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ABSTRACT 

 Breast cancer is the most diagnosed cancer in women and is the second most 

common cancer-related death for women worldwide.  While the primary tumor itself is 

not lethal, the metastases that disrupt vital organ functions pose a significant clinical 

challenge.  Seventy percent of women with metastatic breast cancer have metastases to 

the bone, which is the most significant cause of morbidity for these patients.  Oncostatin 

M (OSM) is a pleiotropic cytokine that plays a role in the immune system, wound repair, 

and haematopoiesis.  OSM was previously considered for anticancer therapy due to its 

anti-proliferative effects against breast cancer cells in vitro.  However, recent studies in 

the literature and from our lab suggest that OSM increases the metastatic potential of 

breast cancer cells.  OSM has been shown to increase angiogenesis through the 

induction of VEGF and invasion through the release of MMP family of proteases.  

However, the exact role that OSM has on the metastatic cascade of breast cancer 

remains unclear.  In this study, we attempted to elucidate the role of OSM on breast 

cancer metastases in an in vivo and in an in vitro mouse model of breast cancer.  The 

results indicate that OSM increases pro-metastatic characteristics on 4T1.2 murine 

mammary cancer cells in vitro. OSM induced detachment and various factors that are 

thought to promote metastases and bone degredation such as VEGF, COX-2, IL-6, and 

HIF1α.  In an in vivo orthotopic 4T1.2 mouse model of breast cancer, OSM also 

increased the metastatic burden to the lung, spleen and the liver in vivo, while tumor 
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growth was unaffected.  In an in vitro co-culture model of the metastatic bone 

microenvironment, OSM and murine mammary cancer cells synergistically increased 

osteoclast differentiation and activity.    Furthermore, inhibition of VEGF, COX-2, IL-6, 

or HIF1α attenuates osteoclast differentiation.  Our data suggest that OSM might be a 

useful target for individualized anticancer therapies on cancer patients with high level of 

serum OSM concentrations and may help prevent metastases and bone destruction in 

breast. 
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INTRODUCTION 

 Breast cancer is the most commonly diagnosed cancer in women worldwide, and 

approximately 400 thousand women succumb to the metastatic disease each year (1).  In 

the United States, the mortality rate for metastatic breast cancer is about 40 thousand 

women per year (2).  Despite significant recent advancements in understanding the 

metastatic process, many of the specific factors involved are still unknown.  Metastasis 

of breast cancer cells to sites such as bone, lung, brain, liver, and other vital organs 

poses a major clinical challenge and generally leads to a poor prognosis.  Bone is the 

most common site of metastasis for metastatic breast cancer patients, occurring with 

approximately 70% probability, and is the most significant cause of morbidity for these 

patients (3). 

 The process of metastases is not only variable between patients with different 

types of breast cancer, but the course of metastatic disease is also unpredictable even 

between patients with the same type of primary breast tumor.  It is now thought that a 

part of this variability between patients could be explained by the differences in the 

levels of pro-inflammatory cytokines (4-6).  In particular, interleukin-6 (IL-6) and IL-6-

related cytokines may play a major role in the progression of cancer metastasis, patient 

morbidity, and mortality (7-9).  OSM, belonging to the IL-6 family of cytokines, has 

also been implicated in playing a role in the progression of metastatic disease (10-13).  
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In this study, we attempted to explicate the role of OSM in cancer progression, 

metastases, and osteolysis in an in vitro and in vivo model of mouse mammary cancer. 

 

Cancer Metastasis 

 During the progression of malignant disease, morbidity and mortality do not 

occur due to the primary tumor in the majority of the cases.  Metastasis of the primary 

tumor cells to secondary vital organs leads to disruption of the normal physiological 

functions of the organs.  For example, metastasis of cancer cells to the lung can lead to 

disruption of the normal respiratory process, while metastasis to the brain can cause 

disruption of the cognitive and autonomic physiological processes.  As cells accumulate 

mutations, the normal cells become hyperplastic and eventually detach from their 

surroundings and become mobile by releasing proteases that degrade the extracellular 

matrix.  Overall, the cell can gain a more mesenchymal phenotype.  This process has 

been described as the epithelial to mesenchymal transition (EMT), which has recently 

been thought to be an important first step in the metastatic cascade (14).  Once the 

cancer cells become mobile, they can eventually intravasate into the local blood or 

lymphatic system, thus causing the cancer cell to enter the circulatory system or lymph 

system respectively.  Most cancer cells that do enter the circulatory system do not 

survive due to the body’s innate immune response which kills a large portion of cancer 

cells (15, 16).  Some of the cells are able to extravasate from the circulatory system at a 

secondary site and then grow a secondary tumor (Figure A.1). 

While the exact mechanisms describing the extravasation process are widely 

unknown, it has been thought that the microenvironment of the secondary site can 
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provide a favorable location for the cancer cell to survive.  For example, the lung 

provides ample oxygen, while other organs such as the liver provide a high amount of 

glucose, and the bone contains a large supply of growth factors embedded in the bone 

matrix; all of which help the cancer cells grow faster (17).  The mechanism governing 

the homing aspect of the cancer cells is thought to be due to a chemokine-mediated 

stimulation of cancer cell mobility, causing the cells to move towards the highest 

concentration gradient of chemokines.  This effect has been demonstrated by the high 

expression of C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor 

type 10 (CCR10), and other chemokine receptors on breast cancer cells leading the cells 

to respond to specific chemokine ligands expressed at secondary sites, and thus aiding 

in the overall metastatic cascade (18).  Once these cancer cells reach the metastatic site, 

they have to successfully evade the immune system in order to avoid natural killer cells, 

cytotoxic T-cell, dendritic cell, or macrophage cell-mediated necrosis or apoptosis (19-

23).  In a recent study, it has been demonstrated that regulatory T-cells co-migrate with 

cancer cells to the secondary metastatic site to suppress the local innate immune 

response (24).  Potent immune-activating pro-inflammatory cytokines such as 

oncostatin M (OSM) and IL-6 have also been demonstrated to promote tumor survival, 

invasion, and metastasis (13, 25). 

 

Oncostatin M and Its Pro-Metastatic Effects 

OSM is a pleiotropic cytokine of the IL-6 family generally considered a pro-

inflammatory cytokine that has important functions in the immune system cascade (11, 

26).  In addition, OSM has demonstrated pro-differentiating activities for 
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haematopoietic stem cells and is an important cytokine for fetal liver development to 

support fetal hepatic cell-mediated hematopoiesis (27).  Although the roles of OSM in 

inflammation, immune system functioning, as well as in hematopoiesis are well 

characterized, its roles in bone metabolism and breast cancer metastasis are not well 

understood.  Early results from in vitro analysis of the effect of OSM on human breast 

cancer cells indicate that OSM is a potent inhibitor of breast cancer cell proliferation 

(28).  Thus, OSM was previously considered a potential breast cancer therapeutic drug.  

Current research indicates, however, that OSM may increase the metastatic potential of 

human breast cancer cells via induction of increased mobility and invasiveness, and the 

upregulation of various genes related to angiogenesis such as vascular endothelial 

growth factor (VEGF) (12, 13, 29) (Figure A.2).  OSM also induces the expression of 

various oncogenes including c-fos, c-myc, transforming growth factor alpha, and 

epidermal growth factor receptor (10).  Furthermore, OSM has been shown to stimulate 

the secretion of factors related to bone metastasis and osteolysis such as VEGF, receptor 

activator of nuclear factor kappa-B ligand (RANKL), and cyclooxygenase-2 (COX-2) 

(30, 31). 

OSM has been thought to promote the phenotypic transition of breast, lung, and 

pancreatic cancer cells from an epithelial to a mesenchymal phenotype, leading to 

reduced substrate attachment, increased in vitro invasion, and an upregulation of 

metalloproteinases that degrade the local extracellular matrix (12, 13, 32, 33).  

Cytokines such as OSM, IL-6, and other gp-130-related factors have important effects 

in maintaining bone integrity and is normally carefully regulated.  However, during 
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disease states such as osteoarthritis and bone metastases, the balance of OSM and other 

IL-6/gp130 cytokines is severely disrupted, leading to bone degradation (34). 

 

Bone Homeostasis 

Bone homeostasis is maintained by a variety of cell types that control 

remodeling of the bone matrix.  Two important cell types that mediate bone 

homeostasis are osteoblasts and osteoclasts.  Osteoblasts contribute to the bone matrix 

by production of type I collagen, deposition of hydroxyapatite crystals into the collagen 

matrix, and regulation of osteoclast activity (35, 36).  Osteoblasts are of mesenchymal 

origin and differentiate from pre-osteoblasts primarily via bone morphogenic proteins 

(BMP) that induce runt-related transcription factor 2 (Runx2), leading to increased 

alkaline phosphatase activity (35).  Conversely, osteoclasts resorb bone matrix (37) and 

differentiate from the hematopoietic cell lineage upon stimulation in a differentiation 

process called osteoclastogenesis. 

Osteoclastogenesis is mediated by cytokines such as receptor activator of NF-κB 

ligand (RANKL), macrophage-colony stimulating factor (M-CSF), and parathyroid 

hormone related protein (PTHrP) (37-40).  RANKL, a membrane-bound ligand, is 

produced primarily by osteoblasts (41).  Osteoclastogenesis is regulated primarily via 

osteoblast-produced RANKL and osteoprotegrin (OPG) expression, a decoy receptor to 

RANKL that suppresses RANKL activity (42).   Osteoblasts that express RANKL have 

cell-to-cell contact with osteoclasts via ligand-receptor binding between RANKL and 

RANK (receptor activator of NF-κB) (43).  RANKL functions to promote osteoclast 

differentiation and activity through stimulation of various pathways including the 
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phosphatidylinositol-3 kinase (PI3K) pathway and the mitogen activated protein kinase 

(MAPK) pathway.  The MAPK pathway leads to the activation of c-fos, nuclear factor 

of activated T-cells-2 (NFAT2), and other transcription factors (44, 45).  Cleavage of 

RANKL from the cell membrane by proteinases such as matrix metalloproteinase-7 

(MMP7) yields the soluble form of RANKL (sRANKL), which has a physiological 

function that is still disputed, although both anti- and pro-osteoclastogenic effects have 

been reported (41, 46-48). 

To make room for the new bone being deposited by the osteoblasts, osteoclasts 

need to differentiate and resorb bone in a controlled manner.  As osteoclasts 

differentiate in response to pro-osteoclastic factors, the single nucleated pre-osteoclastic 

cells undergo cell fusion to create multi-nucleated cells (45).  Some large osteoclasts 

can contain upwards of thirty or more nuclei.  These multinucleated osteoclasts then 

create a segregated zone; a sealed area between the osteoclast and the bone matrix. 

Osteoclasts subsequently release hydrogen ions into the segregated zone, solubilizing 

the hydroxyapatite crystals and promoting acid-activated proteinases such as cathepsin 

K to degrade the collagen matrix (45, 49).  Osteoblasts generate new matrix to fill the 

vacant area.  The rate at which osteoclasts differentiate and resorb bone is carefully 

regulated by osteoblast-produced RANKL and OPG.  Other cells in the bone matrix 

such as osteocytes, terminally-differentiated osteoblasts, are able to regulate the 

generation and resorption of bone matrix by affecting osteoblast and osteoclast activity 

(50). Osteocytes inhibit osteoclast activity by releasing factors such as transforming 

growth factor-beta (TGFβ).  When osteocytes are mechanically stimulated by a shock to 

the bone resulting in dynamic fluid movement in their mechanoreceptor, they promote 
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alkaline phosphatase activity in osteoblasts by cell-to-cell contact, increasing bone 

mineralization and turnover (51-54).  In this manner, damaged sections of the bone are 

removed and replaced with new bone matrix by osteoblasts. 

In normal bone, homeostasis is constantly maintained and bone integrity is 

preserved by a continuous cycle of bone renewal.  However, when cancer cells 

metastasize to the bone, the complex and balanced interplay of the cells becomes 

disrupted, leading to a pathologic condition that compromises bone integrity.  One of 

the many characteristics that bone-homing cancer cells have in common is the release of 

copious levels of cytokines such as OSM and IL-6, as well as high expression levels of 

chemokine receptors such as CXCR4, which are important in facilitating bone invasion 

and growth of metastatic lesions (55-57). 

 

OSM and IL-6 in the Bone Microenvironment 

 IL-6, much like OSM,  is a major pleiotropic, pro-inflammatory cytokine which 

plays a role in immune response, hematopoiesis, cell differentiation, wound repair, and 

bone remodeling (58, 59).  Reactive stromal cells in the bone, which are primarily 

mesenchymal stem cells in the bone marrow, are thought to regulate bone metabolism 

in response to various stimuli (60, 61).  Inflammation in the bone caused by injury or 

disease increases the expression of IL-6 and OSM by reactive stromal cells of the bone 

and infiltrating monocytes and macrophages, promoting bone remodeling as seen by 

higher osteoclast activity (62).  IL-6 and OSM production is stimulated in response to 

prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β), lipopolysaccharides, TGFβ) and 

other various mediators of inflammation (63-68).  IL-6 binds to its heterotrimeric 
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receptor, consisting of two gp130 subunits and an IL-6 receptor subunit, on target cells 

and activates the signal transducers and activators of transcription (STAT), mitogen-

activated protein kinase (MAPK), and phosphatidylinositol-3 kinase (PI3K) (69-72).  

On the other hand, OSM binds to the OSMRβ gp130 heterodimer but this also leads to 

STAT3, MAPK, and PI3K activation (73-75).  OSM and IL-6 signaling though the 

Jak/STAT3 pathway can lead to expression of RANKL from osteoblast/stromal cells, 

causing direct stimulation of osteoclast differentiation and activity, resulting in bone 

destruction (76, 77). 

 Studies using IL-6 knockout mice have demonstrated that IL-6 is necessary for 

upregulating osteoclast activity and bone resorption in vivo.   IL-6 knockout mice were 

shown to be protected from increased osteoclast activity and differentiation when their 

bones were injected with the arthritis-inducing antigen heat-killed Mycobacterium 

tuberculosis (78).  IL-6 knockout bones that received antigen injections had less 

RANKL and interleukin-17 (IL-17) expression as well as reduced osteolysis and 

cartilage destruction near the site of injection compared to wild-type mice.  IL-17 is a 

pro-inflammatory and pro-osteoclastogenic cytokine implicated in arthritis and 

tumorigenesis that is produced in CD4+ helper and tumor infiltrating T-cells when 

activated by IL-6 (79, 80).  Additional mouse studies have demonstrated that inhibition 

of IL-6 activity, with an IL-6 receptor (IL-6R) antagonist that inhibits downstream 

receptor signaling, reduced bone resorption (81).  These results suggest that IL-6 plays a 

major role in the upregulation of additional pro-osteoclastic factors essential for 

osteoclast activity.   Similar studies using OSM and OSMR knockout mice reveal that 
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OSM signaling is important to the maintenance of hematopoietic stem cells in the bone 

marrow, which may result in reduced osteoclast differentiation and activity (82, 83). 

 Regulation of OSM and IL-6 expression is important in preventing excessive 

bone resorption and maintaining bone integrity.  17-β-estradiol has also been shown to 

suppress the activity of IL-6, OSM, and other STAT3-dependant cytokines by inhibiting 

STAT3 via upregulation of the protein inhibitor of activated STAT3 (PIAS3) (84).  In 

addition, testosterone also decreases IL-6 expression and OSM activity by inhibiting 

NF-κB activity and the hypothalamic-pituitary-adrenal axis; normally a potent 

stimulator of IL-6 production.  Both of these result in testosterone-mediated bone-

preserving effects (85-87).  On the other hand, cytokines such as OSM and TNFɑ also 

inhibit aromatase activity, leading to a reduction in the overall 17-β-estradiol 

concentration in local organs such as adipose tissue and bone (88).  This may point to a 

mechanism where both OSM and 17-β-estradiol competitively inhibit each other.  

Therapies that involve suppression of testosterone or 17-β-estradiol are effective against 

androgen-dependent prostate and breast cancer respectively, however bone density 

decreases significantly with these therapies leading to an increased chance of 

developing osteoporosis and pathological fractures (89).  This loss of bone density may 

be due to the increase in OSM and IL-6 in the bone from the suppression of androgen 

hormones. 

 

Bone Metastases 

Various types of cancers metastasize to the bone, including breast, prostate, lung, 

thyroid, kidney, multiple myeloma, melanoma, and neuroblastoma (90-94).  Not all 
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types of bone metastases affect the bone in the same way, though for all cancer types, 

bone is only compromised at the site of metastasis.  For example, breast cancer 

predominantly causes osteolytic lesions, resulting in an upregulation of osteoclast 

activity and subsequent decreased bone density and integrity that may lead to fractures 

(91, 95).  Conversely, prostate cancer results in primarily osteoblastic lesions that are 

caused by cytokine-induced upregulation of osteoblast activity and subsequent 

increased bone density (95).  These types of bone metastases cause thickening of the 

bone, resulting in the possibility of nerve compression, vertebral fusion, and spinal cord 

compression depending on the location of the metastases.  In contrast to what is found 

in normal bone where collagen fibers are highly organized and tightly packed, bone 

created by osteoblastic lesions contain disorganized, loosely packed collagen fibrils (40).  

This leads to a high degree of bone brittleness, increase in potential fractures, and pain 

as the normal bone is replace by abnormal bone created by the osteoblastic lesions.  A 

subset of prostate cancers may also cause osteolytic lesions due to the expression of 

different cytokines that promote osteoclast activity rather than osteoblast activity (96).  

Multiple myeloma causes only osteolytic lesions.  Other cancers, including lung, kidney, 

melanoma, neuroblastoma, and thyroid carcinomas, result in primarily osteolytic lesions, 

but osteoblastic lesions occur occasionally (94, 95, 97, 98). 

 Metastasis of the primary tumor to the bone occurs in about 60-75% of patients 

with breast cancer, prostate cancer, neuroblastoma, or multiple myeloma (90-92, 99).   

Metastasis to the bone from other cancers such as lung, kidney, and thyroid only occur 

in 30-50% of patients (93).  Molecular mechanisms involved in the capacity of a cancer 

cell to metastasize to the bone are not completely understood.  However, inflammatory 



11 

 

cytokines such as OSM and IL-6 appear to play a role in several steps of the metastatic 

process. 

 

Mechanism of Tumor Metastasis to the Bone 

 It is not well understood how cancer cells locate the bone, grow, and thrive in an 

environment vastly different from their host environment.  After the initial stages of 

metastases are complete and the cancer cells are in the circulatory system, there are 

certain signals thought to be expressed by the bone, which attract cancer cells to that 

location.  In particular, it is thought that cancer cells are attracted to bone marrow due to 

the relatively high levels of CXCL12 expression by osteoblasts which attracts any 

CXCR4 positive cells (100).  In most cases, bone metastatic cells tend to overexpress 

CXCR4 levels, which promotes cell metastasis to the bone.  For that reason alone, 

therapeutics are being considered to block the CXCR4/CXCL12 axis to help prevent 

possible bone metastases (101). 

 Addition of cytokines such as OSM makes the CXCR4/CXCL12 axis more 

potent, possibly leading to increased bone metastasis.  Cytokines such as OSM and IL-6, 

that activate NF-κB through the STAT3 or c-Jun pathway, can increase the expression 

of CXCR4 in breast cancer cells, leading to increased cell mobility (102).  Once the 

cancer cells have localized to the bone marrow, they can mediate increased levels of 

CXCL12 production by the bone stromal cells and osteoblasts in a OSM-dependant 

manner, further promoting cancer cell migration to the bone (103).  The increased 

CXCL12 production can then in turn activate other CXCR4 receptors in the area and 

stimulate local production of IL-6 (104).  In this way, bone metastases can increase the 
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likelihood that other circulating tumor cells will home to bone by increasing the level of 

CXCR4 and CXCL12 activity in the bone marrow (Figure A.3). 

 Once cancer cells colonize to bone, they have to deal with the challenges of cell 

survival and growth in a foreign environment.  It is well known that the bone is a 

reservoir of a complex mixture of growth factors (105) that are released as the bone is 

degraded by metastatic lesions.  The mixture of growth factors include TGFβ, insulin 

like growth factor 1, insulin like growth factor 2, platelet derived growth factor, bone 

morphogenic proteins, fibroblast growth factors, and other factors that when released, 

can significantly improve tumor cell survival and growth (17).  These factors promote 

expression of pro-survival signals in the cancer cells such as B-cell lymphoma 2 (Bcl-2) 

and inhibit apoptotic signals such as caspases.  These factors also support further 

osteoclast differentiation and activity, leading to increased release of more growth 

factors, which stimulate increased cancer cell growth and accelerated bone destruction.  

Thus, a vicious positive feedback loop is established.  The accelerated bone destruction 

can quickly incapacitate a patient and lead to rapid loss of bone integrity causing 

fractures, massive pain, and loss of mobility. 

 

OSM and IL-6 Production by Cancer Cells in the Bone Microenvironment May 

Facilitate Osteolysis 

 OSM and IL-6 produced by cancer cells initiate a variety of downstream 

signaling cascades that can lead to bone destruction.  Although many cancer cell types 

that metastasize to the bone endogenously produce and secrete high levels of cytokines 

such as OSM and IL-6, others stimulate the surrounding stromal cells to release copious 
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amounts of these cytokines.  A  proposed mechanism for cancer cell-induced 

osteoclastogenesis and osteoclast activity is that the cancer cells are able to promote an 

inflammatory response in osteoblasts (106, 107).  The activation of inflammatory 

signals from osteoblasts in response to cancer cell-conditioned medium in vitro has 

been shown to cause an upregulation of PGE2, promoting the production of OSM and 

IL-6, which activates osteoclasts via stimulation of RANKL and PTHrP production (18, 

62, 63).  This effect was seen in breast cancer cells, oral squamous carcinoma cell lines, 

and in neuroblastoma cells (55, 106, 108). 

In a recent study, conditioned media from human breast cancer cells (MDA-

MB-231) induced an inflammatory response in osteoblasts by NF-κB activation within 

the osteoblasts (107).  The amplified activity of NF-κB has been shown to stimulate 

COX2/prostaglandin E2 synthase activity, which can result in PGE2 production (109).  

High levels of PGE2 have also been shown to promote potent, pro-osteoclastic effects 

by stimulating osteoblasts and immune cells to secrete various factors such as RANKL, 

IL-6, and OSM causing a positive feedback loop (68, 110, 111).  However, to date, the 

mechanism involving OSM and cancer metastasis to the bone and subsequent cancer-

mediated osteoclast differentiation and osteolysis is unclear at best. 

 

Mouse Models of Breast Cancer Metastases 

 In order to study metastasis and cancer progression in a living system, animal 

models are frequently used.  The species mus musculus is the most commonly used 

animal for the in vivo studies of cancer and metastatic events.  There are many types of 

mice available for the study of metastatic disease.  Transgenic or knockout mice with 
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defective tumor suppressor genes or overexpressed oncogenes lead to spontaneous 

development of carcinogenesis, which allows study of the initiation of tumorigenesis 

(112).  Alternatively, carcinogens can also be used to study spontaneous carcinogenesis 

or for the development of screening tools for testing potential genotoxic agents in mice 

with defective DNA repair genes (113). 

 To study the progression of cancer using human cancer cell lines in mice, 

athymic or immune deficient mice are needed to prevent immune rejection of the 

xenografted human tumor (114).  Although the study of human cancer in animal models 

may provide the most clinically relevant data for cancer treatment, some data suggests 

that the lack of an immune system in this model may skew the results.  Recent 

publications state the importance of the immune system in the progression of metastatic 

disease, concluding that it may have a dual role in promoting and inhibiting metastases 

(115).  Also, cytokines such as OSM, IL-6, and their downstream signaling molecules 

are heavily involved in the immune cascade which makes the use of immuno-

compromised mice inappropriate. 

 An alternative to using immuno-compromised mice is to establish cancer cell 

lines harvested from spontaneous tumors developed in immuno-competent inbred 

mouse strains.  Cancer cells developed in this manner make the cells immuno-

compatible with the host inbred mouse strain, and are said to be syngeneic (116).  

Syngeneic mouse tumor models have recently been shown to be a valuable 

experimental model for testing immuno-modulating drugs and potential therapeutic 

agents (117, 118).  For these reasons, our laboratory uses syngeneic mouse mammary 

cancer cell lines that were originally derived from a Balb/c inbred mouse. 
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66c14 and 4T1.2 cells are clonal subpopulations derived from a single 

spontaneous mouse mammary tumor in a Balb/c mouse which were selected for specific 

metastatic profiles.  When injected orthotopically into a mouse’s mammary fat pad, 

66c14 cells only metastasize to the lung and lymph nodes, whereas 4T1.2 cells 

metastasize to the lung, liver, brain, and bone (119) (Figure A.4). 

In our in vivo model, we inject these cancer cells orthotopically into the 4th 

mammary fat pad of Balb/c mice.  This type of anatomically correct grafting of foreign 

cells, also called orthotopic transplantation or injection, allows the mammary carcinoma 

cells to grow in their native organ and subsequently grow a tumor.  The tumor cells then 

invade into the surrounding extra cellular matrix, and metastasize into various other 

organs in a manner that mimics a natural progression of the disease in a mammalian 

organism model.  This is distinct from other methods of transplanting cancer cells into 

mice, such as intra-cardiac or tail-vein injections, that bypasses the need to first grow a 

tumor and metastasize.  These routes of cancer cell injection bypass the intravasation 

step of the metastatic cascade and prevent the study of the entire metastatic cascade.  In 

this study, 4T1.2 or 66c14 cells are orthotopically injected to the 4th mammary fat pad 

of Balb/c mice to study the effect of OSM on the entire metastatic cascade. 

 

Summary 

 The work presented in this study can be divided into 3 main goals. i). To 

characterize the effect of exogenous OSM on 4T1.2 and 66c14 cells in vitro and in vivo.  

ii). To generate OSM overexpressing 4T1.2 and 66c14 mouse mammary cancer cell 

lines and characterize the effect of endogenously over-expressed OSM on cancer cells’ 
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behavior both in vitro and in vivo.  iii). To determine some of the mechanisms 

governing the pro-osteoclastic effects observed when OSM is added in conjunction with 

4T1.2 and 66c14 cells to pre-osteoclast cells.  Results gained from this study will help 

elucidate the role of OSM in the metastatic cascade, as well as in breast cancer bone 

metastases.  The results presented here will also lead to further studies on OSM-

mediated effects on the ability of cancer cells to induce osteoclast differentiation.  

Furthermore, the results present a rationale for the development of therapeutics that 

inhibits OSM signaling to reduce cancer metastases and bone destruction. 
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MATERIALS AND METHODS 

 

Cell Lines 

 4T1.2 and 66c14 mouse mammary adenocarcinoma cells were obtained from 

Robin L. Anderson at the Peter Macillin Cancer Institute (Melbourne, Australia).   

RAW264.7 mouse monocytic cell lines and UMR106 rat osteoblastic cell lines were 

obtained from American Type Culture Collection (Rockville, MD).   All tissue culture 

media and supplements were obtained from Hyclone (Logan, UT).  4T1.2 and 66c14 

cells were cultured in alpha MEM media supplemented with 10% fetal bovine serum 

(FBS), 1X sodium pyruvate, and 1X penicillin-streptomycin.  RAW264.7 and UMR106 

cells were maintained in DMEM media supplemented with 10% FBS, 1X sodium 

pyruvate, and 1X penicillin-streptomycin.  All cells were maintained at 37oC, 5% 

carbon dioxide, and 95% humidity.  

 

Inhibitors, siRNA, and Antibodies 

 Recombinant mouse proteins, mCSF, OSM, and RANKL and antibodies against 

VEGF and IL-6 were purchased from R&D systems (Minneapolis, MN).  A biotinylated 

mOSM antibody was also purchased from R&D systems.  A chemical inhibitor to 

HIF1ɑ, 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (YC-1), and a chemical 

inhibitor to COX-2, (N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide 
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(NS398) were purchased from Cayman chemicals (Ann Arbor, MI).  HIF1ɑ siRNA and 

COX-2 siRNA were purchased from Applied Biosystems (Carlsbad, CA).  Control non-

targeting siRNA was purchased from Dharmacon Thermo Scientific (Lafayette, CO).  

Rabbit polyclonal antibodies against mouse HIF1ɑ, COX-2, and RANKL were 

purchased from Novus Biologicals (Littleton, CO).  Goat polyclonal antibody against 

mouse parathyroid hormone related protein (PTHrP) was purchased from Santa Cruz 

Biotech (Santa Cruz, CA). 

 

Enzyme Linked Immunosorbent Assay 

 To measure secreted OSM in conditioned media, a standard direct ELISA was 

developed.  Conditioned media from mouse mammary cancer cells was incubated 

overnight in 96-well ELISA plates (Thermo Fisher Milford, MA).  Plates were washed 

with PBS containing 0.05% Tween-20 (PBS-T) and blocked using PBS containing 1% 

IgG-free BSA (Jackson Immunological West Grove, PA).  mOSM biotinylated antibody 

was used as the detection antibody (1µg/ml  diluted in PBS) and 100 µl was added per 

well and incubated overnight.  Plates were washed again with PBS-T and incubated 

with streptavidin-horse radish peroxidase (HRP) at 1:200 dilution (R&D systems).  

After a final wash, 100 µl of 1-Step Ultra TMB-ELISA substrate (Thermo Pierce 

Rockford, IL) per well was added and incubated for 30 minutes.  The reaction was 

stopped using 2N sulfuric acid (50ng/ml), and read and corrected at 450nm and 570nm, 

respectively.  

 In order to measure mouse VEGF, mCSF, RANKL, IL-6, OPG, TGFβ, and 

TNFɑ in conditioned media, DuoSet ELISA kits for each of the factors were purchased 
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from R&D systems and used according to manufacturer instructions.  The ELISA plates, 

color substrates, wash buffers, and BSA from above were also used with this kit. 

 

Reverse-Transcriptase PCR analysis 

 In order to quantify differences in the level of OSMR expression between cell 

lines, a RT-PCR was carried out.  4T1.2 and 66c14 cells were grown to 70% confluency 

and RNA was extracted using the RNA-STAT 60 (Tel-test) reagent purchased from 

Tel-test (Friendswood, Tx).  RNA-STAT 60 reagent was used (1ml/5x105 cells) and 

allowed to solubilize the cells for 20 minutes.  Chloroform (200 µl/1ml of RNA-STAT 

60) was added followed by vortexing for 10 seconds, and centrifugation at 12,000rpm.  

The upper aqueous layer was transferred to a new tube containing isopropanol 

(0.5ml/1ml of RNA STAT60) used, followed by vortexing for 10 seconds and 

incubation on ice for 15 minutes.  The mixture was centrifuged at 12,000rpm and the 

supernatant discarded.  The pellet was washed by adding 1ml of 75% ethanol, mixed 

and centrifuged at 12,000rpm and the supernatant discarded.  This wash step was 

repeated two additional times.  The RNA was allowed to air-dry in a sterile 

environment and resuspended with 0.1% TE buffer.  

  cDNA was generated from this RNA using the reverse transcriptase kit 

(Ambion) with the two-step RT reaction protocol.  The cDNA generated from the RT 

reaction was used in a PCR reaction at (25 µl) containing 2.5 µl of 10x PCR buffer, 

2.5mM DNTP's, 10mM primers, 5U goTaq polymerase, (Promega, Madison, WI) and 2 

µl cDNA.  The following primers for mOSMR were used:  

Fwd primer: TAGACTGAACATATCCAACACCA  
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Rev primer: TCCATGGATTGGCTCATCTGGCA  

Amplifications were carried out as follows: initial denaturation at 94°C for 2 minutes, 

followed by 30 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1 min, then a final 

extension of 72°C for 10 minutes.  The PCR products were electrophoresed on a 1% 

Tris-Agarose gel containing 0.5 µg/ml of ethidium bromide at 100 volts for 45 minutes.  

The gels were imaged using a Kodak Image station and exposed for 40 seconds.  Band 

densities were calculated using the ImageJ software (NIH), and data was presented as a 

percentage difference in OSMR expression.   

 

Cell Detachment and Proliferation 

 4T1.2 or 66c14 cells were seeded in 24-well plates (1x103) with 1ml of complete 

media, and treated with +/- 25 ng/ml of OSM.  Detached cells were collected from the 

supernatant and were counted after 48 hours of OSM treatment.  Cell viability was 

assessed with trypan blue stain (Hyclone) viable, unstained cells were counted on a 

hemocytometer.  To assess proliferation, attached cells were trypsinized using 0.25% 

trypsin, and counted every 2 days, 8 days total, using a hemocytometer.  (The average 

of 3-4 squares counted were multiplied by 104.) 

 

Western Blot 

 4T1.2 and 66c14 cells were grown to 50% confluency for HIF1α Western blots 

and 75% confluency for COX-2, RANKL or PTHrP Western blots.  The cells were 

treated with 25 ng/ml of OSM in serum free media.  The cells were then lysed using an 

RIPA buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium 
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deoxycholate, 0.1% SDS) containing 10 µl/ml of protease inhibitor cocktail (SIGMA, p-

8340), and electrophoresed on a 7.5% bis-acrylamide gel.  The proteins were transferred 

to a nitrocellulose membrane using a Bio-Rad (Hercules, CA) Mini-Gel Transblot 

apparatus.   

 The membrane was blocked overnight in 5% non-fat dry milk (NFDM) in TBS 

with 0.05% Tween-20 (TBS-T).  The primary antibodies against HIF1α, COX-2, 

RANKL, and PTHrP were added at 1:1000 dilution in TBS-T+5% NFDM, applied to 

the membrane at room temperature for 1 hour under gentle agitation and washed for 3 x 

10 minutes in TBS-T.  The secondary antibody, anti-rabbit-HRP or anti-goat-HRP 

(Jackson Immunologicals, West Grove, PA) was used at 1:5000 concentration in TBS-

T+5% NFDM and incubated for 45 minutes under gentile agitation and washed for 5 x 

10 minutes in TBS-T.  Enhanced chemiluminescence reagents were applied for 1 

minute (Thermo Pierce) and the membranes exposed to an X-ray film (Thermo Pierce) 

for 1-15 minutes.  Band thickness and pixel density were calculated using the Image J 

software, and data shown as a percentage difference in protein levels. 

 

Animals and Tumor Cell Injections 

 Six-week-old female BALB/c mice were obtained from the National Cancer 

Institute’s Animal Production Area, Frederick, MD.  Each mouse was anesthetized by 

i.p. injection of 6.25 mg/kg of sodium pentobarbital, or inhalation of 2.5% isoflurane.  

1x105 4T1.2 or 66c14 cancer cells, or various stably transfected cell lines were injected 

orthotopically into the 4th mammary fat pad of Balb/c inbred mice.  For groups that 

received rmOSM injections, OSM was injected into the mice intraperitoneally (IP) after 
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tumors became palpable (50ng/g twice a week), while control mice received PBS 

injections.  All animal studies were conducted in accordance with the protocol approved 

by the Institutional Animal Care and Use Committee (IACUC) at the VA Medical 

Center (Boise, ID).  

 Starting at 2 weeks post injection, tumor length and width were measured with 

mechanical calipers, 3 times a week and tumor volume extrapolated using the following 

equation (tumor volume = (length x width^2) /2).  Survival endpoint was defined by the 

IACUC as tumor size greater than 20mm in diameter, 10% or more weight loss, or 

appearance of cachexia.    

 

Animal Sacrifice and Post-Sacrifice Analysis 

 Mice were sacrificed via CO2 asphyxiation, followed by cervical dislocation.  

The brain, lung, spleen, liver, and kidneys were collected and preserved in 10% 

formalin.  The femur, tibia, hip and spine were collected and preserved in 10% formalin.  

Any metastases to the organs were noted, and the numbers of metastases on the lungs 

were counted using a 40X dissecting scope.  Digital X-ray radiographs of the bone were 

taken with the X-ray operating at 60kVp and 50mV.  The femur, tibia, and spine were 

separated and embedded into paraffin using the following procedures.  Bones were 

soaked in 10% ethylenediaminetetraacetic acid (EDTA) for 2 weeks to decalcify the 

bones. Bones were then placed in increasing concentrations of ethanol diluted in ddH2O 

from 15%, 30%, 50%, 70%, 80%, 90% 95%, to 100%, with at least 2 hours incubation 

in between.  Then bones were placed in a solution of 50% ethanol and 50% tert-butanol 

for 2 hours, followed by 100% tert-butanol for another 2 hours.  Finally, bones were 
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placed in a mixture of 50% tert-butanol and 50% liquid paraffin for 2 hours, and then 

the bones were left in 100% paraffin overnight at 55oC.  The paraffin embedded bones 

were placed in molds and allowed to harden.  Paraffinized bones were sectioned to 4 

micron thickness and stained with hematoxylin and eosin (H&E).  The sections were 

also stained with a tartrate resistant acid phosphate (TRAP) stain kit using the slide 

staining protocol as per manufacturer’s instructions (Sigma St. Louis, MO).  The bone 

sectioning and staining were done by Bengt Phung (College of Idaho Caldwell, ID).  

The H&E stained bone sections were sent to a veterinary pathologist, Dr. Kathleen 

Potter (Washington State University, Pullman, WA) for analysis. 

 

Plasmid Construct Design 

 For the creation of a mOSM overexpressing plasmid, a 888 bp full-length mouse 

OSM cDNA fragment was generated by RT-PCR of mouse thymus RNA and cloned 

into pcDNA3.1+ (Invitrogen, Carlsbad, CA) plasmid with EcoRI ends yielding a 904 bp 

insert (Figure A,12).  The work for creating the full-length mouse OSM cDNA 

fragment was done by Lynda Zhang (Boise State University, Boise, ID), and the cDNA 

was inserted to pcDNA3.1+ plasmid by Dr. Sujatha Kadaba (Boise State University, 

Boise, ID).  The plasmids were sequenced by Idaho State University (Pocatello, Idaho).  

All plasmids were purified using the Pureyeild Maxiprep kit (Promega Madison, WI) 

before use for transfections. 
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Transfections 

 Stable transfection of cells was performed using the Lipofectamine LTX +PLUS 

transfection reagent kit (Invitrogen).  Cells were grown to 60-70% confluency on a 6-

well plate.  One µg of pcDNA3.1+mOSM, or pcDNA3.1 empty vector was mixed with 

6 µl of Lipofectamine LTX, 2 µl of PLUS reagent, and 100 µl of serum-free alpha-

MEM media.  These mixtures were incubated for 30 minutes at room temperature and 

added to each wells on a 6-well plate.  The cells were transfected for 72 hours, 

trypsinized, serially diluted in G418 selection media and added to 96-well plates.  For 

66c14 cell transfections, 650 µg/ml of G418 in complete alpha-MEM was used to select 

the transfected cells.  For 4T1.2 cell transfections, 450 µg/ml of G418 in complete 

alpha-MEM was used to select the transfected cells.  Single colonies were grown in 96-

well plates for 2 weeks in selection media, and the conditioned media was collected 

tested for OSM expression by ELISA.  OSM overexpressing 4T1.2 cells were 

designated 4T1.2^OSM, and OSM overexpressing 66c14 cells were designated 

66c14^OSM. 

 For transient knockdown of factors using siRNA, cells were plated into 6-well 

or 24-well plates at 50% confluency.  HIF1ɑ siRNA, COX-2 siRNA or control siRNA 

were used at a final concentration of 25 nM and the cells were transfected with 

Hiperfect Transfection reagent (Qiagen Valencia, CA).  For siRNA treatment in a 24-

well plate format, each well received 100 µl of serum free media containing 3 µl 

Hiperfect Transfection reagent and 25 picomoles of siRNA (5 µl of stock siRNA at 5 

µM).  The mixture was incubated at room temperature for 10 minutes, and 100 µl of the 

mixture was added to each well containing cells with 1ml of complete media.  The cells 
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were allowed to incubate in the transfection media for 18-48 hours at 37oC, 5% CO2, 

and 95% humidity before experimentation.  For short term experiments, transfections 

lasted overnight (about 18 hours), and for long-term experiments (6 days or longer), 

transfections lasted 48 hours. 

 

Co-Cultures for Generation of Conditioned Media 

 In order to study changes in mRNA expression, protein expression, and function, 

single cultures and co-cultures of various cells were treated, followed by collection of 

conditioned media for analysis and additional assays.  At harvest, cells were no more 

than 85% confluent.  4T1.2, 66c14, RAW264.7 and UMR106 cells were treated with +/- 

OSM, +/- HIF1ɑ siRNA, +/-COX-2 siRNA and +/- YC-1 48-72 hours and their 

conditioned media and cell lysates were collected after analysis and subsequent assays.  

Additionally co-cultures of RAW264.7+4T1.2 or +66c14 cells and UMR106+4T1.2 or 

+66c14 were also treated as described above and the conditioned media and cell lysates 

were also collected.  The conditioned media was then used for either osteoclastogenesis 

assays, bone resorption assays or the expressions of various factors were tested by 

ELISA.  Cell lysates were either further processed for RNA extraction for RT-PCR, or 

used for Western blots. 

 

Bone Marrow Cell Extraction 

 4-10 week old female Balb/c were sacrificed via cervical dislocation.  The hind 

legs were removed, using sterile technique, and the muscles and tendons were carefully 

cleaned off from the femur and the tibia.  The ends of the bones were cut off to expose 
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the bone marrow, and using a 23-guage needle and syringe filled with α-MEM 

containing 10% FBS, the marrow was flushed out from the bones and pushed though a 

40 µm cell strainer.  The cell mixture was then centrifuged at 90G to pellet the cells, and 

the supernatant was removed.  Red blood cells were then lysed and removed using a 4 

minute incubation in a ammonium chloride lysis buffer (144mM NH4Cl, 17mM Tris-

HCL pH7.4 ).  After the 4 minute incubation, the lysis buffer was diluted with serum 

free DMEM or α-MEM media to increase the total volume by 4-fold.  The cell mixture 

was centrifuged, the supernatant removed, and the cells were resuspended in α-MEM, 

plus 15% FBS.  The cells were subsequently incubated at 37oC, 95% humidity, and 5% 

CO2 for 48 hours.  The adherent cells were discarded.  The non-adherent cells were 

collected from the supernatant and used in subsequent osteoclastogenesis and bone 

resorption assays. 

  

Osteoclastogenesis Assay 

 1 x 104 RAW264.7, or 1 x 105 bone marrow cells were added to each well in 

duplicate into a 24-well plate.  In addition, 1 x 103 4T1.2 or 66c14 cells were added as 

well as +/- 25 ng/ml rmOSM, +/- 10 ng/ml rmRANKL, and 5 ng/ml of mCSF.  

Additionally, +/-HIF1α siRNA, +/-COX-2 siRNA, +/- antiVEGF antibody, +/- anti IL-6 

antibodies and +/-YC-1 were also added to the osteoclastogenesis co-cultures.  

Alternatively, conditioned media from 4T1.2 and 66c14 cells co-cultured with UMR106 

cells treated with +/-OSM, +/- HIF1α siRNA, +/- antiVEGF antibody, and +/- anti IL-6 

antibodies were collected from cells and added to the wells containing bone marrow 

cells or RAW264.7 cells.  The co-cultures were maintained for 7-10 days with out any 



27 

 

changes in the media and osteoclasts were stained using the tartrate resistant acid 

phosphate stain kit (Sigma St. Louis, MO).  The cells were fixed using 300 µl /well of a 

TRAP compatible fixing solution (65% acetone, 25% citrate buffer, and 10% of 37% 

formaldehyde) for 10 minutes.   

In order to formulate the TRAP staining solution compatible for tissue culture 

staining, reagents were added in the following order to make enough solution for a 

single 24-well plate.  135 µl of fast garnet GBC base solution was mixed with 135 µl of 

sodium nitrite solution and incubated for 2 minutes at room temperature.  The mixed 

solution was added to 12ml of ddH2O.  Then 135 µl of naphthol AS-BI phosphoric acid 

solution was added to the H2O solution.  Finally, 500 µl of acetate solution was added, 

followed by 270 µl of tartrate solution.  After rinsing the fixing solution out of the wells 

with ddH2O three times, 450 µl of the stain solution was added to each well and 

incubated at 37oC for 20 minutes. TRAP positive cells that were stained purple were 

counted and quantified per well.   

 

Bone Resorption Assay (Mouse Calvaria) 

4-10 week old female Balb/c mice were sacrificed via cervical dislocation.  The 

calvaria from the mice were removed and the outer membrane on the skull was scraped 

off.  The calvaria were halved and each piece was placed in one well of a 24-well plate.  

The calvaria were immersed in α-MEM with 10% FBS containing 1x 105 non-adherent 

bone marrow cells with 5 ng/ml of mCSF.  These cells were co-cultured with or without 

1000 4T1.2 or 66c14 cells, +/- 25ng/ml rmOSM, and +/- 10ng/ml RANKL.  The co-

cultures were incubated for 10 days.  To analyze, the supernatants were diluted serially 
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3 times with ddH2O and assayed for released calcium levels using the calcium arsenazo 

III assay (Thermo scientific 51036).  Calcium arsenazo reagent (200 µl) was added to 

each well of a 96-well plate along with 2 µl of the samples and 2 µl of the calcium 

standards, added in duplicate.  The samples were then mixed and incubated for 1 minute 

and the absorbance was read at 650nm using a plate reader.  Calcium levels present in 

α-MEM were subtracted in the final result.  

 

Bone Resorption Assay (Osteologic Plates) 

One thousand RAW264.7 cells with 5 ng/ml of mCSF suspended in 150 µl of α-

MEM were placed in each well of a 16-well osteologic multi-test plate (354608, BD 

scientific, Franklin Lakes, NJ).  One hundred and fifty microliters of conditioned media 

previously collected from co-cultured 4T1.2 and 66c14 cells with UMR106 cells treated 

with +/- 25ng/ml rmOSM, +/- NS398 were also added to the appropriate wells in the 

multi-test plate and were incubated at 37C, 5% CO2, 95% humidity.  Every 2-3 days for 

10 days the media was replaced as needed with 150 µl fresh media with 5 ng/ml m-CSF, 

and 150 µl conditioned media.  The wells were removed from the slides and were 

immersed in 5% bleach (0.3% sodium hypochlorite) to remove the cells.  The multi-test 

plates were then washed thoroughly with ddH2O.  The plates were stained via the Von 

Kossa silver stain.  The multi-test plates were immersed in 5% Silver Nitrate for up to 6 

hours, or until the color was dark brown. The test plates were washed thoroughly with 

ddH2O, the deposited silver was then fixed with 2% sodium thiosulfate, and the test 

plates were washed again with ddH2O.  The plates were allowed to dry and high 
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resolution images were taken by photo-microscopy.  Pits were then analyzed using the 

Image J software, and area absorption was recorded. 

 

Statistical Analysis 

Data is displayed as means +/- standard error of the mean (SEM).  Analyses of 

the data were performed using Student’s t-test or analysis of variance where appropriate.  

Survival data was analyzed using the Log-Rank test.  Contingency table analysis was 

done using the Fisher’s exact test due to the relatively small sample size.  Significance 

was assumed when p<0.05. 
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RESULTS 

 

Basal OSM and OSMR Expression Levels Are Higher in 4T1.2 Cells Than in 

66c14 Cells 

 In order to characterize the basal levels of OSM and OSMR signaling, we 

analyzed the differences in OSM and OSMR expression levels between the 66c14 and 

4T1.2 cell lines.  To measure OSM expression, conditioned media was collected from 

66c14 and 4T1.2 cells after 72 hours in a culture and analyzed for secreted levels of 

mouse OSM by ELISA.  66c14 cells secreted a total of 38 pg/ml of OSM over a 72 hour 

period, while 4T1.2 cells secreted a total of 105 pg/ml (Figure A.5A).  The basal 

expression levels of OSM between the cell lines differ with the more metastatic 4T1.2 

cells secreting almost 3-fold higher levels of OSM. 

 To determine basal levels of OSMR, we extracted mRNA from both cell lines, 

made cDNA, performed RT-PCR, and analyzed the products by electrophoresis.  The 

OSMR band was much brighter for 4T1.2 cells than the 66c14 cells, and Image J was 

used to calculate the band intensity.  There was a similar trend to what was seen with 

OSM levels, as 4T1.2 cells expressed 2.5-fold more OSMR than 66c14 cells (Figure 

A.5C).  Overall, these results show that the more metastatic 4T1.2 cells have higher 

OSM and OSMR expression levels.  This suggests possible increased autocrine OSM 
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signaling with 4T1.2 cells.  These differences in OSM signaling may contribute to the 

different metastatic characteristics exhibited by the two cell lines. 

 

OSM Inhibited Proliferation of Both 66c14 and 4T1.2 Cells, but Induced 

Detachment of Only 4T1.2 Cells 

 66c14 and 4T1.2 cells have different metastatic profiles (119), and we surmised 

this may be due, in part, to their differences in OSM and OSMR expression levels.  

Addition of recombinant OSM was tested to assess its ability to induce changes in 

certain metastatic characteristics such as tumor cell proliferation and detachment.  To 

study the proliferation profile of these cells when they were treated with OSM, 25 ng/ml 

of OSM was added to the number of cell cultures and the cells were counted every other 

day for 7 days.  OSM inhibited proliferation of both cell lines by about 20% and no 

significant differences in proliferation rate were detected between the cell lines (Figure 

A.6 A&B). 

 To study the ability of OSM to cause tumor cell detachment in the cell lines, 

OSM (25ng/ml) was added to sub-confluent cell culture flasks for 24 hours.  4T1.2 cells 

treated with OSM resulted in 2.5-fold more detached cells compared to untreated cells 

(Figure A.6D).  In contrast, OSM did not seem to affect 66c14 cell detachment (Figure 

A.6C).  In the population of detached 4T1.2 cells, less than 1% of the total cells counted 

were dead, as assess by trypan blue staining, (data not shown) indicating that OSM did 

not affect cell viability.  Overall, this data suggest that while OSM inhibits proliferation, 

it increases the propensity of the more aggressive 4T1.2 cells to detach. 

 



32 

 

OSM Induced the Expression of HIF1� in Both 4T1.2 and 66c14 Cell Lines  

but Induced VEGF Expression Only in 4T1.2 Cells 

 VEGF and HIF1ɑ are markers that implicate the induction of angiogenesis, 

increased pro-survival mechanisms, and the promotion of metastasis (120, 121).  To 

determine ability of OSM to upregulate VEGF expression, sub-confluent cultures of 

either 66c14 or 4T1.2 cells were treated with OSM (25 ng/ml) for 72 hours.  The 

supernatant was collected and the concentration of VEGF was determined via ELISA.  

Approximately 2,400 pg/ml of VEGF were secreted in 72 hours by 66c14 cells, 

regardless of OSM treatment (Figure A.7A).  4T1.2 cells, on the other hand, secreted 

very low levels of VEGF (50 pg/ml), and the addition of OSM increased VEGF 

secretion by about 16-fold (Figure A.7B).  The significant difference between 66c14 

and 4T1.2 VEGF secretion profiles suggests that 66c14 cells have high constitutive 

expression of VEGF, while 4T1.2 cells respond to OSM by upregulating VEGF. 

 To assess the ability of OSM to induce HIF1ɑ expression, we treated 4T1.2 and 

66c14 cells with OSM (25ng/ml) at 50% confluency for 4 hours following an overnight 

serum-free starvation. Cell lysates were collected for Western blot analysis to determine 

HIF1ɑ expression in the cells.  Both 66c14 and 4T1.2 cells showed OSM induced 

HIF1ɑ expression by over 10-fold (Figure A.7C), while in 4T1.2 cells, HIF1ɑ 

increased by 2.5-fold (Figure A.7D).  These differences in fold changes may be due to 

66c14’s very low basal expression of HIF1ɑ, as the total OSM-stimulated HIF1ɑ 

levels appeared to be similar to each other by Western blot analysis (Figure A.7E).  

Taken together, OSM increased VEGF expression in 4T1.2 but not 66c14 cells and 

induced HIF1ɑ expression in both cell lines.  These results suggest that OSM may 
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increase VEGF- and HIF1ɑ-promoted tumor-mediated angiogenesis and metastases in 

vivo in response to OSM. 

 

OSM Induced COX-2 Expression in Both 4T1.2 and 66c14 Cell Lines 

 COX-2 expression has been linked to metastases, and its product, prostaglandin 

E2, is a potent pro-inflammatory factor, capable of causing inflammation-mediated 

angiogenesis (12).  The effect of OSM on COX-2 expression was evaluated on 4T1.2 

and 66c14 cells.  Cell cultures were treated with OSM (25ng/ml) for 0-24 hours.  Cells 

lysates were collected at different time points and assessed by Western blot analysis to 

determine COX-2 expression levels.  OSM induced a 3.5-fold increase in COX-2 

expression in 66c14 cells, which peaked at 12 hours and dropped slightly at 24 hours 

(Figure A.8A).  On the other hand in 4T1.2 cells, OSM-induced COX-2 expression 

peaked earlier at 6 hours with a 3-fold induction, and expression of COX-2 remained 

steady through 24 hours (Figure A.8B).  The more metastatic 4T1.2 cells responded 

earlier to OSM by producing COX-2 earlier, which may suggest the induction of pro-

inflammatory effects via the COX-2 product, PGE2.    

 

Recombinant OSM, Injected Intraperitoneally, Increased Metastasis in an in vivo 

4T1.2 Model of Mammary Cancer 

 4T1.2 cells clearly demonstrated an increased response to OSM compared to 

66c14 cells as shown by increased detachment, VEGF secretion, and a faster time to 

peak expression of COX-2.  Thus, to test the effect of OSM on cancer cell growth and 

metastases in vivo, the more OSM-sensitive 4T1.2 cells were studied in a murine model 
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of mammary carcinoma. Considering the in vitro results, it was expected that mice 

treated with recombinant OSM would result in increased metastases and reduced tumor 

growth.  

 4T1.2 cells (1x105) were injected orthotopically into the 4th mammary fat-pad of 

five 4-week old female Balb/c mice.  As soon as the tumor was palpable, rmOSM was 

injected twice a week interperitoneally (I.P.) at 50 ng/g, which correlates to 1 µg of 

OSM for a 20 gram mouse.  OSM did not significantly alter tumor growth in vivo 

compared to PBS injected control mice (Figure A.9A).  The tumors were allowed to 

grow for 38 days and the mice sacrificed.  OSM also did not alter the primary tumor 

burden at 38 days, as both groups had tumors that were 18% of body weight (Figure 

A.9B).  However, OSM did increase the number of metastatic lesions seen in the lung 

by about 2-fold (Figure A.9C).  In addition, the ratio of mice with metastases to the 

spleen and liver was higher in OSM-treated mice (Figure A.9D), Eighty percent of mice 

that received OSM injections but only 30% of control mice had metastases to the spleen.  

Additionally, 90% of mice that received OSM injections had metastases to the liver, 

while only 40% of control did.  

 When the sizes of metastases to the lung were analyzed, the mice that had OSM 

injections generally had smaller metastases than the control mice (Figure A.10 A&B).  

Mice that received OSM treatment had 2.5-times more “small metastases” (<0.5 mm) 

compared to control mice.  On the other hand, mice that received OSM injections had 2-

fold less “large metastases” (>0.5mm) compared to controls.  Some mice also 

developed ulcerating tumors, and the mice that had ulcers on their tumor had almost 

double the number of lung metastases compared to mice that did not have ulcers (Figure 
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A.10C).  There was no significant correlation between tumor ulceration rates and OSM 

treatment (data not shown). 

 To analyze bone metastases, X-ray radiographs and H&E histological stains 

were performed.  Typical bone metastases appear as shadows in X-ray radiographs 

(Figure A.11B left) and in H&E stain as a tight cluster of cells with little space between 

the cells in H&E stains (Figure A.11B right).  The H&E stained sections were analyzed 

by a veterinary pathologist, Dr. Kathleen Potter (Washington State University, Pullman, 

WA), for detection of metastases to the bone.   Overall, the number of mice that had 

metastases to the bone was higher in mice that received OSM injections but this data 

was not statistically significant (Figure A.11A).  A trend was also observed upon TRAP 

staining where the intensity of the TRAP stain was stronger in the bones of mice that 

received OSM injections.   This may indicate increased osteoclast number and activity 

in OSM treated mice, however due to the sample size being too low, this was not 

statistically significant (Figure A.11C).  Overall, injection of recombinant OSM had no 

effect on tumor growth or tumor burden while metastases increased.  OSM may also 

have increased the number of active osteoclasts present in the bone, which would allow 

for the increased bone resorption needed for the osteolytic lesions seen in this model 

(30). 

 

4T1.2 and 66c14 Cells Overexpressing mOSM Exhibited Similar in vitro 

Characteristics as Cells Treated with rMOSM 

 As the first step in characterizing the effects of endogenously produced OSM, 

we generated OSM overexpressing 4T1.2 and 66c14 cells.  A 888bp mOSM cDNA was 
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generated by reverse transcriptase-PCR using RNA isolated from mouse thymus.  The 

mOSM cDNA was inserted into the pcDNA-3.1 expression vector and the resultant 

plasmid and was used for transfections (Figure A.12). 

 To determine the amount of mOSM secreted by the stably transfected cells, the 

cells were grown in serum-free media for 48 hours and their conditioned media was 

analyzed by ELISA.  In general, cells transfected with the mOSM-overexpressing 

construct displayed increased OSM secretion.  In 66c14 cells, the highest producing 

colony was colony 61, which was later renamed 66c14^OSM.  Colony 61 produced 

100-fold more mOSM at (5 ng/ml after 48 hours) compared to untransfected cells and 

50-fold more OSM compared to control cells transfected with the vector alone (Figure 

A.13A).  With 4T1.2 cells, the maximal amount of mOSM expression achieved was 600 

pg/ml by colony 51. This colony was chosen because it had a lower standard error in the 

ELISA data (Figure A.13B). 

 To test the functionality of the mOSM produced by the transfected 66c14 and 

4T1.2 cells, OSM-induced tumor cell detachment and VEGF secretion was assessed.  

These experiments also allowed comparison between endogenous and exogenous OSM 

signaling.  66c14 colony 61 displayed 4-fold more detached cells compared to vector 

control and 4.5-fold more detached cells compared to untransfected 66c14 cells (Figure 

A.14A).  The 4T1.2, colony 51 showed a 65-fold increase in detached cells as compared 

to vector control and untransfected cells (Figure A.14B). 

 Secreted VEGF levels, as measured by ELISA, were not altered in 66c14 colony 

61 cells, as compared to controls.  This is probably due to the fact that these cells have a 

very high basal expression of VEGF and the production pathway is likely saturated 
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leaving little room for extra OSM would to have any effect (Figure A.14C).  On the 

other hand, 4T1.2 colony 51 cells produced a high level of secreted VEGF, which was 

9-fold higher compared to vector control or untransfected cells (Figure A.14D).  Overall, 

these results suggest that the in vitro effects between endogenously produced OSM and 

exogenously added recombinant OSM are similar. 

 

66c14^OSM Cells Have Increased Tumor Growth Rate and Reduced Metastasis 

 in vivo. 

 It has been previously shown in vivo that 66c14 cells are generally not a very 

aggressive cell line and their metastatic capacity is low compared to 4T1.2 cells (119).  

Previous in vivo experiments using 66c14 cells in a mouse model of mammary cancer 

revealed that I.P. injection of recombinant OSM did not effect tumor growth or 

metastases (data not shown).  For that reason, we expected that OSM-overexpressing 

66c14 cells will also behave similarly in vivo to the previous experiments and have 

similar tumor growth rates and metastases as mice with 66c14+vector tumors. 

To study the effect of OSM-overexpressing 66c14 cells in vivo, 1x105 

66c14^OSM or 66c14+Vector cells were injected into the 4th mammary fat pad of 

eleven 4-week old Balb/c female mice.  66c14^OSM tumors grew significantly faster 

than the 66c14+Vector tumors and reached nearly 6000 mm3 in tumor volume by the 

end of the experiment (Figure A.15).  Total tumor burden was also 300% higher in 

66c14^OSM tumor bearing mice compared to 66c14+vector tumor bearing mice 

(Figure A.16A).  However, when comparing the total number of lung metastases, 

66c14^OSM tumors surprisingly produced only 1-2 metastases per lung while the 
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66c14+Vector tumors produced over 10 metastases per lung on average (Figure A.16B).   

On the other hand, when total metastatic lesion volume was compared, 66c14^OSM 

mice had a 6-fold higher lung metastatic lesion volume compared to the 66c14+vector 

mice (Figure A.16C). 

This discrepancy appeared to be due to a significant difference in the size of 

lung metastases.  66c14+vector mice had lung metastases that were on average smaller 

than 1 mm in diameter, while 66c14^OSM mice had lung metastases that were on 

average 2.25 mm in diameter (Figure A.16D).   These differences in tumor diameter 

translate to a 6-fold increase in volume.  In 66c14 tumor bearing mice, the results 

indicate that endogenously or locally produced OSM decreases metastatic events and 

increases proliferation dramatically causing both the tumor and the metastases to grow 

rapidly. 

 

4T1.2^OSM Cells Failed to Produce Thriving Tumors and Had Minimal 

Metastases in the Lung 

 To study the effect of OSM overexpressing 4T1.2 cells in vivo, and to test the 

effect of endogenously/locally produced OSM, 1x105 4T1.2^OSM or 4T1.2+Vector 

cells were injected into the 4th mammary fat pad of 10 4-week old female Balb/c mice.  

4T1.2^OSM tumors grew at the same rate as the 4T1.2+Vector tumors until day 16, at 

which point, 4T1.2^OSM tumors shrank in size to undetectable levels while 

4T1.2+Vector tumors continued to grow (Figure A.17A).    Mice with 4T1.2^OSM 

tumors had significantly lower tumor burden at less than 1% of bodyweight compared 

to 22% of bodyweight for 4T1.2+Vector tumor bearing mice (Figure A.17B).  Similarly, 
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4T1.2^OSM tumor bearing mice had no lung metastases where as 4T1.2+Vector tumor 

bearing mice averaged 10 metastatic lesions per mice (Figure A.17C). 

 In order to assess mouse survival, an endpoint criterion was defined as tumors 

reaching 20 mm in diameter, 10% loss of bodyweight, or apparent cachexia.  Figure 

A.18A shows some of the physical manifestations of the endpoint with large 20mm 

tumors on the left and cachexia which may indicate presence of excessive metastases 

(Figure A.18A, right panel).  4T1.2^OSM tumor bearing mice survived much longer, 

with 90%  of mice still alive at day 72 and showing no sign of metastatic disease.  In 

contrast, 4T1.2+vector tumor bearing mice had a much reduced survival rate with 100% 

of the mice meeting the endpoint criteria by day 57 (Figure A.18B).  Overall, these 

results are significantly different from previous in vivo experiments using exogenously 

injected recombinant OSM in 4T1.2 tumor bearing mice where OSM increased 

metastases. This suggests that significant differences in signaling may exist between 

exogenous and endogenous or local production of OSM.  Specifically, the timing and 

amount of OSM in the tumor and metastatic microenviroment may be important for 

tumor proliferation and metastasis.   

 

OSM Synergistically Induced Osteoclastogenesis with 66c14 Cells in the Presence 

of Non-Adherent Bone Marrow Cells 

Previous studies indicated that OSM plays a major role in bone inflammation, 

osteoclastic bone resorption, and loss of bone structural integrity (30, 122).  Further 

more, in our in vivo experiment, there was some indication that OSM injections 

increased TRAP+ staining in the bone, suggesting increased osteoclast number and 
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activity (Figure A.11C).   To investigate the role of OSM and osteoclast differentiation, 

we co-cultured non-adherent bone marrow (BM) cells containing osteoclast progenitors 

with 4T1.2 or 66c14 cells in the presence or absence of OSM.  RANKL (10ng/ml) was 

also added to the co-culture to increase the baseline osteoclastogenesis rate (Figure 

A.19).  Both 66c14 and 4T1.2 cells express the OSMR as show in figure A.5B&C, but 

in previously published work, pre-osteoclast cells from the bone marrow do not express 

OSMR (123).   

When 66c14 murine mammary cancer cells were co-cultured with non-adherent 

bone marrow (BM) cells in the presence of OSM, the number of TRAP-positive 

(TRAP+) cells were 2-fold higher (Figure A.20A) compared to 4T1.2 cell co-cultures 

(Figure A.20B) or BM cells alone (Figure A.20C).  The addition of RANKL with OSM 

induced a large increase in the number of TRAP+ cells in the 66c14 + BM co-cultures 

(Figure A.20A), and the levels of TRAP+ cells were 4-fold higher compared to the 

4T1.2 co-culture or BM alone with OSM and RANKL.  In the co-cultures containing 

4T1.2 cells, the change in the level of osteoclast differentiation compared to BM alone 

was not significant (Figure A.20B&C). 

Figure A.21 depicts representative images of osteoclastogenesis and the largest 

osteoclasts were seen in the 66c14 +OSM co-cultures with BM with RANKL.  These 

results indicate that while OSM and 66c14 cells increase osteoclastogenesis 

dramatically, OSM and 4T1.2 cells need osteoblasts to increase osteoclastogenesis.  

This result is paradoxical as the more metastatic 4T1.2 cells do not induce 

osteoclastogenesis, while the 66c14 cells which do not metastasize to the bone, increase 

osteoclastogenesis. This suggests that 4T1.2 cell-mediated osteoclastogenesis may not 



41 

 

be working through BM cells or they need to signal through other cells in the culture to 

support osteoclast differentiation. 

 

OSM Overexpressing 66c14 Cells Increased Osteoclast Differentiation in Bone 

Marrow Cells 

 To determine if endogenously produced OSM in 66c14^OSM and 4T1.2^OSM 

cells increases osteoclast differentiation in the same manner as exogenously added 

OSM, the transfected cells were used in the same osteoclast differentiation experiment 

as described above.  66c14^OSM cells produced 8-fold more TRAP+ cells compared to 

vector control, while 4T1.2^OSM cells had no significant difference in the total number 

of TRAP+ cell counts compared to its vector control (Figure A.22A).  When counting 

only multinucleated cells, an indication of more progressed osteoclastogenesis, the 

results mirror the total TRAP+ cell counts.  66c14^OSM cells produced 15-fold more 

multi-nucleated TRAP+ cells compared to vector control cells (Figure A.22B).  The 

results of these osteoclastogenesis assays are similar between endogenously produced 

OSM and exogenously added OSM.  This suggests that at least for osteoclast 

differentiation, endogenous or exogenous OSM signaling may be analogous to each 

other. 

 

m-CSF, VEGF, and HIF1� May Play a Role in 66c14- and OSM-Mediated BM 

Osteoclast Differentiation 

 To ascertain which pro-osteoclastic factors are produced during 

osteoclastogenesis in response to OSM and cancer cells, and to see if osteoblasts will 
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have an effect on the production of these factors, various ELISAs were performed on 

collected conditioned media from the co-culture experiments.  Osteoclastic factors that 

were assessed include, VEGF, m-CSF, TNFɑ, OPG, and TGFβ. 

OSM did not appear to regulate the secretion of TNFɑ, TGFβ, and OPG (data 

not shown).  While there was no significant difference between +/- OSM treatments, the 

levels of both secreted m-CSF and VEGF were highest in the co-cultures containing 

66c14 cells (Figure A.23A&B).  In fact, m-CSF levels were 9-fold higher in 66c14+BM 

co-cultures compared to 4T1.2 co-cultures or BM alone (Figure A.23A).  VEGF levels 

were 1.5-fold higher in 66c14 cells compared to 4T1.2 cells, and 4-fold higher when 

compared to BM cells alone.   

The addition of osteoblasts into the co-culture did not significantly alter the 

amount of m-CSF produced, but it did increase the level of VEGF in the BM cultures as 

well as in the 4T1.2+BM co-cultures by about 10-50% (Figure A.23B).  Also, a 

Western blot analysis of RANKL showed that, OSM did not significantly alter RANKL 

expression levels in 4T1.2 or 66c14 cells and was not affected by blocking HIF1ɑ or 

COX2 expression by siRNA (Figure A.23C).  Finally, parathyroid-hormone related 

protein levels were measured in the cancer cells with the same conditions, but PTHrP 

protein was not detected via Western blot analysis (data not shown). 

 Previous experiments indicated that OSM significantly increases HIF1ɑ levels 

in 66c14 and 4T1.2 cells (Figure A.7C-E).  In order to determine if HIF1ɑ is important 

in osteoclast differentiation of BM cells, a chemical inhibitor to HIF1ɑ (YC-1) or a 

HIF1ɑ siRNA was used in the same osteoclastogenesis experiments.  YC-1 
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significantly inhibited 66c14+OSM mediated osteoclast differentiation by 60% but had 

no effect on osteoclastogenesis in 4T1.2+BM or BM alone co-cultures (Figure A.24A). 

 To determine if tumor cell-expressed HIF1ɑ, verses BM-cell expressed HIF1ɑ 

was important for OSM-induced tumor cell-mediated osteoclastogenesis, 66c14 cells 

were cultured separately and treated with +/- OSM and +/- HIF1ɑ siRNA.  The 

conditioned media from treated 66c14 cells was then applied to the BM cells.  

Conditioned media from 66c14 cells treated with OSM increased the osteoclast 

differentiation rate by 3.5-fold (Figure A.24B).  However, when the conditioned media 

from 66c14 cells treated with the HIF1ɑ siRNA was added to the BM cells, there was a 

50% reduction on the osteoclast differentiation rate, suggesting that OSM induces 

secretion of pro-osteoclastic factors in 66c14 cells through HIF1ɑ.  Conditioned media 

from 4T1.2 cells treated with +/-OSM or HIF1ɑ siRNA did not have any effect on 

osteoclast differentiation in non-adherent BM cell cultures (data not shown). 

 

Both Osteoblasts and OSM Increased Osteoclast Differentiation in BM Cultures 

 Breast cancer cells have been shown to generate an inflammatory response in 

the bone microenvironment and increase osteoclast differentiation (57, 111).  

Furthermore osteoclastogenesis cannot happen in normal bone without osteoblast 

activity (43).  To determine the effect of osteoblasts in osteoclastogenesis, UMR106 

osteoblastic cells were added to tumor + BM co-cultures as a source of and in place of 

using recombinant RANKL (Figure A.25).  Without osteoblasts, there was no 

osteoclastogenesis in any of the co-cultures (Figure A.26 A&B).  There was no 

difference in the number of TRAP+ cells between 66c14+BM+UMR106 co-cultures in 
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the presence of or absence of OSM, but in the absence of OSM, there was a 2.5-fold 

increase in the 4T1.2+BM+UMR106 co-culture (Figure A.26A).  In a co-culture with 

BM+UMR106 cells, there was a modest 3-fold increase of TRAP+ cells when treated 

by OSM.  On the other hand, OSM paradoxically decreased TRAP+ cells in the 

4T1.2+UMR106 co-cultures by 60%.   

 When counting multi-nucleated cells, almost all of the TRAP+ multinucleated 

cells were seen in (+OSM, +osteoblast) co-cultures, and no significant differences 

between the cancer cells or BM alone were detected, although the cultures containing 

4T1.2 cells were consistently higher by 20-30% (Figure A.26B).  This suggests that 

OSM and osteoblasts promote the formation of multi-nucleated cells through cell fusion, 

which may explain the decrease in the total number of TRAP+ cells in the co-cultures 

containing 4T1.2 cells. 

 To see if there was a difference in the level of soluble RANKL produced in 

these osteoclastogenesis co-cultures, a RANKL ELISA was used.  Only the cultures 

with osteoblasts had an appreciable level of RANKL in the conditioned media (Figure 

A.26C).  The highest level of soluble RANKL was seen in 66c14 co-cultures with about 

a 2-fold increase over 4T1.2 co-cultures and BM cultures.  These results suggest that 

while osteoblasts are important in osteoclastogenesis, the mechanism of tumor cell- and 

OSM-mediated osteoclast activity may be independent of RANKL. 

 

OSM and 4T1.2 Cells Increased Bone Resorption of Mouse Calvaria 

Osteoclast differentiation rates do not suggest anything about the activity of these 

osteoclasts.  It is possible that the same conditions which stimulate osteoclast 
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differentiation would not stimulate osteoclast activity.  To asses the ability of cancer 

cells and OSM to induce osteoclast activity, cancer cells and OSM were added to 

cultures containing live mouse calvaria, or skull bones from young mice, along with 

BM cells, RANKL, and m-CSF.  After 10 days of incubation at 37oC, free calcium in 

the conditioned media, which correlates to overall bone resorption levels, was analyzed 

using the calcium arsenazo III assay. 

66c14 cell-treated calvaria had little to no increase in calcium levels in response 

to OSM treatment, but the addition of RANKL increased the calcium levels modestly 

by about 10% (Figure A.27A).  4T1.2 cell-treated calvaria had a 35% increase in 

released calcium when treated with OSM, while the addition of RANKL increased 

calcium levels by an additional 10%.  Cultures containing bone alone also responded to 

OSM with a 10-20% increase in released calcium levels.  Representative images are 

depicted in figure A.27B.  4T1.2 cell-treated calvaria with OSM showed the most 

fragmentation of the bone, suggesting the highest level of bone resorption.  These 

results may indicate that while 4T1.2 plus OSM cells do not increase osteoclast 

differentiation of BM cells, they may contribute to an increased osteoclast activity. 

 

OSM and 4T1.2 Cells Promote Osteoclast Differentiation of RAW264.7 Monocytic 

Cells 

 There are at least 2 different origins for osteoclasts that colonize in the bone.  

One source is BM hematopoietic stem cells that require m-CSF, an early mediator of 

osteoclastogenesis, to differentiate.  The other source is peripheral blood mononuclear 

cells (PBMCs), which mainly consist of monocytic cells, found in the blood and spleen, 
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that are less dependant on m-CSF for differentiation into mature osteoclasts (124, 125).  

RAW264.7 is a monocytic cell line which is often used as a substitute model for 

primary PBMCs extracted from live specimens.  To assess the ability of OSM and 

tumor cells to induce osteoclast differentiation of PBMCs, a similar osteoclastogenesis 

experiment was performed using RAW264.7 cells instead of BM cells (Figure A.28). 

 OSM did not have any effect on both 66c14+RAW264.7 and RAW264.7 co-

cultures (Figure A.29A&B). The addition of HIF1ɑ or COX-2 siRNAs also had little 

effect on the co-cultures.  Overall, the number of TRAP+ cells in these co-cultures 

averaged 20-35 cells per well.  In 4T1.2+RAW264.7 co-cultures, on the other hand, 

OSM significantly increased osteoclast differentiation by 10-fold, which was attenuated 

by 70% HIF1ɑ siRNA, COX-2 siRNA, or YC-1 (Figure A.29C).   In addition, the total 

number of TRAP+ cells in the 4T1.2+OSM co-cultures reached about 500 cells per well, 

suggesting 4T1.2 cells mediate osteoclast differentiation on the PBMCs.  These results 

may indicate that the more metastatic 4T1.2 cells recruit PBMCs from the blood stream 

to generate osteoclasts in order to initiate bone metastases. 

 

Conditioned Media from 4T1.2 Cells Treated with OSM Increased Osteoclast 

Differentiation of RAW264.7 Cells 

 To assess the effect of secreted factors from murine cancer cells on monocytic 

osteoclast differentiation, the cancer cells were cultured separately from RAW264.7 

cells and were treated with +/- OSM and +/- HIF1ɑ siRNA.  Conditioned media from 

66c14 +/- OSM cells did not have any significant effects on osteoclastogenesis of 

RAW264.7 cells (data not shown).  Conditioned media from 4T1.2 +OSM culture had 
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4-fold more TRAP+ cells than cultures not treated with OSM (Figure A.30).  

Conditioned media from 4T1.2 cells treated with both OSM and the HIF1ɑ siRNA, as 

compared to the control siRNA, demonstrated 60% less activity in differentiating 

RAW264.7 cells into osteoclasts. This result suggests that HIF1ɑ- and OSM-mediated 

secretion of pro-osteoclastic factors may play a role in osteoclast differentiation. 

 Interestingly, there was a 5-fold reduction in the total numbers of TRAP+ cells 

when 4T1.2 conditioned media was added to RAW264.7 cells compared to co-culturing 

RAW264.7 and 4T1.2 cells.  This may indicate that while secreted factors from cancer 

cells are important in osteoclastogenesis, there may be membrane bound factors that 

also stimulate osteoclast differentiation, suggesting that cell-to-cell contact is important. 

 

OSM Increased VEGF and IL-6 Secretion Independently of HIF1� in 4T1.2 Cells 

 VEGF and IL-6 are common pro-osteoclastic factors that have possible 

implications in cancer cell-mediated osteoclastogenesis, and are potentially regulated by 

HIF1ɑ (78, 126).  To determine the changes in VEGF and IL-6 concentrations in 

osteoclastogenesis co-cultures, these secreted factors from co-cultures treated with or 

without OSM were investigated by ELISA.  OSM increased secreted VEGF from 4T1.2 

tumor cells alone by 2-fold.  Addition of the HIF1ɑ siRNA has no effect, suggesting 

that OSM mediated upregulation of VEGF is independent of HIF1ɑ (Figure A.31A).  

However, when the 4T1.2 cells were co-cultured with the RAW264.7 cells, VEGF 

levels increased without OSM by about 3-fold and increased 2-fold further with the 

addition of OSM.  Furthermore, the addition of the HIF1ɑ siRNA inhibits OSM-

stimulated VEGF secretion in the 4T1.2+RAW264.7 co-culture by 50%.   
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 4T1.2 cells also increased IL-6 secretion by 4-fold in response to OSM, but the 

addition of HIF1ɑ siRNA or co-culturing with RAW264.7 cells had no effect (Figure 

A.31B.)   RAW264.7 cells alone produce minimal amount of VEGF or IL-6.  This 

suggests that HIF1ɑ siRNA mediated inhibition of osteoclast differentiation may be 

due in part from the reduction in VEGF secretion in the co-cultures but not IL-6 

secretion. 

 

VEGF and IL-6 Neutralizing Antibodies Inhibited OSM-Mediated Osteoclast 

Differentiation in 4T1.2 + RAW264.7 Cell Co-Cultures 

 In the previous experiment, we showed that OSM increased the secretion of the 

osteoclastogenic factors VEGF and IL-6 by 4T1.2 cells.  We hypothesized that the 

inhibition of these factors with neutralizing antibodies would attenuate OSM-mediated 

increases in osteoclastogenesis.  When anti-VEGF and anti-IL-6 neutralizing antibodies 

were added directly to the standard osteoclastogenesis experiment, they both inhibit 

OSM-mediated osteoclast differentiation by 50% (Figure A.32A).  When RAW264.7 

cells were cultured without any 4T1.2 cells, neither OSM nor the anti-VEGF and anti-

IL-6 neutralizing antibodies had any effect. 

 To assess whether the secreted VEGF and IL-6 came from 4T1.2 or RAW 264.7 

cells, the 4T1.2 cells were cultured separately and treated +/- OSM and with or without 

the neutralizing antibodies.  The conditioned media from the 4T1.2 cultures were then 

added directly to RAW264.7 cells.  Conditioned media from OSM-treated 4T1.2 cells 

increased osteoclast differentiation by almost 2-fold.  On the other hand, the 4T1.2 cell 

conditioned media treated with anti-VEGF and anti-IL-6 neutralizing antibodies, 
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reduced osteoclast differentiation by 50% (Figure A.32B).  Due to the fact that the 

deficit of VEGF or IL-6 via the neutralizing antibodies reduced osteoclast 

differentiation levels down to  -OSM treatment levels, suggesting that both VEGF and 

IL-6 are needed for optimal osteoclastogenesis. 

 

OSM and Murine Breast Cancer Cells Increased RAW264.7 Cell-Derived 

Osteoclast-Mediated Bone Resorption 

 To assess the ability of the tumor cell to increase osteoclast activity in 

osteoclasts derived from RAW264.7 cells, conditioned media from 4T1.2, 66c14, 

4T1.2+UMR106, or 66c14+UMR106 cells treated with +/- OSM were added to 

differentiated RAW264.7 cells in osteologic substrates.  The osteologic substrates are 

coated with an artificial bone-like matrix that contains calcium crystals interlocked with 

collagen fibers.  The cultures were incubated for 10 days, and the resorbed area was 

analyzed using the Image J software.  In the osteologic wells that received conditioned 

media from 66c14 and 66c14+UMR106 (osteoblastic) cells, OSM induced osteoclast 

activity by 2-fold (Figure A.33A).  The COX-2 inhibitor was also added, and it 

decreased osteoclast activity down to control levels in all conditions.  In osteologic 

wells that received conditioned media from 4T1.2 cells treated with OSM, there was a 

small 30% increase, and this data point is not significant (Figure A.33B).  The addition 

of NS398 failed to inhibit osteolytic activity.  When conditioned media from 

4T1.2+UMR106 co-cultures were applied to the osteologic wells, OSM and NS398 had 

no significant effect (Figure A.33B). 
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Figure A.34C depicts resorbed pits on a typical Von Kossa stained osteologic 

substrate.  As was previously shown, BM derived osteoclast activity increased in 

response to 4T1.2 cells (Figure A.27A), while RAW264.7 derived osteoclast activity 

increased in responded to 66c14.  Thus, while both BM cells and RAW264.7 are “pre-

osteoclasts” and are supposedly the same type of cell once fully differentiated, there 

appears to be a difference between the fully differentiated osteoclasts in terms of 

response to different cancer cells. 
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DISCUSSION 

 Breast cancer remains one of the leading causes of death for women in the 

United States, and a vast majority of patients experience metastases involving the 

skeletal system with high morbidity and mortality.  The multi-step process involved in 

progression of breast cancer metastasis to the bone and other organs remains largely 

unknown.  However, metastatic cells are widely known to be heterogeneous, where 

different factors may be upregulated in different breast cancer patients.  It is thought 

that these differences lie in the cytokines and growth factors, and for that reason, 

research on cytokines in the IL-6 family is increasing.  This study attempts to elucidate 

the role of OSM, a highly pleiotropic IL-6 family cytokine, in breast cancer 

pathogenesis and induction of osteoclast differentiation and activity. 

 

OSM Increases Pro-Metastatic Markers In 4T1.2 and 66c14 Cells in vitro Which 

Lead to Increased Metastases in vivo 

 4T1.2 and 66c14 cells differ significantly in their metastatic profile despite 

having the same clonal origin.  4T1.2 cells metastasize similarly to human breast cancer 

cells and target the lung, liver, brain and bone where as 66c14 cells target only the lung 

and lymph nodes (Figure A.4) (119).  It is now commonly thought that the metastatic 

profile of various cancer cell lines and their pathogenesis differ due to their inherent 

differences in the expression of numerous cytokines.  We show that 4T1.2 cells have 
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both higher secreted OSM levels and higher expression of OSM receptor levels as 

compared to 66c14 cells.  This suggests an increase in tumor cell autocrine OSM 

signaling as well as paracrine signaling of OSM from 4T1.2 cells to the surrounding 

tissue.  4T1.2 cells having a higher overall OSM signaling may help increase OSM 

mediated pro-inflammatory and pro-invasion factors such as IL-6 by activating NF-κB 

(104, 127).  This total increased activity of OSM and OSM-mediated secondary 

inflammation by 4T1.2 cells may be in part the mechanism which 4T1.2 cells are more 

metastatic than 66c14 cells. 

 Although OSM has been shown to have growth inhibitory effects on various 

types of breast cancer cells (28), this does not preclude OSM from inhibiting tumor 

metastasis.  Other pro-metastatic cytokines such as transforming growth factor beta 

(TGFβ) can have growth inhibitory activities on certain types of breast cancer cells, 

while the metastatic capacity is increased (128).  Therefore, this may lead to the 

speculation that pro-metastatic cytokines like OSM and TGFβ that inhibit cancer cell 

growth, may be shifting the gene expression of cancer cells from proliferation to 

expression of factors that upregulate angiogenesis, detachment, and mobility.   

Both 4T1.2 and 66c14 cells experience growth inhibition when treated with 

OSM, while the magnitude of growth inhibition on 4T1.2 cells is slightly greater.  

Additionally, 4T1.2 cells display increased detachment when treated with OSM, and in 

comparison, 66c14 cells had no induction of detachment when treated with OSM.  

These results suggest that 4T1.2 cells display increased pro-metastatic phenotype in 

response to OSM due to their higher cell detachment levels.  However, it is unclear why 

OSM causes detachment on one cell line and not the other. 
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 One of the main mechanisms for cancer cell detachment from the substrate is to 

degrade the extracellular matrix (ECM) that binds the cancer cells.  Proteases that 

degrade the ECM released from cancer cells and from other sources are known in 

certain conditions to cause detachment in epithelial cells (129).  OSM has also been 

shown to increase the secretion of proteases such as matrix metalloproteinase 9 (MMP9) 

from human cancer cells (130).  Secretion of proteases from 4T1.2 cells treated with 

OSM may be responsible for their ability to detach, while in 66c14 cells, OSM alone 

may not be enough to cause protease secretion.  In arthritis, condrocytes and synovial 

fibroblasts need both OSM and TNFɑ to initiate matrix metalloproteinase (MMP) 

production and cause protease mediated destruction of the extra cellular matrix (131).  

Thus, it is possible that 66c14 cells similarly may need additional factors to release the 

necessary proteases to degrade the ECM and detach from the substrate. 

 OSM has been shown to induce various cytokines and growth factors such as 

VEGF, COX-2, and HIF1ɑ in human breast cancer cells.  Stimulation of these factors 

lead to the upregulation of angiogenesis, increased mobility, and degradation of the 

extracellular matrix; all of which are hallmarks of metastatic potential (12, 13, 29).  

VEGF has been shown to stimulate blood vessel growth, confer drug resistance against 

chemotherapeutics, and increase metastases (132, 133).  In addition, HIF1ɑ is 

implicated in angiogenesis, osteoclast formation, and the enhancement of osteolytic 

bone metastases (120, 134, 135).   

We carried out Western blots and ELISA tests to determine if OSM induces 

VEGF, HIF1ɑ and/or COX-2 on our murine breast cancer cell lines.  Our results 

showed that although 4T1.2 upregulated VEGF when treated with OSM, 66c14 cells 
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showed little difference between the treatments and VEGF seemed to be constitutively 

expressed.  Our results also showed that 66c14 cells are much more sensitive than 4T1.2 

cells to OSM in terms of HIF1ɑ induction.  However, this may just be an artifact in the 

data that measures % induction of HIF1ɑ, as the Western blot shows that the basal level 

of HIF1ɑ in 4T1.2 is much higher than in 66c14 cells.  This may suggest that total 

HIF1ɑ signal intensity is the same between the cells when these cells are treated with 

OSM. 

COX-2 is a key intracellular enzyme in the biosynthesis of prostaglandin E2, 

and has been shown to increase bone metastases, while breast cancer patients taking 

COX-2 inhibitors have less risk of developing bone metastases (136, 137).  A time 

course analysis of COX-2 production showed that 4T1.2 cells reach peak COX-2 levels 

in the cells in half the time than 66c14 cells in response to OSM.  The faster response 

time to OSM in terms of COX-2 expression may be due in part from the higher level of 

OSMR in 4T1.2 cells which allows increased OSM signaling.  Combined, this may at 

least in part explain 4T1.2 cell’s propensity to metastasize more aggressively to bone 

and target organs than 66c14 cells. 

 Recent research and data show that interaction between inflammation and cancer 

may be a critical component in cancer progression and metastasis (138, 139).  High 

levels of systemic OSM is well known to cause inflammation in a wide range of target 

organs, including the bone, and cause joint destruction and osteolysis (131, 140).  In 

order to assess the impact of exogenous injection of OSM has on cancer progression 

and metastasis, we injected rmOSM into Balb/c mice that had 4T1.2 cells implanted 

into their 4th mammary fat pad.  Since OSM is a pro-inflammatory cytokine, we 
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expected that increased generalized inflammation caused by OSM injections would 

increase the level of metastases in vivo.  We also expected that the rate of tumor growth 

and the overall tumor burden would be lower in the group of mice which received OSM 

injections as OSM decreased 4T1.2 cell growth in vitro.  However, we saw that the 

overall tumor burden and rate of tumor growth was almost exactly the same between the 

treatments groups (Figure A.9A&B).  It is possible that even with the concentration of 

50ng/g of OSM being injected I.P., the OSM did not significantly perfuse the tumor due 

to vascular defects that are common in fast growing tumors (141, 142).  Thus, there was 

not enough OSM to effectively inhibit tumor proliferation.  On the other hand, when 

metastases to the lung were analyzed, the group that received OSM had significantly 

more metastases to the lung than mice that did not receive OSM (Figure A.9C).   In 

addition, the mice that received OSM also had a higher incidence of metastases to the 

liver, spleen (Figure A.9D), and the bone (Figure A.11A) compared to control mice.  

Even though OSM injections did not affect the growth of the primary tumor, the 

increase in the amount of metastases was significant.  This suggests that higher levels of 

serum OSM concentrations may lead to increased metastases.  In a recent study on 

human patients, it was demonstrated that IL-6 concentration in the serum correlated to 

increased prostate cancer progression and metastases (143).  OSM injections also led to 

smaller metastases in the lung.  In this case OSM may be acting on these metastases 

more efficiently to reduce their size by inhibiting their cell proliferation.  However, the 

reduction in the size of the metastases did not reduce the morbidity rate in the mice. 

 In this study we noticed that some mice experienced skin ulceration on the site 

of the primary tumor but did not appear to be correlated to tumor size.  Tumors 
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significantly disrupt the homeostasis of the surrounding tissue, and the reduced nutrient 

and oxygen availability can lead to focal necrosis and ulcer formation on the skin (144).  

We compared the numbers of lung metastases between mice that had ulcerating tumors, 

with local infections, to mice that did not have any ulcerating primary tumors.  Because 

infection and open wounds increase inflammation, we expected that these effects would 

increase the number of metastases to the lung.  Indeed, the mice that had ulcerated 

tumors had about 2-fold more metastases to the lung compared to mice that did not 

(Figure A.10C).  

Published reports have indicated that OSM increases osteoclast differentiation 

and activity.  In normal bone homeostasis, increased osteoclast activity leads to 

increased bone resorption (30), and this may be occurring in a bone metastatic 

environment as well.  To assess the general level of osteoclast number and activity, we 

stained sections of the bone with a TRAP stain, and saw a general trend where the mice 

that received OSM had stronger TRAP+ staining compared to control mice, which 

would indicate increased osteoclast number and activity (Figure A.11C). 

 While injection of OSM was able to increase metastatic burden in mice injected 

with 4T1.2 cells, a similar experiment where OSM was injected into mice implanted 

with 66c14 cells demonstrated no difference in metastatic burden between the groups 

(data not shown).  Similarly, mice injected with 66c14 cells did not display any 

differences in OSM mediated changes in tumor growth rates.  Other than the lung, no 

metastases to any organs were detected nor was there a difference between the groups in 

terms of total number or size of lung metastases (data not shown).  The failure of 66c14 

cells to respond to OSM in vivo in any capacity suggests that either OSM concentration 
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was too low and was not able to simulate the 66c14 cells in a sufficient manner due to 

their low expression of the OSM receptor, or that OSM was not sufficiently perfused 

through the tumor.   

We have shown that secreted VEGF levels from 66c14 cells are very high no 

matter the conditions.  This high level of VEGF may lead to abnormal, rapidly 

branching blood vessels.  The high level of local VEGF seen in many types of cancer, 

including breast cancer, has been thought to create poorly perfused, leaky, immature 

blood vessels that not only provide insufficient nutrients, but also reduced perfusion of 

exogenous agents into the tumor (145).  Reduction of VEGF by using anti-VEGF 

therapies in human cancer patients has had modest anti-cancer effects at best, and at 

times worsened prognosis due to the restoration of normal vascularization in the tumor, 

leading to acceleration in tumor growth (146).  As such, the high levels of VEGF 

production by 66c14 cells may be detrimental to the cell’s ability to sufficiently grow 

and metastasize in vivo due to their possibly dysfunctional tumor infiltrating vasculature. 

 

Overexpressing OSM in 66c14 and 4T1.2 Cells in vitro Leads to Similar 

Characteristics as Exogenous OSM but Cause Drastic Changes in vivo 

 The previous set of experiments focused primarily on exogenous OSM where 

the cytokine was either added directly to the tissue culture plate or injected into the 

mice.  In order to study the effects of higher endogenous or local production of OSM, 

we developed cells that overexpress OSM.  An expression vector containing the mouse 

OSM cDNA was designed and transfected into both 4T1.2 and 66c14 cells to generate 

cell lines that express high levels of OSM compared to the parental cell lines (Figure 
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A.13A&B).  In order to compare between exogenous and endogenous signaling, as well 

as the functionality of OSM in these over-expressing cells, their level of tumor cell 

detachment and VEGF production was assessed. 

Unlike the previous experiment where exogenous OSM added to 66c14 cells 

failed to induce cell detachment, overexpression of OSM in 66c14 cells seem to 

significantly increase detachment (Figure A.14A).  This suggests that there might be 

some differences between how OSM is signaling exogenously vs. endogenously.  

Endogenous production of OSM may act in an intracrine manner where OSM that has 

not been secreted may bind to OSM receptors inside the cytoplasm, translocate to the 

membrane, and initiate signaling.  In a recent study it has been shown that the blockade 

of intracrine signaling of VEGF inhibited colorectal cancer growth, survival, and 

sensitized the cells to chemotherapeutics (147).  Also, the authors contended that 

intracrine signaling also promoted different VEGF mediated effects that are distinct 

from paracrine signaling. Thus, very high levels of endogenous production of OSM may 

have a more potent OSM mediated signaling of downstream pathways than 

exogenously added OSM.  On the other hand, cell detachment levels between OSM 

overexpressing 4T1.2 cells and wild type 4T1.2 cells stimulated with exogenous OSM 

were similar.  Aside from the differences in detachment in 66c14 cells, there does not 

seem to be any other differences between exogenously added OSM vs endogenously 

overexpressed OSM in vitro. 

 To test the effect of endogenous or local production of OSM in vivo, OSM 

overexpressing 66c14 and 4T1.2 cells were implanted into Balb/c mice.  Unlike the 

previous in vivo experiment, where the 66c14 in vivo experiment showed no difference 
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between the +/- OSM injection groups, the mice that received 66c14^OSM cells had a 

surprisingly faster tumor growth rate compared to mice that had received 66c14+vector 

cells (Figure A.15).  However, the total number of metastases were much lower in 

66c14^OSM tumor bearing mice, while the size of these metastases were larger in these 

mice compared to the mice with 66c14+vector tumors (Figure A.16B-D).  These data 

suggest that endogenously generated OSM allows faster tumor growth in vivo which is 

contrary to what was seen in vitro when 66c14 tumor bearing mice were injected with 

OSM. 

 A possible explanation for this could be that OSM stimulates the release of 

factors that help regulate angiogenesis and allows maturation of blood vessels.  OSM 

stimulates HIF1ɑ and subsequent signaling from HIF1ɑ may lead to expression of 

other pro-angiogenic factors such as angiopoietin, platelet derived growth factor, 

placental growth factor and other angiogenic factors (120, 121, 148).   In particular, 

angiopoietins 1 and 2 are important pro-angiogenic factors that are responsible for 

maturation of blood vessels (149).   It is possible that because of the increased maturity 

of blood vessels in the tumors of 66c14^OSM injected mice, the vessels are less leaky, 

leading to less metastases, while allowing increased perfusion of nutrients, which 

stimulates growth of the tumor.  A second explanation is that the integration of the 

expression construct into the mouse genome may have disrupted or modified the 

function of a gene that regulates proliferation.  The integration of the expression 

construct to a growth regulatory gene could disrupt its function and increase cell growth.  

To eliminate this possibility, other OSM-overexpressing clones could have been tested 

in vivo, but unfortunately they were not saved. 
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 Significant differences were also present between mice treated with exogenous 

OSM in 4T1.2 tumor bearing mice, and mice injected with 4T1.2^OSM cells.  Unlike 

the previous experiment where there was no difference in the tumor growth rate 

between the groups in mice injected with +/- OSM, 4T1.2^OSM cells had significantly 

reduced tumor growth rate compared to 4T1.2+vector control cells.  Up to about 16 

days post tumor cell implantation, the 4T1.2^OSM and 4T1.2+Vector tumors grew at 

the same rate and the tumor sizes between the two groups were very similar.  However, 

after 16 days, the 4T1.2^OSM tumor shrank in size, leading to a significant reduction in 

overall tumor burden (Figure A.17A-B).  In addition, none of the mice injected with 

4T1.2^OSM cells developed any metastases to the lung or any other organs (Figure 

A.17C).  This is most likely due to the decreased tumor proliferation and lack of any 

metastatic cells.  Due to the significant reduction in both tumor and metastatic burden, 

the survival rate of mice injected with 4T1.2^OSM cells was much higher than mice 

injected with 4T1.2+vector cells (Figure A.18B).  It is possible that with 4T1.2^OSM 

cells, the local concentration of OSM increased too much in vivo in the tumor and 

promoted a potent anti-proliferative effect after a certain amount of time.  The inhibition 

in tumor growth may not have occurred until day 16 when the accumulated 

concentration of OSM was not high enough to inhibit tumor growth.  However, the 

specific mechanism that governs this effect remains unclear. 

 Even though 4T1.2 and 66c14 cells were originally derived from the same 

clonal murine mammary cancer, their response to OSM, and their behavior in vivo and 

in vitro is very different from each other (119).  Increased systemic distribution of OSM 

in mice by OSM injections increased metastases in 4T1.2 tumor bearing mice but not in 
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66c14 tumor bearing mice.  Increased endogenous production of OSM by 66c14^OSM 

cells increased tumor growth but inhibited metastases in vivo, while 4T1.2^OSM 

overexpressing cells failed to sustain tumor growth, and metastases were not found in 

any organs.  These differences between systemic distribution vs local endogenous 

production of OSM may shed some light into how OSM meditates metastases.  Previous 

studies show that OSM is produced not only in the tumor cells but by also infiltrating 

immune cells such as neutrophils and may be the cause of OSM mediated metastases 

(11, 150). 

Production of OSM from the spleen and from immune cells, such as dendritic 

cells, may potentiate metastasis from the primay tumors and cause cachexia in cancer 

patients (9, 67).  It is possible that the innate immune system is generating a systemic 

inflammatory response to factors produced by the tumor cells which increases patient 

morbidity and mortality.  This was seen where sharp increases in serum IL-6, which is 

closely related to OSM, were correlated to late stage cachexia in cancer patients. (151-

153).  Thus, OSM signaling through increased serum concentrations of OSM via 

exogenous injection may have played an important role in the stimulation of cancer 

metastases in 4T1.2 tumor cell bearing mice.  On the other hand, 66c14 cells may 

require a mixture of local and systemic OSM production to stabilize the vasculature to 

support increased tumor growth.  This would suggest that suppression of OSM 

signaling may reduce metastases in 4T1.2 cells.  Preliminary results in our lab using 

4T1.2 cells transfected with mouse OSM shRNA indicate that decreased OSM secretion 

from 4T1.2 cells decreased metastases in vivo. 

 



62 

 

OSM in Conjunction with 66c14, but Not 4T1.2 Mammary Tumor Cells, Increases 

Osteoclast Differentiation of Non-Adherent Bone Marrow Cells 

 Due to previous reports of 4T1.2 cells’ propensity to metastasize to the bone 

(119), and their increased reaction to OSM treatment, we have expected that the 4T1.2 

cells would be able to stimulate osteoclast differentiation when treated with OSM.  

Previous studies indicated that OSM increases bone loss via increased osteoclast 

activity (30, 122), and suggest that OSM is important to the generation of osteolytic 

lesions necessary for bone metastases.  To test if OSM stimulates cancer cells to secrete 

pro-osteoclastic factors and promote osteoclast differentiation in vitro, cancer cells were 

co-cultured with non-adherent bone marrow cells that contain osteoclast progenitors and 

were treated with OSM.  Although co-cultures containing 4T1.2 cells treated with OSM 

increased production of TRAP positive osteoclast cells, the numbers of the TRAP+ cells 

were not any higher than with bone marrow cells alone (Figure A.20B-C).  On the other 

hand, 66c14 cells treated with OSM stimulated osteoclast differentiation 2-4 times what 

was seen with 4T1.2 co-cultures or with bone marrow cells alone (Figure A.20A).   

We also tested OSM overexpressing cells in osteoclastogenesis assays to test if 

there was a difference in endogenously produced OSM vs exogenously added OSM.  

The results mirrored the experiment with exogenously added OSM where 66c14^OSM 

cells increased osteoclastogenesis in BM cultures significantly more than 4T1.2^OSM 

cells or BM cells.  This suggests that while 4T1.2 cells are able metastasize to the bone, 

their primary mechanism to stimulate osteoclast differentiation may be through 

additional cells in the bone microenvironment such as osteoblasts.  Indeed, some studies 

conclude that cancer cells signal through osteoblasts to induce osteoclast differentiation 
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and activity in bone metastases (57, 154).  Other possibilities include that 4T1.2 cells 

stimulate osteoclastogenesis from cells other than BM cells, or that OSM is not related 

to 4T1.2 mediated osteoclast differentiation. 

 To answer why 66c14 cells contribute BM cell differentiation to osteoclasts at a 

faster rate compared to 4T1.2 cells, m-CSF and VEGF ELISAs were performed on 

conditioned media from the osteoclastogenesis experiments.  In Figure A.23A, we can 

clearly see that co-cultures containing 66c14 cells produced significantly more m-CSF 

compared to 4T1.2 cells, while BM cells alone barely produced any m-CSF.  The 

addition of osteoblasts into the co-culture did not significantly affect m-CSF levels.  

Similarly, osteoclastogenesis co-cultures containing 66c14 cells produced the most 

VEGF out of any culture conditions.  However, these effects were not mediated by 

OSM.  These results suggest that because 66c14 cancer cells constitutively express a 

large amount of m-CSF, they are able to effectively induce osteoclast differentiation in 

BM cells.  A study that utilizes the human breast cancer cell line MDA-MB-231, which 

also constitutively express m-CSF, has also been shown to increase osteoclast 

differentiation in a bone marrow derived cell line UMAS-33 (155). 

 The non-adherent bone marrow cells contain hematopoietic stem cells that are 

thought to be an early precursor to osteoclasts.  These cells are yet sensitive to RANKL, 

and only a few factors like m-CSF are able to induce differentiation (45).  This suggests 

that 4T1.2 cells are not able to induce osteoclastogenesis efficiently in bone marrow 

cultures because, unlike 66c14 cells, 4T1.2 cells do not produce a high amount of m-

CSF.  Additionally, 4T1.2 cells do not produce as much VEGF as 66c14 cells do, which 

is also thought to support osteoclast survival and maturation (156).  Finally, the 
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difference in osteoclastogenic capacity between 66c14 and 4T1.2 cells was not due to 

RANKL, as neither OSM nor HIF1ɑ/COX2 siRNA significantly affected RANKL 

expression and both cell lines expressed similar amounts of RANKL. 

 Previous reports suggest that hypoxia and HIF1ɑ stimulates osteoclast 

formation (135, 157), and our data demonstrates that OSM induces HIF1ɑ expression 

in the cancer cells.  Therefore, we hypothesized that OSM may be signaling through 

HIF1ɑ to increase osteoclastogenesis.  The YC-1 chemical inhibitor to HIF1ɑ 

significantly reduced the OSM-mediated increase in TRAP+ cells in co-cultures 

containing 66c14 cells.  In order to determine if suppression of HIF1ɑ mediated 

osteoclastogenesis was important for 66c14 cells, BM cells, or both, we created 

conditioned media from 66c14 cells alone treated with HIF1ɑ siRNA and +/- OSM.  

Conditioned media from 66c14 cells were then applied to cultures that contained only 

bone marrow cells.  Because the siRNA never touched the BM cells, the HIF1ɑ levels 

in the BM cells would not be affected.   Conditioned media from HIF1ɑ siRNA-treated 

66c14 cells induced significantly less TRAP+ cells compared to conditioned media 

from control siRNA treated 66c14 cells.  This suggests that suppression of HIF1ɑ in 

66c14 cells reduced the secretion of pro-osteoclastic factors from 66c14 cells. 

 While HIF1ɑ appears to be important for OSM and 66c14 mediated 

osteoclastogenesis of BM cells, the specific secreted factor that HIF1ɑ is upregulating 

remains unknown.  ELISA analyses were done on 66c14 conditioned media with other 

pro-osteoclastic factors that are HIF1ɑ regulated such as TGFβ and TNFɑ.  The results 

yielded no difference with OSM or HIF1ɑ siRNA treatments (data not shown) and they 

are unlikely candidates for HIF1ɑ-mediated osteoclastogenesis in the 66c14 + bone 
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marrow model.  According to our data, the OSM signaled HIF1ɑ-regulated pro-

osteoclastic factor is none of the common pro-osteoclastic factors which include m-CSF, 

RANKL, VEGF, TGFβ, or TNFɑ.  It is likely that the candidate HIF1ɑ regulated pro-

osteoclastic is a novel factor that has not been associated with HIF1ɑ, 

osteoclastogenesis, and OSM.  Further studies using high throughput assays are needed 

to elucidate the candidate gene. 

 

4T1.2 Cells Need Osteoblasts to Increase Osteoclastogenesis and Osteoclast 

Activity of Non-Adherent Bone Marrow Cells 

 Recent studies into the bone microenvironment and bone metastases indicated 

that cancer cells may induce an inflammatory response on osteoblasts, which leads to an 

increase in osteolytic signaling causing bone destruction (106, 107).  To study the effect 

that osteoblasts have on osteoclastogenesis, we added UMR106 osteoblastic cells, in 

place of RANKL, into our co-cultures using the same osteoclastogenesis assay as 

previously described.  We hypothesized that the cancer cells will induce osteoblasts to 

increase osteoclast differentiation.  Our results show that without the presence of 

osteoblasts or RANKL, osteoclast differentiation does not occur even in the presence of 

cancer cells and OSM.  The addition of osteoblasts to the co-cultures caused a sharp 

increase in the number of TRAP+ cells even without the presence of OSM.  OSM 

increased TRAP+ cell number in co-cultures of BM and osteoblasts, but is decreased 

when 4T1.2 cells were added to co-cultures.  No changes in total TRAP+ cells in co-

cultures containing 66c14 cells were seen. 
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OSM appears to play a role in increasing osteoclast fusion in pre-osteoclastic 

cells, reducing the total number of TRAP+ cells, while increasing the number of multi-

nucleated TRAP+ cells (30).  Further analysis of our data indicates that the addition of 

OSM increased the number of multi-nucleated TRAP+ cells.  Without the presence of 

OSM, there were almost no multi-nucleated TRAP+ cells indicating that OSM and 

osteoblasts are needed to create multi-nucleated cells.  The cultures containing 4T1.2 

cells had the highest number of multinucleated TRAP+ cells, while cultures containing 

66c14 or BM cells were about the same as each other.  This adds to the idea that 66c14 

cells probably stimulate early stages of osteoclastogenesis with their high levels of m-

CSF.  4T1.2 cells, on the other hand, may stimulate later stages of osteoclastogenesis. 

This would suggest that 4T1.2 cells should generate more soluble RANKL, a later 

mediator of osteoclast differentiation.  However, an ELISA on soluble RANKL 

indicated that while the addition of osteoblasts increased RANKL secretion, co-cultures 

containing 4T1.2 cells produced as much RANKL as cultures containing BM cells.  

Nevertheless, with the increase in multinucleated TRAP+ cells in cultures containing 

4T1.2 cells, it is also likely that 4T1.2 cells may stimulate osteoclast activity as well. 

 To test the hypothesis that 4T1.2 cells stimulate osteoclast activity, we designed 

an experiment that would test osteoclast activity by measuring released calcium from 

mouse calvaria.  Live mouse calvaria were obtained from Balb/c mice and added to a 

co-culture containing bone marrow cells, OSM, and the murine mammary cancer cells.  

It was assumed that the live calvaria would contain the osteoblasts necessary to respond 

to the mammary cancer cells.  As bone degrades, calcium is released into the 

surrounding medium, and is thought to be the cause of hypercalcemia in patients with 
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bone metastases (158-160).  By measuring the calcium concentration in the conditioned 

media, we expect that the higher the bone degradation, the more calcium is released. 

 Released calcium levels were the highest in co-cultures containing 4T1.2 cells 

and OSM (Figure A.27B).  Co-cultures containing 66c14 cells or bone alone had lower 

free calcium levels.  Co-cultures containing 66c14 cells also did not have an apparent 

increase in free calcium levels in response to OSM, while cultures containing bone + 

BM cells did respond to OSM.  The addition of RANKL increased free calcium levels 

in cultures containing 4T1.2 cells and bone but not in cultures containing 66c14 cells.  

This data suggests that in the more metastatic 4T1.2 cells, but not in 66c14 cells, OSM 

is able to upregulate osteoclast activity, increase bone resorption, and cause calcium to 

be released into the media.  Furthermore, the reduced free calcium levels in cultures 

containing 66c14 cells vs bone alone may indicate that 66c14 cells may have an 

inhibitory effect on osteoclast activity.  Other studies suggest that breast cancer cell sub-

types that cause osteoblastic lesions also inhibit osteoclast activity and stimulate 

osteoblast activity, which reduce serum calcium levels (161-163).  This also supports 

the notion that osteoclast differentiation and activity may be stimulated in different 

ways where increased osteoclast differentiation does not necessarily translate to 

increased osteoclast activity and vise versa. 

 

4T1.2 Cells in Conjunction with OSM Increased Osteoclastogenesis in RAW264.7 

Cells 

 Osteoclasts that colonize the bone for normal bone metabolism can come from 

two known sources.  One source is the bone marrow, while the other source is the 
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peripheral blood mononuclear (PBMC).  Unlike the haematopoietic stem cells in the 

bone marrow, which need early mediators of osteoclast differentiation such as m-CSF, 

PBMCs are thought to be more differentiated and do not require m-CSF to undergo 

osteoclastogenesis (124, 125).  Recent research into peripheral blood mononuclear cells 

using a specific cell surface marker CD133 indicated that the levels of CD133+ RNA 

and cell numbers are elevated in patients with bone metastases regardless of the type of 

the primary cancer (164, 165).  Thus, it is possible that PBMC derived osteoclasts are 

more important in the initiation and maintenance of bone metastases compared to 

osteoclasts derived from the bone marrow.  To test the osteoclastogenesis of PBMCs, 

we established co-cultures including the mouse monocytic cell line RAW264.7, which 

are similar to PBMCs and are able to differentiate into osteoclasts (125). 

 The results from the RAW264.7 co-culture osteoclastogenesis assay, was in 

essence, a complete reversal of the results from the BM co-culture osteoclastogenesis 

assay.  In this case, 66c14 cells were completely unable to increase osteoclast 

differentiation in co-cultures beyond the levels seen with cultures containing 

RAW264.7 cells.  In addition, OSM or any of the HIF1ɑ or COX-2 inhibitors were 

unable to induce any difference in the number of TRAP+ cells in these conditions.  In 

these co-cultures, the range of total TRAP+ cell numbers were about 20-35 cells.  On 

the other hand, in co-cultures containing 4T1.2 cells, OSM increased osteoclast 

differentiation by over 12-fold, while inhibitors to COX2 and HIF1ɑ attenuated OSM 

mediated osteoclast differentiation.  OSM and 4T1.2 cell-mediated induction of 

osteoclastogenesis increased the total TRAP+ cells to almost 500 cells per well.  Taken 

together our results demonstrated that the more metastatic 4T1.2 cells increase 
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osteoclast differentiation on PBMCs but not BM cells.  Recent studies indicated 

PBMCs isolated from patients with osteolytic bone metastases, regardless of cancer 

type, undergo spontaneous osteoclastogenesis (166, 167).  Similar studies that 

demonstrate spontaneous osteoclastogenesis of BM cell were not found.  This suggests 

that PBMC derived osteoclasts are more important than BM derived osteoclasts for the 

initiation and maintenance of bone metastases. 

 To test if 4T1.2 cells, like 66c14 cells, secrete pro-osteoclastic factors in 

response to OSM mediated by HIF1ɑ, the conditioned media was created using the 

same procedure with the 66c14 cells.  4T1.2 cells were treated with HIF1ɑ siRNA and 

+/- OSM, and the supernatant conditioned media was added to RAW264.7 cells.  

Conditioned media from OSM treated 4T1.2 cells increased osteoclastogenesis by about 

4-fold, while the conditioned media from HIF1ɑ treated 4T1.2 cells had attenuated 

osteoclast differentiation rates.  This suggests that like 66c14 cells, 4T1.2 cells also 

secrete pro-osteoclastic factors in response to OSM in a HIF1ɑ-dependant manner.  

However, the level of osteoclastogenesis is 5-fold lower than when the cells were co-

cultured, suggesting that cell to cell contact between cancer cells and RAW264.7 cells 

are needed for optimal osteoclast differentiation.  A recent study into prostate cancer 

cell mediated osteoclast differentiation demonstrated that physical cell-to-cell contact 

between osteoblasts and other cells stimulates osteoclastogenesis (168).  Myeloma cells 

have also been known to form cell-to-cell contacts with PBMC derived osteoclasts to 

increase cancer cell survival and osteoclast activity (169). 

 To test which OSM-mediated pro-osteoclastic factor is positively correlated to 

HIF1ɑ siRNA, conditioned media from cultures containing 4T1.2 cells treated with 
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OSM were analyzed for VEGF and IL-6 levels.  VEGF and IL-6 are both potent pro-

osteoclastic factors that have implications in bone metastases (58, 81, 170, 171).  OSM 

increased VEGF levels in 4T1.2 cells but HIF1ɑ siRNA did not affect VEGF levels.  

On the other hand, when the 4T1.2 cells are co-cultured with RAW264.7 cells, the 

levels of VEGF secretions increased further in the absence of OSM, and with the 

addition of OSM, it increased another 2-fold.  HIF1ɑ siRNA attenuated OSM mediated 

VEGF secretion in the co-cultures. This suggests that while OSM-mediated VEGF 

induction is independent of HIF1ɑ when the 4T1.2 cells are not co-cultured, co-

culturing not only increases VEGF but the OSM-mediated increase in VEGF is 

mediated by HIF1ɑ.   When looking at IL-6 levels, OSM increased IL-6 in 4T1.2 and 

in co-cultures at about the same levels, while HIF1ɑ siRNA had no effect on IL-6 

production (Figure A.31B).  Thus, it is likely that the HIF1ɑ siRNA-mediated 

reduction in osteoclastogenesis may be partly mediated by the reduction in VEGF levels 

in the co-culture.  This does not discount the possibility that OSM mediated secretion of 

IL-6 is also supporting osteoclastogenesis. 

 To test whether VEGF and IL-6 is important on osteoclast differentiation in 

RAW264.7 cells, neutralizing antibodies to IL-6 and VEGF were used in the 

osteoclastogenesis co-culture to see if they attenuate the number of TRAP+ cells.  In the 

co-culture with 4T1.2 cells and RAW264.7 cells, OSM increased osteoclast 

differentiation while IL-6 or VEGF neutralizing antibodies suppressed 

osteoclastogenesis back down to the -OSM levels (Figure A.32 A).  This suggests that 

both VEGF and IL-6 are needed for optimal osteoclast differentiation and the deficit of 

either VEGF or IL-6 significantly inhibits osteoclastogenesis. 
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 To test whether VEGF and IL-6 production by 4T1.2 cells, but not RAW264.7 

cells, is important, we created conditioned media from 4T1.2 cells alone treated with +/- 

anti-VEGF or +/- anti-IL-6 neutralizing antibody in the absence or presence of OSM.  

The conditioned media was then added to RAW264.7 cultures to see if the absence of 

OSM-mediated 4T1.2-produced VEGF or IL-6 in the co-culture would inhibit OSM 

stimulated osteoclastogenesis.  Again as before, the neutralizing antibody against VEGF 

or IL-6 suppressed osteoclast differentiation back down to -OSM levels, which suggest 

that neither tumor cell produced VEGF nor IL-6 alone would be able to increase 

osteoclastogenesis. 

 There was a disconnect between osteoclast differentiation and activity where 

increased osteoclast differentiation did not necessarily translate to increased bone 

resorption.  In order to test whether 66c14 or 4T1.2 cells increase osteoclast activity in 

differentiated RAW264.7 cells, conditioned media from the cancer cells, UMR106 

osteoblastic cells, or the co-culture of them treated with OSM or COX-2 inhibitors were 

generated.  Surprisingly, the conditioned media from 66c14 cells treated with OSM 

increased RAW264.7 osteoclast activity more than the 4T1.2 cell derived conditioned 

media.  The NS398 COX-2 inhibitor reduced osteoclast activity in cultures containing 

the 66c14 conditioned media, but did not affect the 4T1.2 cell’s ability to increase the 

level of bone resorption.  However the conditioned media from cells containing 

UMR106 cells had minimal impact on osteoclast activity. 

 These results again stress the possibility that osteoclast activity is not directly 

linked to osteoclast differentiation.  66c14 cells increased bone marrow 

osteoclastogenesis when stimulated by OSM, but had no effect on bone resorption on 
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the calvaria, while 4T1.2 cells had significant pro-osteolytic effects.  Similarly, 4T1.2 

cells were able to increase osteoclastogenesis in RAW264.7 cells but its pro-osteolytic 

effects on RAW264.7 derived osteoclasts were not as prominent as 66c14 cells.  In this 

model, COX-2 and HIF1ɑ appeared to be important to 66c14 and 4T1.2-mediated 

increase in osteoclast differentiation.  COX-2 mediated osteoclastogenesis is already a 

well-known mechanism of osteoclast differentiation as its product PGE2 is a potent pro-

osteoclastic factor (111).  While some studies suggest that HIF1ɑ-mediated 

upregulation of angiopoietin like proteins and VEGF may be involved in osteoclast 

differentiation, the exact mechanisms governing HIF1ɑ-mediated osteoclastogenesis 

are not clear (172, 173).  We found that HIF1ɑ may be mediating VEGF levels in the 

co-culture of 4T1.2 + RAW264.7 cells treated with OSM, but the exact mechanism is 

not known.  On the other hand, 66c14 cells are upregulating a still unidentified pro-

osteoclastic factor mediated by HIF1ɑ. 

 

Conclusion 

 These highly variable effects by OSM on cancer pathogenesis make it unlikely 

that any anti-OSM therapies could be administered to patients with metastatic disease 

without further research.  There is a need for a more complete understanding of OSM 

and its effects on various types of cancer cells and the progression of metastases.  As 

cancer therapeutics move towards individualized therapies (174-176), and as the 

technology to characterize cancer cell behavior to various cytokines improves, anti 

OSM drugs may become a part of an individualized anti cancer regimen. 
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Figure A.1  Schematic Diagram of Generalized Metastatic Steps Necessary for 

Cancer Cells From Primary Tumors to Reach Secondary Sites
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Figure A.1:  Schematic Diagram of Generalized Metastatic Steps Necessary for Cancer 

Cells From Primary Tumors to Reach Secondary Sites.  Primary tumor cells proliferate 

and start to invade the surrounding tissue.  The tumor cells invade into the blood vessel 

in a process called intravasation and becomes a circulating tumor cell (CTC).  The cell 

can then extravasate from the blood stream and implant itself into a secondary site 

where it metastasizes.  The metastasized tumor cells proliferate to grow a secondary 

tumor at a distal site. 
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Figure A.2  OSM Induces Pro-Metastatic Effects in Mammary Cancer Cells 
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Figure A.2:  OSM Induces Pro-Metastatic Effects in Mammary Cancer Cells.  1) OSM 

can signal in an autocrine manner as OSM produced by the tumor cells binds to its own 

receptors.  2) OSM can also be produced by stromal cells surrounding the tumor that 

can act on the cancer cells and other cells in the microenvironment.  3) Experimentally, 

we add recombinant OSM that acts exogenously.  OSM can induce pro-metastatic 

factors such as VEGF, COX-2, and proteases that lead to tumor cell detachment, 

invasion, and increased metastatic potential. 
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Figure A.3 CXCR4/CXCL12-Mediated Chemokine Attraction to the Bone 
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Figure A.3:  CXCR4/CXCL12-Mediated Chemokine Attraction to the Bone.  One of the 

known ways cancer cells can target the bone is by expressing CXCR4, which increases 

the cancer cell’s propensity to move towards the CXCL12 concentration gradient.  

Injury to the bone as well as cancer metastasis to the bone increase inflammatory 

cytokines such as IL-6 and OSM.  These cytokines are thought to contribute to 

CXCL12 production in the bone, leading to increased cancer cell migration to the bone. 
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Figure A.4 66c14 and 4T1.2 Mouse Mammary Carcinoma Cells Metastasize to 

Different Organs When Injected Orthotopically into Balb/c Mouse 
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Figure A.4:  66c14 and 4T1.2 Mouse Mammary Carcinoma Cells Metastasize to 

Different Organs When Injected Orthotopically into Balb/c Mouse.  The metastatic 

profile of 4T1.2 cells are thought to resemble human breast cancer cells.  4T1.2 cells 

metastasize to the bone, lung, brain, and to the liver, while 66c14 cells metastasize only 

to the lung and the surrounding lymph nodes. 
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Figure A.5 The Metastatic 4T1.2 Cells Have More Intrinsic OSM Signaling 
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Figure A.5:  The Metastatic 4T1.2 Cells Have More Intrinsic OSM Signaling.  A, 4T1.2 

cells produce over 2-fold more OSM by ELISA as compared to 66c14 cells.  B, 

Representative image of a RT-PCR gel depicting higher OSMRβ expression in 4T1.2 

cells.  C, 4T1.2 cells demonstrate 2.5-fold more OSMRβ expression compared to 66c14 

cells.  Data represents an average of three separate experiments.  Asterisks indicate 

significant differences (p<0.05) vs –OSM control. 
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Figure A.6 OSM Inhibits Proliferation of 66c14 and 4T1.2 Cells but Only 

Induces Tumor Cell Detachment of 4T1.2 Cells 
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Figure A.6:  OSM Inhibits Proliferation of 66c14 and 4T1.2 Cells but Only Induces 

Tumor Cell Detachment of 4T1.2 Cells.  A, OSM decreases 66c14 cell proliferation by 

about 15% after 7 days in a cell proliferation assay.  B, OSM decreases 4T1.2 cell 

proliferation by about 20% after 7 days in a cell proliferation assay.  C, OSM does not 

induce detachment of 66c14 cells.  D, OSM increases detachment 2.5-fold of 4T1.2 

cells.  Data represents an average of three separate experiments, each data point 

performed in duplicate.  Asterisks indicate significant differences (p<0.05) vs –OSM 

control. 
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Figure A.7 OSM Increases VEGF Secretion by 4T1.2 but Not 66c14 cells, While 

HIF1� Expression is Induced by OSM in Both 66c14 and 4T1.2 Cells 
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Figure A.7:  OSM Increases VEGF Secretion by 4T1.2 but Not 66c14 cells, While 

HIF1� Expression is Induced by OSM in Both 66c14 and 4T1.2 Cells.  A, OSM does 

not significantly increase VEGF secretion in 66c14 cells.  Note the high level of VEGF 

produced by untreated cells.  B, OSM increases secreted VEGF levels in 4T1.2 cells by 

over 10-fold compared to non-treated cells.  C, Quantification of Western blot analysis 

represented in E, shows that OSM increases HIF1ɑ expression approximately 10-fold 

compared to untreated 66c14 cells. D, Quantification of Western blot analysis 

represented in E, shows that OSM increases HIF1ɑ by about 3-fold compared to 

untreated 4T1.2 cells.  E, Representative image of a HIF1ɑ Western blot depicting 

OSM-mediated upregulation of HIF1ɑ expression in 66c14 and 4T1.2 cells.  Data 

represents an average of three separate experiments, each data point performed in 

duplicate. Double asterisks indicate significant differences (p<0.01) vs –OSM control. 
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Figure A.8 OSM Increases COX-2 Expression in 66c14 and 4T1.2 Cells 
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Figure A.8:  OSM Increases COX-2 Expression in 66c14 and 4T1.2 Cells.  A, Maximal 

COX-2 expression in 66c14 cells stimulated by OSM peaks at 12 hours post-OSM 

treatment, leading to a 3.5-fold increase in COX-2 levels compared to time = 0.  B, 

Maximal COX-2 expression in 4T1.2 cells stimulated by OSM peaks at 6 hours leading 

to a 3-fold increase compared to time = 0.  Data represents an average of three separate 

experiments, each data point performed in duplicate. Asterisks indicate significant 

differences (p<0.05) vs time = 0. 
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Figure A.9 Injection of Recombinant Mouse OSM (rmOSM) Increases 

Metastases but not Tumor Growth in vivo in an Orthotopic 4T1.2 Mouse Model 
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Figure A.9:  Injection of Recombinant Mouse OSM (rmOSM) Increases Metastases but 

not Tumor Growth in vivo in an Orthotopic 4T1.2 Mouse Model.  A, In vivo, OSM has 

no effect on tumor proliferation rates.  B, rmOSM also has no effect on overall tumor 

burden (tumor weight/body weight).  C, rmOSM increases total number of metastases to 

the lung by about 50%.  D, About 80% of tumor-bearing mice that were treated with 

rmOSM have metastases to the spleen compared to only 30% of untreated mice.  Ninety 

percent of tumor bearing mice that were treated with rmOSM have metastases to the 

liver, as compared to only 40% of untreated mice.  Statistical analysis on section D was 

performed using the Fisher’s exact test.  Data represents an average of two separate 

experiments with five mice per group.  Asterisks indicate significant differences 

(p<0.05) vs untreated mice. 
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Figure A.10 In the 4T1.2 Mouse Models, the Size of Metastases Differs 

Depending on rmOSM Treatment, While the Number of Lung Metastases 

Changes with Tumor-Ulcerative Status 
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Figure A.10:  In the 4T1.2 Mouse Models, the Size of Metastases Differs Depending on 

rmOSM Treatment, While the Number of Lung Metastases Changes with Tumor-

Ulcerative Status.  A, rmOSM-treated mice bearing 4T1.2 tumors exhibits nearly 4-

times more small lung metastases (<0.5 mm) compared to untreated mice.  B, rmOSM-

treated mice bearing 4T1.2 tumors has 50% less large lung metastases (>0.5 mm) 

compared to untreated mice.  C, Mice with ulcerated tumors have 80% more metastases 

to the lung compared to mice that did not have ulcerated tumors.  Data represents an 

average of two separate experiments with five mice per group.  Asterisks indicate 

significant differences (P<0.05) vs untreated mice or non-ulcerated tumors. 
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Figure A.11  OSM-Treated Mice Have More Bone Metastases and Potentially 

Reduced Bone Integrity 
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Figure A.11:  OSM-Treated Mice Have More Bone Metastases and Potentially 

Reduced Bone Integrity.  A, Mice that were treated with rmOSM have more bone 

metastases, but this data is not statistically significant (Fisher’s exact test).  B, The 

black arrows point to metastases depicted by shadows in the radiograph (left), and dense 

packed cells in the histological H&E section (right).  C, Representative images of 

TRAP-stained bone sections.  rmOSM treated mice (right panel) have darker TRAP 

staining in general compared to untreated mice (left panel), indicating increased 

osteoclast numbers and activity.  Data represents an average of two separate 

experiments with five mice per group. 
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Figure A.12  Mouse OSM Expression Plasmid Design 
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Figure A.12:  Mouse OSM Expression Plasmid Design.  Mouse OSM cDNA was 

inserted into a mammalian expression vector (pcDNA3.1+) using the restriction enzyme 

EcoRI.  The expression is controlled by the viral cytomegalovirus promoter which is 

designed to promote high levels of constitutive expression of the insert.  This plasmid 

was used to transfect 66c14 and 4T1.2 cells to overexpress OSM endogenously. 
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Figure A.13   Overexpression of OSM in 66c14 and 4T1.2 Cells Transfected With 

the pcDNA3.1+OSM Construct 
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Figure A.13:  Overexpression of OSM in 66c14 and 4T1.2 Cells Transfected With the 

pcDNA3.1+OSM Construct.  A, Colony #61 is the highest producing transfected 66c14 

colony, secreting almost 5000 pg/ml of OSM as measured by ELISA which was nearly 

60-fold higher than untransfected cells.  B, Colony #51 is the highest producing 

transfected 4T1.2 colony, secreting almost 600pg/ml of OSM as measured by ELISA 

which was nearly 6-fold higher than untransfected cells.  Data represents and average of 

two separate experiments and each data point performed in quadruplicate.  Asterisks 

indicate significant differences (P<0.05) vs vector control. 
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Figure A.14    OSM-Overexpressing 66c14 and 4T1.2 Cells Depict Similar 

Characteristics to Parental Cells Treated with rmOSM 
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Figure A.14:  OSM-Overexpressing 66c14 and 4T1.2 Cells Depict Similar 

Characteristics to Parental Cells Treated with rmOSM.  A, OSM-overexpressing 66c14 

or colony #61 has 3 times more detached cells compared to the vector control or 

untransfected cells.  B, OSM-overexpressing 4T1.2 or colony #51 cells has 2 times 

more detached cells compared to other overexpressing colonies, and about 30-fold more 

detached cells compared to the vector control or the untransfected cells.  C, There is no 

difference in secreted VEGF levels by ELISA between 66c14+vector cells and 66c14 

OSM-overexpressing cells.  D, OSM-overexpressing 4T1.2 or colony #51 has 10-fold 

more secreted VEGF levels as measured by ELISA compared to untransfected cells or 

the vector control.  Data represents an average of three separate experiments and each 

data point performed in duplicate.  Asterisks indicate significant differences (* P<0.05, 

** P<0.01) vs vector control. 
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Figure A.15  OSM-Overexpressing 66c14 Cells Grow Much Faster Than Vector 

Control Cells in vivo in an Orthotopic 66c14 Mouse Model 
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Figure A.15: OSM-Overexpressing 66c14 Cells Grow Much Faster Than Vector 

Control Cells in vivo in an Orthotopic 66c14 Mouse Model.  By day 30, the size of the 

tumor is volumetrically about 7-fold larger on mice with 66c14^OSM tumor cells 

compared to 66c14+vector cells.  The average tumor growth rate, as extrapolated by 

linear curve analysis, of the 66c14^OSM tumors is 209 mm3//day, while the growth rate 

of 66c14+vector tumors is 32 mm3//day.  Overall, the growth rate of the tumor is 6.5 

times faster in mice with 66c14^OSM tumors compared to 66c14+vector tumors.  Data 

represents an average of one experiment with eleven mice per group.  Double asterisks 

indicate significant differences (P<0.01) vs vector control cells. 
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Figure A.16  OSM-Overexpressing 66c14 Cells Have Reduced Numbers of 

Metastases, but Larger Total Metastatic Volume Compared to 66c14+Vector Cells 

in vivo in an Orthotopic 66c14 Mouse Model 
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Figure A.16:  OSM-Overexpressing 66c14 Cells Have Reduced Numbers of Metastases, 

but Larger Total Metastatic Volume Compared to 66c14+Vector Cells in vivo in an 

Orthotopic 66c14 Mouse Model.  A, Tumor burden is 3-fold higher in 66c14^OSM 

injected mice compared to mice injected with 66c14+vector cells.  B, Total number of 

metastases to the lung are 11 times higher in 66c14+vector tumor cell-injected mice 

compared to 66c14^OSM tumor cell-injected mice.  C, Total volume of lung metastases 

are 6 times higher in 66c14^OSM tumor cell-injected mice compared to mice injected 

with 66c14+vector cells.  D, The average size of the lung metastases is larger in mice 

bearing 66c14^OSM tumors by about 2.5-fold compared to mice bearing 66c14+vector 

tumors.  Data represents an average of one experiment with eleven mice per group.  

Asterisks indicate significant differences (P<0.05) vs vector control cells. 
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Figure A.17 OSM-Overexpressing 4T1.2 Cells fail to Grow and Metastasize in 

vivo in an Orthotopic 4T1.2 Mouse Model 
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Figure A.17:  OSM-Overexpressing 4T1.2 Cells fail to Grow and Metastasize in vivo in 

an Orthotopic 4T1.2 Mouse Model.  A, 4T1.2^OSM cells injected into mice, grew 

tumors up to day 16, which subsequently shrank in size while the tumors from 

4T1.2+vector cell-injected mice continued to grow.  B, 4T1.2^OSM injected mice have 

an average tumor burden of 1%, while 4T1.2+vector injected mice have an average 

tumor burden of 24%.  C, 4T1.2^OSM-injected mice have no lung metastases, while 

4T1.2+Vector mice average about 10 metastases to the lung.  Data represents an 

average of one experiment with ten mice per group.  Asterisks indicate significant 

differences ( *P<0.05,  **P<0.01, ***P<0.001) vs vector control cells. 
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Figure A.18 4T1.2^OSM-Injected Mice Have a Much Higher Survival Rate 
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Figure A.18:  4T1.2^OSM-Injected Mice Have a Much Higher Survival Rate.  A, The 

photographs depict endpoint criteria for the survival experiment showing a 20mm in 

diameter tumor (left), 10% weight loss, or high levels of metastases causing cachexia 

(right panels).   B, 4T1.2^OSM cell-injected mice survived longer than controls, with 

90% of the mice sill alive at the end of the experiment (day 72) and no sign of 

metastatic disease.  All of the 4T1.2+Vector cell-injected mice died by day 57.  

Statistical analysis on section B was done with the Log-Rank test.  Data represents an 

average of one experiment with ten mice per group.  Triple asterisks indicate significant 

differences (P<0.001) vs vector control cells. 
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Figure A.19 Schematic Demonstrating Preparation of Pre-Osteoclasts for 

Osteoclastogenesis Experiment
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Figure A.19:  Schematic Demonstrating Preparation of Pre-Osteoclasts for 

Osteoclastogenesis Experiment.  Femurs and tibias are extracted from Balb/c mice and 

their bone marrow is flushed out into a culture dish.  After a 48 hour incubation at 37oC, 

non-adherent bone marrow cells are collected for co-cultures.  The collected bone 

marrow cells are co-cultured with 4T1.2 or 66c14 cells and treated with 5 ng/ml m-CSF, 

10 ng/ml +/- RANKL, +/- 25 ng/ml OSM.  After a 7-10 day incubation at 37oC, 

osteoclasts are stained via a TRAP+ stain. 
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Figure A.20 66c14 Mouse Breast Cancer Cells and OSM Synergistically Increase 

Osteoclastogenesis with Non-Adherent Bone Marrow (BM) Cells 
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Figure A.20:  66c14 Mouse Breast Cancer Cells and OSM Synergistically Increase 

Osteoclastogenesis with Non-Adherent Bone Marrow (BM) Cells.  In the absence of 

OSM, there is little to no TRAP+ cells in any of the cultures.  A, Without RANKL, 

66c14 +BM+OSM cultures generated about 200 TRAP+ cells, while in the presence of 

RANKL, the number of TRAP+ cells increases to about 800.   B, Without RANKL, 

4T1.2+BM+OSM cultures generate about 150 TRAP+ cells, while in the presence of 

RANKL, the number of TRAP+ cells increase to about 200.  This increase was non-

significant.  C, Without RANKL, BM+OSM cultures generate about 150 TRAP+ cells, 

while in the presence of RANKL, the number of TRAP+ cells increases to about 250.  

Data represents an average of six separate experiments and each data point performed in 

duplicate.  Asterisks indicate significant differences (P<0.05) vs BM only cultures. 
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Figure A.21 Representative Images of TRAP+ Cells Detected in 

Osteoclastogenesis Assays
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Figure A.21:  Representative Images of TRAP+ Cells Detected in Osteoclastogenesis 

Assays.  Black arrows indicate TRAP+ stained cells (dark purple).  Largest osteoclasts 

are seen in co-cultures containing 66c14 cells +OSM. 
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Figure A.22 As with the Addition of Recombinant OSM, 66c14^OSM Cells 

Increase Osteoclast Differentiation of BM cells in the Presence of RANKL 
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Figure A.22:  As with the Addition of Recombinant OSM, 66c14^OSM Cells Increase 

Osteoclast Differentiation of BM cells in the Presence of RANKL.  A, 66c14^OSM cells 

increase osteoclast differentiation by 8-fold compared to 66c14 cells transfected with an 

empty vector.  Co-cultures containing 4T1.2 OSM-overexpressing cells do not increase 

the number of TRAP+ cells.  B, TRAP+ multinucleated cells are seen predominantly in 

cultures containing OSM-overexpressing 66c14^OSM cells.  There is a 15-fold increase 

in TRAP+ cells in co-cultures containing 66c14^OSM cells compared to co-cultures 

containing 66c14+vector control cells.  Data represents an average of two separate 

experiments, and each data point performed in quadruplicate.  Asterisks indicate 

significant differences (P<0.05) vs BM only cultures. 
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Figure A.23 66c14 Cells Express Pro-Osteoclastic Markers Analyzed via ELISA 

on Osteoclastogenesis Culture Supernatants, While Expression of RANKL is 

Unchanged as Analyzed by Western Blot 
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Figure A.23:  66c14 Cells Express Pro-Osteoclastic Markers Analyzed via ELISA on 

Osteoclastogenesis Culture Supernatants, While Expression of RANKL is Unchanged as 

Analyzed by Western Blot.  A, 66c14 express 9-fold higher levels of m-CSF compared 

to the other cells, while 4T1.2 cells or BM cells alone do not express a significant 

amount.  The additions of OSM or osteoblasts in the culture have no effect of m-CSF 

expression levels.  B, 66c14 cells have the highest expression of VEGF, having 2-fold 

more VEGF secretion compared to 4T1.2 cells and 4-fold more VEGF compared to BM 

cells alone.  Again, OSM has minimal effect on these VEGF levels.  Addition of 

osteoblasts in the co-culture system increased the VEGF level in 4T1.2 and BM alone 

cultures by about 20-50%.  C. Both 4T1.2 cells and 66c14 cells produce RANKL 

however, RANKL expression is not significantly affected by OSM.  Except for section 

C, data represents an average of six separate experiments and each data point performed 

in duplicate.  Asterisks indicate significant differences (*P<0.05, **P<0.01) vs BM only 

cultures.  Data for section C is a representative image of 2 separate experiments. 
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Figure A.24  Suppression of HIF1ɑɑɑɑ by the HIF1ɑɑɑɑ Inhibitor YC-1 Inhibits 

66c14+OSM-Mediated Osteoclast Differentiation of BM Cells 
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Figure A.24:  Suppression of HIF1� by the HIF1� Inhibitor YC-1 Inhibits 

66c14+OSM-Mediated Osteoclast Differentiation of BM Cells.   A, OSM increases 

osteoclastogenesis in RANKL-treated 66c14 cell co-cultures by 7-fold.  YC-1 a 

chemical inhibitor to HIF1ɑ decreases osteoclast differentiation in co-cultures 

containing 66c14 and RANKL by about 60%.  YC-1 has no effect on cultures 

containing 4T1.2 cells or BM cells alone. B, Conditioned media from 66c14 cells 

treated with +/- OSM and +/- HIF1ɑ siRNA was applied to bone marrow cell 

osteoclastogenesis experiments.  OSM increases osteoclastogenesis by 3.5-fold while 

HIF1ɑ siRNA reduces osteoclast differentiation by 50%.  Data represents an average of 

two separate experiments, and each data point performed in quadruplicate. Asterisks 

indicate significant differences (*P<0.05) vs 66c14 + OSM cultures without HIF1ɑ 

inhibition 
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Figure A.25  Schematic Diagram of Osteoclastogenesis Co-Culture Experiments 

with Osteoblasts 
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Figure A.25:  Schematic Diagram of Osteoclastogenesis Co-Culture Experiments with 

Osteoblasts.  The non-adherent bone arrow cells were prepared as before, and co-

cultured with 4T1.2 or 66c14 cells +/-OSM, and m-CSF for 7-10 days.  UMR106 

osteoblastic cells are added to the co-cultures as a source of RANKL. 
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Figure A.26 Osteoblasts, in Conjunction with OSM, Increase the Number of 

Multi-Nucleated TRAP+ Cells in Osteoclastogenesis Experiments 
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Figure A.26:  Osteoblasts, in Conjunction with OSM, Increase the Number of Multi-

Nucleated TRAP+ Cells in Osteoclastogenesis Experiments.  Co-cultures were grown 

for 7-10 days +m-CSF (5ng/ml) and +/-OSM (25 ng/ml) but no RANKL.   A, Without 

the presence of osteoblasts, neither OSM nor cancer cells induces the differentiation of 

osteoclasts in bone marrow cells.  The addition of osteoblasts causes an increase in 

osteoclastogenesis.  4T1.2-OSM+osteoblast cultures produces 2.5-fold higher number 

of TRAP+ cells compared to +OSM treated culture, while in cultures containing 66c14 

cells there is no difference between +/- OSM treatments.  The addition of OSM to 

cultures containing BM+osteoblast co-cultures increase TRAP+ cells by 3-fold.   B, 

Multinucleated TRAP+ cells were seen only in osteoclastogenesis cultures with 

osteoblasts in the presence of OSM.  Cultures containing 4T1.2 cells have about 20-

30% higher number of multinucleated cells than BM+osteoblast co-cultures.  C,  

RANKL ELISA  performed on these osteoclastogenesis co-culture experiments reveal 

that the addition of osteoblasts to the cultures increases the level of secreted RANKL. 

The highest levels of RANKL is seen in co-cultures containing 66c14 cells and shows a 

2-fold increase in RANKL levels compared to other cell co-cultures conditions.  There 

is also a trend where OSM increases RANKL secretion levels but this trend is not 

statistically significant.  Data represents an average of two separate experiments, and 

each data point performed in quadruplicate.  Asterisks indicate significant differences 

(*P<0.05) vs BM + osteoblast cultures. 
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Figure A.27 Osteoclast Activity is Higher in Cultures Containing 4T1.2 Cells 
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Figure A.27:  Osteoclast Activity is Higher in Cultures Containing 4T1.2 Cells.  

Osteoclast activity is measured in a bone resorption assay of cancer cells, BM cells, and 

live mouse calvaria for 10 days for release of calcium from the bone to the medium.  A,  

OSM has no effect on cultures containing 66c14 cells, while OSM causes an increase in 

free calcium in cultures containing only bone by about 10-20%.  4T1.2 cells + OSM has 

30% higher amounts of free calcium compared to –OSM controls.  The addition of 

RANKL increases free calcium levels in all conditions by about 10%.  B, 

Representative images of calvaria seen in bone resorption cultures.  Straight edges 

indicate little to no resorption, while jagged edges and fragmentation of bone indicate a 

higher level of bone resorption.  Data represents an average of five separate experiments.  

Asterisks indicate significant differences (*P<0.05) vs BM + osteoblast cultures. 
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Figure A.28 Schematic of Osteoclastogenesis Co-Culture Experiments Including 

RAW264.7 Cells 
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Figure A.28:  Schematic of Osteoclastogenesis Co-Culture Experiments Including 

RAW264.7 Cells.  RAW264.7 monocytic cells have been shown to differentiate into 

osteoclasts and are used in the osteoclastogenesis co-cultures to replace bone marrow 

cells.  As before, 4T1.2 or 66c14 cells are added to the co-culture along with 5ng/ml of 

m-CSF +/- 25 ng/ml OSM, 10 ng/ml, +/- RANKL.  After 7-10 day incubation, 

osteoclasts are stained via a TRAP+ stain. 
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Figure A.29 RAW264.7 Monocytic Cell Lines Undergo Osteoclastogenesis in 

Response to OSM-Stimulated 4T1.2 Cells but Not 66c14 Cells 
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Figure A.29:  RAW264.7 Monocytic Cell Lines Undergo Osteoclastogenesis in 

Response to OSM-Stimulated 4T1.2 Cells but Not 66c14 Cells.  Unlike with BM cells, 

there is no significant difference of osteoclastogenesis with OSM treatments of co-

cultures containing A) 66c14 cells or B) RAW264.7 cells alone.  The total number of 

TRAP+ cells is around 20-35.  The YC-1 HIF1ɑ chemical inhibitor increases osteoclast 

differentiation in these cultures by about 50%.  C, OSM significantly increases 

RAW264.7 osteoclastogenesis in cultures containing 4T1.2 cells by approximately 10-

fold compared to -OSM controls.  HIF1ɑ siRNA, COX2 siRNA, and YC-1 decrease 

OSM-induced osteoclastogenesis by about 70%.  Data represents an average of two 

separate experiments, and each data point performed in quadruplicate.  Asterisks 

indicate significant differences (*P<0.01) vs – OSM controls unless otherwise depicted. 
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Figure A.30 Conditioned Media From OSM-Treated Cancer Cells Increases 

Osteoclastogenesis of RAW264.7 Cells and Is Mediated by HIF1ɑɑɑɑ 
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Figure A.30:  Conditioned Media From OSM-Treated Cancer Cells Increases 

Osteoclastogenesis of RAW264.7 Cells and Is Mediated by HIF1�.  Conditioned media 

from 4T1.2 cells treated with +/- OSM and +/- HIF1ɑ siRNA is applied to RAW264.7 

cell osteoclastogenesis co-culture experiments.  OSM increases osteoclast 

differentiation by 4-fold while the HIF1ɑ siRNA attenuated OSM-mediated 

osteoclastogenesis by 60%.  Data represents an average of two separate experiments, 

and each data point performed in quadruplicate. Asterisks indicate significant 

differences (*P<0.05) vs control siRNA treatments. 

 
 



149 

 

  

 
Figure A.31 4T1.2 Cells Produce VEGF and IL-6 in Response to OSM 
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Figure A.31:  4T1.2 Cells Produce VEGF and IL-6 in Response to OSM.  A, OSM-

treated 4T1.2 cells produce a 2-fold increase in VEGF secretion by ELISA, but this 

production is not inhibited by HIF1ɑ siRNA.  When 4T1.2 cells are co-cultured with 

RAW264.7 cells, the amount of secreted VEGF increases by 3-fold overall, while the 

addition of OSM increases the level of VEGF by another 2-fold in the co-culture.  

HIF1ɑ siRNA was able to reduce OSM-mediated VEGF induction in the co-cultures to 

the level of controls (-OSM treatment).  B, Secreted IL-6 levels increases in response to 

OSM 4-fold in 4T1.2 cells.  IL-6 levels are not affected by co-culturing with 

RAW264.7 cells or by HIF1ɑ siRNA.  RAW264.7 cells by themselves produce little 

VEGF or IL-6 on their own.   Data represents an average of two separate experiments, 

and each data point performed in quadruplicate.  Asterisks indicate significant 

differences (*P<0.05) vs – OSM controls unless otherwise depicted. 
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Figure A.32 Neutralizing Antibodies to VEGF and IL-6 Inhibit 

Osteoclastogenesis in RAW264.7 Cells 
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Figure A.32:  Neutralizing Antibodies to VEGF and IL-6 Inhibit Osteoclastogenesis in 

RAW264.7 Cells.  A, Treatment with OSM, increases osteoclast differentiation in the 

4T1.2+RAW264.7 co-cultures by about 3-fold.  Addition of VEGF or IL-6 neutralizing 

antibodies inhibits OSM-mediated stimulation of osteoclast differentiation in co-

cultures containing 4T1.2 and RAW264.7 cells by about 50%.  B, Conditioned media 

from 4T1.2 cells treated with +/- OSM, +/- anti VEGF neutralizing antibody, and +/- 

anti-IL-6 neutralizing antibody were added to RAW264.7 cultures.  Conditioned media 

from 4T1.2 cells treated with anti-VEGF or anti-IL-6 neutralizing antibodies attenuated 

OSM-mediated increase in osteoclastogenesis to control levels (-OSM).  Data 

represents an average of two separate experiments, and each data point performed in 

quadruplicate. Asterisks indicate significant differences (*P<0.05) vs cultures untreated 

with antibodies. 
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Figure A.33  Conditioned Media From 66c14 but Not 4T1.2 cells Treated with 

OSM Significantly Increases RAW264.7 Cell-Derived Osteoclast Activity 
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Figure 33:  Conditioned Media From 66c14 but Not 4T1.2 cells Treated with OSM 

Significantly Increases RAW264.7 Cell-Derived Osteoclast Activity.  Osteoclasts are 

derived from differentiating RAW264.7 cells in osteoclast differentiation media 

containing 100 ng/ml of RANKL and 25 ng/ml m-CSF in ɑ -MEM.  Differentiated 

osteoclasts are plated on osteologic multi-test plates. Conditioned media from 66c14 

and 4T1.2 cells treated with +/- OSM and +/- UMR106 osteoblastic cells were added to 

the multi test plates.  The cells were also treated with +/- NS398, a COX-2 inhibitor.  A, 

Conditioned media from 66c14 cells treated with OSM increases osteoclast activity by 

2-fold, while NS398 inhibits osteoclast activity down to control levels (-OSM).  The 

conditioned media from 66c14 cultures containing UMR106 cells, slightly but not 

significantly, increases osteoclast activity.  B, Conditioned media from 4T1.2 cells 

treated with OSM, slightly but not significantly, increases osteoclast activity and NS398 

fails to inhibit osteoclast activity.  The presence of UMR106 cells in 4T1.2 cell 

conditioned media attenuated any effect of OSM mediated increase of osteoclast 

activity.  C, representative images of osteoclast activity in osteologic plates.  White 

areas represent areas resorbed by osteoclasts.  Data represents an average of three 

separate experiments. Asterisks indicate significant differences (*P<0.05) vs –OSM 

controls. 
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Figure A.34 Model of Osteoclastogenesis 
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Figure A.34:  Model of Osteoclastogenesis.  4T1.2 cells and 66c14 cells stimulate 

different pro-osteoclastic lineages.  While all osteoclasts are of haematopoietic lineage, 

osteoclasts that reside in the bone are derived from either the haematopoietic cells in the 

bone marrow or the peripheral blood mononuclear cells circulating in the blood.  

RANKL derived from osteoblasts or other cells in the bone stimulate osteoclast 

differentiation of both PBMCs and BM cells.  4T1.2 cells stimulate osteoclastogenesis 

in PBMC’s while 66c14 cells stimulate osteoclastogenesis in bone marrow derived 

haematopoietic stem cells.   66c14 cells produce m-CSF, an early stimulator of 

osteoclastogenic pathway, while 4T1.2 cells do not.  It is thought that PBMCs are more 

differentiated than bone marrow haematopoietic stem cells and do not need m-CSF.  

Additionally, IL-6 secreted by 4T1.2 cells treated with OSM may stimulate osteoclast 

differentiation with the PBMCs rather than the BM cells.  
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ABSTRACT 

Metastatic events to the bone occur frequently in numerous cancer types such as breast, 

prostate, lung and renal carcinomas, melanoma, neuroblastoma, and multiple myeloma.   

Accumulating evidence suggests that the inflammatory cytokine interleukin-6 (IL-6) is 

frequently upregulated and is implicated in the ability of cancer cells to metastasize to 

bone.   IL-6 is able to activate various cell signaling cascades that include the signal 

transducers and activator of transcription (STAT) pathway, the phosphatidylinositol-3 

kinase (PI3K) pathway, and the mitogen-activated protein kinase (MAPK) pathway.  

Activation of these pathways may explain the ability of IL-6 to mediate various aspects 

of normal and pathogenic bone remodeling, inflammation, cell survival, proliferation, 

and pro-tumorigenic effects. This review article will discuss the role of IL-6: i) in bone 

metabolism, ii) in cancer metastasis to bone, iii) in cancer prognosis, and iv)  as 

potential therapies for metastatic bone cancer. 
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INTRODUCTION 

Bone homeostasis is maintained by a variety of cell types that control 

remodeling of the bone matrix.  Two important cell types that mediate bone 

homeostasis are osteoblasts and osteoclasts. Osteoblasts contribute to the bone matrix 

by production of type I collagen, deposition of hydroxyapatite crystals into the collagen 

matrix, and regulation of osteoclast activity (1, 2).   Osteoblasts are of mesenchymal 

origin and differentiate from pre-osteoblasts.  This process occurs via bone 

morphogenic proteins (BMPs) that induce runt-related transcription factor 2 (Runx2), 

leading to increased alkaline phosphatase activity (1).  Conversely, osteoclasts resorb 

bone matrix (3) and differentiate from the hematopoietic cell lineage upon stimulation 

in a differentiation process called osteoclastogenesis.  Osteoclastogenesis is mediated 

by cytokines such as receptor activator of NF-κB ligand (RANKL) and macrophage-

colony stimulating factor (m-CSF) (Fig. 1A) (3, 4).  RANKL, a membrane-bound 

ligand, and m-CSF a secreted factor, are primarily produced by osteoblasts (5).  

Osteoclastogenesis is regulated primarily via RANKL and osteoblast-produced 

osteoprotegrin (OPG) expression, a decoy receptor to RANKL that suppresses RANKL 

activity (6).  Osteoblasts that express RANKL have cell-to-cell contact with osteoclasts 

via ligand-receptor binding between RANKL and RANK (receptor activator of NF-κB) 

expressed on osteoclasts (7).  RANKL functions to promote osteoclast differentiation 

and activity through stimulation of various pathways including the phosphatidylinositol-
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3 kinase (PI3K) pathway and the mitogen activated protein kinase (MAPK) pathway.  

The MAPK pathway leads to the activation of c-fos, nuclear factor of activated T-cells-

2 (NFAT2), and other transcription factors.(8, 9)  Cleavage of RANKL from the cell 

membrane by proteinases such as matrix metalloproteinase-7 (MMP7) yields the 

soluble form of RANKL (sRANKL), which has a physiological function that is still 

disputed, although both anti- and pro-osteoclastogenic effects have been reported (5, 

10-12).  

As osteoclasts differentiate in response to pro-osteoclastic factors, these cells 

create a segregated zone, a sealed area between the osteoclast and the bone matrix (9).  

Osteoclasts then release hydrogen ions into the segregated zone, solubilizing the 

hydroxyapatite crystals and promoting acid-activated proteinases such as cathepsin K to 

degrade the collagen matrix (9, 13).  Osteoblasts generate new matrix to fill the vacant 

area.  The rate at which osteoclasts differentiate and resorb bone is carefully regulated 

by osteoblast-produced RANKL and OPG.  Other cells in the bone matrix such as 

osteocytes, terminally-differentiated osteoblasts, are able to regulate the generation and 

resorption of bone matrix by affecting osteoblast and osteoclast activity (14).  When 

osteocytes are mechanically stimulated by shock to bone resulting in dynamic fluid 

movement, they promote alkaline phosphatase activity in osteoblasts by cell-to-cell 

contact through the RANK/RANKL complex, increasing bone mineralization and 

turnover (15-17).  In this manner, damaged sections of the bone are removed and are 

replaced with new bone matrix by osteoblasts.   

In normal bone, homeostasis is constantly maintained and bone integrity is 

preserved by a continuous cycle of bone renewal.  However, when cancer cells 
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metastasize to the bone, the balanced and complex interplay of the cells is disrupted, 

leading to a pathologic condition that compromises bone integrity.  One of the many 

characteristics that bone-homing cancer cells have in common is that most of them 

release copious levels of interleukin (IL-6), which helps in facilitating bone invasion 

and growth of metastatic lesions (18-20).    In this mini-review article, the role of IL-6 

in facilitating bone metastasis and approaches to measure serum IL-6 to predict 

progression of metastatic disease will be discussed.  Additionally, new therapies 

targeting IL-6 and their potential efficacy in preventing bone metastasis will be 

reviewed. 

 

Frequency, Consequences, and Mechanisms of Cancer Cell Metastases to Bone 

 Various types of cancers metastasize to the bone, including breast, prostate, lung, 

thyroid, kidney, multiple myeloma, melanoma, and neuroblastoma (21-25).  Usually the 

bone is only compromised at the site of metastasis, and not all types of bone metastases 

affect the bone in the same way.  For example, breast cancer predominantly causes 

osteolytic lesions, resulting in an upregulation of osteoclast activity and subsequent 

decreased bone density and integrity that may lead to fractures (22, 26). Conversely, 

prostate cancer results in primarily osteoblastic lesions that are caused by cytokine-

induced upregulation of osteoblast activity and subsequent increased bone density (26).  

This type of bone metastases causes thickening of the bone, resulting in the possibility 

of nerve compression, vertebral fusion, and spinal cord compression depending on the 

location of the metastases.  In contrast to what is found in normal bone where collagen 

fibers are highly organized and tightly packed, bone created by osteoblastic lesions 
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contains disorganized and fragile collagen fibrils (27). This leads to a high degree of 

bone brittleness, increase in potential fractures, and pain as the normal bone is replace 

by abnormal bone created by the osteoblastic lesions.  A subset of prostate cancers may 

also cause osteolytic lesions due to the expression of different cytokines that promote 

osteoclast activity rather than osteoblast activity (28).  Multiple myeloma causes only 

osteolytic lesions.  Other cancers, including lung, kidney and thyroid carcinomas, result 

in primarily osteolytic lesions, but osteoblastic lesions occur occasionally (26, 29).  

Metastasis of the primary tumor to the bone occurs in about 60-75% of patients with 

breast cancer, prostate cancer, neuroblastoma, or multiple myeloma (21-23, 30).   

Metastases to the bone from other cancers such as lung, kidney, and thyroid only occur 

in 30-50% of patients (24).   

 The molecular mechanisms that determine when a cancer cell will metastasize to 

bone are not completely understood.  Recent evidence shows that the CXC chemokine 

receptor 4/chemokine (C-X-C motif) ligand 12 CXCR4/CXCL12 axis may play a role 

in this metastatic process.  Studies have demonstrated that cancer cells are attracted to 

the bone marrow due to the relatively high levels of CXCL12 expressed by osteoblasts , 

which acts as an attractant for the CXCR4 ligand-positive cancer cells (31).  Numerous 

studies have demonstrated that bone metastatic cancer cells from the breast, prostate, 

and myeloma overexpress the CXCR4 ligand, which promotes homing and metastasis 

to the bone and other organs (32-35).  Inflammatory cytokines, such as IL-6,  increase 

CXCR4 expression in breast cancer cells, specifically in a STAT3, and c-Jun dependant 

manner (36).  Given these findings, therapeutics designed to block the 

CXCR4/CXCL12 axis are being evaluated in the prevention of bone metastases (37).   
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 Once cancer cells colonize in the bone, they have to adapt to the challenges of 

cell survival and growth in a foreign tissue environment.  The bone is a reservoir of a 

complex mixture of growth factors (38) that are released as the bone is degraded by 

metastatic lesions.  The mixture of these growth factors include TGF-beta, insulin like 

growth factor 1 (IGF-1), insulin like growth factor 2 (IGF-2), platelet derived growth 

factor, bone morphogenic proteins, fibroblast growth factors, and other factors that 

significantly improve tumor cell survival and growth (39).  These factors can promote 

the expression of pro-survival signals such as B-cell lymphoma 2 (Bcl-2), and AKT 

which inhibit apoptosis in the cancer cells.  In addition, these factors can also support 

further osteoclast differentiation and activity, leading to a vicious positive feedback 

loop (the viscous tumor-bone cycle) where additional growth factors are released, 

stimulating increased cancer cell growth and accelerated bone destruction. This 

accelerated bone destruction can lead to rapid loss of bone integrity in cancer patients 

causing fractures, pain, and loss of mobility. 

 

Interleukin-6, other Cytokines, and Growth Factors in the Bone 

Microenvironment 

 IL-6 is a major pleiotropic, pro-inflammatory cytokine which plays a role in 

immune response, hematopoiesis, cell differentiation, wound repair, and bone 

remodeling (40, 41).  Inflammation in the bone caused by injury or disease increases 

expression of IL-6 by reactive stromal cells of the bone and infiltrating monocytes and 

macrophages, promoting bone remodeling evidenced by higher osteoclast activity (42).   

The reactive stromal cells for bone metastases are generally the mesenchymal stem cells 
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in the bone marrow as well as the fibroblasts, osteoblasts, and osteocytes in the region.  

IL-6 production is directly stimulated by prostaglandin E2 (PGE2) and transforming 

growth factor-beta (TGFβ), while interleukin-1 beta (IL-1β), and lipopolysaccharides 

indirectly stimulate IL-6 production via NF-κB activation (Fig. 2) (43-48).  IL-6 binds 

to its heterotrimeric receptor, consisting of two gp130 subunits and an IL-6 receptor 

subunit, on target cells and activates the signal transducers and activators of 

transcription (STAT), mitogen-activated protein kinase (MAPK), and 

phosphatidylinositol-3 kinase (PI3K).(49-52)  IL-6 signaling through the Jak/STAT3 

pathways lead to expression of RANKL from osteoblast/stromal cells, causing direct 

stimulation of osteoclast differentiation and activity and resulting in bone destruction 

(Fig 3) (53, 54).  Studies using IL-6 knockout mice have demonstrated that IL-6 is 

necessary for upregulating osteoclast activity and bone resorption in vivo.   IL-6 

knockout mice were shown to be protected from increased osteoclast activity and 

subsequent bone degradation when their bones were injected with the arthritis-inducing 

antigen heat-killed Mycobacterium tuberculosis (55).  IL-6 knockout bones that 

received antigen injections had less RANKL and interleukin-17 (IL-17) expression as 

well as reduced osteolysis and cartilage destruction near the site of injection compared 

to wild-type mice.  IL-17 is a pro-inflammatory and pro-osteoclastogenic cytokine 

implicated in arthritis and tumorigenesis that is produced in CD4+ helper and tumor 

infiltrating T-cells when activated by IL-6 (56, 57).  Additional mouse studies have 

demonstrated that inhibition of IL-6 activity, with an IL-6 receptor (IL-6R) antagonist 

that inhibits downstream receptor signaling, reduces bone resorption (58).   These 
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results suggest that IL-6 plays a major role in the upregulation of additional pro-

osteoclastic factors essential for osteoclast activity. 

 Deregulation of IL-6 expression is implicated in disorders of bone homeostasis 

such as osteoporosis and osteopetrosis.   Sex hormones such as 17-β-estradiol and 

testosterone have been implicated for regulating IL-6 levels in the bone 

microenvironment.  17-β-estradiol is known for its bone-preserving effects, which is 

supported by the fact that post-menopausal women experience a decrease in bone 

mineralization and density that may lead to osteoporosis (59).  A recent study shows 

that 17-β-estradiol reduces both IL-6 and IL-8 production by monocytes and multiple 

myeloma cells through a mechanism that is not yet fully understood (60, 61).  The 

chemokine interleukin-8 (IL-8) is also a pro-inflammatory molecule, which like IL-6, 

can increase inflammation in the bone and cause excessive bone resorption by 

upregulating the transcription factor NF-κB (62, 63).  In turn, increased NF-κB activity 

stimulates IL-6 expression and secretion into the extracellular matrix (64).  Studies have 

shown that the binding of 17-β-estradiol to the estrogen receptor inhibits NF-κB  

transcriptional activity by preventing inhibitor of nuclear factor κB alpha (IκBα) 

degradation, leading to decreased IL-6 expression (60, 65).  IκBα is normally 

constitutively expressed and bound to NF-κB, thus preventing the translocation of the 

transcription factor into the nucleus and initiation of the transcription of NF-κB-related 

genes (66). 17-β-estradiol has also been shown to suppress IL-6 activity by inhibiting 

STAT3 through upregulation of protein inhibitor of activated STAT3 (PIAS3) (67).  In 

addition, testosterone decreases IL-6 expression by inhibiting NF-κB activity in 

osteoblasts via the hypothalamic-pituitary-adrenal axis, normally a potent stimulator of 
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IL-6 production.  Both of these result in testosterone-mediated bone-preserving effects 

(68-70).  Therapies that involve suppression of testosterone and 17-β-estradiol are 

effective against androgen-dependent prostate and breast cancer respectively, however 

bone density decreases significantly with these therapies leading to an increased chance 

of developing osteoporosis (71).    

 

IL-6 Production by Cancer Cells and Stromal Cells in the Bone Microenvironment 

Facilitates Invasion and Metastasis 

 IL-6 produced by cancer cells initiates a variety of downstream signaling 

cascades that can lead to bone destruction (Fig. 1B).  Many cancer cell types that 

metastasize to the bone endogenously produce and secrete high levels of IL-6.  On the 

other hand, other cancer cell types stimulate the surrounding stromal cells to release 

copious amounts of this cytokine.  Some cancer cell types such as IL-6-dependent 

multiple myeloma cells do not express IL-6 and rely on the bone microenvironment’s 

reactive stromal cells to produce IL-6 in response to the presence of the tumor cells (72).  

This stroma-dependent increase of IL-6 in the extracellular matrix may be specific to 

the microenvironment of the metastasis.  For example, injection of Walker (W256) 

mouse mammary cancer cells and MatLyLu (MLL) mouse prostate cancer-like cells 

into mice has been shown to differentially express IL-6 depending on the location (73).  

Specifically, local injection of W256 and MLL cells into the bone caused upregulation 

of IL-6, macrophage colony stimulating factor (M-CSF), RANKL, and Dickkopf-

related protein 1 (DKK1) in the bone stromal cells.  DKK1 is a member of the dickkopf 

family of factors that has been shown to be elevated in the bone marrow of patients with 
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breast cancer bone metastases (74).  However, when these cells metastasized to non-

osseous organs, there was little to no expression of IL-6, M-CSF, RANKL or DKK1, 

indicating that some cancer cells stimulate surrounding cells to release pro-osteoclastic 

factors only in the bone microenvironment (73, 75).  

 It has been proposed that cancer cells induce an inflammatory response in 

osteoblasts which may lead to the stimulation of osteoclast differentiation and activity 

(76, 77).  The inflammatory response of osteoblasts in response to cancer cell-

conditioned medium in vitro has been shown to cause an upregulation of PGE2, which 

induces IL-6 and activates osteoclasts via RANKL and PTHrP production (18, 74, 75).  

This effect was seen in breast cancer cells, oral squamous carcinoma cell lines, and in 

neuroblastoma cells (18, 75, 76).  The induction of the inflammatory response to the 

cancer cell-conditioned medium may be due to NFκB activation via an IL-6-

independent mechanism within the osteoblasts (77).  Suppression of NFκB activity with 

methylseleninic acid reduced cytokine production by osteoblasts in response to cancer 

cell-conditioned medium, which may translate to reduced bone destruction in vivo. 

 IL-6 has been demonstrated to increase RANKL expression from osteoblasts 

and thus stimulate osteoclastogenesis.  However inhibitors of RANKL fail to suppress 

IL-6-mediated osteoclastogenesis and bone resorption (78, 79).  This suggests that IL-6 

has potential redundant pathways that upregulate bone destruction and could interfere 

with the efficacy of targeted therapies against RANKL such as denosumab, an 

monoclonal humanized antibody against RANKL (80).  RANKL-independent pathways 

could mediate IL-6 induced osteoclastogenesis.  For instance, cancer induced 

inflammation leads to the stimulation of NF-κB activity, which initiates IL-6 production 
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(Fig 2).  NF-κB activity is also able to stimulate cyclooxygenase-2 (COX2) activity, 

which would result in the production of PGE2, stimulating more IL-6 release (81).  

High levels of PGE2 have been shown to promote potent, pro-osteoclastic factors (82).   

IL-6 may also be inducing other pro-osteoclastic factors that functions independently 

from RANKL such as IL-1 beta (83).  IL-1 beta has also been shown to increase NF-κB 

activity (84) that could result in a feedback loop that further increases IL-6. 

 

IL-6 and Its Soluble Receptor as a Prognostic Factor for Cancers that Metastasize 

to Bone 

Predicting disease outcomes in cancer patients with metastasis to bone is 

difficult due to the inherent high level of tumor cell heterogeneity within a specific type 

of cancer.  Current attempts at general prognostics are based mostly on tumor grading, 

staging, and invasive characteristics derived from histological and other types of 

physical analysis of biopsies (85).  Specific, factor-based categorization of cancer is 

limited to a handful of well-characterized receptor and antigenic tests.   For example, 

prostate specific antigen (PSA) has long been used as a prognostic factor to estimate 

progression of prostate cancer (86).  Immuno-assays are performed to detect receptors 

for estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 

(Her2/neu) to aid in directing treatment strategies for breast cancer (87).  Improving 

prediction accuracy by using more prognostic factors can hasten the detection of any 

changes in the progression of the disease.  

Recently, interest in using serum IL-6 as a specific prognostic factor for prostate 

cancer and breast cancer has risen (88-90).  Current research demonstrates that serum 



14 

 

IL-6 levels are significantly increased in many cancer patients with invasive prostate 

cancer compared to benign prostatic hyperplasia (BPH) (91).  It has been shown that 

higher levels of serum IL-6 in patients with castration-resistant prostate cancer 

correlates to shortened survival times (92).  Serum IL-6 is also elevated in prostate and 

breast cancer patients with distal metastases compared to patients without 

metastases,(92, 93) and higher serum IL-6 levels have been associated with lower 

patient survival rates in metastatic breast and prostate cancer (94).  The spread of breast 

cancer cells into the local lymphatic system is also significantly correlated with 

increased IL-6 levels (93).  Other studies have supported these findings and have shown 

that IL-6 correlates with the extent and size of prostate cancer bone metastases; 

specifically, the larger and more compromised the bone was, the higher the level of 

serum IL-6 (95, 96).  Furthermore, significant elevation of IL-6 levels in the serum have 

been seen in prostate cancer patients who have experienced a relapse, where IL-6 levels 

positively correlate with cachexia (90, 97).  Additionally, IL-6 levels have been shown 

to correlate with measures of morbidity and poor patient health (98).  In one case study, 

a sharp increase in serum IL-6 was detected in terminally ill cancer patients who were 

experiencing extreme cachexia (99).  

 A comprehensive study involving patients with metastatic gastric cancer, which 

can also metastasize to the bone,(100, 101) demonstrated a significant correlation 

between serum IL-6 levels and the extent of gastric cancer progression (102).  

Specifically, IL-6 levels correlated with tumor grade and the extent of invasion into the 

gastric organ as well lymphatic and hepatic systems.  Long-term survival rates were 

much higher with patients that had low levels of serum IL-6, and post-surgical 
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probability of metastasis was higher in patients with high serum IL-6 (102).  The use of 

serum IL-6 levels for prognosis in a clinical setting is limited by gaps in the current 

understanding of mechanisms by which IL-6 specifically mediates the progression of 

metastatic disease as well as a lack of large clinical trials to assess baseline and range of 

fluctuation of serum IL-6 levels. 

In addition to serum IL-6 levels, the concentration of soluble receptor to IL-6 

(sIL-6R) in the serum may also help predict the aggressiveness of cancer metastasis and 

the level of bone destruction.  Even in the absence of cancer, high levels of serum 

concentration of sIL-6R can predict the rate and level of osteolysis in patients with 

hyperparathyroidism (103).  High levels of sIL-6R in the serum have also been 

associated with increased generalized inflammation, rheumatoid arthritis,  inflammatory 

bowel disease, asthma, and inflammation associated colorectal cancer (104).  sIL-6R 

enables a process called IL-6 trans-signaling, where cells that do not possess IL-6 

receptor or have low levels of it can respond to IL-6 (Fig 3).  This occurs through an 

unclear mechanism by incorporating the sIL-6 receptor into the gp130 receptor dimer 

on the cells, forming a IL-6 receptor heterotrimer and enabling the cells to respond to 

IL-6 (105).  Interest in IL-6 trans-signaling has increased in the past several years as 

new research show that sIL-6R is produced by various cancer cells and the serum 

concentration is associated with decreased survival and increased aggressiveness of 

metastases in breast, prostate, and colorectal cancers (95, 106, 107).  Some data suggest 

that IL-6 trans-signaling causes various effects that promote cancer metastases 

including, increased detachment, proliferation, and migration through a pathway that is 

independent of STAT1, STAT3, or MAPK (108).  This suggests that IL-6 trans-
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signaling is distinct from the canonical IL-6 signaling pathway and could be due to the 

lack of the membrane signaling domain on the sIL-6 receptor subunit (Fig 3).  However, 

IL-6 trans-signaling does cause increased RANKL expression in synovial fibroblasts 

through a STAT3 dependant manner,(53) which suggest that trans-signaling may use 

some of the canonical IL-6 pathway to exert its effects.     Although there is a 

convincing amount of evidence to suggest that higher serum sIL-6R levels may be 

associated with a worse cancer prognosis, little is known about the specifics of the IL-6 

trans-signaling pathway, and more studies need to be done before assessing if sIL-6R is 

a therapeutic target. 

 

Serum IL-6 Levels May Predict Response to Cancer Therapy 

 It is critical to determine throughout a patient’s treatment whether the current 

therapy plan should be maintained or if new therapies needs to be initiated.  Changes in 

serum IL-6 levels in patients undergoing chemotherapies or targeted therapeutics may 

act as a biomarker that can predict whether a patient is responding or not.  In one 

clinical study, combination therapy using docetaxel and zoledronic acid, a 

bisphosphonate that inhibits osteoclastic activity, was administered to prostate cancer 

patients with bone metastases (109).  Patients that responded to the therapy had a 35% 

decrease in overall serum IL-6 levels, while patients that did not respond had a 76% 

increase in serum IL-6 levels (109).  A confounding variable in this finding is that some 

of the increase in serum IL-6 may be due to a stress response to the chemotherapeutic 

agents themselves, and the high levels of IL-6 may actually confer drug resistance (110).  

However, IL-6 has also been correlated to C-reactive protein (CRP) levels in the serum, 
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and reduction in CRP levels alone may indicate positive biologic effects of 

chemotherapeutics indicated by a reduction in serum IL-6 (111, 112).  Although there is 

a dearth of clinical studies using IL-6 as a predictive biomarker of therapeutic response, 

initial studies support the concept that changes in serum cytokine levels such as IL-6 are 

worthy of more investigation. 

 

IL-6 Promotes Chemotherapy Resistance 

Chemotherapeutics traditionally have been and are currently, a mainstay in 

therapies against metastatic disease.  However, resistance to chemotherapeutics is 

common and the mechanisms mediating resistance have been difficult to determine.  

Recent experimental results suggest that chemotherapy resistance is mediated through a 

relatively heterogeneous set of mechanisms, including down regulation of apoptotic 

signals, increased drug clearing and deactivation from cancer cells, multidrug resistance 

gene mutations, and stimulation of cell survival pathways via gene amplification (113-

115).   

A substantial amount of chemotherapy resistance research presently focuses on 

upstream mediators of cell survival.  In the bone microenvironment, high concentrations 

of IL-6 have recently been shown to confer resistance to apoptosis in breast and prostate 

cancer cells as well as neuroblastoma cells (18, 116, 117).  Specifically, prostate cancer 

cell activity of NF-κB has been shown to cause high IL-6 production, which promotes  

docetaxel resistance in prostate tumors and associated bone metastases by upregulating 

the pro-survival AKT pathway in an IL-6 dependant manner (Fig 3) (49).  Additionally, 

resistance to paclitaxel is observed in breast cancer patients whose metastatic lesions 
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show high levels of IL-6 (115).   This high IL-6 production could itself be a function of 

the cancer cell’s response to chemotherapeutics.  One particular study presented 

evidence that paclitaxel induced expression of IL-6 in cervical cancer cells via the c-Jun 

N-terminal kinase (JNK) signaling pathway (110).  More studies need to be conducted 

to assess the full role of IL-6 in conferring chemotherapeutic resistance, but these 

preliminary studies may support a rationale for using combination therapy of IL-6 

inhibitors along with classical chemotherapeutic agents.  

 

IL-6 as a Target for Therapy 

Currently, the only kinds of therapies that can treat bone metastases are 

supportive therapies using i) bisphosphonates to reduce osteolytic burden, ii) 

radiotherapy and analgesics to alleviate pain, and iii) surgical intervention to reinforce 

weak bones (24, 118, 119).  The humanized monoclonal antibody to the IL-6 receptor, 

tocilizumab (Actemra®) was approved by the FDA on January 11th, 2010 and was 

previously approved in Japan and the European Medicines Agency (EMEA) in 2008 

(Table 1) (120).  Although tocilizumab is approved only for rheumatoid arthritis (RA) 

in the United States and Europe as well as Castleman’s disease in Japan, recent studies 

have shown that tocilizumab is also effective as an antitumor agent against U87MG 

glioma cells.  Tocilizumab exerts an inhibitory effect on the JAK/STAT3 pathway by 

preventing IL-6 from binding to its receptor, thereby inhibiting IL-6 signaling (121).  

Similar antitumor effects were seen with S6B45 multiple myeloma cells where a 

modified version of tocilizumab significantly inhibited the proliferation of these cells in 

vitro (122).  Tocilizumab has also been effective in blocking cartilage and bone 
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destruction in IL-6-mediated autoimmune diseases such as synovitis and RA, where the 

mechanism of bone destruction is similar to that of bone metastases and high, local IL-6 

levels were reported (123).  Thus, tocilizumab may be effective as part of a combination 

therapy with bisphosphonates to control cancer cell-mediated destruction of the bone.   

However, there is no public data that exists for the efficacy of tocilizumab in inhibiting 

the progression of bone metastases.  Other inhibitors to IL-6 activity for the treatment of 

various autoimmune diseases such as lupus, RA, Crohn’s disease, and Castleman’s 

disease are being developed or undergoing FDA approval.  

 Another anti-IL-6 drug that is being developed for bone metastatic prostate and 

renal carcinomas and multiple myeloma is (Centocor’s) CNTO-328 (Siltuximab) (124).  

This chimeric, monoclonal antibody to IL-6 (120, 125) recently completed initial 

clinical trials for prostate cancer, kidney cancer, and renal cell carcinoma with mixed 

results.  Some preliminary results from the completed trials indicate minimal side 

effects with the inhibitor however, there was a general lack of correlation with IL-6 

inhibition and reduction in tumor growth (125, 126).  The lack of tumor inhibition may 

be due to the nature of the trial that attempted to ascertain the safety profile of the drug, 

thereby leading to the use of a lower dose than may be effective.  New clinical trials 

with dose escalation; however, are planned.  On the other hand, clinical trials on 

relapsed and refractory multiple myeloma is still ongoing.  Preliminary results from a 

Phase 2 trial on these patients demonstrate positive results with manageable side effects 

and good safety profile (127).  This is supported by a study showing that siltuximab can 

inhibit prostate cancer cell growth in vitro and to improve survival by reducing the level 

of cachexia in an animal model of prostate cancer (128).  In addition, siltuximab has 
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been shown in mice to inhibit the conversion of androgen-dependent prostate cancer 

into a more aggressive, bone metastatic, and difficult to treat androgen-independent 

prostate cancer (129).  Treatment with siltuximab also decreased serum CRP levels, 

which correlated to improved outcome in treatment-resistant prostate cancer (112).  

Other recent data indicate that STAT3 and MAPK activity is suppressed in patients 

taking siltuximab, which may inhibit IL-6 mediated drug resistance (130).  However, in 

a separate Phase 2 clinical trial involving castration-resistant prostate cancer where the 

disease had progressed beyond docetaxel therapy, siltuximab had a minimal clinical 

effect, despite positive biological IL-6 inhibition (131).  New clinical trials using a 

combination of siltuximab and chemotherapeutics such as docetaxel are underway (131). 

 The use of antibodies for therapeutically inhibiting cytokines such as IL-6 may 

soon be replaced by utilizing small protein, non-antibody-based inhibitors called 

avimers.  Avimers may surpass monoclonal antibodies in efficacy and potency, while 

reducing cost.  Because these proteins lack immunoglobulin domains, they are much 

less immunoreactive, and their smaller size (~4 kDa) allows tighter interactions between 

the avimer and their target cytokine or receptor (132, 133).  In addition, due to their 

reduced immunoreactive nature, they should theoretically reduce occurrences of serious 

side effects such as acute allergic reactions, which currently is a common problem with 

antibody therapeutics.  Because of the promising features of this type of biological 

therapeutic, many pharmaceutical companies are pursuing the development of drugs 

based on non-antibody protein compounds, but the majority of these compounds are 

still in preclinical or Phase 1 trials. 
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Avida recently developed an avimer against IL-6 called C326 or AMG-220 

(134).  Their studies show that this avimer has superior stability and drug longevity 

compared to antibody-based inhibitors,(73) resulting in an increase in both the half-life 

and the shelf-life of the drug.  Avida published results demonstrating that their avimer 

against IL-6 has an IC50 in the picomolar range leading to much smaller doses, and as it 

can be produced in E. coli, the cost is reduced (133).  AMG-220 is also being developed 

for Castleman’s disease, an autoimmune disorder that is characterized by high levels of 

serum IL-6 which is thought to cause the hyper-proliferation of B-cells, leading to high 

fevers, joint pain, weight loss and anemia (135).  Currently, a Phase 1 trial for Crohn’s 

disease is also in progress and is recruiting volunteers with stable disease and generally 

good health (133, 136, 137). 

 Although not all IL-6 inhibitors currently being developed or on the market are 

designed for cancer, IL-6 inhibitors, in principle, should work similarly for all diseases 

where IL-6 is deregulated.  Therefore, IL-6 inhibitors should effectively inhibit IL-6-

dependant cancers by reducing metastases to the bone and bone destruction.  

Availability of IL-6 inhibitors for the treatment of various cancers and bone metastases 

should improve as new uses of the inhibitors are approved by the FDA. 

 

Conclusion 

  Recent research and publications have demonstrated that IL-6 is one of the 

many major factors upregulating and modulating cancer-mediated bone destruction.   

The information presented in this review illustrates the potential of IL-6 as a prognostic 

factor.   In addition, fluctuations in serum IL-6 levels could help direct additional 
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treatment strategies in the future but clinical studies are needed to assess that potential.  

There is also evidence from in vitro, in vivo, and preliminary clinical trials to suggest 

that specific anti-IL-6 therapies may improve cancer survival rates and reduce 

metastatic burden in patients some types of cancers.  However, additional studies and 

appropriate clinical trials need to be done to fully ascertain the effectiveness of anti-IL-

6 therapies in cancer patients.  
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FIGURE LEGENDS 

 

 Figure 1:  Model of Osteoclastogenesis During Bone Homeostasis and Tumor Cell 

Metastasis to Bone. 

(A) In normal bone, RANKL and m-CSF are produced primarily by osteoblasts.  m-

CSF binds to its receptor c-FMS, expressed on osteoclast progenitors, and RANKL 

binds to its receptor on pre-osteoclasts to promote osteoclastogenesis.  Osteoprotegrin, 

also produced by osteoblasts, acts as a decoy receptor for RANKL and negatively 

regulates osteoclast differentiation.  In this model, osteoblast and osteoclast activity are 

in homeostasis through careful regulation of osteoclastogenesis.  (B) When cancer cells 

metastasize to the bone, increased IL-6 may be produced by both the cancer cells and 

the osteoblasts, as an inflammatory response to the cancer cells.  IL-6 then stimulates 

various types of stromal cells in the bone, which include bone marrow cells, osteoblasts, 

and fibroblasts in the area of the metastasis, to increase the expression of RANKL and 

m-CSF by osteoblasts.  This IL-6-mediated increase in RANKL and m-CSF also occurs 

with injury and inflammation to the bone, but unlike in cancer metastasis, it is transient.  

RANKL and m-CSF then in turn activate the osteoclast differentiation cascade, where 

m-CSF strongly stimulates early stages of osteoclast differentiation and RANKL 

stimulates late stages of osteoclast differentiation, as well as osteoclast activity. Once 

this occurs, osteoclast activity becomes dysregulated and reduces bone integrity. 
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Figure 2:  Factors That Increase IL-6 Production in Response to Various Stimuli.  

Increased IL-6 production is associated with stimuli such as infection and inflammation.  

Infection, injury, and cancer can all stimulate inflammation that can lead to the increase 

of IL-6-modulating factors such as IL-1β, COX-2, PGE2, and TGFβ.  Infection can also 

promote lipopolysaccharide (LPS) secretion from bacteria, which increases NF-κB-

dependent IL-6 levels.   There are two main IL-6 production pathways: NF-κB-

dependent and NF-κB-independent.  NF-κB-independent pathways upregulate IL-6 

secretion via TGFβ or PGE2, which is produced downstream of COX-2 activation.  In 

the NF-κB-dependent pathway, LPS or IL-1β stimulate NF-κB activity that causes an 

increase in IL-6 production.  

 

Figure 3:  Model of Canonical IL-6 Signaling Versus IL-6 Trans-Signaling in Tumor 

Progression and Metastases.  In the canonical IL-6 signaling pathway, the IL-6 receptor 

subunit is membrane bound and forms a heterotrimer with two gp130 subunits.  When 

IL-6 binds to the receptor, STAT3 is activated in a JAK-dependant manner that leads to 

increased RANKL expression.  IL-6 may also activate AKT via increased JAK-

dependent PI3K activity and results in cell survival and anti-apoptosis signaling.  

Concomitantly, increased MAPK activity downstream of JAK activation can lead to 

upregulated cell growth, proliferation, and mitosis.  In the IL-6 trans-signaling pathway, 

IL-6 first binds to the truncated soluble IL-6R (sIL6R).  The IL-6/sIL6R complex then 

binds to the membrane-bound gp130 dimer to form an IL-6 trans-signaling complex.  

Due to the fact that the sIL-6 receptor lacks a membrane signaling domain, there 

appears to be significant differences in the intracellular signaling pathways.  While IL-6 
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trans-signaling also leads to phosphorylation and activation of STAT3, increased cell 

survival, proliferation and mitosis occurs in an AKT-and MAPK-independent manner.  

The exact mechanisms for IL-6 trans-signaling leading to increased cell survival, 

proliferation, and mitosis are not yet known. 
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