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A RADIAL BASIS FUNCTION (RBF) COMPACT FINITE
DIFFERENCE (FD) SCHEME FOR REACTION-DIFFUSION

EQUATIONS ON SURFACES∗

ERIK LEHTO† , VARUN SHANKAR‡ , AND GRADY B. WRIGHT§

Abstract. We present a new high-order, local meshfree method for numerically solving reaction
diffusion equations on smooth surfaces of codimension 1 embedded in Rd. The novelty of the method
is in the approximation of the Laplace–Beltrami operator for a given surface using Hermite radial basis
function (RBF) interpolation over local node sets on the surface. This leads to compact (or implicit)
RBF generated finite difference (RBF-FD) formulas for the Laplace–Beltrami operator, which gives
rise to sparse differentiation matrices. The method only requires a set of (scattered) nodes on the
surface and an approximation to the surface normal vectors at these nodes. Additionally, the method
is based on Cartesian coordinates and thus does not suffer from any coordinate singularities. We
also present an algorithm for selecting the nodes used to construct the compact RBF-FD formulas
that can guarantee the resulting differentiation matrices have desirable stability properties. The
improved accuracy and computational cost that can be achieved with this method over the standard
(explicit) RBF-FD method are demonstrated with a series of numerical examples. We also illustrate
the flexibility and general applicability of the method by solving two different reaction-diffusion
equations on surfaces that are defined implicitly and only by point clouds.
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1. Introduction. Global radial basis function (RBF) methods are quite popular
for the numerical solution of various partial differential equations (PDEs) due to
their ability to handle scattered node layouts, their simplicity of implementation, and
their potential for spectral accuracy for smooth problems. These methods have been
successfully applied to the solution of PDEs in various geometries in R2 and R3 (e.g.,
[12, 17]), including spherical domains (e.g., [27, 16, 42]), and more general surfaces
embedded in R3(e.g., [26, 36]).

When high orders of algebraic accuracy are sufficient for a given problem, or
if the solutions to the problem are expected to only have finite smoothness, RBF
generated finite difference (RBF-FD) formulas are an attractive alternative to global
RBFs as they perform better in terms of accuracy per computational cost [17]. These
formulas are generated from RBF interpolation over local sets of nodes (stencils) so
that the resulting differentiation matrices are sparse as in the standard FD method.
In contrast to standard FD methods, however, the RBF-FD method can naturally
handle irregular geometries and scattered node layouts. Additionally, their locality
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makes them more flexibility in terms of local refinement strategies than global RBF
methods. The strength of the RBF-FD method has been leveraged to solve problems
on planar domains, e.g., [39, 6, 43, 7, 40], the surface of a sphere [19, 15], and, more
recently, very general surfaces represented solely by point clouds and normal vectors
[38].

It is natural to view these two classes of RBF methods as extensions of classical
methods to scattered nodes and irregular geometries. The global RBF method for
surface PDEs in [26] may be viewed as an extension of polynomial based (or Fourier
based) pseudospectral methods to surfaces, while the RBF-FD method presented in
[38] may be viewed as an extension of standard, polynomial based FD methods to
surfaces. In this work, we turn our attention to the extension of a third important
class of classical methods to surfaces: the so-called compact, implicit, or Hermite FD
methods, first introduced by Collatz [9]. We use the acronym HFD for these schemes
to avoid the obvious confusion with CFD, and because they will ultimately be based
on Hermite interpolation.

The goal of HFD methods is to solve a given PDE numerically by computing more
accurate approximations to the differential operators in the PDE. In these schemes,
this improved accuracy is obtained by using additional information from the PDE
itself, rather than increasing the stencil size, as is the usual way to increase the ac-
curacy with standard (or explicit) FD methods. HFD schemes are thus typically
more computationally efficient than standard FD schemes, as they can obtain higher
accuracy and resolution for the same stencil size [31]. Further, the differentiation
matrices obtained from HFD formulas often have desirable properties such as diago-
nal dominance, leading to both enhanced numerical stability and faster convergence
of iterative methods used in solving the sparse linear systems that arise when using
these matrices to discretize a PDE. While HFD schemes have already been success-
fully generalized to scattered node layouts [43], the application of these schemes to
the solution of PDEs on surfaces presents significant challenges due to the presence
of surface differential operators. In this article, we overcome those challenges and
present a new RBF-HFD scheme for the solution of reaction-diffusion equations on
surfaces.1 The resulting method uses Cartesian coordinates, thereby avoiding the
singularities typically associated with intrinsic coordinate systems. Further, our new
method only uses nodes on the surface in consideration, making it more computation-
ally efficient than embedded narrow-band methods that solve the PDE in a narrow
band in the embedding space (e.g., [32, 36]). Finally, the RBF-HFD formulas require
fewer nodes than the RBF-FD method presented in [38] for the same accuracy, while
also possessing improved stability properties.

The remainder of the paper is organized as follows. In section 2, we briefly review
the formulation of surface differential operators in Cartesian coordinates. Section 3
outlines Hermite RBF interpolation on scattered node sets in Rd. Section 4 describes
how to use approximations to the Hermite RBF interpolants to generate RBF-HFD
weights for approximating the surface Laplacian, and also how these can be arranged
into sparse differentiation matrices. We follow this in section 5 with a brief discussion
of how to use these differentiation matrices in a method-of-lines formulation for nu-
merically solving forced diffusion equations on surfaces. In section 6, we discuss the
stability of our method by studying the Gershgorin sets associated with the eigen-
values of our differentiation matrices. In section 7, we numerically demonstrate the

1Throughout this paper, we will use the terms surface or manifold to refer to embedded subman-
ifolds of codimension 1 in Rd with no boundary, and focus on the specific case of d = 3.
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accuracy and efficiency of our method for the forced scalar diffusion equation on two
different surfaces. We also present a few applications of our method to two species re-
action diffusion equations on implicitly defined surfaces and surfaces defined by point
clouds, which have relevant biological applications. We conclude our paper with a
summary and discussion of future research directions in section 8.

2. Review of differential geometry. While the standard way of expressing
differential operators on surfaces is through the use of intrinsic coordinates, covari-
ant derivatives and metric tensors [5], we instead choose to formulate these operators
entirely in Cartesian (or extrinsic) coordinates, as this avoids any singularities asso-
ciated with intrinsic coordinate systems. Consider the standard gradient operator in
R3, ∇ =

[
∂x ∂y ∂z

]T . If we apply this to a differentiable function f at a point
x = (x, y, z) on the surface M and then project the resulting vector into the tangent
space of the surface, then this gives the surface gradient of f , which we denote as
∇Mf . Mathematically, this can be accomplished as follows. Let n =

[
nx ny nz

]T
be the unit normal vector to M at x; then

∇Mf = ∇f − n(n · ∇f) = ∇f − nnT (∇f).

Thus, the surface gradient operator can written entirely in Cartesian coordinates as

∇M := ∇− nnT∇ = (I − nnT )︸ ︷︷ ︸
P

∇,

where I is the 3-by-3 identity matrix. P is a projection operator that takes a vector
field in R3 sampled at a point x on the surface and projects it onto the tangent plane
to the surface at x. An explicit expression for this operator is given by

P =

(1− nxnx) −nxny −nxnz
−nxny (1− nyny) −nynz
−nxnz −nynz (1− nznz)

 =
[
px py pz

]
,(1)

where px, py, and pz are vectors representing the projection operators in the x, y,
and z directions, respectively. We can now use px, py, and pz to obtain the following
(more convenient) expression for ∇M:

∇M := P∇ =

px · ∇
py · ∇
pz · ∇

 =

GxGy
Gz

 ,(2)

where Gx, Gy, and Gz are the components of the surface gradient along each of the
coordinate directions in R3. Now, the surface Laplace (Laplace–Beltrami) operator
∆M can be obtained by applying the surface divergence to the surface gradient [26].
This can naturally be expressed using Gx, Gy, and Gz as

∆M := ∇M · ∇M = (P∇) · (P∇) = GxGx + GyGy + GzGz.(3)

This gives an explicit expression for the surface Laplace operator entirely in Cartesian
components. We will use this expression in our numerical approximation to the surface
Laplacian.
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3. Hermite Interpolation with RBFs. We now review Hermite interpolation
with RBFs, a technique essential to deriving the new RBF-HFD scheme outlined in
the next section. Let Ω ⊆ Rd and let φ : Rd×Rd → R be a scalar-valued radial kernel,
i.e., φ(x,y) := φ(‖x − y‖) for x,y ∈ Ω, where ‖ · ‖ is the standard Euclidean norm
in Rd. Let L be a linear functional and suppose we are given samples of a continuous
target function f at a set of distinct nodes X = {xi}ni=1 ⊂ Ω and samples of Lf at
a set of distinct nodes X̃ = {x̃j}mj=1 ⊂ Ω. Then we consider the following Hermite
RBF interpolant to the this data, proposed first by Wu [44]:

Iφf(x) =
n∑
i=1

ciφ(x,xi) +
m∑
j=1

djL2φ(x, x̃j) + α.(4)

Here we have used the notation L2 to mean that L is applied to φ with respect to its
second argument. Later we will similarly use L1 to mean that L is applied to φ with
respect to its first argument. The expansion coefficients {ci}ni=1 and {dj}mj=1 in (4)
are determined by enforcing the (Hermite) interpolation conditions

Iφf |X = f |X ,(5)
L (Iφf)|X̃ = (Lf)|X̃ ,(6)

while the constant α is obtained by enforcing the moment condition
∑n
i=1 ci = 0.

These conditions can be represented as the following block linear system: A B2 e
B1 C 0
eT 0T 0


︸ ︷︷ ︸

AH

cd
α

 =

 fLf
0

 ,(7)

where

Ai,j = φ(xi,xj), i, j = 1, . . . , n,
(B2)i,j = L2φ(xi, x̃j), i = 1, . . . , n, j = 1, . . . ,m,
(B1)i,j = L1φ(x̃i,xj), i = 1, . . . ,m, j = 1, . . . , n,
Ci,j = L1L2φ(x̃i, x̃j), i, j = 1, . . . ,m,

ei = 1, i = 1, . . . , n.

Because φ is radially symmetric, we have that φ(x, x̃) = φ(x̃,x), so that L2φ(x, x̃) =
L1φ(x̃,x). This means that A = AT , C = CT , and B2 = BT1 so that the matrix AH
is symmetric. If φ is, for example, positive definite or order-1 conditionally positive
definite, then under very mild conditions on L the linear system (7) is nonsingular
[44, 33].

We will also make use of regular RBF interpolation, which consists only of in-
terpolating function values, in the subsequent section. These interpolants are simply
given by (4) with m set equal to zero and the constant α omitted, i.e.,

Iφf(x) =
n∑
i=1

ciφ(x,xi).(8)

In this case, we only enforce the conditions (5), which can be represented by the linear
system

(9) ARc = f ,
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where AR is the same matrix as A in (7). We use the subscript R to denote the linear
system for the regular interpolant as opposed to the subscript H in (7) for the linear
system associated with the Hermite interpolant.

In this study, the interpolation nodes X and “functional nodes” X̃ lie on an
embedded lower dimensional surface Ω = M in Rd. However, we will still use the
standard Euclidean distance in Rd for computing φ(x, x̃) = φ(‖x − x̃‖) in (4) (i.e.,
straight line distances rather than distances intrinsic to the surface). A theoretical
foundation for RBF interpolation on surfaces with the straight-line distance measure
is given in [24], along with proofs of favorable error estimates.

While it is possible to use any (conditionally) positive-definite kernel within the
RBF-FD and RBF-HFD methods (e.g., [39, 43, 4, 10, 15]), we use the Gaussian (GA)
kernel, which is positive definite in Rd for any d. All infinitely smooth kernels feature
a shape parameter ε such that large values of ε make the kernels peaked, while smaller
ε values make them flat. In the limit as ε → 0, Gaussian RBF interpolants to data
converge to (multivariate) polynomial interpolants in Rd [11, 29, 37], and to spherical
harmonic interpolants on the sphere S2 [21]. While smaller values of ε generally lead
to greater accuracy for smooth target functions [22, 29], the interpolation matrix in (7)
becomes increasingly ill-conditioned as ε→ 0 (see, e.g., [23]). Some stable algorithms
have been developed for bypassing this ill-conditioning [22, 21, 13, 18, 20], but these
algorithms typically break down when the data sites lie on a submanifold M ⊂ Rd, as
in the present study, due to nodes being nonunisolvent with respect to polynomials in
Rd. While some strategies have recently been undertaken to resolve them in Rd [30],
a robust approach is not yet available for surfaces.

4. RBF-HFD formulas for the surface Laplacian. Let Ξ = {ξk}Nk=1 denote
a set of (scattered) node locations on a surface M of dimension 2 embedded in R3

and suppose f : M → R is some differentiable function sampled on Ξ. Our goal
is to approximate ∆Mf |Ξ with HFD-style local approximations to the operator ∆M.
Without loss of generality, let the node where we want to approximate ∆Mf at be
ξ1, and let ξ2, . . . , ξp be the p − 1 nearest neighbors to ξ1, measured by Euclidean
distance in R3. We refer to ξ1 and its p− 1 nearest neighbors as the neighborhood of
ξ1 on the surface and denote this neighborhood as S1 = {ξ`}

p
`=1; this neighborhood

will comprise the candidate nodes that make up the HFD stencil for ξ1. We seek an
approximation to ∆Mf at ξ1 that involves a linear combination of the values of f and
∆Mf over some subset of nodes from S1 of the form

(10) (∆Mf)
∣∣
x=ξ1

≈
∑
i∈J

wif(ξi) +
∑
j∈J̃

w̃j(∆Mf)
∣∣
x=ξj

,

where J and J̃ denote index sets of size n ≤ p and m < p, respectively, into S1 for the
explicit and the implicit (or Hermite) part of the stencil, respectively. We will assume
that 1 ∈ J , but 1 /∈ J̃ (otherwise a trivial solution would exist). Using the notation of
the previous section, we will let the n nodes indicated by J be denoted by X = {xi}ni=1
and the m nodes indicated by J̃ be denoted by X̃ = {x̃j}mj=1. Additionally, we always
set x1 = ξ1. Using this notation we can rewrite (10) as

(11) (∆Mf)
∣∣
x=x1

≈
n∑
i=1

wif(xi) +
m∑
j=1

w̃j(∆Mf)
∣∣
x=x̃j

.

The weights {wi}ni=1 and {w̃j}mj=1 in this approximation will be computed using RBFs,
and will be referred to as RBF-HFD weights.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2134 ERIK LEHTO, VARUN SHANKAR, AND GRADY B. WRIGHT

4.1. Computation of the weights from the Hermite interpolant. The
method from [43] determines the RBF-HFD weights in (11) from the Hermite RBF
interpolant (4) constructed with L = ∆M. To compute the weights, consider the
problem of applying ∆M to the interpolant (4) and evaluating it at x1 to approximate
∆Mf

∣∣
x=x1

. The resulting approximation would be exact whenever f is any of the
functions φ(x,xi), i = 1, . . . , n, L2φ(x, x̃j) = ∆M,2φ(x, x̃j), j = 1, . . . ,m, or a nonzero
constant (since the interpolant is exact for these f). Thus, the weights {wi}ni=1 and
{w̃j}mj=1 are the values that make (11) exact for these values of f . This can be written
as the following linear system:

(12)

 A B e
BT C 0
eT 0T 0


︸ ︷︷ ︸

AH

ww̃
α

 =

 ∆M,1φ(x,xi)
∣∣
x=x1

∆M,1∆M,2φ(x, x̃j)
∣∣
x=x1

0

 ,

where the block matrices A and C are the same as those given in the Hermite inter-
polation matrix (7), B = B2 = BT1 in this same matrix (recall that the matrix in (7)
is symmetric), ∆M,1 = L1 and ∆M,2 = L2, and i = 1, . . . , n and j = 1, . . . ,m to form
block vectors of length n and m in the right-hand side. Note that the constant α is
not used for anything in the actual RBF-HFD formula.

The issue with using (12) for determining the RBF-FD weights is that one has
to explicitly compute ∆M,1φ(x, x̃j) and ∆M,1∆M,2φ(x, x̃j). As discussed in section 2,
constructing ∆M requires having explicit information about the underlying surface,
such as an analytical expression for the surface normal vectors. Even in cases where
these are known, the resulting formulas for computing ∆M,1φ and ∆M,1∆M,2φ are
likely to be quite complex. Moreover, we are interested in surfaces that are defined
by point clouds and where only numerical representations of the normal vectors are
available. Thus, constructing the system (12) analytically will not be possible. How-
ever, it is possible to construct an approximation to the entries of this system using
the regular RBF-FD method from [38], which is based on iterated differentiation (see
also [25]). This is the approach we take.

4.2. Computation of the weights from iterated differentiation. The first
goal is to compute approximations of the entries in BT in (12) and the entries of the
first vector block in the right-hand side of this equation. We state the entries of BT

explicitly as it will help elucidate the discussion of their approximation:

BT =

∆M,1φ(x̃1,x1) · · · ∆M,1φ(x̃1,xn)
...

. . .
...

∆M,1φ(x̃m,x1) · · · ∆M,1φ(x̃m,xn)

 .(13)

We compute these approximations by constructing an approximation to ∆M using
discrete approximations to Gx, Gy, and Gz in (2) computed from the standard RBF
interpolant (8) over the candidate stencil nodes S1 = {ξk}

p
k=1. To this end, consider,

for example, applying Gx to the interpolant Iφf in (8) based on the nodes in S1 (here
the target function f is not important) and then evaluating it at S1:

(GxIφf(x))
∣∣
x=ξi

=
p∑
j=1

cj
(
Gxφ(x, ξj)

)∣∣
x=ξi︸ ︷︷ ︸

Dx
ij

, i = 1, . . . , p.(14)
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We can rewrite (14) so that it explicitly depends only on the vector of samples f
∣∣
S1

using (9) as follows:

(15) (GxIφf)
∣∣
S1

= Dxcf = DxA−1
R f

∣∣
S1

=: Gxf
∣∣
S1
.

Here Gx is a p-by-p differentiation matrix that represents the RBF approximation to
the x component of the surface gradient operator over the set of nodes in S1. Now,
letting

Dy
i,j =

(
Gyφ(x, ξj)

)∣∣
x=ξi

and Dz
i,j =

(
Gzφ(x, ξj)

)∣∣
x=ξi

, i, j = 1, . . . , p,(16)

we can obtain similar approximations to the y and z components of the surface gra-
dient operator on S1 as

(GyIφf)
∣∣
S1

= DyA−1
R f

∣∣
S1

=: Gyf
∣∣
S1
,(17)

(GzIφf)
∣∣
S1

= DzA−1
R f

∣∣
S1

=: Gzf
∣∣
S1
.(18)

To obtain an approximation to ∆M at the candidate stencil nodes S1, we mimic
the continuous formulation of the surface Laplacian in (3), replacing the continuous
operators Gx, Gy, and Gz with the differentiation matrices Gx, Gy, and Gz, respec-
tively. This gives the following differentiation matrix for approximating the surface
Laplacian at the nodes S1:

LM,1 = GxGx +GyGy +GzGz

=
(
DxA−1

R Dx +DyA−1
R Dy +DzA−1

R Dz
)︸ ︷︷ ︸

B̂T

A−1
R .(19)

When applying LM,1 to a vector of samples of a target function f taken over S1, this
is equivalent to interpolating the target function with the regular RBF interpolant
(8), computing the components of the surface gradient of the interpolant, then inter-
polating each of these components again using (8), applying the surface divergence,
then evaluating this at the nodes in S1. This is a type of iterated derivative approxi-
mation [25] and has the advantage of not needing the explicit formulas for the normal
vectors (or their derivatives) to the surface M.

Recall that the node sets X and X̃ are subsets of S1 given by the index sets J
and J̃ , respectively (cf. (10)). Thus, to approximate the (i, `) entry, ∆M,1φ(x̃i,x`),
of BT in (13), we can first apply LM,1 to the vector of samples of φ(x,x`) at S1,[

φ(ξ1,x`) φ(ξ2,x`) · · · φ(ξp,x`)
]T
,(20)

which gives a vector containing approximations to ∆M,1φ(ξk,x`), k = 1, . . . , p. The
approximation to ∆M,1φ(x̃i,x`) is then given by the row in this vector corresponding
to the ith value in J̃ (which we denote by J̃i). Note, however, that the vector (20) is
just the J` column of AR in (15), so that the approximation to ∆M,1φ(x̃i,x`) obtained
from applying LM,1 to (20) is just given by the J̃i and J` column of B̂T in (19). Thus,
all entries in BT in (13) can be similarly obtained directly from the rows and columns
or B̂T using the index sets J and J̃ . Additionally, the vector in the first block of the
right hand side of (12) can be approximated from B̂T ; in this case, from the first row
of B̂T and from the columns corresponding to Ji, i = 1, . . . , n.
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The second goal is to compute approximations to the entries of C in (12) and the
entries of the second vector block in the right-hand side of this equation. We give the
entries of C explicitly to again elucidate the discussion:

C =

∆M,1∆M,2φ(x̃1, x̃1) · · · ∆M,1∆M,2φ(x̃1, x̃m)
...

. . .
...

∆M,1∆M,2φ(x̃m, x̃1) · · · ∆M,1∆M,2φ(x̃m, x̃m)

 .(21)

To approximate the operator ∆M,1∆M,2 we again use iterated differentiation involv-
ing the differentiation matrices Gx, Gy, and Gz. Using the idea of (19), we can
approximate ∆M,2 at the candidate stencil nodes S1 using the differentiation matrix

LM,2 =
(
(Dx)TA−1

R (Dx)T + (Dy)TA−1
R (Dy)T + (Dz)TA−1

R (Dz)T
)︸ ︷︷ ︸

B̂

A−1
R ,(22)

where Dx, Dy, and Dz are given by (14) and (16). We then approximate ∆M,1∆M,2
at the nodes in S1 as

LM,1LM,2 =
(
B̂TA−1

R B̂
)

︸ ︷︷ ︸
Ĉ

A−1
R .(23)

Using similar arguments as above for extracting approximations to the elements of BT

from B̂T , we can extract approximations to the elements of C from Ĉ. For example,
entry Ci,` can be approximated by the entry in the J̃i row and J̃` column of Ĉ. The
elements in the second block vector of the right-hand side of (12) can similarly be
extracted from Ĉ. In practice, B̂ and Ĉ are formed by solving linear systems using
the Cholesky factorization of AR, instead of computing A−1

R . Note that this ensures
that Ĉ is symmetric so that the approximation to C will also be symmetric.

Upon obtaining approximations to the entries of BT and C and the vector in the
right-hand side of (12), we substitute these into the system (12) and solve it to obtain
iterated RBF-HFD weights {w}ni=1 and {w̃}mj=1 to be used in (11).

For each node ξk ∈ Ξ, k = 1, . . . , N , we repeat the above procedure of finding
its p − 1 nearest neighbors (candidate stencil nodes Sk), selecting index sets for the
explicit and implicit stencils, computing approximations to the p-by-p submatrices
B̂T and Ĉ, and extracting the entries from these matrices to use for solving for the
weights in (12). These weights are then arranged into two sparse N -by-N matrices LΞ
and L̃Ξ for approximating the surface Laplacian over all the nodes in Ξ (see section
5 for how LΞ and L̃Ξ are used for solving a PDE). Each row of LΞ has n nonzero
entries and each row of L̃Ξ has m nonzero entries.

The computational cost of computing the weights for node ξk is O(p3), and there
are N such stencils, so that the total cost of computing the entries of LΞ and L̃Ξ
is O(p3N). In our application of the RBF-HFD method, the dominant O(p3) cost
for each ξk can also depend on m and n as we use a Greedy algorithm to select the
index sets J and J̃ that give weights with desirable properties, as discussed in section
4.4. In practice, p � N and would typically be fixed as N increases, so that the
total cost scales like O(N). Furthermore, the weights for one node can be computed
independently from the others and is thus an embarrassingly parallel computation.
In contrast, the method from [26], requires O(N3) operations and results in a dense
differentiation matrix. However, the accuracy of this global method is better than the
local RBF-HFD approach.
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Fig. 1. The maximum absolute value of the residual for differentiating a spherical harmonic,
with the maximum taken over the first n + m spherical harmonics. In this figure, the weights are
computed using variable precision arithmetic and ε = 10−10. The leveling off of the residual at
O(10−20) can be attributed to the choice of ε.

4.3. Choosing the candidate stencil nodes. Increasing the size p of the
candidate stencil nodes in the iterated differentiation improves accuracy of the ap-
proximations to BT and C described in the previous section, but also increases the
computational cost and worsens the conditioning of the linear system in (19). The-
oretically, the smallest possible candidate stencil would simply include every stencil
node used in the RBF-HFD formula (11). However, this choice will not lead to ac-
curate weights. Numerical experiments indicate that the candidate stencil should
contain at least n+m nodes in order to obtain stable and accurate weights.

In the flat basis limit, as the shape parameter goes to zero, RBF interpolants re-
produce certain polynomial interpolants in many cases [11]. Wright and Fornberg [43]
provided evidence that the weights obtained from Hermite RBF interpolants in this
limit are identical to classical compact weights that are exact for polynomials. For the
sphere, it is natural to suppose that the Hermite weights would become exact for the
spherical harmonics. This is indeed the case, if the neighborhood size is sufficiently
large, which is demonstrated in Figure 1. Let the residual for an example stencil on
the sphere be denoted

r =
n∑
i=1

wiY (xi) +
m∑
j=1

w̃j(∆MY )
∣∣
x=x̃j

− (∆MY )
∣∣
x=x1

,(24)

where Y is a spherical harmonic. Shown in the plot in Figure 1 is the maximum
absolute value of the residual, where the maximum is taken over the first n + m
spherical harmonics. For p� n+m, the weights incur errors of very large magnitude,
but the error decreases rapidly as p increases. From this plot, we posit that p must
consist of at least as many nodes as the number of spherical harmonics of one degree
higher than the degree we wish the weights to be exact for. For instance, if we have
n + m = 16 and we wish the weights to be exact for all spherical harmonics up to
third degree (of which there are 16), then p must at least be 25.

Whether the arguments above hold for other surfaces is uncertain, as this depends
on the polynomial space spanned by the RBF basis in the limit as ε goes to zero.
Additionally, it may not be of particular interest to explore the flat basis limit in
practice, as such exploration requires multiple precision arithmetic or a stable method,
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such as RBF-GA [30, 20] or RBF-QR [21, 18], for computing the weights. The choice
of p should rather be determined by accuracy and stability concerns.

4.4. Greedy algorithm for stencil selection. If the node set is near uniform,
experiments have shown that a nearest neighbor approach to stencil selection is usually
sound. However, compact stencils can provide additional properties if the stencil nodes
are chosen wisely. A simple greedy algorithm, similar to the one in [43], is used for this
purpose. For small stencils (n,m ≤ 10), that provide up to fourth-order convergence,
we enforce that all weights in L̃Ξ are positive, that L̃Ξ is diagonally dominant, and
that all off-diagonal elements in LΞ are positive. By consistency, any row sum of LΞ
is zero and thus the diagonal elements are negative. This property of LΞ, along with
the diagonal dominance of L̃Ξ, provides the stability properties outlined in section 6,
while imposing positivity of the L̃Ξ weights ensures that the compact weights mimic
their lattice-based counterparts. For larger stencils, such weights cannot be found,
and we must give up the last property.

The greedy algorithm proceeds in the following way:
1. For each node ξk, determine the p − 1 nearest neighbors to form Sk and

compute all matrices necessary to form the approximation to the entries of
AH and the right-hand side in the system (12) as described in section 4.1.

2. Compute all combinations of choosing n− 1 nodes from Sk and sort them by
average distance to ξk. Let {J (i)}imax

i=1 denote the set of index sets obtained.
3. Repeat step 2 with n− 1 replaced by m and denote this set {J̃ (j)}jmax

j=1 .
4. Let i = j = 1. Until stencils with suitable weights have been found, repeat

the following two steps:
5. Compute w and w̃ from the approximation (12) using the stencils J (i) and
J̃ (j).

6. If the weights satisfy the conditions, or i = imax and j = jmax, go to step
1 and continue with k = k + 1. Else if j = jmax, or if j = 1 and w is not
diagonally dominant, increase i and let j = 1. Else increase j.

The rationale behind the second condition in step 6 is that, if w is not diagonally
dominant, numerical experiments have shown that replacing the implicit stencil is
unlikely to work. For near-uniform nodes and suitable values for the stencil and
neighborhood sizes, the conditions are met for i = j = 1 for a majority of stencils,
which corresponds to the nearest neighbor approach. The algorithm rarely requires
more than ten iterations in steps 5 and 6.

5. Using RBF-HFD weights with the method-of-lines. In sections 7.1
and 7.2, we use the RBF-HFD discrete approximation to the surface Laplacian in
the method of lines (MOL) to simulate diffusion and reaction-diffusion equations on
surfaces. We briefly review this technique for the former equation, as its generalization
to the latter follows naturally.

The diffusion of a scalar quantity u on a surface with a (nonlinear) forcing term
is given as

∂u

∂t
= δ∆Mu+ f(t, u),(25)

where δ > 0 is the diffusion coefficient, f(t, u) is the forcing term, and an initial value
of u at time t = 0 is given.

Our RBF-HFD method for (25) takes the form

d

dt
uΞ = δL̃−1

Ξ LΞuΞ + f (t, uΞ) ,(26)
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where L̃−1
Ξ LΞ is an RBF-HFD discretization of ∆M over the nodes in Ξ, as described

above. This is a system of N coupled ODEs and, provided it is stable (see section 6),
can be advanced in time with a suitably chosen time-integration method. In contrast
to an explicit RBF-FD discretization, where L̃Ξ is the identity matrix, both explicit
and implicit time discretizations will require solving a sparse linear system. The
diffusion term is typically treated implicitly in order to allow larger time steps, and
we have chosen to use a semi-implicit BDF3 method [2], given by

(
11
6
I − δ∆tL̃−1

Ξ LΞ

)
un+1
X = 3unX −

3
2
un−1
X +

1
3
un−2
X

(27)

+ ∆t
(
3f(tn, unX)− 3f(tn−1, un−1

X ) + f(tn−2, un−2
X )

)
,

where the superscript denotes time level. If δ and ∆t are constant in time, we may
multiply by L̃Ξ to obtain the system

(28)
(

11
6
L̃Ξ − δ∆tLΞ

)
︸ ︷︷ ︸

RΞ

un+1
X = L̃Ξ{r.h.s. of (27)}.

The matrix RΞ is sparse and well-conditioned, and may be factorized if a sufficient
amount of memory is available. Another option is to use a Krylov solver with a
suitable preconditioner, for instance an ILU decomposition. The latter might be
preferable if the time step is adaptive, since the zero-fill ILU preconditioner is cheap
to compute, at least compared to a full LU factorization. The performance of this
approach is discussed in section 7.

6. Stability and Gershgorin sets. One important reason to favor high-order
compact stencils over their explicit counterparts is eigenvalue stability. In the clas-
sical setting, where stencils are symmetric, the structure of the obtained generalized
eigenvalue problem ensures stability when using any A-stable time stepping scheme.
Consider (25) with f ≡ 0 and the corresponding compact semidiscretization

(29)
d

dt
uΞ = L̃−1

Ξ LΞuΞ.

We wish to prove that any eigenvalue of L̃−1
Ξ LΞ lies in the left half-plane, which is

a necessary condition for stability. In the following, we will consider the equivalent
problem of showing that all eigenvalues of the generalized eigenvalue system

(30) Ax = λBx,

where A = −LΞ and B = L̃Ξ lie in the right half-plane.
A common way to prove stability is to use the Gershgorin circle theorem. For

instance, if A has zero row sum and positive diagonal and nonpositive off-diagonal
elements, then any eigenvalue of A must have a nonnegative real part. We will assume
that A has these properties, and that B is a strictly diagonally dominant matrix with
positive diagonal elements. If A and B were Hermitian, these properties would be
sufficient for the eigenvalues of the generalized eigenvalue problem to have nonnegative
real parts. The situation is somewhat more complicated in the nonsymmetric case.

Stewart[41] extended the Gershgorin circle theorem to generalized eigenvalues,
and proved that any eigenvalue must lie in

⋃
i Γi, where Γi is given by z ∈ C such

that



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2140 ERIK LEHTO, VARUN SHANKAR, AND GRADY B. WRIGHT

(31) |zbii − aii| ≤
∑
j 6=i

|zbij − aij |,

where aij and bij denote the elements of A and B, respectively. In contrast to the
regular Gershgorin theorem, it is quite difficult to determine the values of z that fulfill
this inequality. By cleverly applying the triangle inequality, Kostić and co-workers
[28] provided an approximate Gershgorin set that can be easily computed. Let ri(A)
denote the absolute sum of the ith row of A with the diagonal element zeroed out.
The ith approximate Gershgorin set Γ̂i is given by z ∈ C such that

|zbii − aii| ≤ |z|ri(B) + ri(A).

By dividing by bii, which is positive by assumption, we obtain

(32) |z − aii
bii
| ≤ |z|ri(B)

bii
+
ri(A)
bii

.

We will let α = aii

bii
and β = ri(B)

bii
, and note that we have ri(A) = aii from the matrix

properties we assumed. Note also that β < 1 since B is strictly diagonally dominant.
Approximate Gershgorin sets for α = 1 and various β are shown in Figure 2. In

particular, note that none of the sets contain any part of the negative real axis. For
small values of β, the only part of the negative real half-plane that is included in the
approximate Gershgorin set is a narrow segment along the imaginary axis. In the
special case where B has nonnegative elements, it is typically possible to find stencils
that provide β < 0.5, which makes the unstable part of the Gershgorin set practically
insignificant.

In practice, the exact Gershgorin sets turn out to be much smaller than the
approximate ones for the discretizations considered here. Examples are shown in
Figure 3, where fourth-order and sixth-order approximations of the Laplace–Beltrami
operator on the sphere are considered. Note that the regions shown are not the
(approximate) Gershgorin set, but rather the ith (approximate) Gershgorin set, where
i is chosen as the row that gives the largest extent in the left half-plane. For the
fourth-order method, the Gershgorin set shown is essentially completely contained in
the right half-plane.

Re z

-2 0 2 4 6

I
m

z

-4

-2

0

2

4

Fig. 2. Approximate Gershgorin sets for α = 1 and various values of β. The circle corresponds
to β = 0, and additional curves are given by β = 0.2, 0.4, 0.6, 0.8, and 0.95, starting from the
innermost to the outermost curve.
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(a) Fourth-order method.
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(b) Sixth-order method.

Fig. 3. Generalized eigenvalues of (A,B) and corresponding Gershgorin sets. The ith approx-
imate Gershgorin set is outlined by a dashed line, and the respective exact one is given by a solid
line, where the index i is chosen to give the largest extent in the left half-plane of each individual
set. The inset shows a magnification about the origin.

Table 1
The manifolds in the experiments are given by {x, y, z} satisfying F (x, y, z) = 0. For the Red

Blood Cell, the parameters are c0 = 0.81
a
, c2 = 7.83

a
, c4 = −4.39

a
, and r0 = 3.91

a
with a = 3.39. The

parameters for Dupin’s Cyclide are c1 = 2, c2 = 1.9, c3 =
√

0.39, and c4 = 1.

Surface F (x, y, z)

Sphere x2 + y2 + z2 − 1
Torus (1−

√
x2 + y2)2 + z2 − 1

9

Red Blood Cell
(

1− x2+y2

r2
0

)(
c0 + c2

(
x2+y2

r2
0

)
+ c4

(
x2+y2

r2
0

)2
)2

− 4z2

Dupin’s Cyclide (x2 + y2 + z2 − c24 + c22)2 − 4(c1x+ c3c4)2 − 4c22y
2

“Tooth” x8 + y8 + z8 − (x2 + y2 + z2)

7. Numerical results. The numerical experiments in this section were per-
formed in MATLAB, using node sets generated by DistMesh [35, 34], unless other-
wise noted. All timing experiments were run on a desktop computer equipped with
an Intel R© CoreTM2 Quad Q9550 processor at 2.83 GHz and 4 GB of RAM and we did
not make explicit use of parallelization in MATLAB. For a mathematical description
of the manifolds, see Table 1. Example node sets are presented in Figure 4.

7.1. Parameter studies. To verify the convergence rate and facilitate compar-
isons between explicit and implicit finite difference methods, we use the forced heat
equation with a known analytic solution, given by Eq. (25) with δ = 1. We restrict our
attention to the surface of the sphere and the torus, in order to be able to manufacture
exact solutions.

As in [38], we take the exact solution for the sphere to be

(33) u(t,x) = e−5t
23∑
k=1

e−10 cos−1(yk·x),
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Fig. 4. Example node sets for the red blood cell model, Dupin’s cyclide, and the “tooth” model.

where x ∈ S2 and yk, k = 1, . . . , 23, are randomly placed points on S2. For the torus,
we also use the exact solution from [38]:

(34) u(t, λ, ϕ) = e−5t
30∑
k=1

e−20(1−cos(λ−λk))− 9
4 (1−cos(ϕ−ϕk)).

Here the solution is stated in the parametric variables (λ, ϕ) ∈ [−π, π]2 for the torus,
and (λk, ϕk), k = 1, . . . , 30, are taken as randomly chosen values in [−π, π]2. The
exact parameterization of the torus we use is

x =
(

1 +
1
3

cos(ϕ)
)

cos(λ), y =
(

1 +
1
3

cos(ϕ)
)

sin(λ), z =
1
3

sin(ϕ).

The forcing terms for the diffusion equations on the two surfaces are computed from
these exact solutions. Unless otherwise noted, the diffusion equations for both surfaces
are simulated for 0 ≤ t ≤ 0.2 and the time step is chosen such that spatial errors
dominate. All time integrations are done using BDF3 and the forcing function is
evaluated implicitly. We restrict the presentation to the relative `∞-norm of the
error as the observed convergence rates were the same for the `1-, `2-, and `∞-norms.
Finally, we let h denote the “spacing” of the nodes in Ξ, and compute this as the
average distance to the nearest neighbor.

Shape parameter. Two strategies for the scaling of the shape parameter are com-
monly used: inversely proportional to the node distance h, or fixed. The former
choice keeps the condition number of the regular interpolation matrix, here denoted
κ(AR), constant, but introduces a stationary interpolation error that does not de-
crease to zero in the limit as h goes to zero. A fixed ε gives convergence for all h, but
the linear systems for computing the weights become ill-conditioned for small h, and
convergence is lost due to round-off errors. There are workarounds for both of these
problems. In the stationary interpolation case, it is possible to recover high-order
convergence by adding suitable polynomial terms to the interpolant [14, 3]. On a sur-
face, however, the polynomials may themselves introduce ill-conditioning, especially
if it is an algebraic surface as polynomial unisolvency becomes an issue.

If ε is kept fixed, there are currently two options to circumvent the problem of
ill-conditioning: stable algorithms or variable-precision arithmetic. The algorithms of
the former category, such as RBF-GA, RBF-QR, and RBF-CP[20, 18, 22], are unfor-
tunately not easily adaptable to Hermite interpolation in the form introduced here.
Instead, we adopt quad-precision arithmetic, for instance using the Advanpix toolbox
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[1], which allows accurate determination of the weights for values of h corresponding
to millions of nodes on the surfaces considered. Note that quad precision is only
needed for the computation of the weights, after which the results can be truncated
back to double precision and the simulations run without issues. Also note that com-
puting the weights is an embarrassingly parallel task, and one that is only performed
once for a given simulation. Optimization of ε is beyond the scope of this study, and
the value is chosen such that weights can be computed in double precision for small
to moderate node sets (N . 50, 000), after which we switch to quad precision.

Results for the forced heat equation of the sphere illustrating the effects of the
two shape parameter strategies are presented in Figures 5(a) and 5(b), in which the
errors as a function of h are shown for a fourth-order and a sixth-order approximation,
respectively. In the fourth-order case, both strategies for selecting the shape param-
eter converge with the same rate for a large range of values of h, but keeping the
condition number fixed eventually results in a stationary error as h decreases. For the
sixth-order stencil, the resulting order is slightly lower in the fixed condition number
setting, and convergence is achieved only in a small range of values of h. Note that
the mean condition number of the Hermite interpolation matrix, AH , was kept fixed
in these experiments. Similar results for the torus were observed and have thus been
omitted.

Stencil sizes. The choice m = n−1 and letting the index sets I and J coincide (bar
the evaluation node) provides ideal sparsity of the matrix RΞ in Eq. (28). However,
as the approximation order is increased, it gradually becomes more difficult to find
weights w that satisfy the diagonal dominance criterion. On near-uniform nodes, it is
typically possible to find stable weights for n up to 12. The stencil selection algorithm
will also influence the sparsity of the matrices, and certain combinations of n and m
are more likely to produce stable weights (e.g., by symmetry). Another consideration
is the formal approximation order of the stencil, which we are not able to derive, and
so instead determine it experimentally. The order appears to be primarily determined
by the number of degrees of freedom of the Hermite system, i.e., n+m.

Figures 6(a) and 6(b) show the error as a function of h for the forced heat equation
on the sphere and on the torus, respectively, with different values of m and n. In these
figures, the shape parameter is kept fixed at ε = 3 for the smaller stencil sizes and
ε = 5 for the larger ones. With these choices, quad-precision arithmetic is only
required for computing the weights for the two largest node sets, which range in size
from N ≈ 1000 to N ≈ 200, 000. We summarize the observations from this experiment
regarding observed order of convergence and stencil sizes in Table 2.

Performance comparison. In addition to the stability properties discussed in sec-
tion 6, compact stencils provide better sparsity for the same approximation order.
This should lead to a smaller memory footprint and fewer floating-point operations
for solving the system in Eq. (28). In this paper, we use BiCGSTAB with zero-fill ILU
preconditioner for solving the linear system. Table 3 shows the number of nonzero
elements in RΞ and the CPU time for a simulation for some combinations of N , n,
and m. Also presented in this table is the average number of Krylov iterations per
time step. It is interesting to note from this table that, in terms of CPU time, the
smaller implicit stencil barely outperforms the explicit stencil of the same order. This
can be attributed to the larger number of iterations needed for the Krylov solver to
converge. Increasing the stencil size to n = 12 and m = 15 reduces the number of
iterations needed, plausibly due to the larger number of nonzeros in the incomplete
LU factorization. This results in a CPU time that is comparable to that of the smaller
implicit stencil. In this comparison, the fourth-order explicit stencil (n = 17, m = 0)
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(a) n = 10, m = 6, p = 19.
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(b) n = 12, m = 15, p = 32.

Fig. 5. The error as a function of h for the forced heat equation on the sphere for different
strategies of shape parameter selection. Solid lines correspond to fixed shape parameter, and dashed
lines correspond to fixed condition number. The dash-dot line show slopes for convergence rate O(hp)
with p = 4, 6. In (a) the values of ε are {6, 5, 4, 3, 2.5} from top to bottom, and in (b) the values
are {8, 7, 6, 5, 4.5}, again from top to bottom. The values of κ(AH) are {1010, 1011, 1012, 1013, 1014}
from top to bottom (at small h) in both (a) and (b).
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Fig. 6. The error as a function of h for the forced heat equation with different stencil sizes.
The dashed lines show slopes for convergence rate O(hp), fitted from the data points.
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Table 2
Recommended stencil and neighborhood sizes for different approximation orders. The order was

determined from numerical experiments on the sphere and the torus shown in Figure 6.

n m p Observed order

10 6 19 4
12 15 32 6

17 0 17 4
31 0 31 6

Table 3
The table shows the number of nonzeros of the matrix RΞ, the average iteration count for the

Krylov solver, and the CPU time for 200 time steps with ∆t = 10−3 for some choices of n, m, and
h. The surface in this experiment is the sphere, and the tolerance for the Krylov solver is 10−12.

n m h N # of nonzeros Avg. iter. CPU time (s)

10 6
0.1 1806 18064 2 0.37
0.05 7446 74462 3 1.5
0.025 30054 300548 5.5 11

12 15
0.1 1806 28925 2 0.41
0.05 7446 119136 2.5 1.7
0.025 30054 480864 4 10

17 0
0.1 1806 30702 2 0.39
0.05 7446 126582 2.5 1.6
0.025 30054 510918 4 10

31 0
0.1 1806 55986 1.5 0.40
0.05 7446 230826 2 2.4
0.025 30054 931674 4 18
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Fig. 7. The run-time for a simulation of the forced heat equation on the sphere as a function
of h, using ∆t = 10−2 · h. The simulation was run from t = 0 to t = 0.2.

is on par with the sixth-order implicit stencil both in terms of memory requirements
and computational cost. Note that the time step chosen, ∆t = 10−3, is rather small
(which is needed for spatial errors to dominate). Increasing the time step to ∆t = 0.1
increases the number of Krylov iterations per time step roughly by a factor of 6.

In most applications, ∆t would be chosen proportional to h in order to reduce
both spatial and temporal errors as the node set is refined. Figure 7 shows the CPU
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time as a function of h with ∆t = 10−2 · h. For the near-uniform node sets used
throughout this paper, N ∝ 1/

√
h, and thus the CPU time scales as O(N3/2).

7.2. Applications. We now present applications of the new compact scheme to
solving reaction-diffusion equations on different surfaces. As in [38], we present results
of simulations both on surfaces defined implicitly by algebraic expressions (see Table
1) and on more general point cloud surfaces. On the former, we simulate the same
two-species Turing system used in [38], given by

∂u

∂t
= αu(1− τ1v2) + v(1− τ2u) + δu∆Mu,(35)

∂v

∂t
= βv

(
1 +

ατ1
β
uv

)
+ u(γ + τ2v) + δv∆Mv.(36)

A visualization of the solutions of this equation on the various surfaces with the
parameters selected from Table 4 are shown in Figure 8.

Table 4
The table shows the values of the parameters of (35) and (36) used in the numerical experiments

shown in Figure 8. We set δu = 0.516δv for the red blood cell and tooth models, and use δu = 5.16δv
for Dupin’s cyclide.

Pattern δv α β γ τ1 τ2 Final time

Spots 4.5× 10−3 0.899 −0.91 −0.899 0.02 0.2 200

Stripes 2.1× 10−3 0.899 −0.91 −0.899 3.5 0 4000

Fig. 8. Quasi-steady Turing spots and stripe patterns resulting from solving (35) and (36)
on the red blood cell model, Dupin’s cyclide, and the “tooth” model using the fourth-order compact
scheme. In all plots, light shading indicates high concentrations and dark shading indicates low
concentrations (the electronic version is full-color).
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Fig. 9. Fitzhugh–Nagumo spiral wave patterns resulting from solving (37) and (38) on the
bumpy sphere and bunny models using the fourth-order compact scheme. In all plots, light shading
indicates high concentrations and dark shading indicates low concentrations (the electronic version
is full-color).

On the more general point cloud surfaces, we simulate the Fitzhugh–Nagumo-type
model used in [26]:

∂u

∂t
= δu∆Mu+

1
α
u(1− u)

(
u− v + b

a

)
,(37)

∂v

∂t
= δv∆Mv + u− v.(38)

For both the bumpy sphere2 and bunny3 models, we set a = 0.75, b = α = 0.02,
δv = 0, and δu = 1.5( 2π

50 )2. With these parameters, the model generates dynamic
spiral wave solutions. Snapshots of these solutions computed with the RBF-HFD
method for the two surfaces are shown in Figure 9. We note that the normal vectors
on these point cloud models can be generated by any appropriate method. In this
work, the node sets and normal vectors were created using MeshLab [8], utilizing
the Poisson surface reconstruction algorithm with some additional smoothing and the
Poisson disk sampling method.

7.3. Curvature, node spacing, and the stencil selection algorithm. In a
few of our experiments, the greedy algorithm failed to find suitable stencils for some

2Available from the Aim@Shape Shape Repository (http://visionair.ge.imati.cnr.it/).
3Available from the Stanford Computer Graphics Laboratory (http://graphics.stanford.edu/

data/3Dscanrep/).

http://visionair.ge.imati.cnr.it/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/


 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPACT RBF-FD FOR REACTION-DIFFUSION ON SURFACES A2149

Fig. 10. The number of rejected stencils as a function of h and the mean curvature H.

node points. A common characteristic of these nodes was that they were located
in areas of large curvature, e.g., around the ears of the bunny. To illustrate this
curvature effect more clearly on the failure of the stencil selection algorithm, we
carried out an experiment generating the surface Laplacian on prolate spheroids of
varying curvatures and determining how the number of rejected stencils changed with
curvature. The results are plotted in Figure 10 in terms of the number of rejected
stencils, i.e., stencils where the stability constraints could not be met, as a function
of both the node distance h and the maximum mean curvature H. Note that imax
and jmax in the greedy algorithm were set to 5 in this experiment so that only a
small number of stencils were attempted for each node, to emphasize the effect of
the curvature. This experiment indicates that decreasing the node spacing alleviates
the issue. In our experiments on the bunny, we found that simply using nearest
neighbor stencils for cases where no suitable stencil could be found still led to temporal
stability, and we therefore recommend this approach. Two other potential remedies
are increasing ε for the nodes where no suitable stencils can be found, and refining
the node set locally in these areas. The former has previously been noted to improve
stability (see, e.g., [16]), but larger values of ε also tend to reduce the accuracy. A
full exploration of these latter two approaches is beyond the scope of this work.

8. Discussion. The compact RBF-HFD scheme improves on previous RBF-FD
schemes for diffusion on surfaces both in terms of efficiency and stability. The pro-
posed greedy stencil selection algorithm ensures eigenvalue stability on surfaces with-
out large (or rapid) changes in curvature. In numerical experiments of the forced
diffusion equation on the sphere and the torus, the new scheme provided accuracy
similar to the previous noncompact RBF-FD method, but with a smaller memory
footprint and higher accuracy. The linear systems generated from the semi-implicit
BDF3 time discretization were also shown to be efficiently solvable using BiCGStab
with a standard zero-fill ILU preconditioner. In addition to illustrating the good
stability, accuracy, and efficiency properties of the scheme, we showed how it can be
easily adaptable to reaction-diffusion equations on both implicitly defined surfaces
and surfaces defined by a point cloud. The method can be naturally generalized to a
smooth orientable surface that is discretized with a set of roughly uniform nodes and
with approximations to the normal to the surface at each of the nodes.
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While stencil sizes generating fourth- and sixth-order convergence in numerical ex-
periments on the sphere and the torus are provided, no investigation of the theoretical
convergence rates have been given. This is clearly an avenue of future investigation.
Another future topic of research is the influence of the curvature and the shape pa-
rameter on the computed RBF-HFD weights. Experiments suggest that large local
curvature makes it impossible to find weights that satisfy the conditions that ensure
eigenvalue stability, although no issues with temporal integration were encountered
when this stability was not insured. Refining the node sets in areas of high curvature
or increasing the shape parameters used in the stencils in these areas may provide a
simple way to alleviate the problem. An extensive investigation of the relationship
between curvature, nodal distance, and stability will the topic of a future study.

Finally, we note that an extension to convection-diffusion problems would allow
the method to be used in various applications, e.g., chemical transport on thin mem-
branes and shells, biomechanical modeling of cells. This is currently being pursued
by the first author.
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