDA implementations with increasing

number of GPUs (weak scalability presentation). Growth is in two

dimensions, with the Y size fixed. The size of the computational grid

is varied from 1024× 64× 1024 to 16384× 64× 16384 with increasing

number of GPUs. See text for a discussion of the efficiency plot. (a)

NCSA Lincoln Tesla cluster, (b) TACC Longhorn cluster. 59

xiv

4.14 Sustained cluster performance of the three MPI-CUDA implementa-

tions measured in GFLOPS. Growth is in three dimensions. The size

of the computational grid is varied from 416 × 416 × 416 to 2688 ×

2688 × 2560 with increasing number of GPUs. (a) 0.77 TeraFLOPS

with 128 GPUs on the NCSA Lincoln Tesla cluster, (b) 2.4 TeraFLOPS

with 256 GPUs on the TACC Longhorn cluster. 61

4.15 Efficiency of the three MPI-CUDA implementations with increasing

number of GPUs (weak scalability presentation). Growth is in three

dimensions. The size of the computational grid is varied from 416 ×

416× 416 to 2688× 2688× 2560 with increasing number of GPUs. (a)

NCSA Lincoln Tesla cluster, (b) TACC Longhorn cluster. 62

4.16 Percent of pressure Poisson solver (30 Jacobi iterations) time spent in

computation, host/GPU memory transfer, and MPI calls. No overlap-

ping is used. The problem size grows such that the number of cells

per GPU is approximately constant. (a)-(b) 1D growth, (c)-(d) 2D

growth, (e)-(f) 3D growth. 64

4.17 A comparison of weak scaling with the fully overlapped MPI-CUDA

implementation on two platforms, with growth in three dimensions.

Longhorn has higher bandwidth for both GPU/host and network data

transfer. 67

4.18 An example Jacobi pressure loop using tri-level MPI-OpenMP-CUDA

and simple computational overlapping. This uses the SINGLE threading

level. 71

xv

4.19 A comparison of weak scaling with the fully overlapped MPI-CUDA

and single-threaded MPI-OpenMP-CUDA implementations, with growth

in three dimensions. Since the hybrid implementations use all the

GPUs of a single node, the base value for parallel scaling is set to a

single node of the NCSA Lincoln Tesla cluster containing two GPUs. . . 72

5.1 A view of a grid hierarchy with a structured rectilinear grid, going from

333 at the fine level to 33 at the coarsest level. 79

5.2 Examples of multigrid cycle types. Closed circles represent smoothing

and open circles represent a coarsest grid solve (which may be approx-

imate). (a) V-cycle, (b) W-cycle. 80

5.3 Geometric Multigrid Algorithm . 80

5.4 The host code for a multigrid cycle. 82

5.5 Host pseudo-code for the restriction operation. The implementation

also allows overlapping of computation and communication by com-

puting the edges first, then starting asynchronous communication while

computing the middle section. 83

5.6 Comparison of smoothers used inside a multigrid V-cycle on the NVIDIA

Tesla S1070 and GTX 470 with the Fermi architecture. Time is plotted

against the residual level for a 1293 problem on a single GPU using

double-precision calculations. 4 pre-smoothing and 4 post-smoothing

iterations at each grid level. No multigrid truncation was applied. The

weighted Jacobi solver uses shared memory. 85

xvi

5.7 Effect of early truncation level using V-cycles. Time is plotted against

the residual level for a 2573 problem on a single Tesla S1070 GPU using

double-precision calculations. The smoother is a weighted Jacobi with

w = 0.86 and 4 pre-smoothing and 4 post-smoothing iterations at each

grid level. The coarse-grid solver is 16 iterations of the weighted Jacobi

smoother. A marker is shown for each 4 loops of the multigrid cycle.

The coarsest grid in this example for 3 levels is 653, and for 7 levels is 53. 87

5.8 Comparison of overlapping strategies. Time is plotted against the

residual level for a double-precision 5133 problem using 8 GPUs. The

smoother is a weighted Jacobi with w = 0.86 and 4 pre-smoothing and

4 post-smoothing iterations at each grid level. Truncation occurs at 6

levels (173), where the coarsest grid is amalgamated to a single GPU

and four V-cycles are performed on this grid. A marker is shown for

each loop of the multigrid cycle. (a) V-cycle, (b) W-cycle 89

5.9 Performance of full-depth V-cycle multigrid compared to iterative Ja-

cobi. Time is plotted against the residual level for a 653, 1293, and

2573 problem on a single Tesla S1070 GPU using double-precision

calculations. The smoother is a weighted Jacobi with w = 0.86 and 4

pre-smoothing and 4 post-smoothing iterations at each grid level. For

clarity, a marker is shown for each 2 loops of the multigrid cycle, every

1000 Jacobi iterations at 2573, and every 4000 Jacobi iterations at 1293

and 653. 93

xvii

5.10 Convergence and parallel efficiency of truncated and amalgamated

multigrid on 1, 8, and 64 GPUs where the problem size scales with

the number of GPUs. Time is plotted against the residual level for a

double-precision problem using 2573 on 1 GPU, 5133 using 8 GPUs,

and 10253 using 64 GPUs on the NCSA Lincoln Tesla cluster. The

smoother is a weighted Jacobi with w = 0.86 and 4 pre-smoothing

and 4 post-smoothing iterations at each grid level. A marker is shown

for each 4 loops of the multigrid cycle. V-cycles and CUDA streams

overlapping were used for each. 94

5.11 Performance of the multigrid solver with different truncation levels

selected, using single precision. Problem size scales with the number

of GPUs, with 5133 on 2 GPUs and 10253 using 16 GPUs on the

NCSA Lincoln Tesla and TACC Longhorn clusters. The smoother is

a weighted Jacobi with w = 0.86 and 4 pre-smoothing and 4 post-

smoothing iterations at each grid level. V-cycles and CUDA streams

overlapping were used for each. 95

xviii

5.12 Weak scaling performance of the multigrid solver components, with

their overall portion of the solver time shown. Amalgamated multi-

grid at 5 levels was used with parallel implementations, and the fully

overlapped versions were used. Problem size scales with the number of

GPUs, with 5133 on 2 GPUs and 10253 using 16 GPUs on the NCSA

Lincoln Tesla cluster. The smoother is a weighted Jacobi with w = 0.86

and 4 pre-smoothing and 4 post-smoothing iterations at each grid level.

V-cycles and CUDA streams overlapping were used for each, and all

computations were in single precision. The chart legend indicates the

percentage of the multigrid solver time taken by that component. 96

5.13 Weak scaling performance of the multigrid solver components using

the TACC Longhorn system. Better scalability is seen with the faster

memory transfer and network speeds. 97

xix

LIST OF ABBREVIATIONS

API – Application Programming Interface

CFD – Computational Fluid Dynamics

CFL – Courant-Friedrichs-Lewy

CPU – Central Processing Unit

CUDA – Compute Unified Device Architecture

FLOPS – Floating-point Operations Per Second

GPGPU – General Purpose GPU

GPU – Graphics Processor Units

HPC – High Performance Computing

MPI – Message Passing Interface

PDE – Partial Differential Equations

RBGS – Red-Black Gauss-Seidel

SDK – Software Development Kit

SIMD – Single Instruction Multiple Data

SOR – Successive Overrelaxation

xx

1

CHAPTER 1

INTRODUCTION

Graphics processing units (GPUs) have enjoyed rapid adoption within the high-

performance computing (HPC) community. GPU clusters, where fast network con-

nected compute-nodes are augmented with latest GPUs [98], are now being used to

solve challenging problems from various domains. Kindratenko et al. [65] describe

applications being run on GPU clusters in cosmology, molecular dynamics, and quan-

tum chemistry, among others. To be specific, multi-GPU clusters are defined in

this thesis as those where each compute-node of the cluster has at least two GPUs.

Examples include the 384 GPU Lincoln Tesla cluster deployed in February 2009 by

the National Center for Supercomputing Applications (NCSA) at University of Illinois

at Urbana Champaign [79], the 512 GPU Longhorn cluster deployed in January 2010

by the Texas Advanced Computing Center (TACC) [78], the 680 GPU TSUBAME

1.2 cluster deployed in October 2008 at the Tokyo Institute of Technology [73],

the 4640 GPU Dawning Nebulae cluster at the National Supercomputing Centre in

Shenzhen [58], and the 7168 GPU Tianhe-1A cluster at the National Supercomputing

Center in Tianjin [59]. Many more systems are planned, such as the planned 4224

GPU TSUBAME 2.0 system and DARPA’s recent $25 million research grant for a

Cray XE6 with NVIDIA GPU accelerators. Most major HPC system manufacturers

now have roadmaps for GPU acceleration on their large systems.

2

Many multi-GPU clusters such as the previous examples use two GPUs per node.

On these systems, it can be efficient to use a dual-level parallel method using NVIDIA’s

Compute Unified Device Architecture (CUDA) [81], or Open Computing Language

(OpenCL) [63] for fine-grain GPU parallelism and the Message-Passing Interface

(MPI) [52] for coarse-grain parallelism. The overhead of inter-node communication

between the two GPUs is generally not a first order effect. Some systems have

densities as high as eight GPUs per node [56, 57], wherein the inter-node overhead of

MPI can be substantial. Therefore, there is a need to investigate multilevel parallelism

on emerging GPU clusters using advanced simulation science software.

The use of graphics hardware for general-purpose computation has been pursued

since the late 1970s using hardware rendering pipelines to perform general computing

processing. GPU computing has evolved in the present decade to the modern General

Purpose Graphics Processing Unit (GPGPU) paradigm [82]. Owens et al. [83] survey

the early history (1978-2003) as well as the state of GPGPU computing to 2007.

Early work on GPU computing is extensive and used custom programming to reshape

the problem in a way that could be processed by a rendering pipeline, often one

without 32-bit floating-point support. The advent of DirectX 9 hardware in 2003 with

floating-point support, combined with early work on high-level language support such

as BrookGPU, Cg, and Sh, led to a rapid expansion of the field [12, 43, 51, 67, 70, 109].

The use of GPUs for Euler solvers and incompressible Navier-Stokes solvers has been

well documented [17, 26, 29, 41, 62, 95, 105].

A recent report from the United States Department of Energy investigates exascale

systems for computational science [100]. It highlights the need for computational per-

formance orders of magnitude greater than those delivered by systems today. Areas

including energy, climate modeling, biological modeling, and astrophysics are dis-

3

cussed in detail. With challenges in performance, cost, and power, GPU acceleration

looks well poised to help achieve the necessary goals. The Defense Advanced Research

Projects Agency (DARPA) recently awarded a $25 million research grant to NVIDIA,

Cray, Oak Ridge National Labs, and six universities to develop exascale computing

systems for HPC using GPUs. This is an area still seeing rapid development in both

hardware and software.

1.1 Thesis Statement

The prime objective of the present research is to focus on ideas related to exploiting

the multiple levels of parallelism in a multi-GPU cluster. The research investigates

and develops multilevel parallel computing strategies for multi-GPU clusters using

advanced numerical methods within a Navier-Stokes solver. Numerous parallelization

strategies, including dual-level MPI-CUDA and tri-level MPI-OpenMP-CUDA, imple-

mentations are shown. Challenges to achieving scalable performance on multi-GPU

clusters are presented. A systematic assessment of computational performance of the

implementations on the National Center for Supercomputing Applications (NCSA)

Lincoln Tesla cluster are shown. Relevant literature reviews are included in each

chapter.

The results include:

• Multigrid solver for the pressure Poisson equation.

• Dual-level parallel MPI-CUDA cluster implementation that enables larger prob-

lems and increased performance.

• Tri-level parallel MPI-OpenMP-CUDA implementation.

4

• Investigation of the challenges and impacts of the different multilevel paral-

lelization methods (Pthreads-CUDA, MPI-CUDA, and MPI-OpenMP-CUDA).

• Scaling and efficiency investigation of the cluster implementations.

• Temperature physics to calculate buoyancy driven flow.

• Validation of the accuracy of the multilevel parallel implementations.

1.2 Works Published

Works published during the course of study:

• D. Jacobsen, I. Senocak, “Massively Parallel Incompressible Navier-Stokes Com-

putations on the NCSA Lincoln Tesla Cluster,” Poster session presented at the

NVIDIA GPU Technology Conference, September 2009.

• D. Jacobsen, J. Thibault, I. Senocak, “An MPI-CUDA Implementation for

Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters,”

48th AIAA Aerospace Sciences Meeting, January 2010.

• I. Senocak and D. Jacobsen, “Acceleration of Complex Terrain Wind Predic-

tions Using Many-Core Computing Hardware,” 5th International Symposium

on Computational Wind Engineering, May 2010.

• D. Jacobsen, I. Senocak, “Parallel 3D Geometric Multigrid Solver on GPU

Cluster,” Poster session presented at the NVIDIA GPU Technology Conference,

September 2010.

5

• D. Jacobsen and I. Senocak, “Scalability of Incompressible Flow Computa-

tions on Multi-GPU Clusters Using Dual-Level and Tri-Level Parallelism,” 49th

AIAA Aerospace Sciences Meeting, January 2011 (to appear).

• D. Jacobsen and I. Senocak, “Dual-Level Parallel Geometric Multigrid Solver

for GPU Clusters,” 49th AIAA Aerospace Sciences Meeting, January 2011 (to

appear).

6

CHAPTER 2

BACKGROUND

2.1 Clusters and GPU Hardware

Many problems in high performance computing require very large amounts of com-

putational performance, and are often run on supercomputers. The advent of general

purpose GPU programming has brought immense changes to the field, with some

applications requiring a Top 500 supercomputer 10 years ago now able to execute on

a desktop machine equipped with one or more GPUs. GPU clusters hold promise to

greatly reduce the time taken for some models as well as enable finer scale or larger

problems to be considered. They are likely to be a primary component in upcoming

exascale HPC systems [100].

Both NVIDIA and AMD make general purpose computing hardware and supply

associated software. The present research targets NVIDIA hardware and the CUDA

programming model for a number of reasons. The AMD software solutions were

split into HAL (very low level), CAL (higher level constructs), and Brook, which

is a C-syntax for writing data parallel programs. The unity offered by CUDA was

attractive, as well as the software ecosystem of examples, forums, and research papers

using CUDA. For instance, the recently announced Portland Group CUDA C compiler

for x86 platforms allows the same CUDA code to be take advantage of both GPUs and

multi-core CPUs [60]. More importantly, a wider variety of NVIDIA hardware was

7

available to the researcher, including a large cluster, which is the focus of the research.

Hence, the application and research focuses on NVIDIA hardware using CUDA. With

OpenCL now supported on both platforms, this split between hardware vendors is

not as important in 2010 as it was when the research was started in late 2008.

NVIDIA produces multiple types of GPU hardware that can be used for scientific

computation, however, all use the CUDA programming model. The Tesla series of

computing servers are distinguished by their large memory (1.5GB in the older C870

model, 4GB in the C1060 model, and 6GB in the latest Tesla C2070 model) and

lack of video output. The large memory size in particular makes the Tesla line of

GPUs attractive for scientific computation. Tesla series have more rigorous testing,

which may result in less downtime and lost results. Tesla S-series (S870, S1070, and

S2070) are composed of four GPUs and have a rack mount 1U form factor that makes

installation in large clusters much easier. Consumer models such as the GTX 200 and

GTX 400 series are targeted for general graphics tasks at a reduced price. Consumer

models can also be used for scientific computation with no software modifications.

However, the amount of device memory (0.5 to 1.5GB on most models) on consumer

models can be a limiting factor for large computational problems. Larger memory on

each individual GPU reduces the total number of nodes needed for a given problem

size, which means fewer or smaller network switches and reduced system cost. The

price of fast networking (e.g. Infiniband) can be significant compared to compute

hardware, and hence is a major item in cost analysis of a GPU cluster.

Users of high performance computing systems expect reliable hardware. One

benefit of the Tesla series is its rigorous testing, which may result in less downtime

and lost results. The error correcting (ECC) memory available in the Tesla C20x0 and

S20x0 models provides a degree of reliability desired for very large scale installations.

8

Another benefit for cluster designs is the rack mount 1U form factor on some models

(Tesla S870, S1070/S1075, and S2050/S2070) that makes installation in large clusters

much easier. Finally, the larger memory on each individual GPU may reduce the total

number of nodes needed for a given problem size, which will mean fewer or smaller

network switches may be needed, thus reducing the system cost. The price of large

Infiniband switches can be very significant, and hence is a major item in cost analysis

of a GPU cluster.

Intel Q9400 Intel i7-960 9600GT GTX260/216 Tesla C1060 GTX470
Type CPU CPU GPU GPU GPU GPU
Date Introduced Aug 2008 Oct 2009 Feb 2008 Dec 2008 June 2008 Mar 2010
Processing Units 4 4 (8) 64 216 240 448
Compute Capability N/A N/A CC1.1 CC1.3 CC1.3 CC2.0
Device Memory N/A N/A 512MB 896MB 4096MB 1280MB
Power 95W 130W 95W 171W 188W 215W
Street Price $210 $570 $70 $180 $1,200 $290
Peak GFLOPS 85.3 102.4 336 805 936 1089
Sustained GFLOPS 3.2 8.4 12.2 40.3 38.3 50.1
MFLOPS/Watt 33.7 64.6 128.4 235.7 203.7 233.0
MFLOPS/Dollar 15.2 14.7 174.3 237.1 32.9 172.8

Table 2.1: Six selected computing platforms. Street price in US dollars as of 15
September 2010. Sustained GFLOPS numbers are based on the performance of a
512× 32× 512 incompressible flow lid-driven cavity simulation with single precision.

The cost and energy consumption of modern supercomputers (e.g. Roadrunner

at Los Alamos National Laboratory and Jaguar at Oak Ridge National Labora-

tory) are substantial. In addition to the raw computational power, metrics such

as price/performance and power/performance are valuable in assessing the potential

of new computing hardware. Table 2.1 shows configuration data and single device

computational performance of the CFD code used in the present study on a selection

of contemporary CPU and GPU platforms. In the comparisons, we consider a

lid-driven cavity benchmark problem [37] that is large enough to show sustained

throughput on these devices (512 × 32 × 512). For CPUs, the Intel Q9400 (Core2)

9

and i7-960 (Nehalem) were considered, using all cores. Hyperthreading was tried

on the i7-960 but showed no advantage with the CFD code. On the GPU side, the

consumer models NVIDIA 9600GT, NVIDIA GTX 260 Core 216, and NVIDIA GTX

470 were compared as well as the high performance computing model C1060. Pthreads

was used to exploit the multiple cores of the CPU devices, while CUDA utilized the

multiple processors on the GPUs. All calculations were done using single-precision

floating-point.

The peak single-precision GFLOPS (billions of floating-point operations per sec-

ond) based on manufacturer specifications are also given in Table 2.1. NVIDIA GPUs

are capable of one single-precision multiply-add and one single-precision multiply per

clock cycle per thread processor. The theoretical peak flops is therefore 3 flops × clock

rate × number of thread processors. The Intel Core2 and Nehalem architectures are

capable of 4 single-precision multiply-adds per cycle per core using SSE4, therefore

the Intel Q9400 can sustain 4 cores × 2.667 GHz × 8 flops = 85.3 single-precision

GFLOPS. The Intel i7-960 sustains 4 cores × 3.2 GHz × 8 flops = 102.4 single-

precision GFLOPS. Intel gives reference numbers for double precision [61].

(a) (b) (c)

Figure 2.1: Three performance metrics on six selected CPU and GPU devices
based on incompressible flow computations on a single device. Actual sustained
performance for the single-node CFD code used in the present research is used rather
than peak device performance. (a) Sustained GFLOPS, (b) MFLOPS/Watt, (c)
MFLOPS/Dollar

10

Figure 2.1a shows three performance metrics on each platform using an incom-

pressible flow CFD code. The GPU version of the CFD code is clearly an improvement

over the Pthreads shared-memory parallel CPU version. Both of these implementa-

tions are written in C and use identical numerical methods [105]. The main impact

on individual GPU performance was the introduction of compute capability 1.3,

which greatly reduces the memory latency in some computing kernels due to the

relaxed memory coalescing rules [81]. Compute capability 2.0 brought a number of

important changes, with a small L1 cache being perhaps the most important for the

current research. While the cache is quite small in current products (16-48k shared

between all threads), it narrows the performance gap between global memory and

shared memory code for many kernels. Support for double precision was added with

compute capability 1.3, and the performance enhanced with compute capability 2.0

on professional devices.

Figure 2.1b shows the performance relative to the peak electrical power of the

device. GPU devices show a definite advantage over the CPUs in terms of energy-

efficient computing. The consumer video cards have a slight power advantage over

the Tesla series, partly explained by having significantly less active global memory.

The recent paper by Kindratenko et al. [65] details the measured power use of two

clusters built using NVIDIA Tesla S1070 accelerators. They find significant power

usage from intensive global memory accesses, implying CUDA kernels using shared

memory not only can achieve higher performance but can use less power at the

same time. Approximately 70% of the S1070’s peak power is used while running

the molecular dynamics program NAMD [87]. Figure 2.1c shows the performance

relative to the street price of the device, which sheds light on the cost effectiveness

of GPU computing. The consumer GPUs are better in this regard, ignoring other

11

factors such as the additional memory present in the compute server GPUs.

The rationale for clusters of GPU hardware is identical to that for CPU clusters –

larger problems can be solved and total performance increases. Figure 2.1c indicates

that clusters of commodity hardware can offer compelling price/performance benefits.

By spreading the models over a cluster with multiple GPUs in each node, memory

size limitations can be overcome such that inexpensive GPUs become practical for

solving large computational problems. Today’s motherboards can accommodate up

to 8 GPUs in a single node [57], enabling large-scale compute power in small to

medium size clusters. However, the resulting heterogeneous architecture with a deep

memory hierarchy creates challenges in developing scalable and efficient simulation

applications. This thesis focuses on maximizing performance on a multi-GPU cluster

through a series of mixed MPI-CUDA implementations.

2.2 Programming Models

To achieve high throughput and scalable results from a Computational Fluid Dy-

namics (CFD) model on a multi-GPU platform currently requires the use of multiple

programming APIs along with a domain decomposition strategy for data-parallelism.

For small problems running on a single GPU, execution time is minimized as no

GPU/host communication is performed during the computation, and all optimizations

are done within the GPU code. CUDA does not address multiple GPUs, so other

APIs must be used to support multi-GPU programming. When more than one GPU

is used, cells at the edges of each GPU’s computational space must be communicated

to the GPUs sharing the domain boundary so they have the current data necessary for

their computations. This injects additional latency into the implementation, which

12

may restrict scalability if not properly handled.

CUDA is the API used by NVIDIA for their GPUs. CUDA programming consists

of kernels that run on the GPU and are executed by all the processor units in a SIMD

(Single Instruction Multiple Data) fashion. The CUDA API also extends the host

C API with operations such as cudaMemcpy(), which performs host/device memory

transfers. Memory transfers between GPUs on a single host are done by using the

host as an intermediary – there are no CUDA commands to operate between GPUs.

OpenCL is a unified API which can take a single-source application and run

it effectively on multi-CPU machines, GPUs from NVIDIA, AMD, and Intel, as

well as many future devices. With both major graphic card vendors (AMD and

NVIDIA) on board and shipping software development kits (SDKs) and drivers, it

looks very promising for the future of general purpose GPU programming. In many

ways, programming with OpenCL is similar to CUDA, as most of the CUDA kernels

used in this research would have very minor changes in an OpenCL system, as no

CUDA-specific features are used. However, portability is still somewhat limited, as

some ATI hardware from as recent as 2008 are not supported, including all the ATI

hardware available to the researcher. More importantly, performance measurements

in early 2010 showed identical stencil kernel performance on NVIDIA hardware to be

superior with CUDA to OpenCL. Future software development tools should eliminate

or alleviate this difference, but at the present time the difference exists and was as

much as 2× on some kernel / hardware combinations.

POSIX Threads [20] (Pthreads) and OpenMP [103] are two APIs used for running

parallel code on shared-memory computers. These APIs both use a shared memory

space model. Combined with CUDA, multiple GPUs can perform computation, copy

their neighboring cells to the host, synchronize with their neighbor threads, and copy

13

Figure 2.2: Relative performance of the Pthreads and baseline MPI models on a
single machine with 1, 2, and 4 GPUs. Domain sizes are 128 × 32 × 128 (“Small”),
256 × 32 × 256 (“Medium”), and 512 × 32 × 1024 (“Large”). For each domain size,
all results are relative to the single GPU Pthreads implementation, which is assigned
a value of 1.0.

the received boundary cells to the GPU for use in the next computational step.

The MPI (Message Passing Interface) API is widely used for programming clusters,

and works on both shared and distributed memory machines. In general, it will have

some performance loss compared to the shared-memory model used by POSIX, but

in return it offers a highly portable solution to writing programs to work on a wide

variety of machines and hardware topologies.

To investigate the efficiency differences of the coarse-level parallelism model in a

single node, a simple baseline implementation was chosen and a lid-driven cavity sim-

ulation was performed. The expectation is to measure the difference in performance

between a Pthreads-CUDA and an MPI-CUDA application running on a single shared

14

memory machine. Figure 2.2 shows the results, which indicate little to no efficiency

loss using the MPI message passing API as the coarse-level parallelism, as long as

the problem size is large enough per GPU (roughly 1 million cells per GPU in this

example). More details about this test are described in the following paragraphs.

It appears that an MPI-CUDA implementation is versatile enough to operate on

desktop machines without performance loss for most problems. Since the same

application performs well on single-GPU workstations, multi-GPU workstations, and

GPU clusters, this is proposed as the preferred method to use for HPC applications.

The test involved a baseline MPI implementation of the application simulating a

lid-driven cavity running on a single machine attached to an NVIDIA Tesla S870 unit

with 4 GPUs (each of the two pairs of GPUs share a single PCI Express ×16 slot).

Three domain sizes are used: a small domain (128 × 32 × 128), a medium domain

(256×32×256), and a large domain (512×32×1024). The computational problem is

large only in the context of a single low-memory GPU. The Pthreads implementation

is that of Thibault and Senocak [105], while the MPI implementation is a baseline

version that does not overlap computation with exchanges and does not include many

of the performance improvements later added. This is done to keep the comparison

between the coarse-parallelism models.

The Pthreads implementation accomplishes the neighbor cell transfers with a de-

vice to host copy of all cells to transfer, a barrier, then a host to device copy of the cells

to update. The MPI implementation attempts to overlap MPI communication and

data transfer by posting non-blocking receives early and does non-blocking sends as

soon as each piece of data is on the host. Neither implementation does any overlapping

of computation with other work, such as host/device data transfer or message passing.

Computational overlapping is investigated in more detail in Section 4.2.3, and is

15

critical for good performance on a cluster.

The scaling of both implementations on a single machine is limited by the data

transfer as the problem size is reduced. The memory copies using the PCI Express bus

are limited to 2-5 GB/s on the hardware utilized. As expected, the extra work due

to the MPI communications causes a performance loss on this single shared-memory

machine for smaller problems. With larger problem sizes, the asynchronous calls

succeed in hiding more of the MPI communication, and therefore the Pthreads and

MPI implementation for multiple GPUs show little difference.

A number of studies have shown the benefits of combining MPI with a threading

model when writing programs to operate on clusters of multi-core machines [22, 23],

including many specific to scientific computing and CFD applications [14, 28, 53, 71,

93]. Since the GPU version of the CFD application requires the boundary cells to be

copied from the GPU to the host and back again, the shared-memory model requires

only a synchronization between neighbors as the memory is immediately accessible

to the neighbor once on the host. In contrast, the message passing model requires

the same work plus a message passed, which may involve sending the data through

network interfaces, which can be quite expensive. Therefore, a hybrid approach takes

advantage of low-overhead shared memory when possible and message passing when

necessary.

A tri-level MPI-OpenMP-CUDA implementation is investigated in Section 4.2.5.

MPI is used for communication between nodes, while OpenMP maximizes efficiency

within each node, and CUDA is used for data parallelism on each GPU. Implementa-

tion details are discussed, and performance results are shown. The main question to

be answered is whether the additional complication is worth the performance benefits

in this type of application running on a GPU cluster.

16

CHAPTER 3

TECHNICAL BACKGROUND

3.1 Governing Equations

The Navier-Stokes equations for buoyancy-driven incompressible fluid flows can be

written in the following compact form:

∇ · u = 0, (3.1)

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u + f , (3.2)

where u is the velocity vector, P is the pressure, ρ is the density, ν is the kinematic

viscosity, and f is the body force. The Boussinesq approximation, which applies to

incompressible flows with small temperature variations, is used to model the buoyancy

effects in the momentum equations [68]:

f = g · (1− β(T − T∞)), (3.3)

where g is the gravity vector, β is the thermal expansion coefficient, T is the calculated

temperature at the location, and T∞ is the steady state temperature.

The temperature equation can be written as [44, 102]

17

• •vi,j • •vi+1,j •

•ui−1,j •Pi,j •ui,j •Pi+1,j •ui+1,j

• •vi,j−1 • •vi+1,j−1 •

•ui−1,j−1 •Pi,j−1 •ui,j−1 •Pi+1,j−1 •ui+1,j−1

• •vi,j−2 • •vi+1,j−2 •
Figure 3.1: Staggered grid arrangement (Arakawa type C grid [1]), showing placement
of momentum and pressure spatial variables. Pressure P is located in the cell center,
while momentum components u and v are located in the edge midpoints. Temperature
T is cell centered similar to pressure.

∂T

∂t
+∇ · (uT) = α∇2T + Φ, (3.4)

where α is the thermal diffusivity and Φ is the heat source.

3.2 Numerical Approach

3.2.1 Projection Algorithm

The incompressible Navier-Stokes equations (Eqs. 3.1-3.2) do not have explicit sepa-

rate equations for pressure or momentum. A variety of methods have been proposed

for splitting the solution into fractional steps where the momentum and pressure

are independently solved. These include the projection algorithm of Chorin [24],

Patankar’s SIMPLE scheme [84, 85] and its variants, and others. Many of these

fractional-step methods are reviewed and contrasted in the survey of Guermond et

al. [48].

18

A second-order accurate central difference scheme is used to discretize the ad-

vection and diffusion terms of the Navier-Stokes equations on a uniform staggered

grid [34] as shown in Figure 3.1. Various time-stepping methods are implemented,

including the first-order accurate explicit Euler scheme and the second-order accurate

Adams-Bashforth scheme. The projection algorithm [24] is then adopted to find a

numerical solution to the Navier-Stokes equation for incompressible fluid flows.

In the projection algorithm, the velocity field u∗ is predicted using the momentum

equations without the pressure gradient term [24, 34]. With a first-order accurate

Euler time-stepping method, the velocity field is predicted as

u∗ = ut + ∆t(−ut∇ · ut + ν∇2ut + f), (3.5)

where the index t and ∆t represent the time level and time-step size, respectively.

ut∇ · ut is the advective term, ν∇2ut is the diffusive term, and f is the calculated

buoyancy effect. For the second-order Adams-Bashforth time-stepping method, the

velocity field is predicted as

u∗ = ut + ∆t
(3

2
(−ut · ∇ut + ν∇2ut + f)− 1

2
(−ut−1 · ∇ut−1 + ν∇2ut−1 + f)

)
. (3.6)

The predicted velocity field u∗ does not satisfy the divergence free condition

because the pressure gradient term is not included in Eq. 3.5. By enforcing the

divergence free condition on the velocity field at time t + 1, the following pressure

Poisson equation can be derived from the momentum equations given in Eq. 3.2

∇2P t+1 =
ρ

∆t
∇ · u∗. (3.7)

19

In our implementation, Eq. 3.7 is solved with either an iterative solver (Jacobi or

Red-Black Gauss-Seidel) or a geometric multigrid method. The pressure field at time

t+ 1 is then used to correct the predicted velocity field u∗ as follows

ut+1 = u∗ − ∆t

ρ
∇P t+1. (3.8)

The temperature equation is implemented using the second-order accurate central

difference method to compute the advection and diffusion terms in Eq. 3.4 at each

time step. Buoyancy effects are are added to the momentum term following Eq. 3.3.

Most thermo-fluid applications involve turbulence. Modeling of turbulence is

beyond the scope of this thesis study. However, for future applications, the original

Smagorinsky large-eddy simulation model was implemented, where the turbulent

eddy viscosity can be calculated per cell prior to calculating the momentum at each

time step. The turbulence model was not validated, and further discussion is in

Appendix B. Results and validation for models shown in this thesis were done with

essentially laminar flow that does not require turbulence modeling.

It is noted that the projection algorithm [24] used is only first-order in time.

Guermond et al. [48] review alternate projection algorithms, including the second-

order rotational form of Brown et al. [19] and the fractional-step method of Kim

and Moin [64]. Implementing the higher-order algorithms requires special care with

boundary conditions, especially with non-Dirichlet conditions. The method used

should not have an impact on the conclusions of the applicability of the projection

method to GPU clusters, and it was decided not to pursue this further.

20

3.2.2 Time-Stepping Methods

The momentum, turbulence, and temperature operations allow coupled operation of

multi-stage time-stepping routines such as Runge-Kutta methods as well as multi-

step methods such as Euler and Adams-Bashforth. The multi-step methods use a

lower-order version to initialize, hence second-order Adams-Bashforth uses forward

Euler on the first time step. A Runge-Kutta method could alternately be applied.

Higher-order Runge-Kutta methods have many advantages when solving systems

of PDEs [34]. Their stability ranges are quite large, and typically the increase in

allowable time-step size outweighs the extra work performed in the multiple stages,

which leads to an overall reduction in time taken to reach a given simulation time.

A systematic study of time-stepping routines is not pursued, and discussion of the

methods implemented is included in Appendix A. The second-order Adams-Bashforth

method is used for all results in this thesis.

By default, static time stepping is used, where an appropriate δt is calculated

from the input parameters and used throughout the computation. This calculation

is as follows

∆tconvective = (min∆xyz · CFL) / velmax, (3.9)

∆tviscous = (min∆xyz ·min∆xyz) / ν, (3.10)

∆ttemperature = (0.5 · Pr · Re) / (
1

∆x2
+

1

∆y2
+

1

∆z2
), (3.11)

∆t = τ ·min(∆tconvective,∆tviscous,∆ttemperature), (3.12)

where min∆xyz = min(∆x,∆y,∆z), CFL is the Courant–Friedrichs–Lewy number

21

specified in the configuration file, velmax is the inlet velocity magnitude, ν is the

kinematic viscosity, Pr is the Prandtl number (the ratio of kinematic viscosity to

thermal diffusivity), Re is the Reynolds number, and τ is a limiting factor between 0

and 1. The temperature limit for time stepping is identical to that shown in Griebel

et al. [44]

Adaptive time stepping is also supported, where the the maximum velocity is

computed across the entire domain, and used in Eq. 3.9 if it is higher than the

inlet velocity. This practice enables stable computations for configurations where the

maximum velocity can fluctuate as the simulation progresses, which typically is the

case in many complex geometry configurations.

3.2.3 Pressure Poisson Solver

The pressure Poisson Eq. 3.7 is the most time consuming step in incompressible flow

solvers, hence using efficient methods is worth pursuing. It may be solved by a variety

of methods suitable for linear second-order PDEs. The initial solver used for the

single-node flow solver [104] was a Jacobi iterative solver, which runs rapidly on the

GPU and reduces the initial error quickly. This is adequate for many simple problems

where an approximate solution is all that is needed. However, convergence to machine-

precision levels is very slow when more precise results are desired. Convergence is also

dependent on the grid size, which is a concern for cluster implementations targeting

very large problems.

Another choice for an iterative solver is the method of Gauss-Seidel, and the

weighted version known as Successive Overrelaxation (SOR). Data parallel versions

of this solver using the standard lexicographic order are complicated due to data

dependencies, resulting in frequent communications and limited parallelism. By using

22

Method Operations (3D) Operations (2D) Storage (3D)

Dense LU (Gaussian Elimination) O(N3) O(N3) O(N2)

Band LU O(N7/3) O(N2) O(N5/3)

Jacobi iteration O(N5/3) O(N2) O(N)

Gauss-Seidel O(N5/3) O(N2) O(N)

Successive Overrelaxation (SOR) O(N4/3) O(N3/2) O(N)

Conjugate Gradient O(N4/3) O(N3/2) O(N)
Fast Fourier Transform O(N log N) O(N log N) O(N)
Multigrid O(N) O(N) O(N)

Table 3.1: Run-time and memory complexity of different solvers for the discrete
Poisson equation, with convergence to a fixed small error with iterative methods.
N = n3 for a n× n× n 3D grid, N = n2 for a n× n 2D grid. From Demmel [27].

the Red-Black ordering for the evaluation order, the algorithm is readily paralleliz-

able. In the Red-Black ordering, the grid points are colored alternately and data

parallel operations are done on each color successively. This method is very common

for parallel implementations, and is easily implemented in CUDA using one kernel

invocation per color.

As indicated in Table 3.1, the computational complexity of both the Jacobi and

Gauss-Seidel methods is O(N2) in 2D, though with an optimal choice of weighting the

SOR method is O(N3/2). Another solver choice is the method of conjugate gradients,

but it is not pursued in this study. Instead, the geometric multigrid method [107],

which is computationally O(N), was implemented. This is one of the most efficient

methods when more precise results are desired. One advantage the multigrid method

has over the methods considered is grid-size independent convergence rate. Assuming

other factors held constant, as the domain size grows the convergence rate does not

decrease as it does with the other methods. The geometric multigrid method and its

implementation on GPU clusters is examined in detail in Chapter 5.

23

(a) (b)

Figure 3.2: Lid-driven cavity simulation with Re = 1000 on a 256×32×256 grid. 3D
computations were used and a 2D center slice is shown. (a) Velocity streamlines and
velocity magnitude distribution. (b) Comparison to the benchmark data from Ghia
et al. [37].

3.3 Validation

A test suite has been created and the various implementations have been validated

using the tests. The suite includes the well-known lid-driven cavity and natural

convection in heated cavity problems [37, 108]. Figure 3.2 presents the results of a

lid-driven cavity simulation with a Reynolds number 1000 on a 256× 32× 256 grid.

Fig. 3.2a shows the velocity magnitude distribution and streamlines at mid-plane.

As expected, the computations capture the two corner vortices at steady-state. In

Fig. 3.2b, the horizontal and vertical components of the velocity along the centerlines

are compared to the benchmark data of Ghia et al. [37]. The results agree well with

the benchmark data.

Natural convection in a cavity with heated lateral walls is simulated to test the

buoyancy-driven incompressible flow computations on a 128×16×128 grid. A Prandtl

24

(a) Griebel et al.
Fig. 9.4

(b) GPU simulation:
Streamlines

(c) Griebel et al.
Fig. 9.4

(d) GPU simulation:
Contours

(e) Griebel et al. Fig-
ure 9.5

(f) GPU simulation:
Streamlines

(g) Griebel et al. Fig-
ure 9.5

(h) GPU simulation:
Contours

Figure 3.3: Natural convection in a cavity using a 128 × 16 × 128 grid and Prandtl
number 7, with a 2D center slice shown. a-d) Streamlines and temperature isotherms
for Pr = 7 and Ra = 140. e-f) Streamlines and temperature isotherms for Pr = 7 and
Ra = 200, 000. The simulation uses parameters shown in Griebel et al. [44, Section
9.7.1], and results can be seen to closely match.

25

Figure 3.4: Centerline temperature for natural convection in a cavity with Prandtl
number 7 and Rayleigh number 100,000, using a 256×16×256 grid with a 2D center
slice used. Comparison is shown to data from Wan et al. [108].

number of 7 was used for each heated cavity simulation. Figure 3.3 presents the

natural convection patterns and isotherms for Rayleigh numbers of 140 and 200,000.

Lateral walls have constant temperature boundary conditions with one of the walls

having a higher temperature than the wall on the opposite side. Top and bottom

walls are insulated. Fluid inside the cavity is heated on the hot lateral wall and rises

due to buoyancy effects, whereas on the cold wall it cools down and sinks, creating a

circular convection pattern inside the cavity. The results agree with those presented

in Griebel et al. [44]. Figure 3.4 presents a comparison of the horizontal centerline

temperatures for a heated cavity with Ra = 100, 000 along with reference data from

Wan et al. [108]. These results are also in good agreement.

Rayleigh-Bénard convection is a cell-like arrangement of rising and descending

fluid (Bénard cells) that occurs when fluid is heated from the bottom. It is a

well studied phenomenon and is often used for testing temperature-driven flow in

26

Figure 3.5: Natural convection in a 3D cavity with aspect ratio 8:1:2, following the
example of Griebel et al. [44, Section 11.4.4]. Parameters are set to Pr = 0.72,
Ra = 30000, and Re = 4365. The mesh used was 65× 9× 17 with a 2D center slice
shown.

simulations. Figure 3.5 shows a simulation using the example of Griebel et al. [44,

Section 11.4.4]. This simulates air in a three-dimensional cavity with an aspect ratio

of 8:1:2. The dimensionless parameters are Pr = 0.72, Ra = 30000, and Re = 4365

in each case. Six cells are formed, as expected.

3.4 Flow in Urban Environments and Complex Terrain

Modeling airflow in urban environments is an important application that has seen

much recent work [2, 30, 33, 35, 50, 91, 97]. The present CFD model includes

the ability to read solid rectangular obstacles into the initial conditions, allowing

for solution of more complex problems, such as the simulation of air flow through

an urban environment. The urban geometry is typically available in the form of a

Geographic Information Systems (GIS) database. Figure 3.6 shows the velocity field

around buildings from the Oklahoma City downtown area. The flow field is visualized

with streamlines at time step 4000. Figure 3.7 shows air flow around complex terrain,

where data was imported from a USGS Digital Elevation Model. These simulations

are preliminary, as complex terrain physics has a number of additional factors that

are not addressed in the present modeling effort.

27

Figure 3.6: A view of the simulation showing air flow in the Oklahoma City downtown
area at time step 4000.

Figure 3.7: A view of instantaneous airflow around complex terrain.

28

CHAPTER 4

MULTILEVEL PARALLELISM ON GPU CLUSTERS

4.1 Introduction

Graphics processing units used for general purpose computing enable high levels of

fine-grain data parallelism. However, many tasks in the scientific community require

more resources than a single device can provide, whether in the problem size or

the required performance. Adding more GPUs to a workstation can be useful but

is limited in scalability. At this time, it is rare to see more than 4 GPUs on a

single workstation. Emerging GPU clusters allow large numbers of GPUs to be

used to solve single problems. Examples include the 7168 GPU Tianhe-1A cluster,

the 4640 GPU Dawning Nebulae cluster, the 680 GPU TSUBAME 1.2 cluster, the

512 GPU Longhorn cluster, the 284 GPU NCSA Lincoln Tesla cluster, as well as

many planned petascale GPU platforms. These new systems are designed for high

performance as well as high power efficiency, which is a crucial factor in future exascale

computing [100].

Shared memory models, such as POSIX Threads and OpenMP, are well suited

for single-node multi-GPU machines; however, taking advantage of GPU clusters

in an efficient manner requires a message passing API such as MPI or a higher level

language. While research is ongoing in cluster-aware parallel languages [10, 31, 36, 80],

the majority of applications use explicit commands for coarse-grain parallelism. The

29

present work concentrates solely on investigating using combinations of CUDA for

the GPU, Pthreads or OpenMP for intra-node parallelism, and MPI for inter-node

parallelism.

Brandvik and Pullan [17] show the implementation of 2D and 3D Euler solver

on a single GPU, showing 29× speedup for the 2D solver and 16× speedup for the

3D solver. One unique feature of their paper is the implementation of the solvers in

both BrookGPU and CUDA. Elsen et al. [29] show the conversion of a subset of an

existing Navier-Stokes solver to arrive at a BrookGPU version of a 3D compressible

Euler solver on a single GPU. Significant effort went into efficiently handling the

non-uniform mesh as well as geometric multigrid on an irregular mesh. Measured

speedups of 15× to 40× on complex geometries were obtained from a NVIDIA

8800GTX compared to a single core of a 2.4GHz Intel Core 2 Duo E6600. Tölke and

Krafczyk [106] describe a 3D Lattice Boltzmann model (D3Q13) in detail along with a

CUDA implementation. Their single GPU implementation on an NVIDIA 8800 Ultra

achieves a speedup of 100× over an Intel Xeon (noting that the CPU calculation was

done in double precision and with an implementation of a more detailed model, mak-

ing the speedup value not directly comparable). Simek et al. [99] detail performance

gains on a variety of single GPU platforms for atmospheric dispersion simulations,

achieving speedups as high as 77× compared to a CPU implementation. Cohen

and Molemaker [26] describe the implementation and validation of an incompressible

Navier-Stokes solver with Boussinesq approximation that supports double precision.

The numerical approach is very similar to that used in this thesis. Since it is a

single GPU implementation, domain decomposition and overlapping methods are not

examined. Performance of their implementation on a Tesla C1060 was 8× faster than

comparable multi-threaded code running on an 8-core Intel Xeon E5420 at 2.5GHz.

30

Double precision was 46% to 66% slower than single precision, which is in line with

results we have seen with our model running in double precision.

Modern motherboards can accommodate multiple GPUs in a single workstation

with several TeraFLOPS of peak performance. Currently, GPU programming models,

such as CUDA and OpenCL, do not address parallel implementations for multi-GPU

platforms. Therefore, GPU programming models have to be interleaved with MPI,

OpenMP, or Pthreads. In the multi-GPU computing front, Thibault and Seno-

cak [105] developed a single-node multi-GPU 3D incompressible Navier-Stokes solver

with a Pthreads-CUDA implementation. The GPU kernels from their study forms the

internals of the present cluster implementation. Thibault and Senocak demonstrated

a speedup of 21× for two Tesla C870 GPUs compared to a single core of an Intel

Core 2 3.0 GHz processor, 53× for two GPUs compared to an AMD Opteron 2.4 GHz

processor, and 100× for four GPUs compared to the same AMD Opteron processor.

Four GPUs were able to sustain 3× speedup compared to a single GPU on a large

problem size. The multi-GPU implementation of Thibault and Senocak does not

overlap computation with GPU data exchanges. Overlapping features are introduced

in the present study.

Micikevicius [75] describes both single- and multi-GPU CUDA implementations of

a 3D 8th-order finite difference wave equation computation. The wave equation code

is composed of a single kernel with one stencil operation, unlike CFD computations,

which consist of multiple inter-related kernels. MPI was used for process communica-

tion in multi-GPU computing. Micikevicius uses a two stage computation where the

cells to be exchanged are computed first, then the inner cells are computed in parallel

with asynchronous memory copy operations and MPI exchanges. With efficient

overlapping of computations and copy operations, Micikevicius achieves superlinear

31

speedup on 4 GPUs running on two Infiniband connected nodes with two Tesla

10-series GPUs each, when using a large enough dataset.

Before the introduction of CUDA in 2007, several early studies demonstrated the

potential of GPU clusters to tackle computationally large problems. Fan et al. [30]

investigated GPU cluster use for scientific computation in their 2004 paper. Fan

et al. showed an urban dispersion simulation implemented as a Lattice Boltzmann

model (LBM) run on a GPU cluster. Their cluster consisted of 32 nodes each with

a single GPU and uses MPI for inter-node communication. The paper emphasizes

the importance of minimizing communication costs, and the authors give excellent

views of overlapping communication and computation time in their model. Göddeke

et al. [40] in 2007 surveyed cluster approaches for scientific computation and shows

how GPU clusters from commodity components can be a practical solution. Phillips

et al. [88] in 2008 also investigated GPU clusters, detailing many of the complications

that arise that are unique to the system. Schive et al. [94] presented a 16 node,

32 GPU cluster running a parallel direct N-body simulation system, achieving 7.1

TeraFLOPS and over 90% parallel efficiency. Performance on GPU clusters running

well-parallelizable algorithms such as N-body simulations are better than those re-

ported for fluid dynamics solvers which are implemented with several kernels, as noted

in the more recent article by Schive et al. [95] that describes an Euler solver using

adaptive mesh refinement. Clearly, the sustained performance on GPU computing

platforms depends on the application.

Göddeke et al. [41] explored coarse- and fine-grain parallelism in a finite element

model for fluids or solid mechanics computations on a GPU cluster. Göddeke et

al. [39] described the application of their approach to a large-scale solver toolkit.

The Navier-Stokes simulations in particular exhibited limited performance due to

32

memory bandwidth and latency issues. Optimizations were also found to be more

complicated than simpler models such as the ones they previously considered. While

the small cluster speedup of a single kernel is good, unfortunately acceleration of the

entire model is only a modest factor of two. Their model uses a non-uniform grid

and multigrid solvers within a finite element framework for relatively low Reynolds

numbers.

Phillips et al. [88] describe many of the challenges that arise when implementing

scientific computations on a GPU cluster, including the host/device memory traf-

fic and overlapping execution with computation. A performance visualization tool

was used to verify overlapping of CPU, GPU, and communication on an Infiniband

connected 64 GPU cluster. Scalability is noticeably worse for the GPU accelerated

application than the CPU application, as the impact of the GPU acceleration is

quickly dominated by the communication time. However, the speedup is still notable.

Phillips et al. [86] describe a 2D Euler Equation solver running on an 8-node cluster

with 32 GPUs. The decomposition is 1D, but GPU kernels are used to gather/scatter

from linear memory to non-contiguous memory on the device.

While MPI is the API typically used for network communication between compute-

nodes, it presents a distributed memory model, which makes it less efficient for

processes running on the same shared-memory compute-node [9, 66]. For this reason,

hybrid programming models combining MPI and a threading model such as OpenMP

or Pthreads have been proposed with the premise that message passing overhead can

be reduced, increasing scalability. With two to four GPUs per compute-node, this

hybrid method warrants further investigation.

Cappello, Richard, and Etiemble [21, 22, 23] were among the first to present the

hybrid programming model of using MPI in conjunction with a threading model such

33

as OpenMP. They demonstrated that it is sometimes possible to increase efficiency on

some code by using a mixture of shared memory and message passing models. A num-

ber of other papers followed with the same conclusions [14, 28, 53, 71, 77, 89, 92, 93].

Many of these papers also point out a number of cases where the applications or

computing systems are a poor fit to the hybrid model, and in some cases perfor-

mance decreases. Lusk and Chan [72] describes using OpenMP and MPI for hybrid

programming on three cluster environments, including the effect the different models

have on communication with the NAS benchmarks. They believe this combination of

programming models is well fitted to modern scalable high performance systems.

Hager, Jost, and Rabenseifner [49] give a recent perspective on the state of the

art techniques in hybrid MPI-OpenMP programming. Particular attention is given to

mapping the model to domain decomposition as well as overlapping methods. Results

with hybrid models of the BT-MZ benchmark (part of the NAS Parallel Benchmark

suite) on a Cray XT5 using a hybrid approach showed similar performance at 64

and fewer cores, but greatly improved results for 128, 256, and 512 cores, where a

good combination of OpenMP fine-grain parallelism combined with MPI coarse-grain

parallelism can be found that matches well with the hardware. These examples also

take advantage of the loop scheduling features in OpenMP. Advantages in fine-grain

parallelism like this will not be able to be taken advantage of in a model where

OpenMP is only used for coarse-grain data transfer and synchronization.

Balaji et al. [4] discuss issues arising from using MPI on petascale machines with

close to a million processors. A number of MPI collective operations are shown to

have exponential time with respect to the number of processors. The tested MPI

implementations also allocate some memory proportional to the number of processes,

limiting scalability. These, as well as other limitations, lead the authors to suggest a

34

hybrid threading / MPI model as one way to mitigate the issue. However, in the case

of a typical GPU system, the situation is not as bad. In this case, the CUDA model

for fine-grain parallelism manages 256 to 512 processing elements within a single

process, and this number will likely increase with future GPUs. Hence, a one million

processing element GPU cluster using just MPI-CUDA may have fewer than 4000

MPI processes. This indicates that clusters enhanced with GPUs look well suited for

petascale and emerging exascale architectures. On the other hand, it also indicates

that the hybrid model has less potential benefit on multi-GPU clusters.

Nakajima [76] describes a three-level hybrid method using MPI, OpenMP, and

vectorization. This approach uses MPI for inter-node communication, OpenMP for

intra-node communication, and parallelism within the node via the vector processor.

It closely matches the rationale behind the present approach for the multi-GPU cluster

implementation. Weak scaling measurements showed worse results for 64 and fewer

SMP nodes, but improved with 96 or more. GPU clusters with 128 or more compute-

nodes (256 or more GPUs) are rare at this time but trends indicate these machines

will become far more common in the high performance computing field [100].

While these articles show some potential benefits for using the hybrid model on

CPU clusters, a question is whether the same benefits will accrue to a tri-level CUDA-

OpenMP-MPI model, and whether they will outweigh the added software complexity.

With high levels of data parallelism on the GPU, separate memory for each GPU,

low device counts per node, and currently small node counts, the GPU cluster model

has numerous differences from dense-core CPU clusters. The present thesis aims to

address some of these questions.

35

4.2 Multilevel Parallel Implementations

4.2.1 Common Implementation Details

A large portion of the flow solver is identical across all parallel implementations, and

on a single GPU system they run identically. There are a number of steps taken

before the model is started, including:

• Reading and parsing the configuration file.

• Reading and parsing an obstacle file if specified.

• Adjusting configuration parameters based on obstacle file, if needed.

• Determining process / thread / GPU mapping, and doing domain decomposi-

tion.

• Selecting GPU context and ensuring required resources will be available.

• Printing configuration text to screen and log.

• Allocating host memory.

• Optionally, initializing host memory with an initial condition.

• Spawning parallel processes / threads, each responsible for a single GPU.

The projection algorithm described in Section 3.2.1 is implemented here, with

pseudo-code shown in Figure 4.1. At each time step there is also optional progress

status output, and VTK visualization output. When the time-step loop ends, the

process writes the final output and clears GPU memory, then returns to the common

code, which can exit.

36

for (t=0; t < time_steps; t++)
{

adjust_timestep(); // Adaptive timestepping

for (stage = 0; stage < num_timestep_stages; stage++) {
temperature <<<grid,block>>> (u,v,w,phiold,phi,phinew);
ROTATE_POINTERS(phi,phinew);
temperature_bc <<<grid,block>>> (phi);
EXCHANGE(phi);

turbulence <<<grid,block>>> (u,v,w,nu);
turbulence_bc <<<grid,block>>> (nu);
EXCHANGE(nu);

momentum <<<grid,block>>> (phi,uold,u,unew,vold,v,vnew,wold,w,wnew);
momentum_bc <<<grid,block>>> (unew,vnew,wnew);
EXCHANGE(unew,vnew,wnew);

}

divergence <<<grid,block>>>(unew,vnew,wnew,div);

// Iterative or multigrid solution
pressure_solve(div,p,pnew);

correction <<<grid,block>>> (unew,vnew,wnew,p);
momentum_bc <<<grid,block>>> (unew,vnew,wnew);
EXCHANGE(unew,vnew,wnew);

ROTATE_POINTERS(u,unew); ROTATE_POINTERS(v,vnew); ROTATE_POINTERS(w,wnew);
}

Figure 4.1: Host code for the projection algorithm to solve buoyancy-driven incom-
pressible flow equations on multi-GPU platforms. The outer loop is used for time
stepping, and indicates where the time-step size can be adjusted. The EXCHANGE

step updates the ghost cells for each GPU with the contents of the data from the
neighboring GPU.

37

CUDA Kernels

All implementations use similar CUDA kernels. Since most kernels perform stencil

calls, a common framework is used. Figure 4.2 shows a template for a kernel. A

number of thread sizes were tried, and Table 4.1 shows the best results over a variety

of simulations. These are selected at compile time for all kernels, although it is

possible these could be chosen independently per kernel or even modified at run-time.

CC 1.3 CC 2.0
Single Precision 16× 16 32× 16
Double Precision 16× 8 32× 8

Table 4.1: Thread block sizes used for compute capability 1.3 and compute capability
2.0 devices.

Boundary conditions are set via kernels, which also use a common template. The

number of threads is chosen to be threads = threadsx× threadsy, where threadsx =

max(nx, ny) and threadsy = max(ny, nz). In the kernel, this results in each of the

six faces having a thread per face cell. Each thread is then responsible for up to six

faces. When compared with a typical method of spawning one thread per domain

cell with only the threads on a face performing work, there are many fewer threads

spawned and a resulting increase in performance on large domains.

Tables 4.2 and 4.3 list the main kernels, their performance on an example problem,

and the percent of the total time taken in that operation. The percent includes the

boundary-condition kernel. The temperature and turbulence kernels are used in this

example, but are typically not used for performance measurements elsewhere in the

thesis. The momentum kernel is very dense, as each thread performs advection and

diffusion on all three momentum vectors of a cell. This results in high register use,

38

__global__ void kernel(
int sections,
const REAL* d_u, const REAL* d_v, const REAL* d_w,
REAL* ...)

{
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = DCONSTANT_PADNY*DCONSTANT_PADNX

+ ypos*DCONSTANT_PADNX + xpos;

if ((xpos == 0) || (xpos >= (DCONSTANT_NX-1))
|| (ypos == 0) || (ypos >= (DCONSTANT_NY-1))
|| (sections == 0)

) return;

unsigned int kbeg = (sections & SECTION_BOT) ? 0 : 1;
unsigned int kend = (sections & SECTION_TOP) ? nlayers : nlayers-1;
bool do_mid = (sections & SECTION_MID);
unsigned int k = kbeg;

while (k < kend) {
unsigned int Ik = I + k*DCONSTANT_PADNX*DCONSTANT_PADNY;

// Do operations here using Ik as the index for the center pixel

if ((!do_mid) && (k == kbeg)) {
k = nlayers-1;

} else {
k++;

}
}

}

Figure 4.2: Template for CUDA kernel performing stencil operation. A bit mask is
handed in, indicating which sections (top, bottom, middle) should be computed. The
borders will never be computed in this kernel. Note the use of constant memory,
which can alternately be done as variables passed into the kernel.

39

registers GFLOPS percent time
temperature 33 24.8 6%
turbulence 28 38.2 17%
momentum 51 56.9 22%
divergence 14 26.6 2%
correction 27 29.0 3%
pressure (Jacobi) 18 40.7 51%

Table 4.2: Kernels with 30 Jacobi iterations for the pressure Poisson solver. Example
problem is 384×384×384 on a single Tesla S1070 GPU. Using the compute capability
1.3 thread-block size from Table 4.1, 32 registers are available with full occupancy.
Measurements indicated that for the two kernels using more than that number of
registers, performance decreased if the compiler was told to limit usage to 32.

registers GFLOPS percent time
temperature 33 21.1 4%
turbulence 28 40.9 9%
momentum 51 55.5 13%
divergence 14 23.6 1%
correction 27 22.8 2%
smoother (Jacobi) 17 30.0 52%
prolongation 19 10.3 4%
laplacian 18 15.0 6%
restriction 22 30.2 7%

Table 4.3: Kernels with 4 multigrid V-cycles for the pressure Poisson solver. Example
problem is 385× 385× 385 on a single Tesla S1070 GPU.

which might indicate scheduling issues, but because of the number of operations

performed, the GFLOPS is higher than other kernels. As expected, the pressure

Poisson solver takes the majority of the time, and it is mostly bandwidth bound.

Other Features

The implementation supports double-precision computation as a compile time option.

Current CUDA compute capability 1.3 and higher devices support double-precision,

but at a substantially reduced throughput (8 to 12×), unless one uses the Tesla-model

Fermi cards (e.g. C2050), where it is half the speed of single-precision. While this

would indicate a potential performance decrease of 8× on most cards, in practice we

40

see 2× to 2.6×. This is in line with reports from other developers [5, 26, 38] for CFD

code, which is at least partially memory bandwidth bound.

All configuration in the current implementations use a run-time ASCII text con-

figuration file for most decisions, with only the single-precision / double-precision

and the MPI overlapping methods remaining as compile-time parameters. Output

formats including the full model VTK output and periodic output are controlled by

the configuration, as well as intermediate data output. An example configuration file

is shown in Appendix C.

Multilevel Parallelism

All the features of the model described are applicable to a single GPU, and results

from Section 4.2.4 indicate a 13× performance increase over Pthreads-parallelized

CPU code using eight 2.33GHz Intel64 cores. Further increases can be achieved by

running on multiple GPUs, and even more when run on a cluster. Moreover, the

domain size can be substantially larger than that allowed by a single GPU.

Multiple programming APIs along with a domain decomposition strategy for

data-parallelism is required to achieve high throughput and scalable results from a

CFD model on a multi-GPU platform. For problems that are small enough to run on a

single GPU, overhead time is minimized as no GPU/host communication is performed

during the computation, and all optimizations are done within the GPU code. When

more than one GPU is used, cells at the edges of each GPU’s computational space

must be communicated to the GPUs that share the domain boundary so they have the

current data necessary for their computations. Data transfers across the neighboring

GPUs inject additional latency into the implementation, which can restrict scalability

if not properly handled. Therefore, we investigate several implementations of mul-

41

tilevel parallelism to improve the performance and scalability of the Navier-Stokes

solver.

4.2.2 Dual-Level Pthreads-CUDA Implementation

The work by Thibault and Senocak [105] showed how an incompressible Navier-

Stokes solver written for a single GPU can be extended to multiple GPUs by using

Pthreads. The implementation and results are described in detail in Julien Thibault’s

thesis [104]. The full 3D domain is decomposed across threads in one dimension,

splitting on the Z axis. The resulting partitions are then solved using one GPU per

thread, with CUDA used for fine-grain parallelism. No effort in this model is made

to hide latencies arising from GPU data transfers or Pthreads synchronization.

Scalability results were presented in those papers, with results obtained on an

AMD system with eight dual core CPUs and an attached NVIDIA S870 server

holding four GPUs, using two PCIe ×16 adapters. In the implementation used for

performance testing, no overlapping or asynchronous calls were performed. Ghost cell

exchanges were done using cudaMemcpy() to copy the edge layers from each GPU, a

barrier to synchronize the GPUs, followed by cudaMemcpy() to copy the appropriate

edges to each GPU. Note that since the first copy puts the data in shared memory,

each thread has access to the edge memory needed without any need for message

passing. Performance results with a relatively large 1024 × 32 × 1024 problem show

1.6× speedup of two GPUs 3.0× speedup of four GPUs, relative to a single GPU.

Since the number of GPUs is increased while the problem size remains constant, this

is known as strong scaling. The parallel efficiency is 80% and 75% at 2 and 4 GPUs,

respectively.

42

These results show the promise of using multiple GPUs for computational fluid

dynamic simulations. However, since this method uses a shared-memory model,

running it on a network-connected cluster requires a distributed shared-memory

system such as Intel Cluster OpenMP [55]. For models with large amounts of data

to transfer, such systems are currently very inefficient compared to message passing

APIs such as MPI. Without using a network-efficient API, the pure threading models

are not appropriate for use on a cluster, and hence are limited in scale.

4.2.3 Dual-Level MPI-CUDA Implementation

To solve the restrictions of the shared-memory model, MPI was adopted as the

mechanism for communication between GPUs. A single process is used per GPU,

with all ghost cell exchanges being done via MPI Isend and MPI Irecv. As discussed

in Section 2.2, with a large enough domain, MPI seems able to closely match the

performance of a shared-memory Pthreads-CUDA implementation on a single node.

Testing of the final MPI-CUDA implementation on identical hardware and simulation

parameters as used in Thibault and Senocak [105] show better scalability, even with

no overlapping of GPU memory copies. Therefore, with problem sizes sufficient to

use multiple GPUs, it is possible to achieve very efficient MPI solutions compared to

Pthreads.

Domain Decomposition

A 3D Cartesian volume is decomposed into 1D layers. These layers are then parti-

tioned among the GPUs on the cluster to form a 1D domain decomposition. The 1D

decomposition is shown in Figure 4.3. After each GPU completes its computation,

43

Figure 4.3: The decomposition of the full domain to the individual GPUs.

Figure 4.4: An overview of the MPI communication, GPU memory transfers, and the
intra-GPU 1D decomposition used for overlapping.

44

the edge cells (“ghost cells”) must be exchanged with neighboring GPUs. Efficiently

performing this exchange process is crucial to cluster scalability.

While a 1D decomposition leads to more data being transferred as the number of

GPUs increases, there are advantages to the method when using CUDA. In parallel

CPU implementations, host memory access can be performed on non-contiguous

segments with a relatively small performance loss. The MPI CART routines supplied

by MPI allow efficient management of virtual topologies, making the use of 2D and

3D decompositions easy and efficient. In contrast, the CUDA API only provides a

way to transfer linear segments of memory between the host and the GPU. Hence,

2D or 3D decompositions for GPU implementations must either use non-standard

device memory layouts, which may result in poor GPU performance, or run separate

kernels to perform gather/scatter operations into a linear buffer suitable for the

cudaMemcpy() routine. These routines add significant time and hinder overlapping

methods. For this reason, the 1D decomposition was deemed best for moderate size

clusters such as the ones used in this study. This is briefly investigated in Section 4.2.4.

To accommodate overlapping, a further 1D decomposition is applied within each

GPU. Figure 4.4 indicates how the 1D layers within each GPU are split into a top,

bottom, and middle section. When overlapping communication and computation, the

GPU executes each separately such that the memory transfers and MPI communica-

tion can happen simultaneously with the computation of the middle portion.

Implementations

Three implementations of the MPI-CUDA incompressible flow solver were developed.

A single MPI process is started per GPU, and each process is responsible for managing

its GPU and exchanging data with its neighbor processes. Overlap of computations

45

// PART 1: Interleave non-blocking MPI calls with device
// to host memory transfers of the edge layers.

// Communication to south
MPI_Irecv(new ghost layer from north)
cudaMemcpy(south edge layer from device to host)
MPI_Isend(south edge layer to south)
// Communication to north
MPI_Irecv(new ghost layer from south)
cudaMemcpy(north edge layer from device to host)
MPI_Isend(north edge layer to north)

// ... other exchanges may be started here, before finishing in order

// PART 2: Once MPI indicates the ghost layers have been received,
// perform the host to device memory transfers.

MPI_Wait(new ghost layer from north)
cudaMemcpy(new north ghost layer from host to device)
MPI_Wait(new ghost layer from south)
cudaMemcpy(new south ghost layer from host to device)
MPI_Waitall(south and north sends, allowing buffers to be reused)

Figure 4.5: An EXCHANGE operation overlaps GPU memory copy operations with
asynchronous MPI calls for communication.

with inter-node and intra-node data exchanges is accomplished to better utilize the

cluster resources. All three of the implementations have much in common, with dif-

ferences in the way data exchanges are implemented. It is shown in Section 4.2.4 that

implementation details in the data exchanges have a large impact on performance.

The projection algorithm is composed of distinct steps in the solution of the

fluid flow equations. Figure 4.1 shows an outline of the basic implementation using

CUDA kernels to perform each step. The steps marked as EXCHANGE are where ghost

cells for each GPU are filled in with the calculated contents of their neighboring

GPUs. The most basic exchange method is to call cudaMemcpy() to copy the edge

data to host memory, MPI exchange using MPI Send and MPI Recv, and finally

another cudaMemcpy() to copy the received edge data to device memory. This is

46

// The GPU domain is decomposed into three sections:
// (1) top edge, (2) bottom edge, and (3) middle
// Which of them the kernel should process is indicated
// by a flag given as an argument.

pressure <<<grid_edge,block>>> (edge_flags, div,p,pnew);

// The cudaMemcpy calls below will not start until
// the previous kernels have completed.
// This is identical to part 1 of the EXCHANGE operation.

// Communication to south
MPI_Irecv(new ghost layer from north)
cudaMemcpy(south edge layer from device to host)
MPI_Isend(south edge layer to south)
// Communication to north
MPI_Irecv(new ghost layer from south)
cudaMemcpy(north edge layer from device to host)
MPI_Isend(north edge layer to north);

pressure <<<grid_middle,block>>> (middle_flag, div,p,pnew);

// This is identical to part 2 of the EXCHANGE operation.
MPI_Wait(new ghost layer from north)
cudaMemcpy(new north ghost layer from host to device)
MPI_Wait(new ghost layer from south)
cudaMemcpy(new south ghost layer from host to device)
MPI_Waitall(south and north sends, allowing buffers to be reused)

pressure_bc <<<grid,block>>> (pnew);
ROTATE_POINTERS(p,pnew);

Figure 4.6: An example Jacobi pressure loop, showing how the CUDA kernel is split
to overlap computation with MPI communication.

47

pressure <<<grid_edge,block, stream[0]>>> (edge_flags, div,p,pnew);
// Ensure the edges have finished before starting the copy
cudaThreadSynchronize();

cudaMemcpyAsync(south edge layer from device to host, stream[0])
cudaMemcpyAsync(north edge layer from device to host, stream[1])

pressure <<<grid_middle,block, stream[2]>>> (middle_flag, div,p,pnew);

MPI_Irecv(new ghost layer from north)
cudaStreamSynchronize(stream[0]);
MPI_Isend(south edge layer to south)

MPI_Irecv(new ghost layer from south)
cudaStreamSynchronize(stream[1]);
MPI_Isend(north edge layer to north);

MPI_Wait(south receive to complete)
cudaMemcpyAsync(new south ghost layer from host to device, stream[0])
MPI_Wait(north receive to complete)
cudaMemcpyAsync(new north ghost layer from host to device, stream[1])

// Ensure all streams are done, including copy operations and computation
cudaThreadSynchronize();
pressure_bc <<<grid,block>>> (pnew);
ROTATE_POINTERS(p,pnew);

Figure 4.7: CUDA streams are used to fully overlap computation, memory copy
operations, and MPI communication in the pressure loop.

48

straightforward, but all calls are blocking which hinders performance. Therefore, this

most basic implementation is not pursued.

Non-Blocking MPI with No Overlapping of Computation

The first implementation uses non-blocking MPI calls [46] to offer a substantial benefit

over the blocking approach. This implementation does not overlap computation

although it tries to overlap memory copy operations. The basic EXCHANGE operation

is shown in Figure 4.5. In this approach, none of the device/host memory operations

nor any MPI communication happens until the computation of the entire domain

has completed. The MPI communication is able to overlap with the CUDA memory

operations. When multiple arrays need to be exchanged, such as the three momentum

components, the components may be interleaved such that the MPI send and receive

for one edge of the first component is in progress while the memory-copy operations

for the later component are proceeding. This is done by starting part 1 for each

component in succession, then part 2 for each component.

Overlapping Computation with MPI

The second implementation for exchanges aims to overlap the CUDA computation

with the CUDA memory copy operations and the MPI communication. We split

the CUDA kernels into three calls such that the edges can be done separately from

the middle. This has a very large impact on the cluster performance as long as

the domain is large enough to give each GPU enough work to do. The body of

the pressure kernel loop when using this method is shown in Figure 4.6. Rather than

perform the computation on the entire domain before starting the exchange, the kernel

is started with just the edges being computed. The first portion of the previously

49

shown non-blocking MPI EXCHANGE operation is then started, which does device to

host memory copy operations followed by non-blocking MPI communications. The

computation on the middle portion of the domain can start as soon as the edge

layers have finished transferring to the host, and operates in parallel with the MPI

communication. The last part of the non-blocking MPI EXCHANGE operation is also

identical and is run immediately after the middle computation is started. While

this implementation results in significant overlap, it is possible to improve on it by

overlapping the computation of the middle portion with the memory transfer of the

edge layers as shown in the final implementation.

Overlapping Computation with MPI Communications and GPU Transfers

The final implementation is enabled by CUDA streams, and uses asynchronous meth-

ods to start the computation of the middle portion as soon as possible, thereby

overlapping computation, memory operations, and MPI communication. A similar

approach is described in Micikevicius [75]. This method has the highest amount over

overlapping, and is expected to have the best performance at large scales. The body

of the pressure kernel loop when using this method is shown in Figure 4.7.

It is important to note that the computations inside the CUDA kernels need

minimal change, and the same kernel can be used for all three implementations. A

flag is sent to each kernel to indicate which portions (top, bottom, middle) it is to

compute, along with an adjustment of the CUDA grid size so the proper number of

GPU threads are created. Since GPU kernels tend to be highly optimized, minimizing

additional changes in kernel code is desirable.

50

Iterative Solvers

Either of two iterative solvers, weighted Jacobi Red-Black Gauss-Seidel, may be

chosen at run-time via the configuration file. Both solvers allow optional weights,

for damped Jacobi or successive overrelaxation with Gauss-Seidel. Global versions of

both kernels are shown in Appendix D. A shared-memory version of the Jacobi solver

has also been implemented. While the shared-memory version is faster, it is not an

optimal implementation, as there are additional optimizations using tex1Dfetch that

could be applied.

4.2.4 Dual-Level MPI-CUDA Performance Results with NCSA Lincoln

Tesla and TACC Longhorn Clusters

The NCSA Lincoln cluster consists of 192 Dell PowerEdge 1950 III servers connected

via InfiniBand SDR (single data rate) [65]. Each compute-node has two quad-core

2.33GHz Intel64 processors and 16GB of host memory. The cluster has 96 NVIDIA

Tesla S1070 accelerator units each housing four C1060-equivalent Tesla GPUs. An

accelerator unit is shared by two servers via PCI-Express ×8 connections. Hence, a

compute-node has access to two GPUs. For this research, performance measurements

for 64 of the 192 available compute-nodes in the NCSA Lincoln Tesla cluster are

shown, with up to 128 GPUs being utilized. The CUDA 3.0 Toolkit was used for

compilation and runtime, gcc 4.2.4 was the compiler used, and OpenMPI 1.3.2 was

used for the MPI library.

The TACC Longhorn cluster consists of 240 Dell R610 compute-nodes connected

via InfiniBand QDR (quad data rate). Each compute-node has two quad-core 2.53GHz

Intel Nehalem processors and 48GB of host memory. The cluster has 128 NVIDIA

51

QuadroPlex S4 accelerator units each housing four FX5800 GPUs. An accelerator

unit is shared by two servers via PCI-Express 2.0 ×16 connections. Performance of

the GPU units is similar to the Lincoln cluster, however, the device/host memory

bandwidth is more than 2× higher and the cluster interconnect is 4× faster. For this

research, performance measurements for 128 of the 240 available compute-nodes in

the TACC Longhorn cluster are shown, with up to 256 GPUs being utilized. The

CUDA 3.0 Toolkit was used for compilation and runtime, gcc 4.1.2 was the compiler

used, and OpenMPI 1.3.3 was used for the MPI library.

Single GPU performance has been studied relative to a single CPU processor

in many studies such as those in Section 4.1. Such performance comparisons are

adequate for desktop GPU platforms. On a multi-GPU cluster, a fair comparison

should be based on all the available CPU resources in the cluster. To partially

address this issue, the CPU version of the CFD code is parallelized with Pthreads

to use the eight CPU cores available on a single compute-node of the NCSA Lincoln

cluster. Identical numerical methods are used in the CPU and GPU code for the tests

performed.

A lid-driven cavity problem at a Reynolds number of 1000 was chosen for perfor-

mance measurements. Measurements were performed for both strong scaling where

the problem size remains fixed as the number of processing elements increases, and

weak scaling where the problem size grows in direct proportion to the number of

processing elements. Measurements for the CPU application were done using the

Pthreads shared-memory parallel implementation using all eight CPU cores on a

single compute-node of the NCSA Lincoln cluster. All measurements include the

complete time to run the application including setup and initialization, but do not

include I/O time for writing out the results. Single precision was used for these

52

Figure 4.8: Speedup on the NCSA Lincoln Tesla cluster from the three MPI-CUDA
implementations relative to the Pthreads parallel CPU code using all 8 cores on a
compute-node. The lid-driven cavity problem is solved on a 1024 × 64 × 1024 grid
with fixed number of iterations and time steps.

measurements.

Strong Scaling

Figure 4.8 shows the speedup of the MPI-CUDA GPU application relative to the

performance of the CPU application using Pthreads. The computational performance

on a single compute-node with 2 GPUs was 26 times faster than 8 Intel Xeon cores,

and 64 compute-nodes with 128 GPUs performed up to 104 times faster than 8 Intel

Xeon cores. In all configurations, the fully overlapped implementation performed

faster than the first implementation that did not perform overlapping. Additionally,

the final fully overlapping implementation performs fastest in all configurations with

53

Figure 4.9: Efficiency on the NCSA Lincoln Tesla cluster of the three MPI-CUDA
implementations with increasing number of GPUs (strong scalability presentation).
The lid-driven cavity problem is solved on a 1024× 64× 1024 grid with fixed number
of iterations and time steps.

54

more than one GPU, and shows a significant benefit with more than four GPUs. With

the fixed problem size, the amount of work to do on each node quickly drops — on a

single GPU a single pressure iteration takes under 10ms of compute time. Little gain

is seen beyond 16 GPUs on this fixed-size problem.

The efficiency numbers for a fixed-size problem in Figure 4.9 indicate the way

scaling drops off as the number of nodes is increased. Linear speedup would result

in 100% efficiency. Overlapping shows improved efficiency, and the fully overlapped

implementation is clearly the best. However, with the fixed-size workload, eventually

no amount of overlapping is able to overcome the network overhead once the amount

of work per GPU becomes very small. With 128 GPUs, only 30MB of GPU memory

is used per GPU for the problem size considered, and the Poisson pressure data is

only 2MB. Although as many as 128 GPUs were used for this problem, there appears

to be no significant gain in performance beyond 16 GPUs for this fixed-size problem

which uses approximately 4GB of total memory.

Weak Scaling in One Dimension

All three MPI-CUDA implementations were also run with increasing problem sizes

such that the memory used per GPU was approximately equal. This is commonly

referred to as weak scalability. Simulations such as channel flow can lead to extension

of the whole domain in one of the three dimensions as the problem size increases. In

this case, the height and depth of a channel is fixed, while the width increases relative

to the number of GPUs. For the 1D network decomposition performed by this CFD

code, the amount of data transferred between each GPU will be constant, as will the

domain dimensions on each GPU. Scalability should be excellent.

55

(a) 1D Growth (Lincoln)

(b) 1D Growth (Longhorn)

Figure 4.10: Sustained cluster performance of the three MPI-CUDA implementations
measured in GFLOPS. Growth is in one dimension. The size of the computational
grid is varied from 512× 512× 256 to 512× 512× 65536 with increasing number of
GPUs. (a) 4.1 TeraFLOPS with 128 GPUs on the NCSA Lincoln Tesla cluster, (b)
8.4 TeraFLOPS with 256 GPUs on the TACC Longhorn cluster.

56

(a) 1D Growth (Lincoln)

(b) 1D Growth (Longhorn)

Figure 4.11: Efficiency of the three MPI-CUDA implementations with increasing
number of GPUs (weak scalability presentation). Growth is in one dimension. The
size of the computational grid is varied from 512×512×256 to 512×512×65536 with
increasing number of GPUs. (a) NCSA Lincoln Tesla cluster, (b) TACC Longhorn
cluster.

57

Figure 4.10 shows the sustained GFLOPS performance on a logarithmic scale.

On the NCSA Lincoln Tesla cluster, 128 GPUs were utilized on 64 compute-nodes

to sustain a 4.1 TeraFLOPS performance with the fully overlapped implementation.

On the TACC Longhorn cluster, 256 GPUs were utilized on 128 compute-nodes to

sustain an 8.4 TeraFLOPS performance. Figure 4.11 indicates how scalability with

the fully overlapped implementation is good in this one-dimensional scaling case,

dropping from 94% with 4 GPUs to only 90% with 128 GPUs. Note that four GPUs

is the first case where the network is utilized. The results from the TACC Longhorn

cluster show more consistent behavior, with only a 1% drop in efficiency from 4 GPUs

to 256 GPUs.

Weak Scaling in Two Dimensions

Again, all three MPI-CUDA implementations were also run with increasing problem

sizes such that the memory used per GPU was approximately equal, so weak scala-

bility is examined. In this case, as the number of GPUs is increased, the problem size

grows in two dimensions. This is a very common scenario seen in such examples as

many lid-driven cavity and buoyancy-driven cases, as well as flow in complex terrain,

where covering a larger physical area (e.g. more square blocks in an urban simulation)

involves growth in the horizontal dimensions, while the number of cells used for height

remains constant.

Figure 4.12 shows the sustained GFLOPS performance on a logarithmic scale.

On the NCSA Lincoln Tesla cluster, 128 GPUs were utilized on 64 compute-nodes

to sustain a 2.9 TeraFLOPS performance with the fully overlapped implementation.

On the TACC Longhorn cluster, 256 GPUs were utilized on 128 compute-nodes to

sustain an 4.9 TeraFLOPS performance. With approximately 400GB of memory used

58

(a) 2D Growth (Lincoln)

(b) 2D Growth (Longhorn)

Figure 4.12: Sustained cluster performance of the three MPI-CUDA implementations
measured in GFLOPS. Growth is in two dimensions, with the Y dimension fixed. The
size of the computational grid is varied from 1024× 64× 1024 to 16384× 64× 16384
with increasing number of GPUs. (a) 2.9 TeraFLOPS with 128 GPUs on the NCSA
Lincoln Tesla cluster, (b) 4.9 TeraFLOPS with 256 GPUs on the TACC Longhorn
cluster.

59

(a) 2D Growth (Lincoln)

(b) 2D Growth (Longhorn)

Figure 4.13: Efficiency of the three MPI-CUDA implementations with increasing
number of GPUs (weak scalability presentation). Growth is in two dimensions, with
the Y size fixed. The size of the computational grid is varied from 1024× 64× 1024
to 16384× 64× 16384 with increasing number of GPUs. See text for a discussion of
the efficiency plot. (a) NCSA Lincoln Tesla cluster, (b) TACC Longhorn cluster.

60

during the computation on 128 GPUs, it is not possible to directly compare this to

a single node CPU implementation on traditional machines. Figure 4.13 shows much

improved scaling compared to the fixed problem size case (strong scalability) and

the advantage of overlapping computation and communication is also clear. Parallel

efficiency in the two-dimensional growth problem with full overlapping is excellent

through 16 GPUs, and little additional efficiency is lost with 32 and 64 GPUs.

One obvious feature of Figure 4.13 is that efficiency does not fall in a smooth

fashion with increasing GPUs, but steps up and down with an overall decreasing trend.

This is related to an interaction between the two-dimensional problem size growth

and the structure of the CUDA kernels. The mechanism of having each thread loop

over all the Z planes is very efficient; however, the CUDA kernel throughput strongly

changes as the numbers of threads (the X and Y dimensions) relative to the number

of Z planes per GPU is varied. Earlier implementations of the kernels, as seen in

Jacobsen et al. [62], show much less variability, but overall performance is lower —

for a similar problem the single GPU performance is 33 GFLOPS vs. 41 for the

current code, and 2.4 TFLOPS vs. 2.9 TFLOPS with 128 GPUs.

Weak Scaling in Three Dimensions

Figure 4.14 shows the sustained GFLOPS performance on a logarithmic scale. With

128 GPUs, only 768 GFLOPS was sustained with the fully overlapped implementa-

tion. On the NCSA Lincoln Tesla cluster, only 768 GFLOPS was sustained with

the fully overlapped implementation using 128 GPUs. On the TACC Longhorn

cluster, 2.4 TeraFLOPS was sustained using 256 GPUs. Figure 4.15(a) indicates how

scalability with the fully overlapped implementation trails off sharply at 16 GPUs,

and the gap between the overlapping implementations and non-overlapping narrows.

61

(a) 3D Growth (Lincoln)

(b) 3D Growth (Longhorn)

Figure 4.14: Sustained cluster performance of the three MPI-CUDA implementations
measured in GFLOPS. Growth is in three dimensions. The size of the computational
grid is varied from 416× 416× 416 to 2688× 2688× 2560 with increasing number of
GPUs. (a) 0.77 TeraFLOPS with 128 GPUs on the NCSA Lincoln Tesla cluster, (b)
2.4 TeraFLOPS with 256 GPUs on the TACC Longhorn cluster.

62

(a) 3D Growth (Lincoln)

(b) 3D Growth (Longhorn)

Figure 4.15: Efficiency of the three MPI-CUDA implementations with increasing
number of GPUs (weak scalability presentation). Growth is in three dimensions. The
size of the computational grid is varied from 416×416×416 to 2688×2688×2560 with
increasing number of GPUs. (a) NCSA Lincoln Tesla cluster, (b) TACC Longhorn
cluster.

63

The reasons for this behavior are examined in the next section. While the improved

communication bandwidths of the TACC Longhorn cluster greatly help scalability

(at 128 GPUs, Lincoln is at 13% while Longhorn achieves 34%), the overall behavior

is similar.

Further Remarks on Scalability

A design issue with the NCSA Lincoln cluster is noted that has an impact on the

results. The connection between the compute-nodes and the Tesla GPUs are through

PCI-Express Gen 2 ×8 connections rather than ×16. Measured bandwidth for pinned

memory is approximately 1.6 GB/s, which is significantly slower than the 5.6 GB/s

measured on a local workstation with PCIe Gen 2 ×16 connections to Tesla C1060s.

On a multi-GPU cluster with a faster PCIe bus, performance for all three MPI-

CUDA implementations are expected to improve. The fully overlapping method

shown in Figure 4.7 would likely see the least benefit as it overlaps all device memory

copies while computing. An additional factor that would result in improved efficiency

numbers is using a faster network connection, such as Infiniband QDR, rather than

the SDR used on the NCSA Lincoln cluster.

Measurements were also performed on the TACC Longhorn cluster which uses

GPUs with similar performance (Quadroplex 2200 S4 on Longhorn, Tesla S1070 on

Lincoln). However, measured device/host memory transfers are over 2× faster on

Longhorn, and its Infiniband QDR shows a 4× increase in interconnect bandwidth

with simple benchmarks. It should also be pointed out that as the CUDA kernels are

optimized and run faster, less time becomes available for overlapping communications.

In the current study, this resulted in changes that improved overall performance, often

leading to a loss in parallel efficiency.

64

(a) 1D Growth (Lincoln) (b) 1D Growth (Longhorn)

(c) 2D Growth (Lincoln) (d) 2D Growth (Longhorn)

(e) 3D Growth (Lincoln) (f) 3D Growth (Longhorn)

Figure 4.16: Percent of pressure Poisson solver (30 Jacobi iterations) time spent in
computation, host/GPU memory transfer, and MPI calls. No overlapping is used.
The problem size grows such that the number of cells per GPU is approximately
constant. (a)-(b) 1D growth, (c)-(d) 2D growth, (e)-(f) 3D growth.

65

To further examine the reasons behind the scalability results seen, CUDA event

timers were used to get high resolution profiles of time spent in the iterative pressure

solver. The timers calculated the time spent doing computation in the pressure and

boundary condition kernels, the amount of time spent copying data between the GPU

and the host, and the time spent in network communications. This data was collected

using no overlapping to show the potential benefits of overlapping as well as shed light

into the earlier scalability graphs.

For the 1D growth case shown in Figure 4.16a, measured compute and GPU

copy time was essentially constant for all runs. This is expected, as the per-GPU

dimensions of the pressure domain are identical at each size, and the amount of data

to be transferred is constant. The amount of data exchanged by each host also remains

constant as the number of GPUs increases, yet the time spent in MPI calls on the

Lincoln cluster increases with more GPUs. While performing the solver iterations,

each process only synchronizes with its immediate neighbors – no global operations

are used. On the Longhorn cluster, the percent of time spent in copy and MPI is

essentially constant once the network is utilized at 4 GPUs, which is what is expected.

With the 2D growth case shown in Figure 4.16c, the amount of data to be

transferred grows by a factor of
√
N as the number of GPUs (N) increases. In

the 4 GPU case, each transferred layer consists of 2048 × 64 cells, while with 16

GPUs (a 4× increase) each layer has 4096 × 64 cells — a 2× increase. With 32 or

fewer GPUs, it is possible to completely overlap network traffic and GPU copies with

computation. However, the particular size used in this simulation for 32 and 128

GPUs leads to slower computation than other cases, as remarked upon earlier. With

64 and 128 GPUs, complete overlapping of copy, MPI, and computation needs to be

done to keep scalability. The data on Longhorn shows a similar pattern, yet scales

66

better as the communication paths are faster.

The 3D growth case is shown in Figure 4.16e. The amount of data to be transferred

grows by a factor of N2/3 with the number of GPUs. In the 1 GPU case, each

transferred layer consists of 416 × 416 cells, while with 64 GPUs each layer has

1664 × 1664 cells — a 16× increase. Both the GPU copy and MPI communication

time increase rapidly, with the GPU copy alone taking more time on 64 GPUs than

the entire computation time. The picture on the Longhorn cluster is similar, with

the faster data copies just moving the saturation point to more GPUs. While large

linear transfers are done to achieve maximum copy efficiency, the amount of data is

too large in these cases. Calculation are shown for the 64 GPU case on the Lincoln

cluster:

Copy Bandwidth = (layer size · 4 · iterations · timesteps) /time (4.1)

= ((1664× 1664× 4 bytes) · 4 · 30 · 200) /139.62 seconds

= 1816 MB/s

MPI Bandwidth = (layer size · 4 · iterations · timesteps) /time (4.2)

= ((1664× 1664× 4 bytes) · 4 · 30 · 200) / 624.5 seconds

= 405.9 MB/s

For each GPU, the two edge layers must be copied from the GPU and then again to

the GPU, hence the factor of 4. This simple calculation ignores the effect of the edge

nodes. The effective GPU copy bandwidth is similar to that reported with memory

67

Figure 4.17: A comparison of weak scaling with the fully overlapped MPI-CUDA
implementation on two platforms, with growth in three dimensions. Longhorn has
higher bandwidth for both GPU/host and network data transfer.

benchmarks on this platform, which is 2 to 3 times less than newer hardware. The

effective MPI bandwidth is lower than the bidirectional bandwidth measured with

MPI benchmarks, suggesting this as a possible point to investigate.

A 2D decomposition would greatly reduce the amount of data transferred with

these large 2D and 3D simulations. Assuming a domain partition in the growth

dimensions, the 2D and 3D simulations would see a 4× reduction in the number of

bytes transferred. The ramifications to CUDA are discussed in Section 4.2.3. It seems

likely that for the 3D problems on many GPUs, the extra CUDA work will be worth

the per-GPU cost.

To further point out the effect of data transfer, identical simulations were per-

formed on the Longhorn GPU cluster at the Texas Advanced Computer Center

(TACC) at the University of Texas at Austin. This cluster consists of 240 compute-

68

nodes, each with Intel Nehalem cores and two NVIDIA Quadro FX 5800 GPUs.

Infiniband QDR is used to connect the nodes. The performance of single-node CUDA

programs is relatively similar between this cluster and the NCSA Lincoln Tesla cluster

used in the previous results. However, copy bandwidth was measured using standard

benchmarks at over twice that of the NCSA Lincoln cluster, while network exchange

rates were almost four times higher. Figure 4.17 directly compares the weak scaling

efficiency with growth in three dimensions using a fully overlapped version of the

model.

4.2.5 Tri-Level MPI-OpenMP-CUDA Implementation

To investigate whether additional efficiency can be gained from removing redundant

message passing when processes are on the same host, a threading model is added.

The effectiveness of this solution depends on a number of factors, with some barriers

to effectiveness being:

• Density of nodes. With more GPUs per node, the potential effectiveness can be

increased. Only clusters with two GPUs per node were available for this study.

• MPI implementation efficiency. The OpenMPI 1.3.2 software on the NCSA

Lincoln Tesla cluster seems reasonably well optimized. Goglin [42] discusses op-

timizations of MPI implementations to improve intra-node efficiency. A number

of optimizations have been performed on MPI implementations since the early

hybrid model papers were written, including a reduction in the number of copies

involved, as well as the extensive optimizations performed in Open-MX. Since

the application being studied only using OpenMP and MPI for coarse-grain

69

parallelism, any benefits in latency for small transactions will not have an

impact.

• A large number of nodes. Many of the hybrid model papers note benefits

occurring only as the number of nodes grows [21, 49, 76]. While the 64-node

128-GPU implementation used in this study is larger than many published

cluster results, it may still be too small to see an appreciable benefit.

• A good match between the hardware, the threading models, and the domain

decomposition. A number of hybrid model papers show application / hardware

combinations that show reduced performance with the hybrid model [21, 28,

53, 72].

• Interactions between OpenMPI, OpenMP, and CUDA can exist. For instance,

the default OpenMPI software on the NCSA Lincoln Tesla cluster is compiled

without threading support.

There are two popular threading models in use today: POSIX Threads (Pthreads)

and OpenMP. OpenMP has become the dominant method used in the HPC commu-

nity, and it was decided this was the model to be used for this study. It is not believed

that this choice had a noticeable performance impact, and OpenMP is clearer to read.

The thread-level parallelism is on a coarse-grain level, since CUDA is handling the

fine-grain parallelism.

MPI defines four levels of thread safety: SINGLE, where only one thread is allowed.

FUNNELED is the next level, where only a single master thread on each process may

make MPI calls. The third level, SERIALIZED, allows any thread to make MPI calls,

but only one at a time is using MPI. Finally, MULTIPLE allows complete multi-threaded

operation, where multiple threads can simultaneously call MPI functions.

70

With many clusters having pre-installed versions of MPI libraries, sometimes

with custom network infrastructure, it is not always possible to have access to the

highest (MULTIPLE) threading level. Additionally, this level of threading support

typically comes with some performance loss, so lower levels are preferred if they do

not otherwise hinder parallelism [45]. Three implementations were created, using the

SERIALIZED, FUNNELED, and SINGLE levels. The first implementation used one thread

per GPU, with each thread responsible for any possible MPI communications with

neighboring nodes. The second used N+1 threads for N GPUs, where a single thread

per node handles all MPI communications and the other threads manage the GPU

work. This can help alleviate resource contention between MPI and GPU copies,

since each activity is on its own thread. Additionally, this lets one use the FUNNELED

level, which increases portability and possibly can increase performance. Lastly, the

third version uses OpenMP directives to only perform MPI calls inside single-threaded

sections.

Similar to the dual-level MPI-CUDA testing, simulation runs were performed on

the NCSA Lincoln Tesla cluster. At the time this study was performed, the MPICH2

implementation had interactions with the CUDA pinned-memory support, making

it very slow for the CUDA streams overlapping cases. OpenMPI was used instead.

Unfortunately, the OpenMPI versions available do not support any threading level

other than SINGLE, and optimal network performance was not obtainable with custom

compiled versions by the author. Hence, only the last implementation was used.

An example implementation is shown in Figure 4.18, where simple computational

overlapping is performed. CUDA computations are performed on threads 1 − N ,

while MPI calls are performed on the single thread 0. With a FUNNELED hybrid

implementation, the omp master pragma would be used instead, with care taken

71

// COMPUTE EDGES

if (threadid > 0)

pressure <<<grid_edge,block>>> (edge_flags, div,p,pnew);

#pragma omp single

{

MPI_Irecv(new ghost layer from north)

}

if (threadid > 0)

cudaMemcpy(south edge layer from device to host)

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Isend(south edge layer to south)

MPI_Irecv(new ghost layer from south)

}

if (threadid > 0)

cudaMemcpy(north edge layer from device to host)

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Isend(north edge layer to north)

}

// COMPUTE MIDDLE

if (threadid > 0)

pressure <<<grid_middle,block>>> (middle_flag, div,p,pnew);

#pragma omp single

{

MPI_Wait(new ghost layer from north)

MPI_Wait(new ghost layer from south)

}

// Ensure all threads wait for MPI communication

#pragma omp barrier

if (threadid > 0) {

cudaMemcpy(new north ghost layer from host to device)

cudaMemcpy(new south ghost layer from host to device)

}

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Waitall(south and north sends, allowing buffers to be reused)

}

if (threadid > 0)

pressure_bc <<<grid,block>>> (pnew);

ROTATE_POINTERS(p,pnew);

Figure 4.18: An example Jacobi pressure loop using tri-level MPI-OpenMP-CUDA
and simple computational overlapping. This uses the SINGLE threading level.

72

Figure 4.19: A comparison of weak scaling with the fully overlapped MPI-CUDA
and single-threaded MPI-OpenMP-CUDA implementations, with growth in three
dimensions. Since the hybrid implementations use all the GPUs of a single node,
the base value for parallel scaling is set to a single node of the NCSA Lincoln Tesla
cluster containing two GPUs.

since it has no implied barrier as omp single does.

4.2.6 Tri-Level MPI-OpenMP-CUDA Performance Results with NCSA

Lincoln Tesla Cluster

Similar to the dual-level performance results, a lid-driven cavity problem at a Reynolds

number of 1000 was chosen for performance measurements on the NCSA Lincoln Tesla

cluster. As mentioned earlier, software issues on the NCSA Lincoln cluster precluded

effective testing of anything but the tri-level implementation using single threading.

Strong scaling and weak scaling measurements were performed, with little difference

seen in most results. The weak scaling results with growth in three dimensions is the

worst case for this application, and shows the most difference between the parallel

methods. Figure 4.19 shows the scaling efficiency of the fully overlapped dual-level

73

MPI-CUDA and the tri-level MPI-OpenMP-CUDA implementations in the 3D growth

weak scaling scenario. The MPI-CUDA data matches the fully overlapped data from

Figure 4.15, though 100% is set with two GPUs (a single node) rather than one.

With fewer than 4 nodes (8 GPUs), the dual-level MPI-CUDA implementation

performs better. This may be due to the more inefficient synchronization methods

used in the tri-level method with single-threaded MPI. With 32 and 64 nodes (64 and

128 GPUs), there is a small benefit with the MPI-OpenMP-CUDA implementation.

At this point, the amount of data being transferred may bring any efficiencies of

the shared-memory model to the forefront, outweighing single-node synchronization.

These results are not inconsistent with the hybrid performance results shown by Naka-

jima [76], where MPI-vector outperformed his hybrid MPI-OpenMP-vector model at

64 and fewer nodes, and started showing an increasing benefit at 96 nodes and beyond.

4.3 Conclusions

Three methods for exploiting the coarse-grain parallelism in a multiple-GPU system

were described, and performance on a multi-GPU cluster was measured. For rea-

sonably large domains, a similar dual-level MPI-CUDA implementation was shown

to perform well compared to a dual-level Pthreads-CUDA implementation. This

indicates a small penalty for large message transfers within a single node when

using contemporary MPI implementations. This result is supported by comparisons

of the dual-level MPI-CUDA implementations with tri-level MPI-OpenMP-CUDA

implementations. Little benefit was seen in adopting the hybrid model with the

hardware and software available.

Overlapping and domain decomposition are the two most important factors for

74

cluster scalability, while the CUDA kernel implementation is also important for

overall performance. Implementations and scaling results have been detailed for three

overlapping methods: no computation overlapping; computation with MPI; and fully

overlapping computation, GPU data transfers, and MPI. Overlapping computation

has been shown to be important for good scalability, and fully overlapping using

CUDA streams is critical to get the best scalability with many GPUs. The domain

decomposition method of 1D between GPUs, and 2D in the orthogonal dimensions

within the GPUs typically maximizes the GPU efficiency and is simple to implement.

However, with medium size clusters (16 or more GPUs) and domain sizes that

increase in all three dimensions with larger problems, the data transfer size overtakes

computation on the NCSA Lincoln cluster. In this case, the large drop in data

transferred would likely outweigh any additional complexity of a 2D decomposition.

Because of the focus on domain decomposition, its effects on data transfer sizes,

and therefore parallel scalability, the present study takes care to examine the cases

of growth in 1, 2, and 3 dimensions when investigating weak scaling. For the results

shown here, one of the growth dimensions is always in the 1D coarse-grain decomposi-

tion direction. The results show proper weak scaling in each case, where the amount of

data per GPU is constant as more GPUs are added, but the results are quite different.

In the 1D growth case, the amount of data transferred between partitions remains

constant, and also the exact dimensions of the per-GPU partition remain identical.

Given more resources and no growth in communications, it is possible to achieve

perfect scaling if the interconnect does not saturate with exchanges and overheads

can be well controlled. For the 2D and 3D growth cases where a 1D decomposition

is used, there will always be growth in the amount of data to be exchanged as the

number of GPUs increases. Since the work per-GPU remains constant and the amount

75

of data to transfer is growing, there will be some point where scaling starts to fall. It

is important in any weak scaling study to note how the problem is growing and how

it interacts with the domain decomposition method chosen.

76

CHAPTER 5

GEOMETRIC MULTIGRID FOR GPU CLUSTERS

5.1 Introduction

Multigrid methods are a class of techniques to solve boundary value problems such

as the Poisson equation. They are described briefly in Press et al. [90] and in detail

in Briggs et al. [18] and in Trottenberg et al. [107]. The fundamental idea is to apply

multi-scale techniques, where the problem is solved at multiple resolution levels. This

leads to not only a very efficient method with excellent convergence, but one where

the convergence rate can be independent of the grid size. For the large problem

domains expected to be run on HPC clusters, this is a very important feature.

Parallel multigrid solvers have been studied for some time. McBryan et al. [74]

survey parallel multigrid methods, and Chow et al. [25] gives a more recent survey of

important techniques. Particularly relevant to this work is the discussion on domain

partitioning and the discussion of methods for coarse-grid solving. McBryan et al.

show parallel efficiency results for numerous architectures, indicating very poor weak

scaling results with most implementations. In contrast, the very recent results of

Göddeke [38] show excellent scaling on a GPU cluster.

Previous studies using multigrid for GPUs include Goodnight et al. [43], who

describe a multigrid solver on a single GPU for boundary value problems. This

early work was done using early GPU hardware that were limited in both hardware

77

and software compared to current state of the art GPU computing. Cohen and

Molemaker [26] describe the single GPU implementation and validation of an in-

compressible Navier-Stokes solver with Boussinesq approximation, using a multigrid

solver. Göddeke et al. [41] describe integrating parallel multigrid solvers into an

existing finite element solver using mixed precision. This is done in a framework of

multiple CPU and GPU solvers, with choices that are made dynamically at each step.

The 2010 dissertation by Dominik Göddeke [38] discusses many aspects of multi-

grid on GPUs and GPU clusters. Parallel multigrid is investigated as part of an

unstructured finite element solver that runs on CPUs or GPUs. Of particular rele-

vance to this work is his discussion of smoothers, coarse-grid solvers, multigrid cycle

type, and general comments on GPU and GPU cluster performance. A number of the

issues are similar to those independently investigated here, with a different approach

taken to the coarse-grid solver.

5.2 Geometric Multigrid Method

Direct solving of large systems of partial differential equations is computationally

overwhelming, both in time and space. Iterative solvers such as the Jacobi and

Gauss-Seidel methods offer a practical alternative; however, their convergence rate

can be quite slow for large domains – a fact noted by Seidel in 1874 [96]. The

conjugate gradient method (CG) discovered independently in 1952 by Hestenes and

Stiefel [54], with extensions by Lanczos [69], provides a much faster technique, though

still proportional to the domain size. The works by Fedorenko [32] and Bakhvalov [3]

in the 1960s were the first to investigate multigrid techniques, showing their asymp-

totic optimality. The extensive work by Brandt in the 1970s [15, 16] demonstrated

78

the numerical efficiency of the method in operation, as well as developing many of

the ideas used in current techniques.

Given the system Au = f where A is an N ×N matrix, the solver starts with an

initial guess v. As iterative solvers proceed, the current solution v converges to the

real solution u. From this, the error

e = u− v, (5.1)

and the residual

r = f − Av, (5.2)

can be defined. Manipulation of these give rise to the residual equation Ae = r and

the residual correction u = v + e. Together these formulate the residual correction

algorithm:

begin

r = f − Av calculate residual

e = Solve(A, r) solve for the error

u = v + e residual correction

end

which shows how solving for the error can solve the equation. The multigrid method

will make use of this idea.

When running an iterative solver such as Jacobi or Gauss-Seidel, an observation

that can be made is that the error is smoothed. High frequency terms in the error

rapidly diminish, while low frequency terms are removed much more slowly. This is

a natural outcome of the narrow support of the discrete operation, where values can

only propagate one grid cell per iteration. The multigrid method makes use of this

79

Figure 5.1: A view of a grid hierarchy with a structured rectilinear grid, going from
333 at the fine level to 33 at the coarsest level.

behavior, and these are called smoothers when run inside multigrid.

Given a smoothed error matrix, looking at the error on a coarser grid would raise

the frequencies — low frequency errors on the fine grid become high frequency errors

on the coarse grid. This leads to multigrid: errors are smoothed at the current grid

level, the residuals are transferred to a coarser grid by a process called restriction,

the problem is further solved at this coarse level, and then the result is interpolated

back to the current grid (known as prolongation). This process creates a hierarchy

of grids (see example in Figure 5.1), with the coarsest grid being solved by another

method, such as a direct solver or a stationary iterative technique, such as Jacobi or

Gauss-Seidel. The multigrid cycle may be repeated, and it does not have to follow

a strict progression of fine to coarse. Two example cycle types, the common V-cycle

and W-cycle, are represented in Figure 5.2.

80

(a) V-cycle (b) W-cycle

Figure 5.2: Examples of multigrid cycle types. Closed circles represent smoothing
and open circles represent a coarsest grid solve (which may be approximate). (a)
V-cycle, (b) W-cycle.

proc mgcycle(γ, uk, f, spre, spost)
for i := 1 to spre do : Smooth pre-smoothing
rk := f − Luk compute residual using Laplacian
rk−1 := Rrk restrict residual
if k − 1 = coarsest level

then
CoarseGridSolve(u, f, rk−1) Apply coarse-grid solver

else
for i := 1 to γ do :

mgcycle(γ, 0, rk−1, spre, spost) multigrid on coarser levels
fi
uk := uk + Pvk−1 prolong coarse result to this level
for i := 1 to spost do : Smooth post-smoothing

Figure 5.3: Geometric Multigrid Algorithm

81

A distinction can be made between geometric multigrid methods, which define

coarse meshes directly from the fine mesh, and algebraic methods, which operate

directly on the matrix of equations. The algebraic method is usually preferable for

complex or unstructured grids. Since this research uses a structured Cartesian mesh,

the geometric multigrid method is used. The complete algorithm for a multigrid cycle

is shown in Figure 5.3. Setting γ = 1 will give a V-cycle, while γ = 2 gives a W-cycle.

5.3 GPU Implementation

Figure 5.4 shows the host code for a multigrid cycle. The mgdata t structure array is

initialized only once, and contains parameters for each level (grid sizes and spacing,

pointers to pressure and residual at each level, etc.). Setting gamma = 1 leads to a

V-cycle, while gamma = 2 leads to a W-cycle. Four routines are called from this host

code: restriction, prolongation, a smoother, and a method for the coarsest grid solve.

The MGzeroMesh function is a wrapper around cudaMemset to zero the appropriate

device memory.

5.3.1 Restriction

The restriction step calculates the residual for the fine grid and downscales (restricts)

it to a coarser grid. The host routine pseudo-code is shown in Figure 5.5. Creating the

residual is a Laplacian operation, which is performed on the fine grid. The restriction

operation takes a weighted average of neighboring cells on the fine grid. Common

methods include 1-point injection, 7-point half-weighting, and 27-point full-weighting.

All three methods are selectable in the current implementation by a compile-time

decision, though it could easily be made a run-time decision.

82

static void mgcycle (mgdata_t* mgd,
int m, int mgend,
int gamma,
REAL* dphibuf, mpi_exchange* mex)

{
int g;
assert(gamma > 0);
assert(m < mgend);

// Smooth the result
// : smooth E[m] using initial value and R[m]
MG_SMOOTHER(mgd, m, HCONSTANT_SMG_ITERV1, dphibuf, mex);

// Make a coarser mesh of residuals.
// : E[m] and R[m] create R[m+1]
restriction(mgd, m, dphibuf, mex);

// Clear out the initial corrections for the coarser level
// : E[m+1] = 0
MGzeroMesh(mgd, m+1);

if (m+1 >= mgend) {
mg_coarse_grid_solve(mgd, m+1, dphibuf, mex);

} else {
for (g = 0; g < gamma; g++) {

mgcycle(mgd, m+1, mgend, gamma, dphibuf, mex);
}

}

// Create the finer mesh
// : E[m] += interpolated E[m+1]
prolongation(mgd, m+1, mex);

// Smooth the result
// : smooth E[m] using initial value and R[m]
MG_SMOOTHER(mgd, m, HCONSTANT_SMG_ITERV2, dphibuf, mex);

}

Figure 5.4: The host code for a multigrid cycle.

83

static void restriction(mgdata_t* mgd, int mglevel, REAL* dphibuf, mpi_exchange* mex)
{

Zero edges of fine grid
call LaplacianGPU kernel to create fine grid residual values
exchange the results between GPUs

zero edges of coarse grid
call RestrictionGPU kernel to create coarse grid values from fine grid
exchange the results between GPUs

}

Figure 5.5: Host pseudo-code for the restriction operation. The implementation also
allows overlapping of computation and communication by computing the edges first,
then starting asynchronous communication while computing the middle section.

The CUDA kernel implementations of the Laplacian and Restriction operations

are shown in Appendix E.1 (LaplacianGPU) and Appendix E.2 (RestrictionGPU).

Both versions shown use global memory rather than shared memory. The Laplacian

kernel runs on the fine grid, while the restriction kernel has been implemented to run

with one thread per coarse-grid cell, which greatly helps performance as each thread

does a uniform amount of work.

On isotropic simulations, where ∆X = ∆Y = ∆Z, half-weighting performs quite

well. The convergence rate drops significantly as the simulation becomes anisotropic –

where one dimension is significantly different from another. Full-weighting maintains

the best convergence rates in these situations. The increase in global convergence

rate far outweighs the small amount of extra time taken for weighting, recalling that

the restriction kernel runs on the coarse grid, and hence operates with 8 times fewer

threads than a fine-grid kernel. The 27-point full-weighting is used for all results in

this thesis.

84

5.3.2 Prolongation

The prolongation operation for multigrid ought to be the inverse operator of the

restriction operation. With full-weighting used for restriction, the 3D adjoint is

trilinear interpolation. The value in the new fine grid will be a distance-weighted

average of the values of the surrounding coarse-grid cells. Care must be taken with

the operation ordering to prevent undesired floating-point rounding differences.

The prolongation host code calls the prolongationGPU kernel, shown in Ap-

pendix E.3 followed by setting the pressure boundary conditions and an exchange

between GPUs. The operation occurs on the coarse grid, and no MPI overlapping

is implemented for this function. A shared memory implementation of this kernel

was created but showed no advantage over this global memory version on the tested

platforms, so it is not used.

5.3.3 Smoother

Two smoothers have been implemented: weighted Jacobi and Red-Black Gauss-Seidel,

including a relaxation parameter to allow overrelaxation. The host code for weighted

Jacobi performs a number of iterations of the sequence: smoother kernel, exchange,

and set boundary conditions. Additionally, an exchange is done at the end to

ensure all ghost cells are consistent. The Jacobi smoother allows computation /

communication overlap. The host code for weighted Red-Black Gauss-Seidel performs

a number of iterations of the sequence: smoother kernel (red), exchange, smoother

kernel (black), set boundary conditions, and exchange. The global memory CUDA

kernel code for these kernels is shown in Appendix E.4 and E.5. A shared memory

version of the weighted Jacobi solver has also been implemented.

85

Figure 5.6: Comparison of smoothers used inside a multigrid V-cycle on the NVIDIA
Tesla S1070 and GTX 470 with the Fermi architecture. Time is plotted against the
residual level for a 1293 problem on a single GPU using double-precision calculations.
4 pre-smoothing and 4 post-smoothing iterations at each grid level. No multigrid
truncation was applied. The weighted Jacobi solver uses shared memory.

86

Figure 5.6 shows the performance of the smoothers on two platforms when used

inside a multigrid V-cycle. The time taken counts all multigrid activity, of which

the smoother was measured to be between 67% and 82% of the total. As expected,

the spacing between cycles indicates the Gauss-Seidel method converges faster than

weighted Jacobi (ω = 0.86) and the SOR weighting (ω = 1.60) converges faster yet.

On both platforms, using weighted Jacobi finishes faster than Red-Black Gauss-Seidel,

which indicates an implementation difference. Using SOR with a near-optimal weight

for this problem, the performance improves substantially, but does not outweigh the

implementation performance difference on the S1070. It does lead to the fastest

solution on the GTX 470. Comparing the two architectures, the previous generation

CC 1.3 S1070 and the current CC 2.0 (Fermi) GTX 470, not only is the Fermi system

faster overall, but all the solutions are closer.

5.3.4 Coarse-Grid Solver

Classic multigrid uses a full-depth cycle along with an exact solution for the coarsest

grid. When data is distributed among multiple nodes of a parallel system, it is

not possible to reduce the depth to the lowest level without repartitioning the data.

Additionally, if the grid size is not identical in all dimensions, some form of semi-

coarsening (restriction in only some of the dimensions) is needed to continue reduction

below the point where the smallest dimension has only one interior cell. Finally, even

when this reduction is done, the varying boundary conditions allowed make an exact

solution not as simple as for the case of all-Dirichlet boundaries.

The first method applied is the approximate solution method, where a fixed

number of iterations of the smoother are applied at the coarsest level. Figure 5.7

shows the effect of this method as the multigrid cycle is truncated earlier. While

87

Figure 5.7: Effect of early truncation level using V-cycles. Time is plotted against
the residual level for a 2573 problem on a single Tesla S1070 GPU using double-
precision calculations. The smoother is a weighted Jacobi with w = 0.86 and 4
pre-smoothing and 4 post-smoothing iterations at each grid level. The coarse-grid
solver is 16 iterations of the weighted Jacobi smoother. A marker is shown for each
4 loops of the multigrid cycle. The coarsest grid in this example for 3 levels is 653,
and for 7 levels is 53.

88

excellent convergence and computational performance is obtained with deep cycles,

with earlier truncation the performance begins to take on the characteristics of the

iterative solver.

Another method tried is a dynamic number of iterations of the smoother, where

the number of iterations is either based on the coarsest grid size or is run until the

residual is reduced to a desired accuracy level. This mitigates the effect of cycle

truncation on convergence, but the number of iterations required grows quite rapidly.

Over 1,000 iterations of the Jacobi solver are needed to obtain an accurate solution

on a 653 grid. This is even less acceptable on a cluster, where communication must be

performed between each iteration. One solution to this dilemma is to use a well-tuned

parallel solver, such as the parallel conjugate gradient method. This is the solution

used by Göddeke [38], where a conjugate gradient coarse-grid solver is used and set

to reduce the initial residuals by two decimal digits.

The solution we propose is to use multigrid as the coarse-grid solver. This

embedded multigrid solver could use different parameters (smoother type, number

of iterations, cycle type) than the outer multigrid solver and could be iterated more

than once. While on a single GPU this method has little impact (if the parameters are

identical, it is identical to performing no truncation), it has some strong advantages

on a cluster. These will be explored in Section 5.4.

5.3.5 Computational Overlapping

The three overlapping strategies described in Section 4.2.3 are also used in the

smoother and restriction operations during the multigrid process. The prolongation

operation does not overlap, but it uses less than 10% of the multigrid time on these

tests. Figure 5.8 compares the three strategies in the multigrid solver for a calculation

89

(a)

(b)

Figure 5.8: Comparison of overlapping strategies. Time is plotted against the residual
level for a double-precision 5133 problem using 8 GPUs. The smoother is a weighted
Jacobi with w = 0.86 and 4 pre-smoothing and 4 post-smoothing iterations at each
grid level. Truncation occurs at 6 levels (173), where the coarsest grid is amalgamated
to a single GPU and four V-cycles are performed on this grid. A marker is shown for
each loop of the multigrid cycle. (a) V-cycle, (b) W-cycle

90

using eight GPUs (four nodes of the NCSA Lincoln Tesla cluster). With V-cycles,

the performance gain from overlapping is significant for both simple overlapping and

again when using CUDA streams. Both show an improvement over the W-cycle

results for this problem, and benefits for overlapping are minimal for the W-cycles.

5.4 Amalgamated Multigrid for GPU Clusters

In a parallel multigrid implementation, the decomposition of each coarsest grid is a

critical factor. In this implementation, the dimensions (nxc, nyc, nzc) of the coarse

grid are nxc = (nxf − 1)/2 + 1, nyc = (nyf − 1)/2 + 1, and nzc = (nzf − 1)/2 + 1.

No semi-coarsening is applied, meaning each dimension is reduced. Each GPU is

responsible for the coarse-grid cells deriving from the restriction operator applied to

its current domain, meaning the partitioning is static on each grid. One implication

of this partitioning is that the number of GPUs used remains constant while the work

decreases by a factor of 23 = 8 at each step. More importantly, when nzc = #gpus,

no more coarsening can be applied, as this would result in some GPUs having no

pixels. Even before this time, the amount of work on each GPU is very small.

To alleviate the issue of rapidly shrinking work and the effect it has on computation

/ communication ratios, it is not uncommon for the multigrid cycle (e.g. V-cycle)

to be truncated, and the coarse-grid solver be set to an algorithm such as parallel

conjugate gradient as used in Göddeke [38]. A related idea discussed by Gropp [47]

and expanded on by Chow et al. [25] is to amalgamate the grids at the coarse level,

meaning a gather operation combines the coarse grids at all levels, which is then

solved on a single node, and the results are then scattered back. Since the coarse

levels are extremely small compared to the fine grid, the amount of data distributed

91

across the network is relatively small, and the resulting combined coarse grid level

may be more effectively solved.

Gropp further notes that by using an allgather operation and redundant calcu-

lations, each node can calculate the coarse grid, which means there is no need for a

scatter operation. The allgather method was implemented and compared with the

regular gather/solve/scatter solution. Measured times were effectively equal at most

truncation levels, but were longer with shallow truncation levels (where the coarse grid

was large). While in theory the performance of MPI Allgather can approach that

of MPI Gather, tests on the NCSA Lincoln Tesla cluster show that MPI Allgather is

slower, and the difference widens as more GPUs are added. With 8 nodes, it is 1.5

to 2 times slower, which confirms the results. An additional consideration for large

clusters is power consumption, which may mean large clusters will want to reduce

redundancy when it offers no clear benefit. Future directions for GPU scheduling

may also allow GPUs to be dynamically used by other users, which indicate that the

amalgamation technique of idling GPUs at small problem sizes may present a benefit

to the total cluster throughput.

Altogether, the issue of coarse-grid solving is one of solving the fine grids with high

performance, where domains are large and performance is dominated by computation

and bandwidth; and also effectively solving coarse grids, where domains are small

and performance is dominated by latency. There are numerous ways to approach

the solution, and a number of enhancements can be used for each. What this study

proposes is an embedded multigrid with amalgamation strategy.

For the coarse-grid solver, it is clear from Figure 5.7 that a process of truncation

with Jacobi iterations is not acceptable, as many GPUs will force early truncation.

Amalgamating the coarse grids of GPUs allows deeper levels to be taken. In the

92

limit, this means amalgamation to a single GPU where a full depth multigrid cycle

can be performed. Hence, multigrid is embedded as the coarse-grid solver in the

parallel multigrid implementation. Convergence rates are now equal to those seen with

textbook full-depth multigrid cycles, and for large coarse grids (e.g. 129× 129× 129

seen on 128 GPU tests), performance is high relative to other methods. Since network

communication costs are zero within the amalgamated solver, it can be advantageous

to perform multiple multigrid cycles at the coarse level, leading to an improvement

in the overall convergence rate for very little cost.

Amalgamation can often be performed with little to no extra memory use, as

the rapid reduction in size per coarsening quickly reduces the memory needed. The

current implementation can amalgamate to a single GPU at 3 levels for most problems

without using any additional memory, as the second pressure buffer used by the Jacobi

solver can be split into three parts holding the coarse grid pressure values, the coarse

grid residuals, and a pressure buffer sized for the coarse grid.

One limitation of the current implementation is that a single depth is chosen,

at which point all the results are amalgamated to a single GPU. While this drives

communication costs to zero during the coarse solve, it also removes all parallelism

from the other N − 1 GPUs. It is likely that a solution fanning in, for instance from

64 GPUs, to 8, then to 1, would better control the computation / communication

ratio. Another limitation is that even on a single GPU, there is likely to be a point

earlier than the coarsest 3 × 3 × 3 grid, where a different solver, such as conjugate

gradient, will be faster.

93

Figure 5.9: Performance of full-depth V-cycle multigrid compared to iterative Jacobi.
Time is plotted against the residual level for a 653, 1293, and 2573 problem on a single
Tesla S1070 GPU using double-precision calculations. The smoother is a weighted
Jacobi with w = 0.86 and 4 pre-smoothing and 4 post-smoothing iterations at each
grid level. For clarity, a marker is shown for each 2 loops of the multigrid cycle, every
1000 Jacobi iterations at 2573, and every 4000 Jacobi iterations at 1293 and 653.

5.5 Performance Results with NCSA Lincoln Tesla and TACC

Longhorn Clusters

A comparison of the computational performance between multigrid and unweighted

Jacobi is shown in Figure 5.9. A 3D lid-driven cavity problem was started at three

different grid sizes, and the time taken by the pressure solver is plotted against the

residual level for the initial time step.

Figure 5.10 shows the performance of the multigrid algorithm on a GPU cluster

94

Figure 5.10: Convergence and parallel efficiency of truncated and amalgamated
multigrid on 1, 8, and 64 GPUs where the problem size scales with the number of
GPUs. Time is plotted against the residual level for a double-precision problem using
2573 on 1 GPU, 5133 using 8 GPUs, and 10253 using 64 GPUs on the NCSA Lincoln
Tesla cluster. The smoother is a weighted Jacobi with w = 0.86 and 4 pre-smoothing
and 4 post-smoothing iterations at each grid level. A marker is shown for each 4 loops
of the multigrid cycle. V-cycles and CUDA streams overlapping were used for each.

95

Figure 5.11: Performance of the multigrid solver with different truncation levels
selected, using single precision. Problem size scales with the number of GPUs,
with 5133 on 2 GPUs and 10253 using 16 GPUs on the NCSA Lincoln Tesla and
TACC Longhorn clusters. The smoother is a weighted Jacobi with w = 0.86 and
4 pre-smoothing and 4 post-smoothing iterations at each grid level. V-cycles and
CUDA streams overlapping were used for each.

for relatively large problems (16M, 128M, and 1024M cells). In particular, the results

of the amalgamation with embedded multigrid are compared to the fixed iteration

approximate coarse-grid solver. With 8 GPUs, the coarsest grid is 173, while with 64

GPUs with coarsest grid is 653. On a single GPU, a full-depth V-cycle was performed,

and hence no truncation was performed.

Figure 5.11 shows the GPU cluster performance at different amalgamation levels.

Amalgamating at a shallow level leads to a very large coarse grid; for example, in the

10253 problem using 3 multigrid levels, the coarsest grid is 2573. This leads to poor

96

Figure 5.12: Weak scaling performance of the multigrid solver components, with their
overall portion of the solver time shown. Amalgamated multigrid at 5 levels was used
with parallel implementations, and the fully overlapped versions were used. Problem
size scales with the number of GPUs, with 5133 on 2 GPUs and 10253 using 16 GPUs
on the NCSA Lincoln Tesla cluster. The smoother is a weighted Jacobi with w = 0.86
and 4 pre-smoothing and 4 post-smoothing iterations at each grid level. V-cycles and
CUDA streams overlapping were used for each, and all computations were in single
precision. The chart legend indicates the percentage of the multigrid solver time
taken by that component.

performance both because of the large size to be communicated and for the loss of

parallel computation at a level where it is still helpful. It can seen from the figure

that there is a small benefit to amalgamating earlier than is required by the parallel

implementation. Comparing the two clusters, the 2 GPU solution has little difference

as it benefits only from the increased host/device memory bandwidth, while the 16

GPU solution is over 50% faster on the TACC Longhorn cluster, where the increased

Infiniband bandwidth leads to faster performance.

97

Figure 5.13: Weak scaling performance of the multigrid solver components using the
TACC Longhorn system. Better scalability is seen with the faster memory transfer
and network speeds.

Figures 5.12 and 5.13 break out the weak scalability by multigrid component.

The prolongation component has the worst scaling, but also takes the least amount of

time. Restriction scales better than the other components, but still shows poor scaling

behavior at 16 GPUs. The smoother (weighted Jacobi for this case) takes the majority

of the time, and shows scalability between the other components. While scaling to two

GPUs is not bad, scaling to 16 GPUs is disappointing. Comparing the scaling of the

two measured systems shows that the scaling to 16 GPUs is improved on the Longhorn

system but still trends downward. Note that this is a three-dimensional scaling case,

and comparing to the weak scaling results for Jacobi, shown in Figure 4.15, indicates

that some of the responsibility may lie in excessive data movement at the fine-grid

level.

98

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis presents multiple approaches to parallelizing an incompressible Navier-

Stokes flow solver on multi-GPU clusters. NVIDIA’s CUDA is used for fine-grain

parallelism, while combinations of Pthreads, MPI, and hybrid MPI-OpenMP are used

for coarse-grain parallelism. Comparisons between contemporary CPUs and GPUs

using a CFD flow solver show significant advantages for GPUs in computational per-

formance, energy efficiency, and cost effectiveness. Reviewing the dual-level Pthreads-

CUDA and MPI-CUDA shows that the performance difference on even relatively small

problems is minimal even with no computational overlapping, indicating that modern

MPI implementations can provide excellent throughput with large messages. With

this minimal performance loss on a single node, a dual-level MPI-CUDA solution can

provide the flexibility to run seamlessly on a single GPU, a multi-GPU workstation,

or a multi-GPU cluster.

Three methods for computational overlapping in the MPI-CUDA method have

been implemented, with performance measurements collected on 64 nodes (128 GPUs)

of the the NCSA Lincoln Tesla Cluster. As expected, computational overlapping on

systems with many GPUs is quite important. The method using CUDA streams

to fully overlap computation, GPU data transfers, and MPI network communica-

99

tions is the best solution on all cases shown, with the largest benefits over simple

overlapping typically seen between 4 and 16 GPUs. The most advantageous parallel

implementation (fixed size communication) using 128 GPUs obtained a speedup of

1332 over the eight cores of a single CPU node. With 2D growth, a speedup of 943

was obtained, and with 3D growth a speedup of 245 was seen. These results use

a 1D decomposition across the GPUs, with an orthogonal 2D stencil decomposition

used within each GPU. Timing measurements of weak scaling with 1D, 2D, and 3D

growth show this to be a bottleneck for 3D growth beyond 16 GPUs on the NCSA

Lincoln cluster. Results of the same fully overlapped implementation run on the

Longhorn cluster at the Texas Advanced Computing Center (TACC) indicated the

faster memory transfers and networking resulted in twice the parallel efficiency with

32 GPUs.

Methods for tri-level MPI-OpenMP-CUDA parallelism were explored, with mixed

results. A number of structural issues came into play: the multi-GPU clusters

available had no more than two GPUs per node, limiting the possible intra-node

efficiency gain; the number of nodes required to see the best benefit may be more

than the 64 nodes available for this research on the largest cluster used; the MPI

implementation used has seen intra-node message passing optimization since the

early papers in this area, limiting the possible gain; the network-optimized MPI

implementations available on the clusters used have the minimum threading level

support, making the hybrid implementation tested more inefficient than it could

otherwise be.

A numerically efficient Poisson solver is crucial in CFD applications for conserva-

tion of physical quantities. For simulations that need high accuracy or time-accurate

solutions, the addition of a parallel multigrid pressure Poisson solver allows rapid

100

convergence of the pressure at each timestep even with very large models. Multigrid

solvers introduce software complexity and require attention to detail to achieve the

best convergence rates. As part of this research, an MPI-CUDA multigrid solver was

developed. Each part of the GPU-enabled multigrid solver is examined, including

convergence and performance of the Jacobi, Red-Black Gauss-Seidel, and Successive

Overrelaxation smoothers on both the newest Fermi architecture and the previous

generation. Early multigrid truncation with an approximate coarse-grid solver was

examined, and while some truncation is possible with little difference, more than a

few of the coarsest levels skipped leads to slow convergence. As with the Jacobi

solver, overlapping of the CUDA kernels with GPU data transfers and MPI network

communication is investigated. With V-cycles, there is a distinct performance benefit

to each level of overlapping, with the fully overlapped implementation almost 40%

faster on 8 GPUs.

Coarse-grid solvers are a important feature of parallel multigrid solvers, and

numerous methods have been proposed for their solution. This thesis presents a new

method: embedded multigrid with amalgamation. In this technique, the coarsest

grid is assembled on a single GPU where it is solved with a single-GPU multigrid

implementation, with identical logic to the outer multigrid solution. This combines

minimization of network communication on small grids, amalgamation to provide the

GPU with enough work that it operates efficiently, and the excellent convergence rate

of multigrid for the coarse grid.

101

6.2 Future Work

While the numerical computations are sufficient for a wide variety of CFD work,

many improvements could be made, and a number of them are noted in Section 3.2.1.

The projection model as implemented is first-order in time which could be improved

to second-order. The Runge-Kutta time-stepping methods have been implemented,

but validation remains to be performed. The simple Smagorinsky turbulence model

is implemented but remains to be validated, and other turbulence models can be

considered.

The current implementation uses a uniform mesh to represent the domain. Struc-

tured mesh methods to adapt to differing regions would greatly improve the model,

such as body-fitted coordinates, hybrid meshes, or adaptive mesh refinement (AMR).

The AMR method of Berger and colleagues [6, 7, 8] looks particularly well suited to

this method. AMR uses a set of nested grids at different resolutions, which maintains

the simplicity of a structured rectilinear grid while allowing the model to adapt the

mesh resolution to resolve detail in areas where it is needed.

Alternate domain decompositions should be compared. While there are compelling

reasons to use the 1D inter-GPU decomposition for small clusters, this method

becomes inefficient for 32 or more nodes. The zero copy feature of CUDA 2.2 and later

can be used to effectively overlap the domain edge memory transfer along with the

gather / scatter kernels. Analysis of data transfers indicate that a 2D decomposition

should have a significant impact with large data sets on many nodes.

The CUDA kernels are implemented in fairly straightforward ways, and do not

use excessive optimizations. It should be possible to improve their performance if

needed. One feature often used in similar code is the use of texture memory to

102

take advantage of its cache as well as special features such as built-in tri-linear

interpolation. While some CUDA optimizations were pursued, the focus of this thesis

is on the interaction of the fine-grain CUDA parallelization with the coarse-grain MPI

and OpenMP methods, and hence many opportunities for faster CUDA kernels were

not followed through.

The amalgamation method with embedded multigrid solver has been shown to

be an effective solution. It has a sharp transition from using all available GPUs to

only one, which could be improved. One possibility is step merging where every other

GPU merges with its neighbor, another is to choose discrete merge points such as

N ⇒ 16 ⇒ 4 ⇒ 1 GPU. Another useful line of investigation would be looking at

alternate solvers such as the conjugate gradient method for the coarse-grid solver.

103

REFERENCES

[1] Akio Arakawa and Vivian R. Lamb. Computational design of the basic dynami-
cal processes of the UCLA general circulation model. Methods in Computational
Physics, 17:173–265, 1977.

[2] Jong-Jin Baik, Jae-Jin Kim, and Harindra J. S. Fernando. A CFD model
for simulating urban flow and dispersion. Journal of Applied Meteorology,
42(11):1636–1648, 2003.

[3] Nikolai Sergeevich Bakhvalov. On the convergence of a relaxation method with
natural constraints on the elliptic operator. USSR Computational Mathematics
and Mathematical Physics, 6(5):101–135, 1966.

[4] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar,
Ewing L. Lusk, Rajeev Thakur, and Jasper Larsson Träff. MPI on a million
processors. In Proceedings of the 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pages 20–30, 2009.

[5] Aaron Becker, Isaac Dooley, and Laxmikant V. Kalé. Flexible hardware map-
ping for finite element simulations on hybrid CPU/GPU clusters. In SAAHPC:
Symposium on Application Accelerators in HPC, July 2009.

[6] John Bell, Marsha Berger, Jeff Saltzman, and Mike Welcome. Three-
dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM
Journal on Scientific Computing, 15(1):127–138, January 1994.

[7] Marsha Berger and Phillip Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64–84, May 1989.

[8] Marsha Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computational Physics, 53:484–512,
March 1984.

[9] Marsha J. Berger, Michael J. Aftosmis, D. D. Marshall, and Scott M. Murman.
Performance of a new CFD flow solver using a hybrid programming paradigm.
J. Parallel Distrib. Comput., 65(4):414–423, 2005.

104

[10] Konstantin Berlin, Jun Huan, Mary Jacob, Garima Kochhar, Jan Prins,
William Pugh, P. Sadayappan, Jaime Spacco, and Chau-Wen Tseng. Evaluating
the impact of programming language features on the performance of parallel
applications on cluster architectures. In LCPC, pages 194–208, 2003.

[11] Jiri Blazek. Computational Fluid Dynamics: Principles and Applications.
Elsevier, 2001.

[12] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse matrix
solvers on the GPU: Conjugate gradients and multigrid. In ACM SIGGRAPH
2003 Papers, pages 917–924, San Diego, California, 2003. ACM.

[13] Roland Bouffanais. Simulation of shear-driven flows: transition with a free
surface and confined turbulence. PhD thesis, École Polytechnique Fédérale de
Lausanne, 2007.

[14] Steve W. Bova, Clay P. Breshears, Christine E. Cuicchi, Zeki Demirbilek, and
Henry A. Gabb. Dual-level parallel analysis of harbor wave response using MPI
and OpenMP. Int. J. High Perform. Comput. Appl., 14(1):49–64, 2000.

[15] Achi Brandt. Multi-level adaptive technique (MLAT) for fast numerical solu-
tions to boundary value problems. In H. Cabannes and R. Temam, editors,
Lecture Notes in Physics 18, pages 82–89, Berlin, 1973. Proc. 3rd Int. Conf.
Numerical Methods in Fluid Mechanics, Springer.

[16] Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Math.
Comput., 31(138):333–390, April 1977.

[17] Tobias Brandvik and Graham Pullan. Acceleration of a 3D Euler solver using
commodity graphics hardware. In 46th AIAA Aerospace Sciences Meeting and
Exhibit, January 2008.

[18] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial (2nd ed.). Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[19] David L. Brown, Ricardo Cortez, and Michael L. Minion. Accurate projection
methods for the incompressible navier-stokes equations. Journal of Computa-
tional Physics, 168(2):464–499, 2001.

[20] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

105

[21] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on IBM SP
for the NAS benchmarks. In Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 12, Dallas, Texas, United States, 2000. IEEE
Computer Society.

[22] Franck Cappello, Olivier Richard, and Daniel Etiemble. Performance of the
NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI
programs with OpenMP. In PaCT, pages 339–350, 1999.

[23] Franck Cappello, Olivier Richard, and Daniel Etiemble. Investigating the
performance of two programming models for clusters of SMP PCs. In HPCA,
pages 349–359, 2000.

[24] Alexandre Joel Chorin. Numerical solution of the Navier–Stokes equations.
Math. Comput., 22:745–762, 1968.

[25] Edmond Chow, Robert D. Falgout, Jonathan J. Hu, Raymond S. Tuminaro,
and Ulrike Meier Yang. A Survey of Parallelization Techniques for Multigrid
Solvers, chapter 10. SIAM Series on Software, Environments, and Tools. SIAM,
2006.

[26] Jonathan M. Cohen and M. Jeroen Molemaker. A fast double precision CFD
code using CUDA. In Proceedings of Parallel CFD, 2009.

[27] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[28] Suchuan Dong and George E. Karniadakis. Dual-level parallelism for deter-
ministic and stochastic CFD problems. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, pages 1–17, Los Alamitos,
CA, USA, 2002. IEEE Computer Society Press.

[29] Erich Elsen, Patrick LeGresley, and Eric Darve. Large calculation of the flow
over a hypersonic vehicle using a GPU. Journal of Computational Physics,
227(24):10148–10161, December 2008.

[30] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU cluster
for high performance computing. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, pages 47+, Washington, DC, USA, 2004. IEEE
Computer Society.

[31] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,
Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,
William J. Dally, and Pat Hanrahan. Memory - sequoia: programming the
memory hierarchy. In SC, page 83, 2006.

106

[32] Radii Petrovich Fedorenko. A relaxation method for solving elliptic differ-
ence equations. USSR Computational Mathematics and Mathematical Physics,
1(4):1092–1096, 1964.

[33] Harindra J. S. Fernando, Dragan Zajic, Silvana Di Sabatino, Reneta Dimitrova,
Brent Hedquist, and Ann Dallman. Flow, turbulence, and pollutant dispersion
in urban atmospheres. Physics of Fluids, 22(051301), 2010.

[34] Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dynamics.
Springer, 3rd edition, 2002.

[35] Julia E. Flaherty, David Stock, and Brian Lamb. Computational fluid dynamic
simulations of plume dispersion in urban Oklahoma City. Journal of Applied
Meteorology and Climatology, 46(12):2110–2126, December 2007.

[36] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro,
and Wen-mei W. Hwu. An asymmetric distributed shared memory model for
heterogeneous parallel systems. SIGPLAN Notices, 45(3):347–358, 2010.

[37] Urmila Ghia, Kirti N. Ghia, and C.T. Shin. High-Re solutions for incompressible
flow using the Navier–Stokes equations and a multigrid method. Journal of
Computational Physics, 48:387–411, 1982.

[38] Dominik Göddeke. Fast and Accurate Finite-Element Multigrid Solvers for PDE
Simulations on GPU Clusters. PhD thesis, Technischen Universität Dortmund,
Dortmond, Germany, February 2010.

[39] Dominik Göddeke, Sven H.M. Buijssen, Hilmar Wobker, and Stefan Turek.
GPU acceleration of an unmodified parallel finite element Navier–Stokes solver.
In International Conference on High Performance Computing & Simulation,
pages 12–21, 2009.

[40] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick Mc-
Cormick, Sven H.M. Buijssen, Matthias Grajewski, and Stefan Turek. Exploring
weak scalability for FEM calculations on a GPU-enhanced cluster. Paral-
lel Computing, Special issue: High-performance computing using accelerators,
33(10–11):685–699, November 2007.

[41] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick Mc-
Cormick, Hilmar Wobker, Christian Becker, and Stefan Turek. Using GPUs
to improve multigrid solver performance on a cluster. International Journal of
Computational Science and Engineering (IJCSE), 4(1):36–55, 2008.

[42] Brice Goglin. High throughput intra-node MPI communication with Open-MX.
In PDP, pages 173–180, 2009.

107

[43] Nolan Goodnight, Gregory Lewin, David Luebke, and Kevin Skadron. A
multigrid solver for boundary-value problems using programmable graphics
hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics Hardware, pages 102–111, 2003.

[44] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical
Simulation in Fluid Dynamics: A Practical Introduction. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[45] William Gropp and Rajeev Thakur. Thread-safety in an MPI implementation:
Requirements and analysis. Parallel Computing, 33(9):595–604, 2007.

[46] William Gropp, Rajeev Thakur, and Ewing Lusk. Using MPI-2: Advanced
Features of the Message Passing Interface. MIT Press, 1999.

[47] William D. Gropp. Parallel computing and domain decomposition. In Tony F.
Chan, David E. Keyes, Gérard A. Meurant, Jeffrey S. Scroggs, and Robert G.
Voigt, editors, Fifth International Symposium on Domain Decomposition Meth-
ods for Partial Differential Equations, Philadelphia, PA, USA, 1992. SIAM.

[48] Jean Luc L. Guermond, Peter Minev, and Jie Shen. An overview of projec-
tion methods for incompressible flows. Comput. Methods Appl. Mech. Engrg,
196:6011–6045, 2006.

[49] Georg Hager, Gabriele Jost, and Rolf Rabenseifner. Communication character-
istics and hybrid MPI/OpenMP parallel programming on clusters of multi-core
SMP nodes. In Proceedings of the Cray Users Group Conference, May 2009.

[50] Steven R. Hanna, Michael J. Brown, Fernando E. Camelli, Stevens T. Chan,
William J. Coirier, Olav R. Hansen, Alan H. Huber, Sura Kim, and R. Michael
Reynolds. Detailed simulations of atmospheric flow and dispersion in urban
downtown areas by computational fluid dynamics (CFD) models – an applica-
tion of five CFD models to Manhattan. Bulletin of the American Meteorological
Society, 87(12):1713–1726, 2006.

[51] Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo
Lastra. Simulation of cloud dynamics on graphics hardware. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics Hardware,
pages 92–101, 2003.

[52] Rolf Hempel. The MPI standard for message passing. In Wolfgang Gentzsch
and Uwe Harms, editors, High-Performance Computing and Networking, Inter-
national Conference and Exhibition, HPCN Europe 1994, Munich, Germany,

108

April 18-20, 1994, Proceedings, Volume II: Networking and Tools, volume 797
of Lecture Notes in Computer Science, pages 247–252. Springer, 1994.

[53] David S. Henty. Performance of hybrid message-passing and shared-memory
parallelism for discrete element modeling. In Supercomputing ’00: Proceedings
of the 2000 ACM/IEEE conference on Supercomputing, page 10, Dallas, Texas,
United States, 2000. IEEE Computer Society.

[54] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of Standards,
49:409–436, December 1952.

[55] Jay P. Hoeflinger. Extending OpenMP to clusters. Intel Corporation White
Paper, 2006.

[56] HPCwire. Colfax unveils first eight Tesla GPU server. http:

//www.hpcwire.com/offthewire/Colfax-Server-Features-Eight-

NVIDIA-Tesla-GPUs-64090602.html, October 2009.

[57] HPCwire. Microway 9U compact GPU cluster with octoputer. http://www.

microway.com/tesla/clusters.html, November 2009.

[58] HPCwire. China’s new Nebulae supercomputer is no. 2, right on the tail
of ORNL’s Jaguar. http://www.hpcwire.com/offthewire/Chinas-New-

Nebulae-Supercomputer-Is-No-2-Right-on-the-Tail-of-ORNLs-Jaguar-

95258669.html, May 2010.

[59] HPCwire. NVIDIA Tesla GPUs power world’s fastest supercom-
puter. http://www.hpcwire.com/offthewire/NVIDIA-Tesla-GPUs-Power-

Worlds-Fastest-Supercomputer-105983244.html, October 2010.

[60] HPCwire. PGI to develop compiler based on NVIDIA CUDA C architecture
for x86 platforms. http://www.hpcwire.com/offthewire/PGI-to-Develop-

Compiler-Based-on-NVIDIA-CUDA-C-Architecture-for-x86-Platforms-

103471359.html, September 2010.

[61] Intel. Intel microprocessor export compliance metrics. http://www.intel.

com/support/processors/sb/cs-023143.htm, May 2009.

[62] Dana A. Jacobsen, Julien C. Thibault, and Inanc Senocak. An MPI-CUDA
implementation for massively parallel incompressible flow computations on
multi-GPU clusters. In 48th AIAA Aerospace Science Meeting, January 2010.

[63] Khronos OpenCL Working Group. The OpenCL Specification: Version 1.1.
2010.

http://www.hpcwire.com/offthewire/Colfax-Server-Features-Eight-NVIDIA-Tesla-GPUs-64090602.html
http://www.hpcwire.com/offthewire/Colfax-Server-Features-Eight-NVIDIA-Tesla-GPUs-64090602.html
http://www.hpcwire.com/offthewire/Colfax-Server-Features-Eight-NVIDIA-Tesla-GPUs-64090602.html
http://www.microway.com/tesla/clusters.html
http://www.microway.com/tesla/clusters.html
http://www.hpcwire.com/offthewire/Chinas-New-Nebulae-Supercomputer-Is-No-2-Right-on-the-Tail-of-ORNLs-Jaguar-95258669.html
http://www.hpcwire.com/offthewire/Chinas-New-Nebulae-Supercomputer-Is-No-2-Right-on-the-Tail-of-ORNLs-Jaguar-95258669.html
http://www.hpcwire.com/offthewire/Chinas-New-Nebulae-Supercomputer-Is-No-2-Right-on-the-Tail-of-ORNLs-Jaguar-95258669.html
http://www.hpcwire.com/offthewire/NVIDIA-Tesla-GPUs-Power-Worlds-Fastest-Supercomputer-105983244.html
http://www.hpcwire.com/offthewire/NVIDIA-Tesla-GPUs-Power-Worlds-Fastest-Supercomputer-105983244.html
http://www.hpcwire.com/offthewire/PGI-to-Develop-Compiler-Based-on-NVIDIA-CUDA-C-Architecture-for-x86-Platforms-103471359.html
http://www.hpcwire.com/offthewire/PGI-to-Develop-Compiler-Based-on-NVIDIA-CUDA-C-Architecture-for-x86-Platforms-103471359.html
http://www.hpcwire.com/offthewire/PGI-to-Develop-Compiler-Based-on-NVIDIA-CUDA-C-Architecture-for-x86-Platforms-103471359.html
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.intel.com/support/processors/sb/cs-023143.htm

109

[64] John Kim and Parviz Moin. Application of a fractional-step method to
incompressible navier-stokes equations. Journal of Computational Physics,
59(2):308–323, 1985.

[65] Volodymyr Kindratenko, Jeremy J. Enos, Guochun Shi, Michael T. Showerman,
Galen W. Arnold, John E. Stone, James C. Phillips, and Wen mei Hwu. GPU
clusters for high-performance computing. In Proceedings of the IEEE Workshop
on Parallel Programming on Accelerator Clusters, August 2009.

[66] Géraud Krawezik. Performance comparison of MPI and three OpenMP pro-
gramming styles on shared memory multiprocessors. In Proceedings of the
Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 118–127, San Diego, California, USA, 2003. ACM.

[67] Jens Krüger and Rüdiger Westermann. Linear algebra operators for GPU
implementation of numerical algorithms. In ACM SIGGRAPH 2003 Papers,
pages 908–916. ACM, 2003.

[68] Pijush K. Kundu and Ira M. Cohen. Fluid Mechanics. Academic Press, 4th
edition, 2007.

[69] Cornelius Lanczos. Solution of systems of linear equations by minimized
iterations. Journal of Research of the National Bureau of Standards, 49:33–53,
July 1952.

[70] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3D fluid simulation on
GPU with complex obstacles. In PG ’04: Proceedings of the Computer Graphics
and Applications, 12th Pacific Conference, pages 247–256. IEEE Computer
Society, 2004.

[71] Phu Luong, Clay P. Breshears, and Le N. Ly. Coastal ocean modeling of the U.S.
west coast with multiblock grid and dual-level parallelism. In Supercomputing
’01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing, pages
9–9, New York, NY, USA, 2001. ACM.

[72] Ewing Lusk and Anthony Chan. Early experiments with the OpenMP/MPI
hybrid programming model. Lecture Notes in Computer Science, 5004:36, 2008.

[73] Satoshi Matsuoka, Takayuki Aoki, Toshio Endo, Akira Nukada, Toshihiro Kato,
and Atushi Hasegawa. Gpu accelerated computingfrom hype to mainstream,
the rebirth of vector computing. Journal of Physics: Conference Series,
180(1):012043, 2009.

110

[74] Oliver A. McBryan, Paul O. Frederickson, Johannes Linden, Anton Schüller,
Karl Solchenbach, Klaus Stüben, Clemens-August Thole, and Ulrich Trotten-
berg. Multigrid methods on parallel computers—a survey of recent develop-
ments. IMPACT Comput. Sci. Eng., 3(1):1–75, 1991.

[75] Paulius Micikevicius. 3D finite difference computation on GPUs using CUDA.
In Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, pages 79–84, 2009.

[76] Kengo Nakajima. Three-level hybrid vs. flat MPI on the Earth Simulator: Paral-
lel iterative solvers for finite-element method. Applied Numerical Mathematics,
54(2):237–255, 2005.

[77] Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers for unstructured
grids using an OpenMP/MPI hybrid programming model for the GeoFEM
platform on SMP cluster architectures. In Proceedings of the 4th International
Symposium on High Performance Computing, pages 437–448, Kansai Science
City, Japan, 2002. Springer-Verlag.

[78] Paul A. Navratil. Introduction to Longhorn and GPU-based computing. In 4th
Iberian Grid Infrastructure Conference, May 2010.

[79] NCSA. Intel 64 Tesla Linux cluster Lincoln webpage. http://www.ncsa.

illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/,
2008.

[80] Bill Nitzberg and Virginia Mary Lo. Distributed shared memory: A survey of
issues and algorithms. IEEE Computer, 24(8):52–60, 1991.

[81] NVIDIA. NVIDIA CUDA Programming Guide 3.1.1. 2010.

[82] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and
James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899,
May 2008.

[83] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[84] Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor & Francis,
1980.

[85] Suhas V. Patankar and D. B. Spalding. A calculation procedure for heat, mass
and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass
Transfer, 15:1787, 1972.

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/

111

[86] Everett H. Phillips, Yao Zhang, Roger L. Davis, and John D. Owens. Rapid
aerodynamic performance prediction on a cluster of graphics processing units.
In Proceedings of the 47th AIAA Aerospace Sciences Meeting, 2009.

[87] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart,
Emad Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel,
Laxmikant V. Kalé, and Klaus Schulten. Scalable molecular dynamics with
NAMD. Journal of Computational Chemistry, 26(16):1781–1802, 2005.

[88] James C. Phillips, John E. Stone, and Klaus Schulten. Adapting a message-
driven parallel application to GPU-accelerated clusters. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[89] Achal Prabhakar and Vladimir Getov. Performance evaluation of hybrid parallel
programming paradigms. In Performance analysis and grid computing, pages
57–76. Kluwer Academic Publishers, 2004.

[90] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, New York, NY, USA, 2007.

[91] Feng Qiu, Ye Zhao, Zhe Fan, Xiaoming Wei, Haik Lorenz, Jianning Wang,
Suzanne Yoakum-Stover, Arie Kaufman, and Klaus Mueller. Dispersion sim-
ulation and visualization for urban security. Visualization Conference, IEEE,
0:553–560, 2004.

[92] Rolf Rabenseifner. Communication bandwidth of parallel programming models
on hybrid architectures. In Proceedings of the 4th International Symposium
on High Performance Computing, pages 401–412, Kansai Science City, Japan,
2002. Springer-Verlag.

[93] Rolf Rabenseifner. Hybrid parallel programming on HPC platforms. In
EWOMP ’03: Proceedings of the Fifth European Workshop on OpenMP, pages
185–194, Aachen, Germany, 2003.

[94] Hsi-Yu Schive, Chia-Hung Chien, Shing-Kwong Wong, Yu-Chih Tsai, and Tz-
ihong Chiueh. Graphic-card cluster for astrophysics (GraCCA) – performance
tests. New Astronomy, 13:418–435, 2008.

[95] Hsi-Yu Schive, Yu-Chih Tsai, and Tzihong Chiueh. GAMER: a GPU-
accelerated adaptive mesh refinement code for astrophysics. Astrophysical
Journal Supplement Series, 186:457–484, 2010.

112

[96] Ludwig Seidel. Über ein Verfahren, die Gleichungen, auf welche die Meth-
ode der kleinsten Quadrate führt, sowie lineare Gleichungen überhaupt,
durch successive Annäherung auf-zulösen. In Abhandfungen der Bayerischen
Akademie der Wissenschaften, volume 11, pages 81–108. Mathematisch-
Naturwissenschaftliche Abteilung, 2009.

[97] Inanc Senocak, Julien Thibault, and Matthew Caylor. Rapid-response urban
CFD simulations using a GPU computing paradigm on desktop supercomput-
ers. In Eighth Symposium on the Urban Environment, Phoenix, Arizona, 10–15
January 2009.

[98] Michael Showerman, Jeremy Enos, Avneesh Pant, Volodymyr Kindratenko,
Craig Steffen, Robert Pennington, and Wen-Mei Hwu. QP: A heterogeneous
multi-accelerator cluster. In Proceedings of the 10th LCD International Con-
ference on High-Performance Clustered Computing, Boulder, Colorado, March
10–12 2009.

[99] Vaclav Simek, Radim Dvorak, Frantisek Zboril, and Jiri Kunovsky. Towards
accelerated computation of atmospheric equations using CUDA. In UKSim
2009: 11th International Conference on Computer Modelling and Simulation,
pages 449–454, 2009.

[100] Horst Simon, Thomas Zacharia, and Rick Stevens. Modeling and simulation
at the exascale for energy and the environment. Technical report, DOE ASCR
Program, 2008.

[101] Joseph S. Smagorinsky. General circulation experiments with the primitive
equations. I: The basic experiment. Monthly Weather Review, 91(3):99–164,
1963.

[102] John C. Tannehill, Dale A. Anderson, and Richard H. Pletcher. Computational
Fluid Mechanics and Heat Transfer. Taylor & Francis, 2nd edition, 1997.

[103] The OpenMP ARB. OpenMP: A Proposed Industry Standard API for Shared
Memory Programming. October 1997.

[104] Julien C. Thibault. Implementation of a cartesian grid incompressible Navier–
Stokes solver on multi-GPU desktop platforms using CUDA. Master’s thesis,
Boise State University, Boise, Idaho, May 2009.

[105] Julien C. Thibault and Inanc Senocak. CUDA implementation of a Navier–
Stokes solver on multi-GPU platforms for incompressible flows. In 47th AIAA
Aerospace Science Meeting, January 2009.

113

[106] Jonas Tölke and Manfred Krafczyk. TeraFLOP computing on a desktop
PC with GPUs for 3D CFD. International Journal of Computational Fluid
Dynamics, 22(7):443–456, August 2008.

[107] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Elsevier,
2001.

[108] D. C. Wan, B. S. V. Patnaik, and G. W. Wei. A new benchmark quality solution
for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat
Transfer, Part B: Fundamentals, 40(3):199–228, 2001.

[109] Ye Zhao, Feng Qiu, Zhe Fan, and Arie Kaufman. Flow simulation with locally-
refined LBM. In Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games, pages 181–188, Seattle, Washington, 2007. ACM.

114

APPENDIX A

TIME-STEPPING METHODS

Method Order Stages Registers Description
Euler 1 1 0 Forward-Euler
AB2 2 1 1 2nd-order Adams-Bashforth
SSP22 2 2 1 2nd-order Runge-Kutta method SSP(2,2)
SSP32 2 3 1 2nd-order Runge-Kutta method SSP(3,2)
SSP42 2 4 1 2nd-order Runge-Kutta method SSP(4,2)
AB3 3 1 2 3rd-order Adams-Bashforth
RK3-Williamson 3 3 1 3rd-order Runge-Kutta method of Williamson (1980)
RK3-Wray 3 3 1 3rd-order Runge-Kutta method of Wray (1984)
RK3-Kutta 3 3 2 3rd-order Runge-Kutta method of Kutta
SSP33 3 3 1 3rd-order Runge-Kutta method SSP(3,3)
SSP43 3 3 1 3rd-order Runge-Kutta method SSP(4,3)
SSP53 3 3 1 3rd-order Runge-Kutta method SSP(5,3)
SSP63 3 3 1 3rd-order Runge-Kutta method SSP(6,3)
RK4 4 4 2 4th-order Runge-Kutta method
RK4-SHK 4 4 2 4th-order Runge-Kutta method of Sommiejer et al. (1994)
RK4-NL 4 6 1 4th-order Runge-Kutta method of Berland (2005)

Table A.1: Some of the time-stepping methods implemented and selectable. Register
usage shows how many extra per-cell values of momentum, turbulence, and temper-
ature must be kept, which has a fairly large impact on GPU memory use.

A number of methods are implemented and selectable at run-time via the config-

uration file, and are shown in Table A.1. Initial testing showed that the Runge-Kutta

multi-stage methods allow a higher Courant-Friedrichs-Lewy (CFL) condition to be

used while maintaining stability, especially the Strong Stability Preserving (SSP)

methods which are designed to maximize this behavior.

115

APPENDIX B

TURBULENCE MODELING

If performed at a fine enough resolution, the incompressible Navier-Stokes equations

(Eqs. 3.1-3.2) will capture turbulent flows [11]. This direct simulation of turbulence

is called Direct Numerical Simulation. The number of grid points required scales as

Re9/4, meaning it is generally practical only for relatively small problems at small

Reynolds numbers. There are numerous methods for modeling the turbulent energy

that is not directly present in the equations as given. One such approach is the

Large-Eddy Simulation (LES), where a subgrid-scale model is used to approximate the

small-scale effects. The model implemented in this research is a simple zero-equation

Smagorinsky LES model [101].

The subgrid velocity, called here the Smagorinsky eddy viscosity, is given by

νtur = (Csh)2
√

2SijSij, (B.1)

where h = 3
√

∆x∆y∆z is the grid scale, Cs is the Smagorinsky coefficient, typically

0.05 < Cs < 0.25, and Sij is the resolved strain rate given by

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
. (B.2)

No near-wall corrections are applied, and a fixed coefficient Cs is used. While this

116

model has a number of drawbacks compared to more complex models, it is useful

for some modeling and shows how LES models can fit into the framework of the

multi-GPU flow solver.

If turbulence modeling is requested in the configuration file, a CUDA kernel

calculates the turbulent eddy viscosity νtur for each cell before the momentum kernel

runs. The momentum kernel then adds this per-cell νtur to the global kinematic

viscosity ν to determine the actual value used. Care must also be taken in the

momentum discretizations to ensure no simplifications are taken assuming a static ν.

This approach relies on the eddy viscosity hypothesis of Boussinesq, which assumes

the kinematic viscosity ν in Eq. 3.2 is the sum of a laminar and a turbulent component.

By using a per-cell ν in the momentum operation, it is easy to accommodate any

method which produces a νtur value without change to the rest of the model.

No validation of the turbulence model was performed. Bouffanais [13] is a recent

source for validation using an Re = 12000 3D lid-driven cavity. Since the turbulence

model implemented for this study uses a static coefficient, it is highly unlikely to

be able to completely match the dynamic Smagorinsky or dynamic mixed model

implemented in Bouffanais.

117

APPENDIX C

RUN-TIME CONFIGURATION

#--
Output Setup
#--

Output formats. One line per output desired.
Multiple output formats can be requested (e.g. both Matrix and VTK)
#
Matrix (displays values on the screen)
Matlab
Plot3D (A standard, if verbose, format)
VTK (Native format for Paraview)
#
OutputFormat Matrix
#OutputFormat Plot3D
OutputFormat VTK

If OutputPeriod is set and non-zero, will do a VTK output even N timesteps.
OutputPeriod 10000

An optional path for the results
OutputPath results
Optional prefix (default is ’gin3d_soln’)
OutputPrefix soln

Which data to output for the matrix: u, v, w, p, phi
MatrixData u
Which 2D plane to output (XY, XZ, YZ) or Mesh for all
MatrixPlane XZ
Where in the plane to output as a percent (0.0-1.0)
MatrixSlice 0.50

118

#--
Navier-Stokes parameters
#--
Kinematic viscosity
Nu 0.001
Finite difference method used
0.00 means CDS, 1.00 means FOU, values between are allowed
AdvectionScheme 0.00
CFL*dz/velmax is the convective dt limit
CFL 0.40
DTStability*dz*dz/Nu is the viscous dt limit
DTStability 0.4
The time derivative method
#
Euler (first order forward Euler)
AdamsBash (second order Adams-Bashforth, aka ’AB2’)
RK3 (third order Runge-Kutta, Williamson)
RK4 (fourth order Runge-Kutta, classical)
#
TimeMethod AB2

Note, if given the values for Rayleigh, Reynolds, and Prandtl, we can
set the parameters as thus:
#
Nu = (URef*LRef) / Reynolds
Gamma = Nu / Prandtl
For Rayleigh, it is proportional to g and beta and ind. to gamma and nu

Turbulence model: None or Smagorinsky
TurbulenceModel None

Cs for Smagorinsky model. Typically 0.01 - 0.25.
TurbCS 0.0625 # Typical Channel
TurbCS 0.18 # Typical Cavity

#--
Pressure Solver Setup
#--
Choose either Iterative or Multigrid
SolverMethod Multigrid

Reasonable values:
Solver Jacobi GS

119

Loops 10-40 5-30
Weight 1.0 1.0-1.8
Iterative_Solver Jacobi
Iterative_Loops 20
Iterative_Weight 1.0

Reasonable values:
Cycle V, W, or W1, recommend V
Smoother Jacobi or GS
Loops 1-10
Levels 2-N, recommend about 2 less than the maximum
SmoothIters 1-10. Other good choices include ’2 1’ and ’4 2’
JacobiWeight 0.55 - 0.95, recommend 0.86 (from Trottenberg says 0.857)
SORWeight 1.0 - 1.8
MG_Cycle V
MG_Smoother Jacobi
MG_Loops 4
MG_Levels 9
MG_Smoother_Iterations 4 4
MG_Jacobi_Weight 0.86
MG_SOR_Weight 1.00

#--
Simple Mesh Definition
#--
The N* and L* parameters are not used for complex geometry.
#
Simple mesh size
NX 256
NY 32
NZ 256
Physical domain size
L_X 1.0
L_Y 1.0
L_Z 1.0

#--
Complex Geometry
#--

120

Complex geometry for obstructions, urban area, etc.
#
Cylinder a cylinder is set up, with parameters in obstacles.c
City obsolete: same as "PGM okc_arena.pgm"
PGM <file> reads in a PGM height map

#Obstruction Cylinder
#Obstruction City
#Obstruction PGM dems/okc_arena.pgm

The following are only used for PGM obstructions.

The number of mesh points used to resolve the jagged geometry cell.
This must be at least 2, but sometimes more are desired to better
resolve flow around the blocky cells. Note that each geometry cell
will result in this many computational cells in each dimension. So
a 10x10x10 geometry file with 4 for the value below will use 40x40x40
mesh cells.
#
Can specify one number or three for different <X,Y,Z> resolution
MeshPointsPerGeometryCell 2

The number of mesh cells to offset the geometry file to allow for boundaries.
These are specified in map directions, not face directions.
Note: A single mesh cell is always added to each side to take into account
the computational boundary.

DomainOffsetEastWest 0 0
DomainOffsetNorthSouth 0 0
DomainOffsetSurfaceSky 0 0

Typically the input files have more Z resolution than is used via the
delta z setting. There are two ways of getting a finer model: go into the
the PGM file and adjust delta z (e.g. from 10m to 5m). The second is to
modify this parameter. The L* value should remain constant in either case.
Values less than 1 will coarsen, values more than 1 will make a finer mesh.
MeshHeightScaling 1.0

#--
Boundary Setup
#--

121

Face type Boundary setting
------------------ -------------------------------------
NoSlip velocity 0 at boundary
FreeSlip velocity unchanged at boundary
Inlet BC = inlet
Outlet BC = interior velocity
ConvectiveOutlet See Ferziger (2001)
Driven BC = inlet in normal direction
Periodic BC = opposite side
Only one each of an inlet, driven, and outlet are allowed.
#
Looking into the cavity, top/bottom are the ceiling and floor respectively.
The south/north are normal to the viewer with the south closest.
The east/west are parallel to the viewer with the west to the left.
#
Bottom is Z=0, Top is in the Z+ direction (w component of velocity).
South is Y=0, North is in the Y+ direction (v component of velocity).
West is X=0, East is in the X+ direction (u component of velocity).
#
#
A typical channel setup is to have the west be the inlet and the east
the outlet, making the flow from left to right. It would look like:
#
#Face_West Inlet
#Face_East ConvectiveOutlet
#Face_South FreeSlip
#Face_North FreeSlip
#Face_Bottom NoSlip
#Face_Top NoSlip

For standard cases one can use a shortcut:
Channel W Inlet, E ConvectiveOutlet, S/N FreeSlip, B/T NoSlip
DrivenCavity W/E NoSlip, S/N FreeSlip, B NoSlip, T Driven
Cavity W/E NoSlip, S/N FreeSlip, B/T NoSlip
Urban W/E FreeSlip, S NoSlip, N FreeSlip, B Outlet, T Inlet
Boundaries DrivenCavity

Reference velocity scales
Note: These are signed vectors, negative is west/-/south
U_Inlet 1.0
V_Inlet 0.0
W_Inlet 0.0
This can be used to force the vref to something other than inlet magnitude

122

#Velocity_Reference 1.0

Reference Length
This is used as the characteristic length ’L’ in calculations of the
Reynolds and Rayleigh numbers. Leave unset if you do not know what it is.
#
Enter either ’LX’, ’LY’, ’LZ’, or a number.
#ReferenceLength LX

Notes:
Re = (Velocity_Reference * L / Nu)
Ra = (g * Beta * (Tmax - Tmin) * L^3) / (Gamma * Nu)
Pr = (Nu * RhoInf) / Gamma
Gr = Ra / Pr

#--
Temperature
#--

Whether or not to solve for and output temperature
SolveTemperature False

Gravity magnitude
Gravity 9.801
Thermal expansion coefficient (1/T for ideal gas)
Beta 2.87e-03
Typically 1.0.
Setting this to 0 will mean temperature will not drive momentum.
Rho_Infinity 1.0
Thermal Diffusivity (Nu / Prandtl number)
Gamma 2.856e-05

Scalar transport for temperature
Note that gravity is assumed to act in the negative Z direction.
The Boussinesq approximation is included in the w-momentum equation.
Temp_West Dirichlet 373.15
Temp_East Dirichlet 323.15
Temp_South Neumann 0
Temp_North Neumann 0
Temp_Bottom Neumann 0
Temp_Top Neumann 0

123

#--
Reference Points
#--

ReferencePointsOut output_points.dat
#ReferencePointsOut WS_Locations.dat
#ReferencePointsIn input_points.dat

UTM (zone 11) coordinates of SW corner of DEM file in meters
#ReferencePointsOrigin 634061 4735991 939.5

Frequency of output, in physical time. Use ’s’, ’m’, ’h’, or ’d’
ReferencePointsOutFreq 0.5s

124

APPENDIX D

CUDA PRESSURE KERNELS

D.1 Jacobi Pressure Kernel

CUDA kernel for unweighted Jacobi solver. The bitmask sections allows the top

edge, bottom edge, and middle section to be selected independently. The d B variable

allows a per-cell scaling to be given which is used for obstacles.

__global__ void pressure_fz(
int const sections,
const REAL* d_div, const REAL* d_p, REAL* d_pnew, REAL* d_f, REAL* d_B)

{
REAL const dti = DCONSTANT_DTI;
int const nlayers = DCONSTANT_NLAYERS;
REAL const B_constant = 0.5f / (dxi2 + dyi2 + dzi2);

unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = DCONSTANT_PADNY*DCONSTANT_PADNX + ypos*DCONSTANT_PADNX + xpos;

if ((xpos == 0) || (xpos >= (DCONSTANT_NX-1))
|| (ypos == 0) || (ypos >= (DCONSTANT_NY-1))
|| (sections == 0)

) return;

unsigned int kbeg, kend;
if (sections & SECTION_BOT) { kbeg = 0; } else { kbeg = 1; }
if (sections & SECTION_TOP) { kend = nlayers; } else { kend = nlayers-1; }
bool do_mid = (sections & SECTION_MID);
unsigned int k = kbeg;

125

while (k < kend) {
unsigned int base = I + k*NX*NY;

REAL A = (d_p[base+1] + d_p[base-1]) * dxi2
+ (d_p[base+NX] + d_p[base-NX]) * dyi2
+ (d_p[base+NX*NY] + d_p[base-NX*NY]) * dzi2;

REAL B = (d_B == 0) ? B_constant : d_B[base];

d_pnew[base] = B * (A - dti*d_div[base]);

if ((!do_mid) && (k == kbeg)) {
k = nlayers-1;

} else {
k++;

}
}

}

D.2 Red-Black Gauss-Seidel Pressure Kernel

CUDA kernel for weighted Red-Black Gauss-Seidel solver. This kernel is also used

as the smoother in the multigrid method. The caller is responsible for choosing the

starting and ending Z layers. Alternate methods for looping through alternate colors

were tried, but this simple method proved fastest.

__global__ void rbgsGPU(
int const do_even,
unsigned int nx, unsigned int ny,
unsigned int zbeg, unsigned int zend,
unsigned int pad_nx, unsigned int pad_ny,
REAL wsor, REAL mdxi2, REAL mdyi2, REAL mdzi2, REAL mw,
const REAL* percellB, const REAL* rhs, REAL* phi)

{
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = (pad_ny*pad_nx) + ypos*pad_nx + xpos;

126

if ((xpos == 0) || (xpos >= (nx-1))
|| (ypos == 0) || (ypos >= (ny-1))

) return;

REAL const dti = DCONSTANT_DTI;
REAL const wB_constant = (wsor * 0.5f) / (mdxi2 + mdyi2 + mdzi2);
unsigned int k;
for (k = zbeg; k < zend; k++) {

int eotest = (xpos + ypos + k) % 2;
if (do_even != eotest) {

unsigned int const Ik = I + k*pad_ny*pad_nx;

REAL const phib = phi[Ik-pad_nx*pad_ny];
REAL const phic = phi[Ik];
REAL const phit = phi[Ik+pad_nx*pad_ny];
REAL const phiw = phi[Ik-1];
REAL const phie = phi[Ik+1];
REAL const phin = phi[Ik+pad_nx];
REAL const phis = phi[Ik-pad_nx];
REAL const laplacian = mdxi2 * (phiw + phie)

+ mdyi2 * (phis + phin)
+ mdzi2 * (phib + phit);

REAL const rhsv = (rhs == 0) ? 0.0 : rhs[Ik];
REAL const wB = (percellB == 0) ? wB_constant : wsor * percellB[Ik];

phi[Ik] = (mw * phic) + (wB * (laplacian - dti*rhsv));
}

}
}

127

APPENDIX E

MULTIGRID CUDA CODE

E.1 Restriction: Laplacian Lernel

__global__ void LaplacianGPU(
int const sections,
int nx, int ny, int nz,
int pad_nx, int pad_ny,
REAL mdxi2, REAL mdyi2, REAL mdzi2,
const REAL* rhs, const REAL* phi, REAL* resid)

{
REAL const dt = DCONSTANT_DT;
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = (pad_ny*pad_nx) + ypos*pad_nx + xpos;

if ((xpos == 0) || (xpos >= (nx-1))
|| (ypos == 0) || (ypos >= (ny-1))
|| (sections == 0)

) return;

unsigned int kbeg = (sections & SECTION_BOT) ? 0 : 1;
unsigned int kend = (sections & SECTION_TOP) ? nz : nz-1;
bool do_mid = (sections & SECTION_MID);
unsigned int k = kbeg;

REAL phic, phit, phib;
phic = phi[I + (k-1)*pad_ny*pad_nx];
phit = phi[I + (k)*pad_ny*pad_nx];

while (k < kend) {
unsigned int const Ik = I + k*pad_ny*pad_nx;

128

phib = phic;
phic = phit;
phit = phi[Ik+pad_nx*pad_ny];
REAL const phiw = phi[Ik-1];
REAL const phie = phi[Ik+1];
REAL const phis = phi[Ik-pad_nx];
REAL const phin = phi[Ik+pad_nx];
REAL rhsv = (rhs == 0) ? 0.0 : rhs[Ik];

REAL phiv = (phiw - 2*phic + phie) * mdxi2
+ (phis - 2*phic + phin) * mdyi2
+ (phib - 2*phic + phit) * mdzi2;

// We’re making a residual, so we multiply phiv by dt.
resid[Ik] = rhsv - dt*phiv;

if ((!do_mid) && (k == kbeg)) {
k = nz-1;
phic = phi[I + (k-1)*pad_ny*pad_nx];
phit = phi[I + (k)*pad_ny*pad_nx];

} else {
k++;

}
}

}

E.2 Restriction: Restriction Kernel

#define stencil_injection(b, I, x, y, z) b[I]

#define stencil_half(b, I, x, y, z) \
0.1f * (4.0f*b[I] + b[I-x] + b[I+x] + b[I-y] + b[I+y] + b[I-z] + b[I+z])

#define stencil_full(b, I, x, y, z) \
0.015625f * (\
8.0f * b[I] \

+ 4.0f * (b[I-x] + b[I+x] + b[I-y] + b[I+y] + b[I-z] + b[I+z]) \
+ 2.0f * (b[I+y-x] + b[I+y+x] + b[I-y-x] + b[I-y+x] \

+ b[I-z-x] + b[I-z+x] + b[I-z-y] + b[I-z+y] \

129

+ b[I+z-x] + b[I+z+x] + b[I+z-y] + b[I+z+y]) \
+ 1.0f * (b[I-z-y-x] + b[I-z-y+x] + b[I-z+y-x] + b[I-z+y+x] \

+ b[I+z-y-x] + b[I+z-y+x] + b[I+z+y-x] + b[I+z+y+x]) \
)

#if defined(MG_WEIGHTING_INJECTION)
#define stencil(b, I, x, y, z) stencil_injection(b, I, x, y, z)

#elif defined(MG_WEIGHTING_HALF)
#define stencil(b, I, x, y, z) stencil_half(b, I, x, y, z)

#elif defined(MG_WEIGHTING_FULL)
#define stencil(b, I, x, y, z) stencil_full(b, I, x, y, z)

#endif

__global__ void RestrictionGPU(
int const sections,
int nx, int ny, int nz,
int pad_cnx, int pad_cny,
int pad_fnx, int pad_fny,
const REAL* residf, REAL* residc)

{
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int Ic = (pad_cny*pad_cnx) + ypos*pad_cnx + xpos;
unsigned int If = (pad_fny*pad_fnx) + 2*ypos*pad_fnx + 2*xpos;

if ((xpos == 0) || (xpos >= (nx-1))
|| (ypos == 0) || (ypos >= (ny-1))
|| (sections == 0)

) return;

unsigned int kbeg = (sections & SECTION_BOT) ? 0 : 1;
unsigned int kend = (sections & SECTION_TOP) ? nz : nz-1;
bool do_mid = (sections & SECTION_MID);
unsigned int k = kbeg;

while (k < kend) {
unsigned long int Ick = Ic + k * pad_cny * pad_cnx;
unsigned long int Ifk = If + 2*k * pad_fny * pad_fnx;

residc[Ick] = stencil(residf, Ifk, 1, pad_fnx, pad_fny*pad_fnx);;

if ((!do_mid) && (k == kbeg)) {
k = nz-1;

130

} else {
k++;

}
}

}

E.3 Prolongation: Prolongation Kernel

__global__ void prolongationGPU(
int nx, int ny, int nz,
int pad_cnx, int pad_cny,
int pad_fnx, int pad_fny,
const REAL* phi, REAL* res)

{
// This tries hard to neither read outside the 2D coarse domain, or
// write outside the 2D fine domain. It always writes an even number
// of Z layers. This means it is essential that the ghost layer is
// set for the input, and exists to write into for the output.
//
// This version is the fastest of the twelve variants I tried, with
// a shared memory version coming close.

// Additionally, we compute partial averages such that the Y direction
// (north / south) is immune to rounding differences.

unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int Ic = (pad_cny*pad_cnx) + ypos*pad_cnx + xpos;
unsigned int If = (pad_fny*pad_fnx) + 2*ypos*pad_fnx + 2*xpos;
unsigned int k;

if ((xpos >= nx) || (ypos >= ny)) return;

bool const sum_e = (xpos < nx-1);
bool const sum_n = (ypos < ny-1);
bool const sum_ne = sum_e && sum_n;
REAL phic, phie, phin, phine, phiu, phiue, phiun, phiune;

phiu = phi[Ic];
if (sum_e) phiue = phi[Ic+1];

131

if (sum_n) phiun = phi[Ic +pad_cnx];
if (sum_ne) phiune = phi[Ic+1+pad_cnx];
Ic += pad_cny*pad_cnx; // Bump so we’re reading the upper layer
for (k = 0; k < nz; k++) {

unsigned int Ick = Ic + k * pad_cny * pad_cnx;
unsigned int Ifk = If + 2*k * pad_fny * pad_fnx;
unsigned int Ifu = Ifk + pad_fny*pad_fnx;

phic = phiu;
phiu = phi[Ick];
res[Ifk] += phic;
res[Ifu] += 0.5f*(phic + phiu);

if (sum_e) {
phie = phiue;
phiue = phi[Ick+1];
REAL ave_ce = 0.5f*(phic + phie);
REAL ave_ue = 0.5f*(phiu + phiue);
res[Ifk+1] += ave_ce;
res[Ifu+1] += 0.5f*(ave_ce + ave_ue);

}

if (sum_n) {
phin = phiun;
phiun = phi[Ick+pad_cnx];
REAL ave_cn = 0.5f*(phic + phin);
REAL ave_un = 0.5f*(phiu + phiun);
res[Ifk+pad_fnx] += ave_cn;
res[Ifu+pad_fnx] += 0.5f*(ave_cn + ave_un);

}
if (sum_ne) {
phine = phiune;
phiune = phi[Ick+1+pad_cnx];
REAL ave_ce = 0.5f*(phic + phie);
REAL ave_nne = 0.5f*(phin + phine);
REAL ave_ne = 0.5f*(ave_ce + ave_nne);;
res[Ifk+1+pad_fnx] += ave_ne;
REAL ave_ucue = 0.5f*(phiu + phiue);
REAL ave_unune = 0.5f*(phiun + phiune);
REAL ave_une = 0.5f*(ave_ucue + ave_unune);
res[Ifu+1+pad_fnx] += 0.5f*(ave_ne + ave_une);

}
}

132

}

E.4 Smoother: Weighted Jacobi Kernel

__global__ void weightedJacobiSolverGPU(
int const sections,
unsigned int nx, unsigned int ny, unsigned int nz,
unsigned int pad_nx, unsigned int pad_ny,
REAL cc, REAL cx, REAL cy, REAL cz, REAL mw,
const REAL* rhs, const REAL* phi, REAL* phinew)

{
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = (pad_ny*pad_nx) + ypos*pad_nx + xpos;

if ((xpos == 0) || (xpos >= (nx-1))
|| (ypos == 0) || (ypos >= (ny-1))

) return;

unsigned int kbeg = 1;
unsigned int kend = nz-1;
if (sections & SECTION_BOT) kbeg = 0;
if (sections & SECTION_TOP) kend = nz;
bool do_mid = (sections & SECTION_MID);
unsigned int k = kbeg;

REAL phic, phiu, phil;
phic = phi[I + (k-1)*pad_ny*pad_nx];
phiu = phi[I + (k)*pad_ny*pad_nx];

while (k < kend) {
unsigned int Ik = I + k*pad_ny*pad_nx;
phil = phic;
phic = phiu;
phiu = phi[Ik+pad_nx*pad_ny];

REAL const phiw = phi[Ik-1];
REAL const phie = phi[Ik+1];
REAL const phin = phi[Ik+pad_nx];
REAL const phis = phi[Ik-pad_nx];

133

REAL const rhsv = (rhs == 0) ? 0.0 : rhs[Ik];

phinew[Ik] = cx*(phiw + phie)
+ cy*(phin + phis)
+ cz*(phiu + phil)
- cc*rhsv
+ mw*phic;

if ((!do_mid) && (k == kbeg)) {
k = nz-1;
phic = phi[I + (k-1)*pad_ny*pad_nx];
phiu = phi[I + (k)*pad_ny*pad_nx];

} else {
k++;

}
}

}

E.5 Smoother: Red-Black Gauss-Seidel Kernel

__global__ void rbgsGPU(
int const do_even,
unsigned int nx, unsigned int ny,
unsigned int zbeg, unsigned int zend,
unsigned int pad_nx, unsigned int pad_ny,
REAL wsor, REAL mdxi2, REAL mdyi2, REAL mdzi2, REAL mw,
const REAL* percellB, const REAL* rhs, REAL* phi)

{
unsigned int xpos = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int ypos = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int I = (pad_ny*pad_nx) + ypos*pad_nx + xpos;

if ((xpos == 0) || (xpos >= (nx-1))
|| (ypos == 0) || (ypos >= (ny-1))

) return;

REAL const dti = DCONSTANT_DTI;
REAL const wB_constant = (wsor * 0.5f) / (mdxi2 + mdyi2 + mdzi2);

134

unsigned int k;
for (k = zbeg; k < zend; k++) {

int eotest = (xpos + ypos + k) % 2;
if (do_even != eotest) {

unsigned int const Ik = I + k*pad_ny*pad_nx;

REAL const phib = phi[Ik-pad_nx*pad_ny];
REAL const phic = phi[Ik];
REAL const phit = phi[Ik+pad_nx*pad_ny];
REAL const phiw = phi[Ik-1];
REAL const phie = phi[Ik+1];
REAL const phin = phi[Ik+pad_nx];
REAL const phis = phi[Ik-pad_nx];
REAL const laplacian = mdxi2 * (phiw + phie)

+ mdyi2 * (phis + phin)
+ mdzi2 * (phib + phit);

REAL const rhsv = (rhs == 0) ? 0.0 : rhs[Ik];
REAL const wB = (percellB == 0) ? wB_constant : wsor * percellB[Ik];

phi[Ik] = (mw * phic) + (wB * (laplacian - dti*rhsv));
}

}
}

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Thesis Statement
	Works Published

	Background
	Clusters and GPU Hardware
	Programming Models

	Technical Background
	Governing Equations
	Numerical Approach
	Projection Algorithm
	Time-Stepping Methods
	Pressure Poisson Solver

	Validation
	Flow in Urban Environments and Complex Terrain

	Multilevel Parallelism on GPU Clusters
	Introduction
	Multilevel Parallel Implementations
	Common Implementation Details
	Dual-Level Pthreads-CUDA Implementation
	Dual-Level MPI-CUDA Implementation
	Dual-Level MPI-CUDA Performance Results with NCSA Lincoln Tesla and TACC Longhorn Clusters
	Tri-Level MPI-OpenMP-CUDA Implementation
	Tri-Level MPI-OpenMP-CUDA Performance Results with NCSA Lincoln Tesla Cluster

	Conclusions

	Geometric Multigrid for GPU Clusters
	Introduction
	Geometric Multigrid Method
	GPU Implementation
	Restriction
	Prolongation
	Smoother
	Coarse-Grid Solver
	Computational Overlapping

	Amalgamated Multigrid for GPU Clusters
	Performance Results with NCSA Lincoln Tesla and TACC Longhorn Clusters

	Conclusions and Future Work
	Conclusions
	Future Work

	REFERENCES
	Time-Stepping Methods
	Turbulence Modeling
	Run-Time Configuration
	CUDA Pressure Kernels
	Jacobi Pressure Kernel
	Red-Black Gauss-Seidel Pressure Kernel

	Multigrid CUDA Code
	Restriction: Laplacian Lernel
	Restriction: Restriction Kernel
	Prolongation: Prolongation Kernel
	Smoother: Weighted Jacobi Kernel
	Smoother: Red-Black Gauss-Seidel Kernel

