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ABSTRACT 

 

Nanoparticles (NP) are increasingly being recognized for their utility in the field 

of medicine, including use as drug carriers and imaging tools. We demonstrated that ZnO 

NP preferentially kill cancerous cells of the T cell lineage, and extended this research to 

evaluate other cells types, including normal and malignant B cells, and normal and 

malignant breast and prostate epithelial cells. Preferential ZnO nanoparticle cytotoxicity 

occurred for multiple types of cancer cells, but was most pronounced for non-adherent 

cells of hematopoietic lineage. Normal T and B lymphocytes showed the greatest 

resistance to NP toxicity, followed by normal breast epithelial cells, and appeared to be 

closely tied to cellular proliferative potential. Reactive oxygen species generation 

contributed, at least in part, towards cancer cell selectivity with greater levels of reactive 

oxygen species being induced in cancerous cells compared to normal cell counterparts. 

The extracellular dissolution of ZnO NP did not appear to appreciably contribute to the 

toxicity mechanism, and endocytosis of nanoparticles appeared to be required for 

toxicity. Particle charge was found to have an effect on toxicity, with more cationic 

nanoparticles having a greater toxicity than neutral/anionic particles, and may be an 

important factor in future studies aimed at improving cancer cell selectivity. Overall, 

these findings suggest that ZnO nanoparticles may have utility in anticancer regimens 

aimed at hematological malignancies.  
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CHAPTER 1: INTRODUCTION 

Advancements in materials science and the ever-increasing miniaturization of technology 

have led to the development of nanotechnology, a discipline concerned with the 

development and utilization of nanomaterials, structures with dimensions in the 1-100 nm 

range. These nanomaterials have found a large niche in the field of biotechnology for a 

variety of reasons. Their size is comparable to biological molecules, making them more 

penetrant than larger substances and ideally-sized for interactions with cellular structures 

(McNeil, 2005). Reduction of materials to the nanometer scale can alter physical, 

chemical, and quantum properties that can potentially be exploited for imaging and 

treating diseased cells. Surface area to volume ratio increases steeply with the reduction 

of NP size, resulting in greater surface reactivity (Nel et al., 2006). Discovery of these 

new properties has sparked intense research into biological interactions with 

nanomaterials, both for their potential toxicity to biological systems and their potential 

utility in medical applications.  

Nanotechnology and Nanomaterials 

 Nanotechnology is broadly defined as the manipulation of matter on a molecular 

scale. This refers to the production of structures and even devices, called nanomaterials, 

in the size range of 1 to 100 nm in any dimension (Nel et al., 2006). The ever-increasing 

demand for the miniaturization of technology has resulted in an explosion in 

nanotechnology research and products containing nanomaterials. According to the Project 
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on Emerging Nanotechnologies, a website devoted to creating inventories of 

nanotechnology uses, as of August 2009, there existed 1,015 products containing 

nanomaterials, up 379% from 2006 (2010). The range in use of these products is wide; 

nanotechnology has made its way into cosmetics, sunscreen, clothing, electronics, 

appliances, filtration, medicine, and even food products (Sozer and Kokini, 2009; Project 

on Emerging Nanotechnologies, 2010). Silver nanoparticles (NP) are currently the most 

heavily used, being incorporated for their antimicrobial properties in clothing, upholstery, 

pillows, food storage containers, and even toys for children (Schrand et al., 2010; Project 

on Emerging Nanotechnologies, 2010). 

 In 1959, physicist Richard Feynman gave a talk at the American Physical Society 

entitled “There’s Plenty of Room at the Bottom” in which he discussed the possibilities 

of directly manipulating single atoms and molecules in structures. He also highlighted 

that these materials may behave differently on such a small scale. For instance, gravity 

would hold less sway, while Van der Waals forces would become more important 

(Feynman, 1960). This lecture had little effect over the subsequent 20 years, but has been 

looked at in hindsight as that which sparked the move toward nanotechnology 

development that now encompasses different types of nanomaterials utilized in many 

different areas. 

 Though the physical and chemical properties of substances have been well 

characterized, an intriguing facet of nanotechnology is that materials reduced to the 

nanoscale in size begin to display different physical and chemical properties. This can 

include changes in optical properties, such as color and light diffraction, solubility, 
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hardness and strength, magnetism, heat, and electrical conductivity, and surface reactivity 

(Schrand et al., 2010). As NP size is reduced, the surface area-to-volume ratio increases, 

and a large number of the atoms composing the particle are found on the particle surface 

(Nel et al., 2006). This can render substances previously thought inert suddenly highly 

reactive. These changes in properties mean that researchers cannot rely upon expectations 

of chemical behavior based upon the previously understood characteristics of these 

substances. This has profound impacts upon toxicology; it cannot be assumed that 

substances that are safe on the bulk (micron) scale will be so when reduced to nano size. 

Different properties also open new doors for utility, and are being exploited for 

applications such as imaging and cosmetics. 

 Different types of nanomaterials are now being synthesized from a variety of 

different substances. Carbon nanotubes (CNT) are studied heavily due to their strength, 

hardness, heat, and electrical conductivity (Lacerda et al., 2006). Scientists have found 

that carbon nanotubes can be engineered harder than diamonds, and are looking at them 

with increasing interest as scaffolds for tissue regeneration (Blank et al., 1998; Saito et 

al., 2009). Many other substances including gold, silver, and semiconducting materials 

such as metal oxides have also been used to form nanorods and NP (Schrand et al., 2010). 

Nanoparticles are those with diameters of 1-100 nm, and those made of semiconducting 

materials sized approximately 10 nm or less behave as quantum dots, in which the band 

gap can be modified with NP size (Medintz et al., 2005). The band gap is the amount of 

energy required for an electron in the material to be liberated from the allowed valence 

band and become a charge carrier. If enough energy is supplied, an electron jumps from 



4 

the valence band to the conductance band, leaving behind a vacancy called an electron 

“hole” in the valance band (Mansur, 2010). In NP, a large portion of the atoms are found 

at the surface, and consequently so too are the highly reactive valence electrons and 

holes. This has strong implications for the potential of NP to have toxic reactivity in 

biological systems. 

Toxicology of Nanoparticles 

 People come into contact with many chemical substances in a variety of ways, 

often purposefully, though unknowingly, through the products that they use every day. It 

is assumed that anything readily available to the public has undergone rigorous testing 

before it is cleared for use, and usually this is true. For instance, toxicological studies for 

substances that may be used as food additives are overseen and compiled by the Federal 

Drug Administration, who maintains a list of those “Generally Recognized as Safe”. If a 

substance is considered GRAS, it has been shown through rigorous in vitro and in vivo 

experiments to be nontoxic, or has been used for a great number of years with no known 

negative effects. Once included in the GRAS list, a chemical is acceptable for use as a 

food additive and is thereafter not expected to prove nontoxic before use (2006). Products 

have appeared in recent years that contain NP assumed to be safe because the bulk forms 

of the chemicals are nontoxic. Given that materials can take on entirely different 

properties when reduced to the nanoscale, and their potential to penetrate more deeply 

into tissues and cells, this may not be a correct assumption (Nel et al., 2006).  
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 Metal oxide NP include materials such as TiO2, CeO2, Al2O3, Fe2O3, and ZnO, 

and are already found in many products. TiO2 and ZnO nanomaterials are used in 

topically applied products such as sunscreens and cosmetics, as are pure gold NP. These 

nanomaterials were incorporated into consumer products on the assumption that they 

would be non-toxic, like their bulk counterparts, but studies have found that this is not 

necessarily true. ZnO NP, in particular, have been found to demonstrate strikingly 

different toxicological profiles in vitro than bulk ZnO (Reddy et al., 2007; Jiang et al., 

2009). It is for this reason that this work focuses on NP of ZnO over other nanomaterials.  

 Zinc oxide is an inorganic white powder that is very poorly soluble in water. It is 

a semiconducting material, and is used as an additive in many products, including 

plastics, rubber, glass, paint, and even food as a source of zinc. ZnO has a lethal dose 

(LD50) in mice of 7,950 mg/kg, making it relatively nontoxic (Material Safety Data 

Sheet: ZnO). Based upon this lack of toxicity, ZnO NP, assumed to be equally safe, 

began replacing bulk powder in certain products. Because particulate ZnO is more 

transparent than the bulk form but retains its ability to reflect UV light, it has become 

common practice to use ZnO NP in sunscreens and cosmetics. This has raised questions 

in the public arena and sparked detailed research into the in vitro toxicity of many metal 

oxide NP (Nel et al., 2006). Research in prokaryotic organisms showed that Al2O, SiO2, 

and ZnO were all significantly more toxic to E. coli, B. subtilis, and P. fluorescens in NP 

form, with ZnO being the most toxic (Jiang et al., 2009).  Another study found similar 

results with ZnO NP in primary human T cells (Reddy et al., 2007). This apparent 
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increase in toxicity necessitates further exploration into the interactions of ZnO NP in 

relevant biological systems. 

 Zinc oxide is a crystalline semiconducting material with its electrons contained in 

discrete energy bands, and exhibits quantum confinement at nanoscale. The highest 

electron-containing band is the valence band, while the lowest empty band is called the 

conductance band. When sufficient energy is supplied, an electron is able to jump from 

the valence to the conductance band, which means it is liberated from chemical bonds 

and may act as a mobile charge carrier (Mansur, 2010). Conductance band electrons will 

act as powerful reductants in aqueous solutions, and can donate electrons to oxygen to 

generate superoxide radicals. The electron vacancies or holes left behind when the 

electron moves into the conductance band can also act as powerful oxidants in water. One 

study showed that quantum dot-sized ZnO was capable of photocatalyzing the production 

in water of hydrogen peroxide, a species of reactive oxygen, 100-1000 times faster than 

bulk ZnO (Hoffman et al., 1994).  This was believed to occur due to the greater surface 

area to volume ratio of NP, the resultant greater number of reactive sites at the surface, 

and the greater number of surface impurities found in NP capable of “trapping” the 

electrons and holes at the surface (Hoffman et al., 1994; Sharma et al., 2009). Another 

study discusses this same electron-trapping at the nanoparticle surface as a mechanism 

for the generation of reactive oxygen in the absence of photocatalysis (Yang et al., 2009). 

For this reason, ZnO in NP form may be more capable of participating in redox cycling in 

aqueous or even oxygen-containing environments (e.g., cells) and producing reactive 

oxygen species. Many studies have shown that the toxicity of NP of various types is 
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mediated by oxidative stress in cells, and that ZnO NP are capable of ROS induction both 

in abiotic and biotic systems (Xia et al., 2008). This ability to redox cycle and create 

reactive oxygen species in water is likely responsible for the greater toxicity that ZnO NP 

display over micron-sized ZnO materials. 

Nanomedicine 

With products containing NP on the rise, not only is there a need to understand 

their toxicity, but to fully assess the potential for novel biological uses. Nanomedicine 

refers to the usage of nanotechnology in medical applications. While the study is very 

new, many promising utilizations have emerged in this field. Some of the unique 

properties of nanomaterials have already proven useful in biological applications. For 

instance, NP are on the same size scale as biological molecules, and so are better able to 

penetrate tissues and cells and interact with these structures where larger molecules are 

limited (McNeil, 2005). The surface reactivity of NP makes them easy to modify, either 

through the addition of drugs or targeting molecules to direct them to specific cell or 

tissue types (Nel et al., 2006). 

Current research in the field of nanomedicine has focused on the use of NP as 

imaging agents or drug carriers of existing therapeutics. Quantum dots in particular have 

been extensively researched because their fluorescent emissions can be altered simply by 

changing NP size (through band gap enlargement) and they have broadened excitation 

spectra. This means that a variety of different-sized NP (therefore fluorescing at different 

wavelengths), targeted to different cells or tissues, can be excited simultaneously with the 
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same light source. These quantum dots also show high resistance to photo and chemical 

degradation, unlike organic dyes currently in use. Inorganic quantum dots can also be 

conjugated with biological molecules such as DNA and proteins, which allows the 

structure to be targeted biologically and fluoresce (Medintz et al., 2005). One group 

found that by conjugating ZnS-capped CdSe quantum dots with homing peptides, they 

were able to cause accumulation in the lungs and in blood or lymphatic vessels in tumors 

in mice (Akerman et al., 2002). They were also able to avoid clearance by the 

reticuloendothelial system (RES) by adding a polyethylene glycol (PEG) coating to the 

NP (Akerman et al., 2002). Other studies have found that adsorption or encapsulation of 

DNA-based vaccines onto/ into NP enhances their ability to induce immunity through the 

protection of DNA degradation and increased uptake (Xiang et al., 2010). 

Magnetofection is a new technique that involves delivery of DNA to cells using nontoxic 

magnetic NP. The application uses DNA adsorbed onto magnetic NP that are then 

targeted to cells by applying an external magnetic field (Plank et al., 2003). Magnetic NP 

have also shown promise in the area of drug delivery, as they can be targeted to desired 

areas in the body (Sun et al., 2008). Liposomes are another heavily researched 

nanomedicine, used as drug delivery agents. These are artificial nano-sized lipid bilayers 

engineered to contain a drug to be delivered to a target site including tumors (Kaasgaard, 

and Adresen, 2010). Nanomedicine has focused particularly on cancer treatment in an 

attempt to find more efficacious treatments that are simultaneously better tolerated by 

patients. Overall, NP have demonstrated novel potential and wide-ranging utility in 

medical applications, and research is ongoing. The future of medicine looks to be tightly 

entwined with that of nanotechnology.  
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Cancer 

Epidemiology and Cost 

 Cancer is a term used to describe a diverse group of diseases hallmarked by 

uncontrolled proliferation, tissue invasion, and often metastasis. According to the World 

Health Organization, it is one of the most prominent causes of death, killing 7.4 million 

people worldwide in the year 2004.  This number is expected to rise to approximately 12 

million by 2030. In America alone, approximately 44% of men and 38% of women will 

develop some form of cancer in their lifetime, and about 23% of American men and 20% 

of American women will die from some form of cancer (Altekruse et al., 2010). The 

health care cost in the United States in 2006 for treatment alone was $104.1 billion 

according to the National Cancer Institute’s publication Cost of Cancer Care (NCI, 2010). 

Substantial amounts of money are also spent on cancer research; according to their 

statistics on research funding the National Cancer Institute alone currently budgets 

approximately $4.8 billion annually, and contributions from private, for-profit companies 

(Big Pharma) equals that amount at least (de Francisco and Matlin, 2006; NCI, 2010). 

This makes the search for inexpensive, safe, and effective treatments a high priority for 

biomedical researchers.   

Classification 

Cancer can arise in all cell types and is classified by the lineage of the original 

transformed cell.  Epithelial cells are found covering the body’s surfaces and lining the 

internal organs and cavities.  Cells of this type that give rise to cancer are classified as 
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carcinomas. These are the most common types of cancer; they make up most breast, 

prostate, and lung cancers (Roomi et al., 2009). Cells of the hematopoeitic lineage are 

those that originate in the bone marrow and include erythrocytes and the white blood 

cells of the immune system. Cancers that arise in this lineage are classified as leukemias 

and lymphomas. Leukemias arise in cells in the bone marrow and result in malignant 

cells circulating in the bloodstream, while lymphomas occur in immune cells of the 

lymphatic system (Leukemia and Lymphoma Society). Sarcomas typically are cancers 

that originate from connective tissues such as bone, cartilage, muscle, deep skin, or fat, 

although some cancers of epithelial origin have been classified here (Jain et al., 2010). 

Most malignancies result in the formation of solid masses of transformed cells called 

tumors, though leukemias do not. This work will mainly focus upon carcinomas, 

leukemias and lymphomas, though future work will include sarcomas.  

Symptoms and Causes 

The ability of cancer to affect a large variety of cell types makes its symptom 

profile very diverse. Solid tumors can invade and compress surrounding tissues, leading 

to disruption of the functioning of body tissues and organs. Local symptoms can include 

swelling, pain, and jaundice. Systemic symptoms are more invasive; weight loss, fatigue, 

wasting, and anemia are common to most cancers, and cancer type-specific symptoms 

can also occur. In addition, metastases can cause yet another set of symptoms, including 

enlarged liver, bone pain, and neurological symptoms (Greenberg et al., 1964; NCI, 

2006). Alongside the symptoms of cancer, treatments often exhibit a multitude of 

negative side effects, discussed in detail later in this chapter. 
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Cancer is caused by an accumulation of damage to the DNA of cells that leads to 

the deactivation of tumor suppressor genes and/or activation of oncogenes.  Oncogenes 

are those that govern the ability of the cell to rapidly divide and proliferate, while tumor 

suppressor genes are those that in normal cells prevent the excessive growth and invasion 

of tissues (Rhim, 1988).  Oncogenes include transcription factors or regulatory GTPases 

that regulate proliferation, Receptor Tyrosine Kinases that, when mutated, render growth 

factor receptors constitutively active, genes that cause cells to abnormally secrete growth 

factors, or genes that confer protection from apoptosis (Croce, 2008). Tumor suppressor 

genes include those that inhibit cell cycling, promote apoptosis, police DNA damage, and 

respond to contact inhibition to prevent overcrowding (Sherr, 2004). Sarcomas and 

hematopoietic malignancies arise from the activation of oncogenes, while carcinomas 

result from the deactivation of tumor suppressors (Croce, 2008). The DNA mutation that 

occurs in both these gene types to activate or inactivate them can result from a variety of 

assaults. Ionizing radiation is known for its tendency to cause chromosomal 

translocations, leading to gene fusions. This can lead to formation of gene products with 

new function, or, if proto-oncogenes are fused to a strong promoter, upregulation of the 

gene (Mitelman et al., 2007). Chemical carcinogens such as tobacco smoke can cause 

cells to become cancerous, either through direct mutation of DNA, or promotion of 

proliferation of mutated cells (Irigaray and Belpomme, 2010). Certain types of viruses 

can introduce exogenous oncogenes, promote proliferation, or inhibit apoptosis, leading 

to malignancies (Dayaram and Marriott, 2008). Some mutations in oncogenes or tumor 

suppressors are inherited from the parents, leaving a person genetically susceptible to 

cancer (Robson and Offit, 2010). Whatever the cause, these mutations tend to facilitate 
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the accumulation of more mutation. For instance, mutations that occur in genes that code 

for DNA repair enzymes allow the cell to tolerate the buildup of further DNA mutations. 

Also, mutations that cause cells to proliferate quickly can cause failure in DNA repair, 

thereby increasing the speed at which more mutations accumulate. In this manner, cancer 

development is a multistep, gradual process that can display positive feedback in its 

ability to accelerate progression as it advances (Hanahan and Weinberg, 2000). 

Differences Between Cancerous and Normal Cells 

Accumulation of severe DNA damage causes cancer cells to differ markedly from 

the cell types from which they arise. The most notable difference is rapid and sustained 

proliferation. In order to grow, normal cells require stimulation by signals such as growth 

factors and extracellular matrix and cell-to-cell interactions. Cancer cells, however, are 

able to divide continually without these signals. This is accomplished by the production 

of growth factors that self-stimulate cancer cells to proliferate. An example of this is 

cancer cells that upregulate production of growth signals to which they respond, such as 

transforming growth factor alpha (TGF-α) (Hanahan and Weinberg, 2000). In addition, 

cancerous cells often have acquired immortality; they fail to lose replicative ability after 

an allotted number of doublings. The telomeres, or chromosome ends, of DNA contain a 

large but finite number of repeated sequences, which shorten each time the chromosome 

replicates. When this protective end is completely depleted, the affected cell dies 

(Counter et al., 1992). Cancer cells upregulate the telomerase enzyme responsible for 

adding those DNA repeat sequences and maintain their telomeres indefinitely (Bryan and 

Cech, 1999). In addition to stimulating their own growth in the absence of exogenous 
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signals, cancerous cells are capable of ignoring growth inhibition and pro-apoptotic 

signals. For instance, TGF-beta normally inhibits inactivation of the retinoblastoma 

protein (pRb), thereby blocking a pathway that leads to transition from the G1 stage of 

the cell cycle to the S phase. Many cancers have dysfunctional TGFB, which leads to 

their ability to ignore antiproliferative signaling through the pRb pathway (Hannon and 

Beach, 1994). Over 50% of all cancers are capable of ignoring apoptotic signals through 

the loss of function of the p53 protein, which induces apoptosis in cells in response to 

DNA abnormality; others can produce Insulin Like Growth Factor (IGF) survival signals 

(Levine, 1997; Evan and Littlewood, 1998). Cancerous cells often have gained the ability 

to stimulate angiogenesis, or blood vessel formation, to tumors. In fact, tumor size is 

highly limited until “angiogenic switch” occurs, where the tumor is able to acquire its 

own oxygen supply (Hanahan and Folkman, 1996). In many tumors, this is through an 

increased production of Vascular Endothelial Growth Factor (VEGF) and Fibroblast 

Growth Factor (FGF) (Hanahan and Folkman, 1996; Veikkola and Alitalo, 1999). 

Perhaps the most dangerous characteristic of cancer cells is their ability to invade 

surrounding tissues and metastasize to other sites in the body; in fact, 90% of cancer 

fatalities involve metastases (Sporn, 1996). When normal cells become densely packed 

into an area, they are signaled to stop dividing to prevent overgrowth. Cancer cells, 

however, are able to continue to divide and invade the surrounding tissues (Hanahan and 

Weinberg, 2000). One mechanism that allows for this in cancers of epithelial origin is 

through the loss of function of certain cell-cell interaction molecules. One such molecule 

is E-cadherin, which is expressed on the outer surface of cells. When two E-cadherins are 

bridged by contact between adjacent cells, growth in those cells is inhibited. A majority 
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of cancer cells of epithelial origin have lost E-cadherin, either through mutation or 

downregulation of expression (Christofori and Semb, 1999). Many mechanisms for 

metastases exist, but are exceedingly convoluted and presently poorly understood 

(Hanahan and Weinberg, 2000). Another very important feature of cancer is its higher 

rate of mutation from loss of DNA damage recognition and repair enzymes (Lengauer et 

al., 1998). Importantly, this can not only result in rapid accumulation of the traits 

described above, but also in resistance to anticancer drugs. This makes the ongoing 

discovery of new drugs of vital importance to cancer treatment. 

Cancer Treatments in Use Today 

Ionizing radiation is well known for its ability to damage DNA, which can lead to 

cancer. It can also, however, be used to damage the DNA locally in tumors, causing cell 

death. Most forms of radiation therapy actually work via induction of free radicals, which 

then damage the cancer cell’s DNA (Tabassum et al., 2010). However, in hypoxic, or low 

oxygen tumor environments there can be 2 to 3 times more resistance to radiation therapy 

(Harrison et al., 2002). Side effects include damage to epithelium, swelling, fibrosis, or 

loss of elasticity in the area, hair loss, fatigue, and depression (Berkey, 2010). 

Importantly, another side effect of radiation therapy is secondary malignancy 20-30 years 

after treatment, though this is not common (Ural et al., 2007). 

Existing chemotherapeutics attempt to inhibit the cellular functions that are most 

different between normal and cancerous cells such as cell division and DNA replication.  

While these metabolic processes occur more frequently in cancer cells, they also 
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commonly occur in normally dividing cells, leading to the potentially dangerous side 

effects associated with chemotherapy. 

Alkylating agents include commonly known drugs such as Chlorambucil and 

work by adding alkyl groups to DNA, thereby crosslinking the strand. This DNA damage 

leads to the initiation of apoptosis, likely through p53, so cancers with alterations to this 

enzyme may have poor responses to these drugs (Begleiter et al., 1996). This group also 

includes the platinum complexes, such as Cisplatin and Carboplatin, which bind intra- or 

inter-strand guanine bases, also crosslinking DNA and triggering apoptosis (Bose, 2002). 

Cisplatin is also capable of forming protein-cisplatin complexes that inhibit glycolytic 

enzymes, thereby attacking cancer cell metabolism. This makes cisplatin effective against 

cancers of multiple origins, including cervical and lung cancer and lymphoma 

(Rodriguez-Enriquez et al., 2009). Antimetabolites act as analogs to the normal building 

blocks of DNA and RNA, and so block the incorporation of the natural purines and 

pyrimidines. This causes toxicity to cells attempting to replicate their DNA (Rodriguez-

Enriquez et al., 2009). There also exist many natural products, which includes the 

Anthracyclines, Taxanes, and Vinca Alkaloids. Anthracyclines, such as Doxorubicin and 

Daunorubicin, act by inserting themselves into DNA, called intercalation, causing 

inhibition of the Topoisomerases-enzymes that assist in supercoiling the double helix, 

which are required for both DNA replication and division (Hershman and Shao, 2009; 

Masai et al., 2010). Vinca Alkaloids like Vincristine and Vinblastine bind tubulin and 

inhibit synthesis of the microtubules needed for mitosis. Taxanes such as Paclitaxel 

actually promote microtubule stability, which halts the cell in mitosis, eventually causing 
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apoptosis. Taxanes tend to suffer from high toxicity and susceptibility to drug resistance 

through the common drug efflux protein P-glycoprotein, making their use limited (Canta 

et al., 2009). Often, several drugs are used in combination to obtain maximum effect, but 

this may lead to an increase in unhealthy side effects (Peters et al., 2000). Common to all 

these drugs is their dramatic toxicity to cells that rapidly replicate. While many cells in 

the body are quiescent and so are less affected by chemotherapy, there are those that are 

dramatically affected, leading to side effects. Hematopoietic cells of the bone marrow 

rapidly divide and so a common toxicity associated with chemotherapy is bone marrow 

depression, which leads to anemia and immune suppression. Cells of the intestinal 

mucosa are also highly affected, causing nausea and vomiting in patients (Takimoto and 

Calles, 2009). These side effects combine to make the therapeutic index, or ratio of lethal 

to effective dose, of many chemotherapy drugs quite low (Bosanquet and Bell, 2004). For 

instance, Doxorubicin can interact with iron in the body to release reactive oxygen that 

causes cardiotoxicity, making its therapeutic index in vitro around ten (Hershman and 

Shao, 2009; Bosanquet and Bell, 2004).  

Another class of drugs exist known as targeted molecular therapies, a highly 

diverse group of drugs that inhibit processes that may be important for cancer 

progression. For instance, Gefitinib inhibits signal transduction through the Epidermal 

Growth Factor Receptor (EGFR) by interfering with its effector receptor, tyrosine kinase 

(Takeuchi and Ito, 2010). Cetuximab is an antibody that directly binds the extracellular 

domain of the EGFR, preventing the binding of its ligand. Cetuximab can cause 

pulmonary toxicity and renal failure, and is very expensive at $30,000 per 8 weeks of 
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treatment (Bou-Assaly and Mukherji, 2010). Bevacizumab binds Vascular Endothelial 

Growth Factor (VEGF) and blocks interaction with its receptor, preventing angiogenesis 

to tumor sites. Inhibitors of VEGF, when used to treat lung cancers, can cause 

hemoptysis (bleeding in the lungs and airways), which occurred in one study in six of 66 

individuals tested, four of them fatal (Peerzada et al., 2010). Tamoxifen antagonizes the 

estrogen receptor, causing death in breast cancers that are estrogen dependent, and can 

also inhibit other processes such as protein kinase C pathways, among others (de Medina 

et al., 2004). Though they are believed to be fairly well tolerated, these drugs also have 

side effects, and only tumor cells that have aberrancies in their target process will 

respond. Another problem with these drugs is their selection for mutations that render the 

cancer cells resistant to them, much of the time through a change in the binding site of the 

drug. Because cancer cells tend to tolerate mutations, their DNA can be highly mutable, 

leading to rapid development of resistance and resulting resurgence of malignancies 

(Hongbin, 2010). The unhealthy side effects of radiation, traditional chemical therapies, 

and targeted therapies, combined with increasing drug resistance, make the need for 

discovery of new, safe drugs both urgent and ongoing. 

Nanotechnology Applications in Cancer Treatment 

Nanomedicine, the use of nanotechnology in medical applications, has been 

greatly increasing in recent years. Research in the area of NP for imaging and drug 

delivery has become a major focus in cancer research. Many aspects of NP lend them 

utility in the destruction of cancer cells. The size of NP allows for them to gather in 

tumor sites, and their high surface reactivity can be exploited to attach additional 



18 

molecules to the surface. Nanoparticles are able to take advantage of the Enhanced 

Permeation and Retention (EPR) effect, which cause them to accumulate in tumors. 

Because tumors cause hurried angiogenesis to relieve low oxygen and nutrient 

conditions, leaky vasculature can result, with gaps between endothelial cells of 100 nm or 

more. This, combined with poor lymphatic drainage in tumors, can result in a passive 

buildup of NP in tumor sites (Cho et al., 2008). Some types of NP may be coated to help 

avoid rapid clearance of the drug by the reticuloendothelial system (Akerman et al., 

2002). Nanoparticle surface reactivity allows for potential conjugation with 

biomolecules, which can be used for active targeting of cancer sites or for attachment of 

chemotherapeutics, enhancing their effects (Akerman et al., 2002). 

Current Nano-Cancer Treatments 

Nanotechnology has found a niche in recent years in oncology. As described 

above, many properties of NP make them useful, as well as adaptable in cancer treatment. 

The use of nanomaterials for imaging has been previously outlined, and their enhanced 

permeation and retention makes them ideal for imaging tumors (Nie et al., 2007). They 

can also be conjugated to targeting molecules that can label metastasizing cancer cells 

before clinical signs appear, improving the patient’s prognosis (Mahmoud et al. 2010). 

Existing chemotherapies have also been improved using nanotechnology. For instance, a 

new drug Myocet uses doxorubicin incorporated into liposomes to retain its efficacy 

while ameliorating some of the side effects associated with doxorubicin such as 

cardiotoxicity (Batist et al., 2002). Another interesting area of research uses gold NPs to 

induce hyperthermia in tumors. Conjugation with Cetuximab, an antibody that targets 
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EGFR-expressing cancers, causes the NP to be internalized by malignant cells. 

Subsequent exposure to shortwave radiofrequency energy, which is highly penetrant and 

non-ionizing, heats the NP sufficiently to kill the tumor cells without harm to surrounding 

tissues (Cherukuri and Curley, 2010). Quantum dots are being investigated for their 

potential to kill cancer cells via photodestruction. Because quantum dots exhibit quantum 

confinement, stimulation with light energy can cause liberation of valence band electrons 

into the conduction band, which, in oxygenated environments, leads to generation of 

reactive oxygen species. Organic photodynamic therapies (PDT) exist, but suffer from a 

need to be excited by light in either the visible or UV spectrum, which cannot readily 

penetrate into tissues. It is believed that the use of nanomaterial quantum dots that show 

absorption in the near-infrared region will help to overcome tissue penetrance limitation 

(Samia et al., 2003). Conjugation with targeting molecules is also expected to improve 

the selectivity of photodestruction to tumor sites (Bakalova et al., 2004).  

In summary, NP of many types through their novel physical, chemical, and 

quantum properties have demonstrated utility through various mechanisms against 

malignancies. In this study, we demonstrate the intrinsic ability of NP composed of ZnO 

to selectively kill certain types of cancerous cells. We also study the possible mechanisms 

of this selectivity from two angles: differences between cancerous and normal cells that 

may render them susceptible, including rapid proliferation rates, and NP characteristics 

that make them useful against cancer cells.    
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Cell Proliferation 

Cell Cycle 

Cells in the body must replicate in order for the organism to grow and develop, 

repair damaged tissue, and replace dying cells.  All cells participate in at least certain 

components of a common set of phases known as the cell cycle. Those that do not 

replicate exit the normal cell cycle and enter a phase known as G0, a resting state with 

respect to cell proliferation. While these cells do not divide, they continue to perform the 

function of the tissue in which they are found and can re-enter the cycle if stimulated 

(Smith and Martin, 1973). For instance, most highly differentiated cells such as neurons 

enter G0 after the development of an organism is complete and are thereafter non-

renewable (Liu et al., 2010). Cells that are proliferating, however, go through two distinct 

phases involved in cell division, interphase and mitosis. Interphase involves accumulation 

of elements needed for mitosis, which is division of the cell’s DNA, and has three sub-

phases (Nasmyth, 1996). 

Gap 1, or G1, involves growth and accumulation of cytoplasmic elements needed 

for DNA replication. A checkpoint exists before the cell leaves G1 in which the DNA is 

assessed for damage and completeness before replication begins. This is highly regulated 

by the tumor suppressor protein p53, which halts the cell cycle and initiates DNA repair 

if damage is found, or signals apoptosis if damage cannot be repaired (Sherr, 1996). After 

this checkpoint, the cell enters the S, or synthesis phase, during which the DNA is 

replicated by the Polymerase enzyme. Replication is semi-conservative; as the double 
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helix of the DNA is unwound, each strand is used as a template to which Polymerase 

adds the complimentary bases. This process results in two daughter strands that contain 

one parent strand, and remain attached to one another at the centromere as sister 

chromatids until separation occurs during mitosis (Masai et al., 2010). Another gap phase 

follows, G2, in which the cell continues growth and synthesizes microtubules required for 

mitosis. Another checkpoint exists at the close of G2 to allow the cell to ensure that 

faithful replication of DNA has occurred to prevent the passage of incorrect genetic 

information to daughter cells. This assessment is performed by proofreading enzymes 

that are different than those in G1, and interestingly, whose genes are rarely mutated in 

cancer. This is highly contrary to the G1 checkpoint enzyme p53, which is the most 

common mutation seen in malignancies. If the checkpoint is passed, the cell will enter 

mitosis, or M phase (Kuntz and O’ Connell, 2009). 

Mitosis refers to the stage of the cell cycle in which the replicated DNA is 

divided. There are four phases of mitosis: Prophase, Metaphase, Anaphase, and 

Telophase. In Prophase, DNA condenses from loose chromatin into compact 

chromosomes. The mitotic spindle assembles at each centriole found on opposite poles of 

the nucleus, and microtubules attach to kinetochores on either side of the centromere of 

each chromosome (Hirano, 2005). The nuclear membrane degenerates to allow spatial 

separation of the divided DNA (Larijani and Poccia, 2009).  During Metaphase, the 

chromosomes are lined up along the metaphase plate in the center of the cell, with 

microtubules extending out either side of the centromeres to the mitotic spindle (Rieder 

and Salmon, 1994). Anaphase is hallmarked by the breakdown of the proteins that attach 
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the sister chromatids, and the physical separation of them via shortening of the 

microtubules (Maiato and Lince-Faria, 2010; Guacci, 2007). During Telophase, two new 

nuclear membranes form, sequestering each separated set of chromosomes, and the DNA 

decondenses back into chromatin (Larijani and Poccia, 2009). The cell typically also 

begins cytokinesis, which is the separation of cytoplasm, to eventually form two distinct 

cells (Debec et al., 2010).  

Microtubule Polymerization and Depolymerization 

Microtubules are not only key players in cell motility and vesicle trafficking, they 

also are responsible for the movement and separation of chromosomes during mitosis 

(Maiato and Lince-Faria, 2010). They are hollow cylindrical polymers made up of 

subunits of α and β tubulin that form heterodimers. These subunits form long chains that 

complex laterally to form a long tube with one end of the cylinder having an exposed α 

subunit, and the other end containing an exposed β subunit. These are referred to as the 

minus end and plus end, respectively. Each subunit has a bound GTP molecule, which, 

when hydrolyzed to GDP, causes rapid depolymerization of the microtubule. However, 

most subunits that make up the polymer have bound GDP; GTP is typically only found 

on the microtubule ends. The GTP-binding site on the α subunit is relatively hidden, so 

its GTP is therefore hydrolyzed much more slowly than that on the β subunit, making the 

plus end the more dynamic of the two (Zheng, 2004). Stabilizing the dynamic end of the 

microtubule is accomplished by attaching a GTP-bound β subunit “cap” to the plus end to 

prevent depolymerization of the many GDP-bound subunits beneath it. Microtubule 

dynamics are accomplished in several ways: slow progressive hydrolysis and loss of 
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tubulin at the minus end, addition of subunits to the plus end, or hydrolysis and rapid loss 

of tubulin from the plus end, known as microtubule catastrophe (Risinger et al., 2009). 

These methods allow for purposeful treadmilling, lengthening, and shortening, known 

collectively as microtubule dynamics. Disrupting these dynamics can interfere with 

cellular processes such as mitosis, and can even arrest cell growth, as was discussed for 

certain chemotherapeutic drugs (Wilson et al., 1999).  

Cell Synchronization and Inhibition of Proliferation 

Often, cell proliferation needs to be inhibited or many cells need to be 

synchronized in a certain phase of the cell cycle. For instance, karyotypes are often 

observed to detect chromosomal abnormalities that put an individual at high risk for 

cancer. A karyotype is a spread of all of an individual’s chromosomes that have been 

stained to improve visualization (Schrock et al., 1996). However, because individual 

chromosomes are only visible in a condensed state, the chemical Colcemid is used to 

arrest the cells in Metaphase of mitosis (Singh et al., 2001). There exist several chemical 

inhibitors that, through differing mechanisms of action, will synchronize cells in different 

phases of the cell cycle. These drugs are often used in molecular biology experiments for 

synchronization, or to simply slow proliferation of the cells. Two cell cycle inhibitors 

were used in this work: Nocodazole, and Colcemid. For these studies, we arrest 

proliferation using both chemical inhibitors and non-chemical methods to determine what 

effect, if any, proliferation had on cancer cell susceptibility to nanoparticle toxicity.  
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Aphidicolin is reported to arrest cells in early DNA synthesis phase via inhibition 

of DNA Polymerase (Spadari et al., 1985). Both Nocodazole and Colcemid have been 

shown to synchronize cells in mitosis through their interaction with microtubules. 

Colcemid works through two mechanisms: first, it binds with high affinity to 

unpolymerized heterodimers between the α and β subunits, lowering the ability of those 

heterodimers to incorporate into growing chains and thus slowing microtubule 

polymerization (Risinger et al., 2009). Secondly, colcemid can complex with 

polymerized end tubulin (though with lower affinity than soluble heterodimers) and cause 

a conformational change in the subunit that sterically inhibits lateral interactions between 

chains. This results in a “fraying” of the strands of tubulin that make up microtubules and 

subsequent depolymerization (Bhattacharyya et al., 2008). Nocodazole is capable of this 

same depolymerization via the disruption of interchain attachment, but also promotes 

hydrolysis of the “cap” GTP to GDP four to five-fold; because GDP-bound tubulin is 

unstable, rapid depolymerization occurs (Mejillano et al., 1996). A common, chemical-

free method for proliferation reduction called serum deprivation was also used in this 

work. Culturing cells in media with lower serum concentration than normal for short 

periods (approximately 24 hours for this work) can cause them to enter a resting state 

without causing significant cell death (Kues et al., 2000). For this work, serum 

deprivation (2% FBS instead of standard 10%) was used in a T cell leukemic lineage to 

arrest cell growth. A variation of serum starvation, growth factor deprivation, was used in 

an epithelial cell line to the same end, which involes culturing in media lacking 

supplementation with Epidermal Growth Factor. Collectively, these chemical and non-
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chemical methods were used in different cell types to assess the effect of rapid 

proliferation on susceptibility to nanoparticle cytotoxicity.     

Reactive Oxygen Species 

 Reactive oxygen species (ROS) are molecules made up of or containing oxygen 

that have unpaired valence electrons, making them extremely reactive. These include 

superoxide (·O2
-
), hydroxyl radicals (·OH), and hydrogen peroxide (H2O2). Buildup of 

these can cause damage to membranes, proteins, and DNA, and lesions in tumor 

suppressor genes and proto-oncogenes can result in carcinogenesis (Zorov et al., 2005). 

ROS can be generated both exogenously and endogenously through natural cellular 

processes. Exogenous sources include ionizing radiation and UV light, and are often 

mutagenic (Higuchi, 2003). Endogenous production of ROS occurs via several natural 

mechanisms, such as during the breakdown of some chemicals by cytochrome p450 

enzymes, and as a byproduct of cellular metabolism (Cederbaum et al., 2009). Reactive 

oxygen is used by cells during redox signaling, and its reactivity and toxicity is exploited 

by cells of the immune system to kill invading pathogens (Valko et al., 2007).  

Metabolically generated ROS are those most relevant to this work, as the 

differential production between cancerous and normal cells may contribute to the 

selective cytotoxicity of ZnO NP to cancer cells. In order to survive, all cells must 

convert food energy, or sugars, into usable cellular energy in the form of adenosine 

triphosphate (ATP) (Nath, 2002). ATP contains adenosine, which is adenine bonded to a 

ribose, to which is attached a chain of three phosphate groups. Each ATP molecule 

contains two high-energy phosphate bonds (those between two phosphate groups), which 
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are used as energy currency for the cell (Boyer, 1989). Many energy-requiring cellular 

processes are coupled to the hydrolysis of ATP to ADP, harnessing the energy from the 

phosphate bond (Boyer, 1989). However, this requires that the cellular stores of ATP be 

replenished from ADP and inorganic phosphate (Nath, 2002). The process that 

accomplishes this is called cellular respiration, which is comprised of a series of steps 

including: glycolysis, pyruvate decarboxylation, the citric acid cycle, and oxidative 

phosphorylation (Pathania et al., 2009). It is during oxidative phosphorylation, 

specifically electron transport, where the majority of ATP is generated, that reactive 

oxygen is produced endogenously in cells during metabolic reactions (Nicholls, 2002). 

The electron transport chain involves a set of redox reactions in which electrons are 

shuttled through a series of protein carriers (Complex I – IV) in the mitochondrial inner 

membrane and finally to the terminal acceptor oxygen reducing it to water (Pathania et 

al., 2009). Coupled to this shuttling process is the transport of protons across the 

mitochondrial membrane. This produces a proton gradient, the equilibration of which 

provides the free energy to drive the phosphorylation of ADP to ATP by ATP synthase 

(Nicholls, 2002; Pathania et al., 2009). Superoxide is generated when an oxygen 

molecule is prematurely reduced by an electron carrier, which is believed to occur in 

approximately 2% of consumed oxygen atoms (Boveris and Chance 1973; Fridovich, 

1995). This reactive oxygen is believed to be responsible for cellular aging (Nicholls, 

2002).  

Reactive oxygen molecules are highly damaging to cells; because of this, aerobic 

organisms have mechanisms through which they are neutralized to prevent toxicity. 

Superoxide dismutase catalyzes the conversion of superoxide to hydrogen peroxide and 
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oxygen. Catalase then converts hydrogen peroxide to water and molecular oxygen, and 

glutathione peroxidase catalyzes the reduction of hydrogen peroxide to water by 

glutathione (Chaudiere and Ferrari-Iliou, 1999). When insufficient levels of these 

enzymes or glutathione exist in a cell, or when these processes are overwhelmed by 

reactive oxygen assaults, a condition known as oxidative stress occurs. High levels of 

hydrogen peroxide build, which are then converted through the Fenton reaction to toxic 

hydroxyl radicals, which are capable of damaging nearly all biomolecules and for which 

no enzymatic neutralization reaction exists (Imlay, 2003). Interestingly, the Fenton 

reaction is catalyzed by free iron, which can be liberated from iron-sulfer clusters in 

enzymes by oxidative stress, increasing its availability to participate in hydroxyl radical 

formation (Fridovich, 1995). Also, the reactivity of hydroxyl radicals ensures that they 

will react with nearby biomolecules rather than diffuse across distances, and the ability of 

nucleic acids to bind iron make DNA a superior target of Fenton-created hydroxyl 

radicals (Fridovich, 1995). However, mitochondria are not only major producers of ROS; 

they are also the cellular targets of apoptosis induced by oxidative stress. Oxidative stress 

can trigger loss of mitochondrial membrane potential, which in turn increases electron 

“leak” and further generation of ROS, setting off a cascade that ultimately results in the 

opening of the mitochondrial permeability transition pore, and subsequent release of 

cytochrome C, which initiates apoptotic enzymes (Zamzami et al., 1995; Zorov et al., 

2006). Necrotic cell death can also occur at extremely high levels of oxidative stress 

(Higuchi, 2003). Supplementation of cells with antioxidants can help alleviate this 

oxidative stress. For instance, N-Acetyl Cysteine (NAC) is a cell permeant glutathione 

precursor, which can be used to replenish the cellular stores of the molecule that donates 
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an electron to reactive oxygen, thereby neutralizing its reactivity (Chaudiere and Ferrari-

Iliou, 1999; Sinha-Hikim et al., 2010). Cells maintain a delicate balance of reactive 

oxygen and antioxidant mechanisms; disruption of this balance by exogenous assaults 

leads to malignancy, apoptosis, and necrosis. 

 Studies have shown that malignant cells may be less tolerant of assaults by 

reactive oxygen due to higher intrinsic levels of oxidative stress. This elevated ROS 

results from an increased metabolic demand associated with rapid proliferation and 

greater mitochondrial dysfunction in cancer cells (Hileman et al., 2004; Pelicano et al., 

2004). Interestingly, it has been found that oncogenes can induce ROS production in 

cells, and many human cancer lines show constitutive production of hydrogen peroxide 

(Vafa et al., 2002; Hlavata et al., 2003; Szatrowski and Nathan, 1991).  While some 

malignant cells respond to this increased oxidative stress by elevating levels of 

antioxidant enzymes, this has limited capacity, and some cancer cells actually have 

reduced levels of superoxide dismutase (Hitchler et al., 2008; Oberley et al., 1978). In 

fact, one study showed that reduced superoxide dismutase was found in cancerous murine 

hepatocytes, but not those that were normal but rapidly proliferating during regeneration 

(Oberley et al., 1978). This demonstrates a weakness that can be exploited to selectively 

target malignant cells therapeutically without damaging normal cell types. 

Cellular Uptake 

 An important facet of the study of the toxicity and medicinal efficacy of any 

substance is where it localizes and how it does so, both in vivo and cellularly. Studies 

from our lab thus far focus upon the cellular aspect of uptake and distribution. Certain 
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lipophilic drugs are able to passively diffuse across cell membranes, but many materials 

must be actively imported into cells, either through transport proteins or by endocytosis 

(Scherrmann, 2009). Endocytosis refers collectively to a group of different processes 

involving vesicle formation in the cell membrane that result in the internalization of 

substances as diverse as: pathogens, signaling molecules, proteins, extracellular fluid and 

dissolved substances, and particulate matter (Doherty and McMahon, 2009).  Several 

endocytic pathways exist that are responsible for many functions, including regulating the 

cell surface topography with respect to receptors, pathogen internalization for destruction 

and antigen presentation, and nutrient uptake (Shroeder et al., 2010; Sorkin and von 

Zastrow, 2002). The most highly studied pathways are Clathrin-mediated, caveolae-

mediated, and phagocytosis and macropinocytosis. 

Clathrin-mediated endocytosis involves the import of pits or vesicles coated with 

the protein Clathrin. This pathway is characteristic of receptor-mediated endocytosis and 

is responsible for the internalization of G-protein couple receptors (GPCR) and receptor 

tyrosine kinases (RTK) (Sorkin and von Zastrow, 2002). Cell surface receptors involved 

in this type of import have adaptor proteins that, upon ligand binding to the receptor, 

recruit proteins important for changing the curvature of the plasma membrane. Epsin is 

responsible for the insertion of an amphipathic “wedge” into the membrane, which causes 

curvature, and clathrin forms lattices that stabilize the structure while Dynamin promotes 

closure of the invagination (Ford et al., 2002; McNiven et al., 2000). Once the Clathrin-

coated pit is completely internalized, Auxilin and Hsc70 remove the Clathrin lattice 

before the endosome is trafficked to its destination (Eisenburg and Greene, 2007). An 

important feature of this endocytic pathway is its cargo specificity; adaptor proteins 
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ensure that only cargoes for which they have affinity will cause Clathrin recruitment and 

subsequent internalization (Doherty and McMahon, 2009).  

Another method for cellular uptake involves Caveolae, or “mini caves” and is 

Caveolin-dependent. Caveolae are specialized lipid rafts that originate in the Golgi and 

form flask-like invaginations in the membrane (Tagawa et al., 2005). The protein 

Caveolin-1 has both its C and N-terminus on the cytosolic side, but inserts a hairpin 

structure into the membrane forming a curvature (Shlegel and Lisanti, 2000). This 

pathway is also cargo specific and is responsible for the import of some 

glycosylphospatidylinositol (GPI) anchored proteins, which are found concentrated in 

lipid rafts. Many other GPI-linked proteins are internalized through as yet not well 

understood mechanisms that are highly cholesterol dependent but do not require either 

Clathrin or Caveolae (Lakhan et al., 2009).  

Certain cell types will perform a specialized type of endocytosis known as 

phagocytosis, or “cell eating,” which involves the engulfment of large particles (usually 

over 0.5 microns) (May and Macheski, 2001). This is limited to cells such as monocytes, 

macrophages, dendritic cells, and neutrophils of the immune system. These cells are 

responsible for the removal of bacteria, dead cells, and apoptotic debris from the blood 

and tissues (Krauss, 2000). When pathogens and debris are found in the body, they are 

coated with opsonins, which may be either complement proteins or antibodies that cause 

clumping of particles together and facilitate phagocytosis. Professional phagocytes have 

receptors on their cell surface that recognize the Fc, or tail end, of antibodies and 

complement proteins. Interaction of these receptors with their ligands stimulates Actin 

remodeling and extension of the membrane around the particle to engulf it (May and 
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Macheski, 2001). This large internalized vesicle, the phagosome, fuses with lysosomes, 

where pathogens and debris are exposed to digestive enzymes, low pH, and often reactive 

oxygen such as hydrogen peroxide (Babior, 2000; Haas, 2007). This digestion can be 

followed by antigen processing and presentation to T cells of the immune system (Vyas 

et al., 2008).  

Macropinocytosis is an important endocytic pathway that involves internalization 

of large volumes of extracellular fluid and the dissolved substances and particulate matter 

contained therein. During this process, large inward ruffles appear in the membrane, 

covering a large surface area of plasma membrane and encompassing large volumes of 

fluid, which can result in the non-specific uptake of any solid or dissolved matter in that 

liquid (Kerr and Teasdale, 2009). It is important to note that while phagocytosis and 

macropinocytosis are often referred to as Actin-dependent, this can be misleading. All 

forms of endocytosis require changes in the shape of the cell’s Actin cytoskeleton, 

therefore all are Actin-dependent. 

Endocytosis Inhibition 

 There exist many chemical inhibitors for each endocytic pathway, but it is 

important to note that experiments have shown nearly all of them to be capable of non-

specific inhibition of other pathways. For instance, Chlorpromazine is used often in 

molecular biology experiments to selectively block Clathrin-mediated endocytosis 

through its ability to cause Clathrin and AP2, an accessory protein necessary for Clathrin 

lattice assembly, to leave the plasma membrane and surround endosomes instead (Wang 

et al., 1993). Studies have shown, however, that Chlorpromazine can also inhibit 
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phagocytosis and macropinocytosis, both by altering the fluidity of the plasma membrane 

and through interference with phospholipase C, which regulates Actin behavior (Elferink, 

1979; Ivanov, 2008). Actin depolymerizers have long been used to inhibit 

macropinocytosis and phagocytosis, but it is now believed that these should be used as 

general inhibitors of all pathways (Ivanov, 2008). 

 One inhibitor that has shown fair specificity toward lipid raft-dependent 

endocytosis is the antibiotic Filipin. Contrary to many of the Caveolae-dependent 

inhibitors, which simply inhibit cholesterol synthesis, thereby making it unavailable to 

membranes and causing a fairly universal inhibition of endocytosis, Filipin causes 

cholesterol in lipid rafts to aggregate, sequestering it (Ivanov, 2008; Rodal et al., 1999). 

This has been shown to prevent lipid raft import, but does not affect Clathrin-dependent 

mechanisms or macropinocytosis (Ros-Baro et al., 2001; Monis et al., 2006).  

 One highly unselective endocytosis inhibitor was used in this work, Cytochalasin 

D, which works by depolymerizing F-actin. This prevents cytoskeletal rearrangements 

needed for the plasma membrane to change shape to accommodate internalization. This 

leads to a generalized inhibition of all pathways of endocytosis, including receptor-

mediated, Caveolin-dependent, phagocytosis and macropinocytosis, along with the as yet 

not well characterized pathways that require morphological changes in the cell membrane 

(Ivanov, 2008).   

Conclusion 

In conclusion, the prevalence of nanomaterials in everyday products is on the rise, 

and with it the amount of human exposure to them. This necessitates a careful assessment 
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of NP interactions with biological systems and their toxicological properties. Oxidative 

stress has become the paradigm mechanism for toxicity, but further probing is necessary 

to understand the nature of this ROS generation, particularly if it may be useful to destroy 

undesired cell types. The toxicity of NP has been heavily assessed in many organisms 

and cell types, including human cancer cells that are often used for in vitro studies due to 

their ease of culture. The goal of this work is to assess the selective nature of this toxicity 

and to determine if cancer cells are universally more susceptible to NP-induced death 

than are normal human cells of corresponding lineage. We hypothesize that cancer cells 

that have greater rates of proliferation are under greater oxidative stress intrinsically, and 

will be killed more readily than are normal cells due to their inability to tolerate further 

reactive oxygen assaults. This work also evaluates properties of the NP that may be 

important for toxicity, the modification of which may enhance their usefulness in the 

field of cancer therapeutics. 

These studies are presented in multiple chapters, Chapter 2 assesses NP toxicity in 

cancerous and normal T cells, along with basic mechanisms, and was published prior to 

the writing of this thesis. Chapter 3 extends these studies to include cells of epithelial 

origin and delves further into understanding properties of both ZnO NP and malignant 

cells themselves that are responsible for this selective toxicity. Chapter 4 ties together 

both studies to answer the major questions of the thesis and acts as a conclusion chapter.    
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CHAPTER 2: PREFERENTIAL KILLING OF CANCEROUS T CELLS 

BY ZINC OXIDE NANOPARTICLES 

Introduction 

The integration of nanotechnology and biology provides the opportunity for the 

development of new materials in the nanometer size range that can be applied to many 

potential applications in biological science and clinical medicine (McNeil, 2005; Lanone 

and Boczkowski, 2006; Groneberg et al., 2006). When reduced to the nanoscale realm, 

unique size-dependent properties of nanomaterials, including nanoparticles (NP), are 

manifested (Nel et al., 2006). One of the principal factors believed to cause properties of 

nanomaterials to differ from their bulk counterparts includes an increase in relative 

surface area and quantum effects, which can affect chemical reactivity and other physical 

and chemical properties (Lanone and Boczkowski, 2006; Nel et al., 2006).  For example, 

a particle of 30 nm size has 5% of its atoms on its surface compared to 50% of the atoms 

on the surface of a 3 nm particle (Groneberg et al., 2006). The altered properties of NP, 

and their similarity in size compared to naturally occurring biological structures, can 

allow them to readily interact with biomolecules on both the cell surface and within the 

cell and potentially affect cellular responses in a dynamic and selective manner. Materials 

that exploit these characteristics are becoming increasingly attractive for use in novel 

biomedical applications. 
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Although our understanding of the functioning of the human body at the 

molecular and nanometer scale has improved tremendously, advances in therapeutic 

options for treating severe and debilitating diseases such as cancer and autoimmunity 

have lagged by comparison. In this regard, nanomedicine, which is the application of 

nanotechnology to medical problems, can offer new approaches. With regards to cancer 

treatment, most current anticancer regimes do not effectively differentiate between 

cancerous and normal cells. This indiscriminate action frequently leads to systemic 

toxicity and debilitating adverse effects in normal body tissues, including bone marrow 

suppression, neurotoxicity, and cardiomyopathy (Nie et al., 2007; Bosanquet and Bell, 

2004).  Nanotechnology and nanomedicine can offer a more targeted approach that 

promises significant improvements in the treatment of cancer (Nie et al., 2007).  In this 

study, we have employed 8 nm zinc oxide (ZnO) NP in which the synthesis and 

properties have been previously described (Reddy et al., 2007). The aim of the study was 

to investigate whether ZnO NP induce toxicity in a cell-specific manner, determine the 

mechanism(s) of toxicity, and whether these NP have potential utility in novel biomedical 

applications seeking to eliminate pathogenic cells while sparing healthy body tissues.   

Materials and Methods 

Preparation and Characterization of Zinc Oxide Nanoparticles  

ZnO NP were synthesized in diethylene glycol (DEG) by forced hydrolysis of 

zinc acetate at 160˚ C as previously described and size control achieved by optimizing the 

hydrolysis ratio (Reddy et al., 2007). The ZnO NP were separated from DEG via 
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centrifugation (15,000 rpm), washed with ethanol several times, and dried to obtain a 

nanoscale powder sample. The ZnO chemical phase, crystallite size (8-13 nm), and shape 

were confirmed using x-ray diffraction (XRD), transmission electron microscopy (TEM), 

and spectrophotometry (Reddy et al., 2007). The NP were then reconstituted in phosphate 

buffered saline (PBS) solution. After reconstitution, NP were sonicated for 10 min and 

immediately vortexed before addition to cell cultures.  

Isolation of CD4
+
 T Lymphocytes and Cell Culture  

Written, informed consent was obtained from all blood donors and the University 

Institutional Review Board approved the study. Peripheral blood mononuclear cells 

(PBMC) were obtained by Ficoll-Hypaque (Histopaque-1077, Sigma, St. Louis, MO) 

gradient centrifugation using heparinized phlebotomy samples (Coligan, 1995). Cells 

were washed 3 times with Hank’s buffer (Sigma) and incubated at 1 x 10
6
 cells/mL in 

RPMI-1640 (Sigma) containing 10% fetal bovine serum (FBS). CD4
+ 

cells were obtained 

by negative immunomagnetic selection per manufacturer’s instructions using a cocktail 

of antibodies against CD45RO, CD8, CD19, CD14, CD16, CD56, CD8, and glycophorin 

A (StemCell Technologies, Vancouver, B.C.) with collection of unlabeled T cells 

(typically >96% CD4
+ 

 and > 90% viable as assessed by flow cytometry). 
 
Purified CD4

+
 

cells were cultured in RPMI/10% FBS at 2 x 10
5
 cells/well in 200 L total volume in 96-

well microtiter plates. The Jurkat and Hut-78 T cell lines (ATTC, Rockville, MD) were 

cultured in RPMI 1640 supplemented with 10% FBS (Jurkat) or 20% FBS (Hut-78) and 2 

mM L-glutamine, 1.5g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 1.0 

mM sodium pyruvate. Cells were maintained in log phase at 37 
0
C and 5% CO2 and 
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seeded at 1 x 10
5
 cells/well in 96-well plates for individual experiments.  To prevent 

overgrowth in co-culture experiments, Jurkat cells were seeded at 5 x 10
4
 cells/well and 

primary T cells were seeded at 1 x 10
5
 cells into the same well.  

Cell Viability and Flow Cytometry Staining 

 Methods of immunofluorescent staining and flow cytometry were performed as 

previously described (Coligan, 1995). Briefly, cells were stained with fluorescently 

labeled antibodies (Beckman Coulter, Miami, FL) for 30 minutes at 4
o
C, washed two 

times, and immediately analyzed on a 3-color Epics flow cytometer (Beckman Coulter).  

Five to ten thousand events gated on size (forward scatter-FS) and granularity (side 

scatter-SSC) were analyzed, and expression of the percentage of positively staining cells 

or the mean fluorescence intensity (MFI) was determined by comparisons to isotype 

controls. Appropriate concentrations of each antibody were determined by titration for 

optimal staining prior to experimental use. 

 To assess cell viability, two different assays were employed.  In the first assay, T 

cells were dually stained with fluoroscein isothiocyanate labeled antibodies (anti-CD4 for 

primary T cells and anti-HLA ABC for T cancer cell lines) followed by treatment with 50 

μg/mL propidium iodide (PI) to monitor losses in membrane integrity. After 10 min of PI 

staining, fluorescent CountBright counting beads (Invitrogen, Carlsbad, CA) were added 

to samples to enable determinations of absolute cell numbers, and changes in PI staining 

used to quantify cell death. Nanoparticles were excluded from analysis based on the 

absence of fluorescence signal and light forward scatter (FS) and side scatter (SSC) 

characteristics.  A second viability assay, the LIVE/DEAD viability assay for mammalian 
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cells (Invitrogen, Eugene, OR), was used to verify results.  Per manufacturer’s protocol 

for flow cytometry, cells were dually stained with two fluorescently labeled probes that 

enable the simultaneous determination of live and dead cells in a sample. Calcein AM 

was used to stain live cells as it fluoresces only when cleaved by intracellular esterases 

and EthD-1 was used to identify dead/dying cells as it exclusively enters cells with 

disrupted cell membranes.   

In co-culture experiments, Jurkat cells and primary T cells were distinguished 

from each other using differential gating based on their differing and non-overlapping 

light scattering properties indicative of size (FS) and granularity (SSC) between the two 

cell types.  FS and SSC of Jurkat cells was ~ 2.2 and 3.2 times greater than for primary T 

cells, respectively.  

ROS Production 

To assay for reactive oxygen species (ROS) production, primary human T cells 

were treated with the oxidation-sensitive dye, 2’, 7’-dichlorofluorescein diacetate 

(DCFH-DA; Invitrogen, Carlsbad, CA). The oxidation product of DCFH-DA has an 

excitation/emission maxima of ~495 nm/529 nm enabling detection using standard flow 

cytometry. Whole blood was treated with an ammonium chloride solution (1.5 M NH4Cl, 

0.1 M NaHCO3, 0.01 M EDTA) to lyse red blood cells and centrifuged for 10 min at 4
o
C 

to remove erythrocytic debris. The white blood cells were then resuspended in phenol 

red-free RPMI a 2 x 10
5 
cells/well and treated with 13 nm ZnO NP.  After 18 h of 

treatment, cultures were loaded with 5 M of DCFH-DA for 20 min and ROS production 

evaluated using flow cytometry as previously described (Luo et al., 2002). To ensure 
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cells were capable of ROS production, control samples were activated with 25 ng/mL of 

PMA for 1 h after loading with DCFH-DA. White blood cell populations (i.e., T 

lymphocytes and monocytes) were distinguished by FS and SSC characteristics and 

staining with fluorescently-labeled antibodies (e.g., CD3, CD14). ROS production was 

also performed in Hut-78 cells using similar methodology.   

ROS Quenching 

 To determine the role of ROS in NP-induced cell death, Jurkat leukemia cells 

were seeded in a 96-well plate at 0.2 mL per well at a concentration of 1 x 10
5
 cells/well.  

A stock solution of N-Acetyl Cysteine (NAC, Sigma Aldrich) was made in sterile 

nanopure water and added to cells at 5 mM or 10 mM for 1 h. After NAC pretreatment, 

cells were cultured with 0.3-0.5 mM ZnO NP for 24 h. Viability was determined by PI 

exclusion and flow cytometry with fluorescent CountBright counting beads (Invitrogen, 

Carlsbad, CA) added to samples to enable determination of absolute cell numbers. 

Statistical Analyses 

 All data was analyzed using SAS, Inc. software (Cary, N.C.).  Data for Figure 1A 

and 2 were analyzed using repeated measures of variance with post hoc comparisons and 

significance levels defined as p<0.05.  Repeated measures of variance analyses were used 

when two or more measurements of the same type were made on the same subject to 

determine statistical differences between the means and allow within-subject variation to 

be separated from between-subject variation.  Data for Figures 1B and 5 were analyzed 

using a two-way analysis of variance (ANOVA) to test for statistical significance of the 
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model and post hoc comparisons were used to test for statistically significant effects of 

treatment on cell viability (p<0.05). 

Results 

Preferential Killing of Cancerous Cells by ZnO NP  

 Experiments in our lab have previously shown that T cells activated through the T 

cell receptor and its CD28 costimulatory pathway were more susceptible to ZnO NP 

toxicity (Hanley et al., 2008). We hypothesized that this susceptibility was due to the 

proliferation increase that occurs upon activation. In light of this, experiments were 

performed to determine whether continuously dividing cancer cells display an even 

greater sensitivity to ZnO NP toxicity. Jurkat leukemic and Hut-78 lymphoma T cell lines 

were treated with ZnO NP for 24 h and viability was determined by PI uptake. Both T 

cell cancer lines displayed strikingly greater (28-35 fold) sensitivity to NP toxicity 

compared to resting normal T cells (Figure 2.1). Significant differences were observed 

between Hut-78 and normal T cells (p=.0101 and 0.0434 at 1 mM and 5 mM NP, 

respectively) and Jurkat and normal T cells (<0.0001 at both 1 mM and 5 mM NP). An 

IC50 of ~0.17 mM was observed for Hut-78 cells and ~0.21 mM for Jurkat T cells. No 

appreciable loss of primary T cell viability was observed at NP concentrations (e.g., 0.5 

mM) that effectively killed the cancerous T cells.   

 To validate experimental results, a second viability assay was employed. Similar 

experiments were performed using the LIVE/DEAD viability assay (Invitrogen, Eugene, 

OR), which allows for the simultaneous determination of live and dead cells in a sample 
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by labeling live cells with the Calcein AM dye that fluoresces only when cleaved by 

intracellular esterase enzymes and the vital dye, EthD-1, which only enters dead/dying 

cells with disrupted cell membranes.  As shown in Figure 2.1B, nearly identical results 

were obtained using this independent assay for viability, with ZnO NP displaying 

preferential toxicity against cancerous cells compared to normal cells of identical lineage.  

It should be noted that no statistically significant change in primary T cell viability occurs 

between untreated control cells and cells treated with low NP concentrations (0.2 and 0.5 

mM), while a significant decrease (p<0.0001) in Jurkat leukemia cell viability can readily 

be seen at the lowest concentration tested (~52% viable/48% dead at 0.2 mM) with no 

live cancer cells detectable at 5 mM NP. 

 To verify that preferential cancer cell killing occurs in the direct presence of 

normal healthy T cells, co-culture experiments were performed.  For these experiments, 

Jurkat T cells were co-cultured with primary CD4
+
 T cells, treated with various 

concentrations of ZnO NP for 24 h, and cell viability assessed by PI uptake.  Figure 2.2 

confirms the preferential killing of cancerous Jurkat T cells with a very similar IC50 value 

being observed for co-cultured Jurkat cells (IC50 ~0.28 mM) compared to these cells 

cultured alone (Figure 2.1). Again, only very limited cytotoxicity was observed on co-

cultured normal T cells at corresponding NP concentrations with significant differences 

(p<0.0001) between cell types being observed at 0.3, 0.4, and 0.5 mM NP concentrations.   
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Kinetics of ZnO NP-Mediated Toxicity  

 Additional experiments were performed to determine the kinetics of ZnO NP 

toxicity in both primary and cancerous T cells. Because primary and immortalized T cells 

have markedly different sensitivities to ZnO NP, concentrations were chosen for each cell 

type (10 mM for primary T cells and 0.5 mM for Jurkat T cells) that produce at least 75% 

cytotoxicity by 24 h exposure. As shown in Figure 2.3, both primary T cells and Jurkat 

cells displayed similar kinetics, with appreciable loss of cell viability beginning as early 

as 8 h post treatment and full toxicity effects requiring a longer treatment period of 24 h.  

ZnO NP Induce ROS Production 

 Several types of nanomaterials including quantum dots and metal oxide NP have 

been shown to induce the generation of excess reactive oxygen species (ROS) resulting in 

modification and damage of cellular proteins, DNA, and lipids, which can lead to cell 

death (Lovric et al., 2005; Xia et al., 2006; Green and Howman, 2005). To investigate 

oxidative stress produced by ZnO NP as a mechanism of cellular toxicity, experiments 

were performed using the cell permeable dye, DCFH-DA. In the presence of reactive 

oxygen species, including hydrogen peroxide and superoxide anion, DCFH-DA is 

oxidatively modified into a highly fluorescent derivative that is readily detectable using 

flow cytometry.  As shown in Figure 2.4, a modest increase in DCF fluorescence was 

observed after 18 h of  5 mM ZnO NP exposure in primary lymphocytes (~7.0 fold 

increase – 12.5/1.78) and an even stronger induction observed in Hut-78 T leukemic cells 

at 24 h (~ 14.0 fold increase). Increased ROS production was detectable as early at 8 h of 
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NP exposure although greater levels were apparent at 18-24 h (data not shown). Because 

of the differing size and granularity properties of the cell types examined, different 

instrument voltage parameters were required, which prevents direct comparisons of 

intrinsic levels of ROS between cell types.  

Role of ROS in NP-Induced Cytotoxicity 

 Experiments were performed to determine if the T cell death that results from NP 

exposure is dependent on the generation of intracellular ROS.  Jurkat cells were exposed 

to increasing concentrations of the antioxidant and ROS quencher, NAC (N-acetyl 

cysteine), prior to treatment with NP for 24 h (Boudreau et al., 2007; Han et al., 2004).  

Figure 2.5 shows that NAC has significant effects to prevent NP-induced cytotoxicity 

with rescue being observed at both NP concentrations tested.  Significant differences 

(p<0.0001) were observed between cultures not pretreated with NAC and both NAC 

pretreatments (5 mM and 10 mM) for each NP concentration tested.  For example, with 

10 mM NAC, nearly 100% viability was retained even at an NP concentration previously 

shown to reduce cell viability below 10%.  These results indicate that ROS generation 

plays a causal role in NP-induced cytotoxicity.   

Discussion 

 In this study we examined the toxicity profiles of human primary cells and 

transformed tumor cells to ZnO NP.  Because cellular response is dynamic and the 

ultimate phenotype is affected by a myriad of competing or overlapping signals present in 

the microenvironment, studies were performed to determine how ZnO NP affect 
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quiescent cells compared to rapidly dividing tumor cells and whether different activation 

stimuli result in different toxicity responses. Here we present novel findings 

demonstrating that cancerous T cells are markedly more susceptible (~28-35 times) to 

ZnO NP mediated toxicity than their normal counterparts (Figure 2.1). These findings 

may be of important clinical interest as one of the greatest challenges facing 

chemotherapy is the inability of anticancer drugs to effectively distinguish between 

normal and transformed tissue (Nie et al., 2007; Hellman, 1980).  Although many 

commonly used chemotherapeutic drugs target rapidly dividing cells, many suffer from a 

relatively low therapeutic index, that is, the ratio of toxic dose to effective dose 

(Bosanquet and Bell, 2004; Huang and Oliff, 2001). This limitation frequently causes a 

broad range of toxicities, leading to dose limiting toxicity and a concomitant reduction in 

antitumor efficacy.  Importantly, the preferential toxicity of ZnO NP towards cancerous T 

cells is of substantial magnitude, especially in comparison to ex vivo indices reported for 

other commonly used chemotherapeutic agents using similar cell viability assays. 

Therapeutic indices of  ≤ 10 have been reported for both doxorubicin and carboplatin 

against a variety of tumors, including acute myelogenous leukemia, non-Hodgkin’s 

lymphoma, ovarian, and other solid tumors (Bosanquet and Bell, 2004).  Thus, the 

inherent differential toxicity of ZnO NP against rapidly dividing cancer cells raises 

exciting opportunities for their potential use as anticancer agents, and the selectivity of 

these nanomaterials can be expected to be even further enhanced by design by linking 

tumor targeting ligands such as monoclonal antibodies, peptides, and small molecules to 

tumor-associated proteins, or by using NP for drug delivery. 
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 The preferential killing of rapidly dividing cancer cells relative to quiescent cells 

of the same lineage suggests that mechanisms of ZnO NP toxicity might be related to the 

proliferative potential of the cell. Thus, we hypothesize that other highly proliferative 

cancerous cell types may show similar susceptibility to this cytotoxicity compared with 

their normal counterparts.  

 A number of studies indicate that certain nanomaterials, including metal oxide 

NP, have the potential to exhibit spontaneous ROS production based on material 

composition and surface characteristics while other nanomaterials trigger ROS 

production only in the presence of select cell systems (Lovric et al., 2005; Xia et al., 

2006; Long et al., 2006). Results from our flow cytometry experiments provide evidence 

of ROS production in a biotic environment following ZnO NP exposure. These findings 

have important implications regarding mechanisms of cellular toxicity as elevated ROS 

production that exceeds the capacity of the cellular antioxidant defense system causes 

cells to enter a state of oxidative stress, which results in damage of cellular components 

such as lipids, proteins, and DNA (Lovric et al., 2005; Xia et al., 2006). The oxidation of 

fatty acids then leads to the generation of lipid peroxides that initiate a chain reaction 

leading to disruption of plasma and organelle membranes and subsequent cell death. We 

observed a concentration and time-dependent increase in ROS production in primary T 

cells following ZnO NP exposure (Figure 2.4), with even higher levels being observed in 

immortalized T cells. This may mechanistically underlie the greater susceptibility of 

cancerous T cells to NP-mediated toxicity.  Indeed, studies using the ROS quencher, 
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NAC, demonstrated the causal role of ROS generation in NP-mediated cytotoxicity 

(Figure 5).  

Conclusion 

The key findings of this work support the view that ZnO NP induce toxicity in a 

cell-specific and proliferation dependent manner with rapidly dividing cells being the 

most susceptible and quiescent cells being the least sensitive. The marked difference in 

cytotoxic response between cancer cells and their normal counterparts suggests an 

exciting potential for ZnO NP as novel alternatives to cancer chemotherapy and radiation 

therapy.  
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Figure 2.1.  Differential cytotoxic effects of ZnO NP on cancerous T cell lines and 

primary T cells (Hanley et al., 2008). A) Jurkat, Hut-78 T cell lines, or normal primary T 

cells were treated with varying concentrations of ZnO nanoparticles for 22-24 h and 

viability determined by monitoring PI uptake using flow cytometry as described for 

Figure 1. Data from seven (Jurkat), three (Hut-78), and four (normal CD4
+
 T cells) 

independent experiments is presented and error bars depict standard error. Data was 

analyzed using a repeated measures ANOVA and model based means post test. Statistical 

comparisons were made between each cancer cell line and primary T cells at 0.1 mM and 

0.5 mM ZnO NP with significance levels defined as p<0.05 and indicated by an asterisk.   

B) Jurkat and primary T cell viability was assessed using the LIVE/DEAD 

Viability/Cytotoxicity Kit for mammalian cells (Invitrogen, Eugene, OR). Following ZnO 

NP exposure for 24 h, cells were stained with calcein AM (green fluorescence) and 

ethidium homodimer-1 (red fluorescence) to differentiate between live and dead cells, 

respectively.  Data from a representative experiment is presented with error bars 

depicting standard error, n=3.  A two-way analysis of variance combined with a model 

based means test indicates significant differences in viability between Jurkat and primary 

T cells for all NP concentrations tested (asterisk denotes p<0.0001). 
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Figure 2.2. Viability effects of ZnO NP on co-cultures of cancerous and normal T cells. 

Individual wells in a 96-well plate were seeded with Jurkat and primary T cells and 

treated with various concentrations of ZnO nanoparticles for 22-24 h. Viability was 

determined by monitoring PI uptake using flow cytometry. Data from three independent 

experiments is presented and error bars depict standard error.  Statistical analysis was 

performed using a repeated measures ANOVA and model based means post hoc test.  

Significance levels were defined as p<0.05 and are indicated by an asterisk. 
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Figure 2.3. Kinetics of ZnO NP toxicity on immortalized and primary human T cells 

(Hanley et al., 2008).  Freshly isolated CD4
+
 T cells (purity > 96%) were treated with 10 

mM ZnO NP  and Jurkat T cells were treated with 0.5 mM ZnO NP for varying times and 

viability determined using PI uptake and flow cytometry.  Means  standard error from 

representative experiments are presented (n=3). 
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Figure 2.4. Cellular production of ROS following ZnO NP exposure (Hanley et al., 

2008). ROS generation was evaluated in primary T cells and in the transformed Hut-78 T 

cell line following 18-24 h of ZnO NP exposure using the oxidation sensitive dye DCFH-

DA and flow cytometry. A) Representative histograms depicting ROS production in 

primary T cell.  Assays were performed using freshly obtained whole blood in which red 

blood cells were removed following NH4Cl lysis. T lymphocytes were gated based on 

staining with fluorescently labeled CD3 antibodies and the oxidation product of DCFH-

DA detected using the FL1 detector.  B) Histogram depicting ROS production in the 

transformed Hut-78 T cell line.  In each histogram, the light grey line depicts background 

fluorescence in DCFH-DA loaded cells while the black line depicts fluorescence in 

DCFH-DA loaded cells treated with ZnO NP for 18 h (A) or 24 h (B).  To assess relative 

increases in ROS following NP treatment, a marker (M1) was set so that background 

fluorescent in control samples (DCFH-DA loaded/no NP) was between 1.5 and 2% and 

numbers in parentheses indicate the percentage of fluorescence positive cells. 
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Figure 2.5. Quenching of ROS protects against NP-mediated cytotoxicity. Jurkat cells 

were pretreated with 5-10 mM N-acetyl cysteine for 60 min and then treated with 0.3-0.5 

mM ZnO NP.  After 24 h, cell viability was determined using propidium iodide exclusion 

and flow cytometry. Data from a representative experiment performed in triplicate is 

presented with error bars depicting standard error. A two way analysis of variance was 

performed followed by a model based means test to show significant differences in 

means of cell viability (%) between treatments (asterisk denotes p<0.0001). 
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CHAPTER 3: SELECTIVE CYTOTOXICITY OF ZINC OXIDE NANOPARTICLES 

TO CANCEROUS CELLS: THE ROLE OF PROLIFERATION, NANOPARTICLE 

ELECTROSTATICS, AND DISSOLUTION PROPERTIES 

Introduction 

Nanoparticles (NP), substances with dimensions of 1 to 100 nm, are being 

increasingly investigated for their utility in diverse fields ranging from microelectronics, 

accelerating degradation of water pollutants via photocatalytic activity, food additives, 

cosmetics, sunscreens, as well as a variety of biological applications (Nel et al., 2006). 

These novel applications are enabled by the new physical, chemical, and magnetic 

properties that can emerge when materials are reduced to the nanoscale (Lanone and 

Boczkowski, 2006). Particular interest has arisen in the utility of NP in the area of 

medicine, now termed “nanomedicine,” because the similar size of NP to naturally 

occurring biological molecules can facilitate their entry into cells and subsequent 

interactions with proteins, nucleic acids, or other biomolecules (McNeil, 2005). Based on 

the new properties that can sometimes accompany the reduction of materials down to the 

nanoscale, nanomedicine seeks to deliver a new set of tools, devices, and therapies for the 

treatment of human diseases.  With respect to cancer, the small size of NP can take 

advantage of the enhanced permeability and retention (EPR) effect, which is recognized 

as a “gold standard” in the design of new chemotherapy agents, allowing for the intra-

tumor accumulation of therapeutic agents due to a combination of increased vascular 
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permeability and poor lymphatic drainage (Cho et al., 2008). This localized imbalance in 

the tumor microenvironment allows NP of certain sizes to readily enter, but to be 

passively retained within the tumor interstitial space (Cho et al., 2008).  In addition, as 

NP become smaller, their surface area to volume ratio increases, which results in a 

greater percentage of atoms on the particle surface and can make previously benign 

substances highly reactive (Nel et al., 2006). The increased number of reactive atoms at 

the particle surface also creates more sites to conjugate drugs or targeting molecules to 

the particle (Nie et al., 2007), providing an effective drug-delivery platform for existing 

chemotherapeutics, as well as new approaches for using NP in whole tumor imaging 

applications (Ferrari, 2005).    

 The use of nanomaterials in anti-cancer applications is receiving considerable 

interest in the scientific community, as there is a pressing need to develop new and 

improved chemotherapeutics that effectively kill cancerous cells while reducing 

unwanted side effects to normal body tissues. Currently used cancer therapies often fail to 

effectively discriminate between cancerous and normal cells, which can lead to a number 

of systemic toxic side effects, including myelosuppression, neurotoxicity, and 

cardiomyopathy (Nie et al., 2007; Bosanquet and Bell, 2004). Recently, studies from our 

lab have demonstrated the ability of ZnO NP to preferentially kill cancerous T cells, 

showing more than a 30-fold greater in vitro cytotoxicity to cancer cells than to 

corresponding normal cells (Figure 2.1; Hanley et al., 2008). Importantly, the selective 

cancer cell toxicity represents an intrinsic property of ZnO NP, which may enable further 

improvements in their therapeutic potential via conjugation with existing chemotherapy 
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agents or cancer-targeting ligands. 

 Prior to the development of ZnO NP for cancer applications, it is necessary to 

demonstrate that their inherent cancer selective properties extend beyond T cell 

malignancies. A better mechanistic understanding is also needed, both regarding the 

characteristics of cancerous cells and the properties of NP that are responsible for this 

selectivity. The study described in this chapter aims to determine the extent to which 

cancerous cells from multiple lineages are preferentially killed by ZnO NP, and to 

elucidate the role of cell proliferation, NP dissolution and electrostatic properties, and 

ROS generation in the toxicity mechanism. This knowledge is expected to help guide 

future NP modifications to improve their therapeutic potential. 

Materials and Methods 

Preparation and Characterization of Zinc Oxide Nanoparticles 

 Two different types of ZnO NP were synthesized and used in this work. The first 

type, used throughout the study and referred to in the particle charge experiments as ZnO 

I, was prepared using a procedure in which the zinc acetate dihydrate precursor was 

hydrolyzed in DEG solution with water. For this, 1.00g (4.56 mmol) of zinc acetate 

dihydrate was dissolved in 100 mL of diethylene glycol (DEG) while under constant 

stirring and heated to 80º C. Then, a select amount of nanopure water was added drop 

wise to the solution, which was then heated to 160º C and maintained for 1.5 hours. After 

cooling, the NP in the resulting milky white solution were centrifuged and washed with 

ethanol 3-5 times to remove the solvent. The NP were dried for 12 h at 50º C. 
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 A separate set of ZnO NP (referred to as ZnO II and used only for particle charge 

experiments) were prepared using a different synthesis procedure by hydrolyzing zinc 

acetate hydrate in anhydrous ethanol with LiOH solution. 1.10 g of zinc acetate hydrate 

(5.01 mmol) was added to a round bottom flask containing 100 mL of anhydrous ethanol 

and heated under constant stirring. After attaining a reaction temperature of 70º C, 100 

mL of 0.1M LiOH (in ethanol) was added to the flask, stirred for another 10 min, and 

allowed to age for 12 h. The resulting colloid was centrifuged and washed with ethanol 

and n-heptane before drying for 12 h at 50 °C. The ZnO NP chemical phase, crystallite 

size (8-13 nm) and shape were confirmed using x-ray diffraction (XRD), transmission 

electron microscopy (TEM), and spectrophotometry (Reddy et al., 2007). Zeta potentials 

of the powdered samples of ZnO I and ZnO II were measured in nanopure water with a 

Malvern Zetasizer NanoZS at 25
0
C. The NP were then reconstituted in phosphate 

buffered saline (PBS). After reconstitution, NP were sonicated for 10 min and 

immediately vortexed before addition to cell cultures. 

Peripheral Blood Mononuclear Cell and Red Blood Cell Isolations 

 Whole blood was obtained from donors with informed consent and University 

Institutional Review Board approval. Peripheral blood mononuclear cells (PBMC) were 

obtained by Ficoll-Hypaque (Histopaque-1077, Sigma, St. Louis, MO) gradient 

centrifugation using heparinized phlebotomy samples (Coligan, 1995). Cells were 

washed 3 times with Hank’s buffer (Sigma) and incubated at 1 x 10
6
 cells/mL in RPMI-

1640 (Sigma) containing 10% fetal bovine serum (FBS). Red blood cells were isolated 

from whole blood via centrifugation at 2000 rpm at 4
0
C for 10 min. The cells were 
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washed with phenol red-free RPMI media four times and resuspended at 5x10
8 

cells/ml. 

Primary lymphocytes were tested for NP cytotoxicity in PBMC cultures, but identified 

from other cell types present in the mixture based on gating for cells staining CD19
+
/ 

CD3
-
 for B cells, and CD4

+
 /CD3

+
 for T cells.   

Cell Culture 

 PBMCs, red blood cells (RBC), Jurkat, Daudi, K562, and T47D (ATCC, 

Manassas, VA) were cultured in RPMI media supplemented with 10% FBS, 2 mM L-

glutamine, 2.0 g/L sodium bicarbonate and 3.575g/L HEPES for PBMCs, and 1.5g/L 

sodium bicarbonate, 4.5 g/L glucose, 2.6 g/L HEPES, and 1.0 mM sodium pyruvate for 

Jurkat, Daudi, T47D and RBCs. PC3 prostate cancer cells (ATCC, Manassas, VA) were 

cultured in F-12K Kaighn’s modification of Ham’s medium supplemented to contain a 

final concentration of 10% fetal bovine serum. Primary Human Mammary Epithelial 

Cells (HMEC; Lonza, Allendale NJ) and MCF10A (ATCC) were grown in complete 

MEGM media (Lonza). 100 ng/mL cholera toxin was added to MCF10A media to 

stimulate cell proliferation. Prostate Epithelial Cells (PrEC) were cultured in complete 

PrEGM (Lonza). All cells were incubated at 37 C with 5% CO2. Adherent cells were 

maintained at 30 – 80% confluence and suspension cells were maintained in log growth 

phase. 

Viability Assays  

 To determine the cytotoxicity of ZnO NP, cells were incubated with various 

concentrations of NP suspended in phosphate buffered saline (PBS) and sonicated for 15-
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20 min. After 24 h NP treatment, cell viability was assessed using either propidium 

iodide (PI) dye exclusion assay to monitor losses in membrane integrity (Invitrogen) or 

an Alamar Blue reduction assay. All cell lines were cultured in their recommended 

media, but NP treated in the RPMI-based media to reduce effects of media components 

on NP surface characteristics (i.e. protein coating, pH, etc.). For the PI exclusion assay, 

cancerous B and T cell lines were stained with fluoroscein isothiocyanate labeled 

antibodies to HLA ABC, while primary B and T cells present in mixed PBMC cultures 

were identified by staining with anti-CD4, anti-CD19, and anti-CD3 antibodies 

(Beckman Coulter, Miami, FL) for 30 min at 4°C. After washing, cells were stained with 

50 μg/mL PI for 10 min, followed by the addition of fluorescent CountBright counting 

beads (Invitrogen, Carlsbad, CA) to enable determination of absolute cell numbers. Flow 

cytometry was used to evaluate changes in PI staining in relevant cell populations 

(CD19
+
, CD3

- 
B cells and CD3

+
, CD4

+
 T cells) by analyzing ten thousand events on a 4-

color Epics flow cytometer (Beckman Coulter). Nanoparticles were excluded from 

analysis based on the absence of a fluorescence signal and light forward scatter (FS) and 

side scatter (SSC) characteristics.   

 An Alamar Blue assay was used to confirm results from PI staining and determine 

viability in adherent cell lines. Reduction by mitochondrial enzymes in metabolically 

active (live) cells causes Alamar Blue to fluoresce, with excitation/emission wavelengths 

at 530/590 nm.  Adherent cells were seeded into 24 well plates at 4 x 10
4 

cells/well to 

prevent confluence and NP treated. Alamar Blue was added to samples at 10% by volume 

and incubated for ~ 4 h, and fluorescence changes read on a spectrophotometer after 24 h 
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NP exposure. Viability was calculated as percent of fluorescence of untreated control 

samples. 

 K562 cells were plated in 24 well plates at 1.2 x 10
5
 cells/well, treated with NP, 

and viability determined using the Alamar Blue assay.  Red blood cell toxicity was 

assessed via hemolytic activity determined by hemoglobin release. Cells were mixed 1:1 

with different concentrations of NP (75 ul:75 ul), samples incubated for 24 h, and cells 

centrifuged at 2000 rpm for 10 min to remove debris. The absorbance of hemoglobin 

released in the supernatant was measured at 540 nm. Sample hemolysis was normalized 

to a positive control (1% Triton-X), and absorbance of NP in solution was subtracted 

from all samples. The effect of NP on RBC lysis was verified using an LDH assay which 

measures the conversion of pyruvate to lactate in the presence of NADH (Stagsted and 

Young, 2002). After NP treatment, the plate was centrifuged at 2000 rpm for 10 min, 75 

ul of the supernatant transferred to a new plate, and 0.1 M Tris/HCL, 0.1% NADH and 

0.15M pyruvate added to the sample. Cytotoxicity was expressed as change in 

absorbance of LDH at 340 nm.   

Proliferation Rate Assay 

 The Alamar Blue assay was used to determine the proliferation rates of Jurkat, 

T47D, HMEC, and primary T cells given the recognized correlation between Alamar 

Blue reduction and cell number (Al Nasiry et al., 2007; Zhi-Jun et al., 1997). T47D, 

Jurkat, and primary T cells were plated at a concentration of 2 x 10
4
 cells/well in 24-well 

plates. HMEC were plated at 4 x 10
3
 cells/well to prevent confluence due to their large 
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size. Alamar Blue (10% by volume) was added to wells assigned for each day for 4 days 

and incubated for 4 h. The fluorescence at 590 nm was read on a spectrophotometer and 

plotted against time. For each time interval in the experiment (~24 h), a ratio of 

fluorescence was calculated (end fluorescence value/beginning fluorescence value), and 

used to calculate a doubling time (Fl. Ratio/24 h = 2/x hours). Three data points each 

averaged from a triplet experiment are compared for Jurkat and primary T cells, while 

eight (T47D) data points are compared with nine (HMEC), and six (PC3) data points are 

compared with eight (PrEC) for epithelial cell lines. 

Proliferation Inhibitors 

 Inhibition of cell proliferation was performed using chemical inhibitors or growth 

factor starvation. To arrest Jurkat cells in G0, cells were plated at 1 x 10
5
 cells/well in 

media containing 2% FBS. After 24 h, cells were centrifuged, resuspended in media 

containing 10% FBS at 1 x 10
5
 cells/mL, and treated with 0.25 mM NP for 24 h. 

Inhibition of proliferation in MCF10A cells was achieved by omitting epithelial growth 

factor and cholera toxin from the media. After overnight culture, cells were treated with 

NP for 24 h and the Alamar Blue assay used to verify the inhibition of proliferation had 

occurred and, in conjunction, used to assess NP cytotoxicity.  Cell cycle inhibition in 

T47D and PC3 cells was performed using 20 ng/mL Nocodazole to arrest cells in the G2 

to M phase by inhibiting microtubule polymerization, or Colcemid (10ng/mL for T47D; 8 

ng/mL for PC3) to synchronize cells in M phase via microtubule depolymerization.  Cells 

were plated 24 h prior to NP treatment to allow adherence to the bottom of culture wells, 

followed by the addition of fresh media containing cell cycle progression inhibitors.  
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After 17-20 h, fresh inhibitor-free media was added, cells allowed to recover for 1-2 h, 

cultures treated with ZnO NP for 24h, and viability assessed via the Alamar Blue assay.   

ROS Assays 

 Assessment of superoxide anion levels upon NP treatment was accomplished 

using the Mitosox Red indicator dye (Invitrogen, Carlsbad, CA). Both primary and Jurkat 

T cells were plated at 1 x 10
5 

cells/well, treated with NPs for 16-18 h, and dually stained 

with anti-HLA ABC (Jurkat cells) or anti-CD4 (primary T cells) antibodies and 2.5 µM 

Mitosox Red for 30 min, then washed, resuspended, and analyzed using flow cytometry 

as described above. Positive control cells were pretreated 30 min with 5 μM Antimicin. 

For ROS scavenger assays, T47D and PC3 cells were plated at 4 x 10
4
 cells/well, and 

treated with 2.5 to 10 mM N-acetyl cysteine (NAC) or 1 to 2 mM glutathione reduced 

ethyl ester (Glth) for 1-2 h to allow cellular uptake.  Cells were subsequently treated with 

NP and viability assessed using the Alamar Blue assay. 

Nanoparticle Dissolution Studies 

 Cell-impermeant Newport Green DCF Salt (Invitrogen) was used in the absence 

of cells to determine the extent that ZnO NP dissolve into free Zn
2+

 ions. Standard curves 

were generated by adding serial 1:10 dilutions in the range of 1 nM-10 mM of either 

ZnCl2 or ZnSO4 to black Corning 96 well-plates. Nanoparticles were then suspended at 

10 mM in deionized water or phenol red-free cell media, allowed to dissolve for 24 h, and 

centrifuged for 20 min at 13,000 rpm to pellet NP. Supernatant from NP samples was 

added to the same plate and compared to serial dilutions of the two Zn
+2

 standard curves 
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in the range of 10 nM-10 mM. Newport Green was added to each well to a final 

concentration of 0.1 µM and fluorescence detected at 505/535 nm excitation/emission 

wavelengths. To determine the extent to which levels of zinc cations equivalent to those 

calculated to result from NP dissolution are responsible for toxicicity, cells were treated 

for 24 h with 0.05 mM ZnCl2 and flow cytometry used to assess PI exclusion as 

described above.   

 To assess the effect of NP dissolution in the toxicity mechanism, NP were 

suspended in either PBS or RPMI media at 50 mM. NP were sonicated for 30 min and 

stored at room temperature for 24 h to allow dissolution. NP were then centrifuged for 20 

min at 13,000 rpm, and cells treated with NP or supernatant equal to NP concentrations 

of 0.25 and 0.5 mM. After 24 h, cells were stained for flow cytometry as previously 

described and viability assessed via PI exclusion.   

Endocytosis Assessment 

 Chemical inhibition of endocytosis was accomplished using Cytochalasin D, 

which is a general inhibitor of endocytosis via interference with actin filaments. Jurkat 

cells were incubated for 3 h with 1.5 µg/mL Cytochalasin D, resuspended in fresh media 

and treated with NPs for 24 h. Flow cytometry and PI exclusion was used to determine 

viability. For assays using adherent cultures, cells were plated and allowed to adhere to 

wells. After O/N culture, media containing endocytosis inhibitors was added for 3h, then 

replaced with fresh standard media, cells treated with NP for 16 h.  Effects of NP 

treatment were determined using the Alamar Blue assay.  



77 

Statistical Analysis 

 All data was analyzed with SAS, Inc. software (Cary, N.C.) using analysis of 

variance (ANOVA) to test for statistical significance of the model and post hoc 

comparisons to test for statistically significant effects of treatments on cell viability 

(p<0.05). 

Results 

 Previous research has shown that T cell leukemias and lymphomas are markedly 

more susceptible (~28-35 fold) to ZnO NP toxicity than normal T lymphocytes. These 

studies were extended to determine whether preferential cancer cell cytotoxicity was 

observed for other types of cancerous cells. As shown in Figure 3.1, cancerous B cells 

and breast cancer epithelial cells are more susceptible to ZnO NP-induced cytotoxicity 

compared to normal B cells and mammary cells. Normal and cancerous T cells were also 

included in these experiments as controls.  Following treatment with 0.5 mM ZnO NP, 

both primary T and B cells remained ≥ 92% viable, while only 4.3% of cancerous T cells 

(Jurkat) and 22.9% of cancerous B cells (Daudi) remained viable (Figure 3.1A).  

Similarly, at 1 mM NP, primary T and B cells remained > 80% viable while cancerous 

cells showed near complete death (1.2-8.9% viable, respectively). In fact, at all common 

NP concentrations evaluated, primary lymphocytes were significantly more resistant 

compared to their cancerous counterparts (p<.0001). IC50 values for T and B cell 

malignancies were ~ 0.25 and 0.18 mM, respectively, while those for primary T and B 

cells were ~7.0 and ~4.0 mM, respectively. As shown in Figure 3.1B, primary mammary 
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epithelial cells (HMEC) were significantly more resistant (IC50 ~0.75 mM) to ZnO NP-

induced cytotoxicity compared to T47D breast cancer cells (IC50 ~0.3 mM). T47D 

viability dropped to 56.5% with 0.25 mM NP treatment, while HMEC remained 83.9% 

viable. When treated with 0.5 mM NP, only 31% of T47D cells were alive compared to 

65.1% in normal breast cells (p=.0198). Significantly less death (p=.0122) was also 

observed at 1 mM NP, with 1.9% T47D remaining viable compared to 38.7% in HMEC.  

 In contrast, Figure 3.1C shows no significant difference in susceptibility to ZnO 

NP toxicity between the prostate cancer cell line PC3 and their normal counterparts, 

prostate epithelial cells (PrEC) under the culture conditions evaluated. Both primary and 

malignant prostate epithelial cells show an IC50 of approximately 0.4 mM.  

 Experiments were then performed to evaluate ZnO NP effects on erythrocytes. 

Figure 3.2A shows that human red blood cells (RBC) are essentially resistant to ZnO NP 

at concentrations producing near complete death in immortalized and normal 

lymphocytes and epithelial cells. For example, at 10 mM ZnO NP concentrations, <1% of 

RBCs showed lysis using a hemoglobin release assay, with minimal loss in viability 

observed at the highest concentration (60 mM) evaluated. Experimental results were 

confirmed using an independent LDH (lactate dehydrogenase) release assay where a 

similar lack of significant toxicity was observed. In contrast, data in Figure 3.2B shows 

that K562 erythroleukemic cells are killed at considerably lower NP concentrations with 

an IC50 of ~0.57 mM. Collectively, these studies show that ZnO NP have different 

degrees of toxicity towards different types of cancers, with non-adherent hematopoietic 

malignancies showing the greatest susceptibility compared to corresponding normal cell 
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counterparts.  It is important to note, however, that the observed differences in NP 

susceptibility between epithelial and hematopoietic cells may be related to differences in 

growth characteristics between adherent and suspension cells, and the effects of 

sedimented NP in contact with adherent cell membranes.   

 To gain insights into the mechanism of NP susceptibility, experiments were 

performed to determine the role that proliferative potential plays in the differential 

cytotoxicity mechanism. The Alamar Blue reduction assay was used in these studies to 

determine relative proliferation rates for various cancerous and normal cell types as 

previously described (Al Nasiry et al., 2007; Zhi-Jun et al., 1997).   Figure 3.3A shows a 

significantly lower (p<.0001 for all time points) growth rate of primary T cells versus 

Jurkat leukemic T cells, in which no doubling occurred for primary T cells over a 96 h 

period, while Jurkat cell doubling time was ~ 23.6 +/- 4.1 h.  Control experiments using 

vital dye staining verified that the lack of Alamar reduction in primary T cells reflected 

quiescence rather than cell death, with greater than 95% viability observed on Day 0 and 

65-70% viability observed on Day 3. Similar studies were performed on normal and 

cancerous breast epithelial cells (Figure 3.3B).  As expected, the immortalized cells 

showed a greater proliferation rate (29.3 +/- 1.1 h) than primary epithelial cells (35.1 +/- 

1.7 h), although the difference was less striking than observed for T lymphocytes (Table 

3.1). When proliferation rates were compared between cancerous and normal prostate 

cells, however, no differences were found (Figure 3.3C); PrEC showed a 35.3 +/- 1.3 h 

doubling time, while PC3 doubled in 35.3 +/- 1.7 hours (Table 3.1). Comparison of the 

IC50 values with proliferation rates for the various cell types indicates that susceptibility 
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to NP cytotoxicity is closely tied to proliferation rate (Table 3.1).  

 Experiments were then performed to determine the role that cell cycle progression 

plays in NP susceptibility using cell cycle inhibitors or growth factor deprivation. Serum 

deprivation was used to halt Jurkat cell proliferation in the G0 phase of the cell cycle. 

Experiments demonstrated (Figure 3.4A) that cell viability remained relatively unaffected 

by serum deprivation in control cultures (~93% viable), while 0.25 mM ZnO NP 

treatment in serum-deprived cells led to a significantly greater resistance to NP-induced 

cytotoxicity compared to exponentially growing cells (88.98.7% vs. 62.8% 

9.7%, p=0.0266). Control experiments verified that serum starvation resulted in the 

expected reduction in cell growth (Figure 3.4B), and vital dye staining was used to verify 

that cells remained viable up to 3 days (>95% viable, data not shown). Using a similar 

approach, the growth rate of breast epithelial MCF10A cells was modulated by culturing 

cells in media in the absence or presence of epithelial growth factor (EGF) and cholera 

toxin, both of which increase the proliferation rate of these immortalized cells (Soule et 

al., 1990). As shown in Figure 3.4C, cells grown without growth factors were 

significantly more resistant (p<0.0001) to NP-induced cytotoxicity at both 0.25 and 0.5 

mM NP concentrations (56.3% and 19.4% viable, respectively) compared to cells grown 

in complete media (5.5% and 0.6%, respectively). Figure 3.4D verifies that MCF10 cell 

growth was significantly inhibited (p<.0001) by growth factor deprivation. 

 To further demonstrate the causal role of cell proliferation on the sensitivity to 

ZnO NP-induced cytotoxicity, experiments were performed using two different cell cycle 

inhibitors, Nocodazole and Colcemid. As shown in Figure 3.5A, rapidly growing T47D 
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cells were significantly more susceptible to NP toxicity than those treated with 

Nocodazole, an inhibitor that blocks cell cycle progression in the G2 to M phase. For 

example, viability was 56% following 0.25 mM NP treatment in Nocodazole treated cells 

compared to 35% in rapidly dividing control cells (p=0.0047). A similar degree of 

protection from NP cytotoxicity was observed at higher 0.5 mM NP concentrations (22% 

vs. 7% viable, p=0.0367). PC3 cells treated with Nocodazole showed similar rescue at 

both NP concentrations, with viability at 52% vs. 69% (p<.0001) in untreated vs. treated 

(0.25 mM NP) cells, and 25% vs. 39% (p=.0405), respectively at 0.5 mM NP (Figure 

3.5B). 

 Proliferation arrest in T47D breast epithelial cells using Colcemid also showed 

significant protection against NP-induced death. As shown in Figure 3.5C, cell viability 

in proliferating cells decreased twice as much in response to 0.25 mM NP treatment 

compared to non-dividing cells (25.4% vs. 50.2%, p= 0.0014).  A similar protection 

against NP-induced cell death was observed using higher NP concentrations (0.5 mM), 

where 12.8% viability was observed in Colcemid treated cultures compared to 3.4% 

viability in control cultures. In Colcemid treated PC3 cells (Figure 3.5D), significant 

rescue was also seen at 0.25 mM NPs (~73% vs. ~92%, p=.022), with a similar trend 

occurring at 0.5 mM (~23% vs. 37%, p=.062). These data further support our hypothesis 

that susceptibility to NP-induced cytotoxicity is related to the proliferative capacity of the 

cell.  

 Our previous findings (Chapter 2) showed that neutralizing the ROS generated in 

response to NP exposure via chemical quenchers largely reversed the cytotoxicity in cells 
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of T lymphocyte lineage. Experiments shown in Figure 3.6 demonstrate that this same 

mode of rescue exists in other cell lineages (i.e., T47D breast and PC3 prostate epithelial 

cells). Breast cancer cells untreated with N-Acetyl Cysteine (NAC) were only ~56.4 and 

34.1% viable at 0.3 and 0.5mM NP, respectively, while pretreatment with 5mM NAC 

rescued cells to ~100% and 91.3% viable (p= 0.0003 and 0.0026). Twice the 

concentration of NAC antioxidant resulted in 93.1 and 91.4% viability at the same NP 

concentrations (Figure 3.6A, p= .0018 and .0026). PC3 prostate cells also showed a dose-

dependent pattern of rescue using NAC, with viability after NP treatment, increasing 

from 42.2% to 66.2% and 88.3% when treated with 2.5 or 5 mM NAC, respectively 

(Figure 3.6B, p= 0.0346 and 0.0002). Another antioxidant, glutathione (Glth), was tested 

at final concentrations of 1 and 2mM, and cells treated with 0.5 mM NP gained viability 

again from 42.2% to 56.9 and 87.4% for 1 and 2 mM Glth, respectively (Figure 3.6C). 

While a dose-dependent pattern of rescue was seen with Glth, only the highest 

concentration resulted in significant protection (p=0.0002). Collectively, these results 

suggest that ROS generation is a primary mechanism for NP toxicity for multiple cell 

types.  

 To assess whether ROS generation potentially contributes towards NP selectivity, 

experiments were performed using the Mitosox Red indicator dye to compare levels of 

NP-induced superoxide anion in primary versus cancerous T cells. Figure 3.7 shows 

significantly greater levels of NP-induced (0.3 mM) superoxide anion in cancerous cells 

compared to normal cells, which did not show significant ROS generation from untreated 

cells (p <.0001). In fact, 2.5 mM NP treatment, which could not be tested in the 



83 

cancerous cells due to complete toxicity, led to similar levels of ROS in normal T cells as 

observed at much lower NP concentrations (i.e., 0.3 mM) in cancerous T cells. These 

results suggest that cancer cells may be more susceptible to ZnO NP toxicity either 

because they generate more ROS in response to treatment, or they are less able to 

effectively neutralize ROS.   

 Recent studies have suggested that ZnO NP dissolve both extra- and 

intracellularly, and that zinc ions are responsible for mitochondrial disruption and 

subsequent ROS production (Xia et al., 2008). Another study showed that cell-NP contact 

was required for cytotoxicity, and that levels of ZnCl2 comparable to NP treatments were 

not toxic to cells (Moos et al., 2010). In light of these differing opinions, the potential 

dissolution of our NP was evaluated by obtaining “NP supernatant” collected from the 

ZnO NP stock after 24h resuspension in media, followed by high speed centrifugation to 

remove NP aggregates. A zinc cation-specific indicator dye, Newport Green, was used to 

compare dissolution of ZnO NP to a standard curve generated using ZnCl2, which is 

completely soluble at these experimental concentrations (Lide, 2009). A similar curve 

was observed using ZnSO4 (data not shown). The levels of dissolved zinc cations derived 

from ZnO NP were significantly (20-25 fold, p<.0001) lower than those produced by 

ZnCl2, with 10 mM ZnO NP showing equal fluorescence to the  standard curve at ~0.45 

mM ZnCl2, and 1 mM ZnO NP showing approximately equal fluorescence to 0.045 mM 

ZnCl2 (Figure 3.8A). Because 1 mM ZnO NP treatment results in complete Jurkat cell 

death (Figure 3.1A), which corresponds to ~.045 mM free zinc ions (Figure 3.8A), 

experiments were performed to determine it this level of free zinc ions contribute to the 
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NP toxicity.  As shown in the inset to Figure 3.8A, no significant toxicity to Jurkat cells 

occurs at 0.05 mM ZnCl2 (92.2% +/- 0.60% vs. 85.9% +/- 3.68%).  

 To directly assess the toxicity of NP-derived free zinc ions, Jurkat cells were 

treated with freshly prepared ZnO NP, or equivalent amounts of NP supernatant. As 

shown in Figure 3.8B, no significant loss in viability at any concentration of NP 

supernatant tested in contrast to the cytotoxicity of freshly prepared ZnO NP (58% 

viability at 0.25 mM, 14.3% viability at 0.5 mM). It is of interest to note that a modest 

hormetic effect of free zinc ions was observed in which an increase in viability was 

observed (88.7% vs. 101%), as described by others due to growth promoting effects of 

low concentrations of zinc ion (Calabrese and Baldwin, 2003). Nevertheless, these 

findings indicate that any ZnO NP dissolution that may occur prior to cell entry is 

insufficient to account for the NP-induced cytotoxicity observed in our experiments. 

Collectively, these results demonstrate that dissolution of our ZnO NP is minimal at 

physiological pH compared to readily dissolvable zinc salts. 

 To demonstrate that NP uptake is required for toxicity, Jurkat and T47D cells 

were treated with ZnO NP in the presence of a general endocytosis inhibitor, 

Cytochalasin D (Figure 3.9). Significantly greater viability was observed in inhibitor 

treated Jurkat cells unable to take up NP than cells capable of endocytosis (89.3 vs 68.9% 

at 0.25 mM NP, p=.0160) and (70.8 vs 29.0%, 0.5 mM NP, p=.0002), respectively. For 

T47D cells, significant protection was also observed at 0.5 mM NP treatment (66.3 vs. 

41.4%, p<0.0001). It is important to note that the lower levels of NP-induced toxicity 

observed in these experiments relative to Figure 3.1 are likely due to the shortened 
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duration of NP treatment (12-16 h vs. 24 h) to preserve the effectiveness of Cytochalasin 

D. Filipin III, an inhibitor of lipid raft internalization, was also tested, and no rescue was 

seen suggesting that ZnO NP enter cells via a lipid raft-independent route (data not 

shown). 

 To investigate the role that surface charge has on NP toxicity in cancer cells, we 

used two sets of ZnO NP of the similar 4 nm size, but differing in electrostatic properties. 

One set (described as ZnO I) are positively charged, with a zeta potential of 

approximately +40 +/- 5 mV. The other (referred to as ZnO II) is closer to neutral in 

charge with a zeta potential of approximately +15 +/- 12 mV (Fig 3.10 B). Jurkat 

leukemia T cells were treated for 24 h with various concentrations of either ZnO I or ZnO 

II NP, and viability assessed via propidium iodide uptake. As expected, based on the 

typically high concentration of anionic phospholipids on the outer membrane and large 

membrane potentials of cancerous cells (Bockris and Habib, 1982; Papo et al., 2003; 

Abercrombie and Ambrose, 1962), positively charged ZnO I NP were significantly more 

toxic to Jurkat cells than neutral/negatively charged ZnO II NP (Figure 3.10A). At 0.3 

mM concentrations, only 37.6% of the cells were viable compared to 69.1 % in ZnO II 

treated cultures (p=.0025). Similar trends were observed at higher 0.5 mM NP 

concentrations where 19.4% viability was observed with ZnO I compared to 62.4% with 

ZnO II NP (p=.0002).      
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Discussion 

Results from this study demonstrate that several different types of cancerous cells 

have increased susceptibility to ZnO NP compared to normal cells of comparable lineage.  

The greatest differences in NP susceptibility were observed between hematopoietic cells, 

including B cells and T cells, where cancerous cells were killed at 22-40 fold lower NP 

concentrations compared to corresponding normal cells (Figure 2.1 and 3.1A). In 

addition, striking differences were observed between normal erythrocytes and their 

cancerous counterparts with erythroctyes remaining viable at concentrations 20 times the 

IC50 observed for erythroleukemic K562 cells (Figure 3.2). These results indicate that for 

nonadherent circulating cells of the blood system, cancerous cells display a much greater 

degree of susceptibility to ZnO NP-induced death than their normal counterpart cells.  

However, when studies were extended to adherent cells of epithelial lineage, 

smaller differences in susceptibility between normal and cancerous cells were observed. 

The smaller therapeutic window for epithelial cells observed in our in vitro studies may 

be attributable to differences in experimental cell culture conditions between suspension 

and adherent cells. In adherent epithelial cells, a larger effective dose is likely 

experienced due to sedimentation of NP directly atop the monolayer, while freely 

suspended hematopoietic cell interactions are largely with unsettled suspended NP. In 

fact, sedimentation effects on ZnO NP cytotoxicity to monolayer cells have recently been 

reported in adherent fibroblasts (Heng et al., 2010). Additional factors may include the 

cell density as well the NP-to-cell ratio and NP-to-culture-surface-area ratio (Heng et al., 

2010). Although factors of cell confluency and NP-to-culture-surface-area ratio were 
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controlled between the pairs of cancerous and normal cells in our study, we recognize 

that another potential confounding factor might include relative size differences between 

the cell types evaluated.  For example, the relative lack of NP susceptibility between 

cancerous and primary prostate cells could be related to differences in their cell sizes 

affecting the relative NP dose per given cell given that PrEC primary cells were notably 

larger than PC3 cancer cells (data not shown). Although our results clearly demonstrate a 

high level of NP selectivity against cells of hematopoietic lineage, before a unified 

statement of selective toxicity against cancerous cells can be made, additional studies 

involving more cell types, 3D culture systems and carefully controlled cell densities, 

NP/culture surface area, and NP/cell surface area, as well as in vivo studies are needed.  

Nevertheless, at this stage of knowledge, experimental results suggest that ZnO NP may 

hold clinical promise for the treatment of hematological malignancies.  

 We hypothesized that susceptibility to NP toxicity is closely tied to the 

proliferative capacity of the cell. To test this hypothesis, experiments were performed to 

determine the extent to which the proliferation rates of cancerous and normal cells 

correlated with NP susceptibility.  Notably, the highest degree of cancer cell selectivity 

was observed for cell lineages showing the greatest difference in proliferative potential.  

Quiescent primary T lymphocytes and erythrocytes showed at least ~27-35 fold greater 

resistance to  ZnO NP than rapidly dividing T cell malignancies and erythroleukemic 

cells (Figure 3.1A and 3.2), and these cell types had that greatest differences in 

proliferative capacity (i.e., quiescent vs. ~ 23.6h for T leukemia and 23.3h for 

erythroleukemia).  At the next level of the susceptibility spectrum, smaller differences 
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(1.88-fold) in IC50 between cancerous and normal breast epithelial cells were observed, 

which were paralleled by immortalized epithelial cells showing a corresponding faster, 

albeit slight, doubling time (~20%) relative to  primary epithelial cells (Table 3.1).  

Although both cancerous and primary prostate epithelial cells showed nearly identical 

IC50 values, they also displayed nearly identical growth curves (Figure 3.3C).  Thus, 

these results indicate that susceptibility to NP-induced toxicity parallels cellular 

proliferation rates, with the fastest growing cells typically displaying the greatest toxicity 

to ZnO NP. These findings also likely account for the greater disparity in IC50 seen in 

hematopoietic lineages than for epithelial cells.   

 Further experimental approaches designed to directly inhibit cell proliferation 

were used to show a causal role in protection against NP toxicity. MCF10A cells, which 

are a transformed yet non-cancerous epithelial cell line (Soule et al., 1990), can be 

stimulated to maximally proliferate by the addition of exogenous cholera toxin and 

epithelial growth factors. When this stimuli is removed and cell growth slowed, these 

cells became significantly more resistant to NP-mediated toxicity (Figure 3.4 C and D). A 

similar resistance to NP-induced toxicity was observed in slower growing serum-

deprived Jurkat leukemia cells compared to rapidly growing Jurkat cells cultured in 

complete media (Figure 3.4 A and B). Similarly, breast and prostate cancerous epithelial 

cells were significantly more resistant to ZnO NP when proliferation was chemically 

halted using inhibitors that arrest cells in the mitotic phase of the cell cycle (Figure 3.5). 

These studies provide further evidence that increased susceptibility to ZnO NP-induced 

toxicity parallels the proliferative capacity of the cell.  However, before ZnO NP can 



89 

potentially proceed toward future clinical chemotherapeutic applications, appropriate in 

vivo toxicity studies on rapidly dividing normal cells of the body, including bone marrow 

and gastric epithelial cells, are needed.  

 As generation of ROS is a well described general mechanism of NP toxicity in at 

least some cell types (Xia et al., 2006), experiments were performed to determine 

whether cancerous cells produce higher levels of NP-induced ROS compared to normal 

cells of corresponding lineage.  We observed that cancerous T cells, when treated with 

NP, show significantly greater induction of ROS than primary T cells. An approximately 

eight times higher concentration of NP was required to induce comparable levels of ROS 

in primary T cells compared to leukemic cells (Figure 3.7). This may be due to greater 

NP uptake by cancer cells, greater mitochondrial disruption in cancer cells due to poor 

functioning, or less ability to metabolize ROS. Given the results of our proliferation 

studies, it is tempting to speculate that greater proliferation is tied to NP susceptibility 

through reactive oxygen species generation. Cells that are rapidly dividing have increased 

respiration and metabolism, and therefore higher levels of reactive oxygen species 

(Toyokuni et al., 1995; Szatrowski and Nathan, 1991). While cancer cells have 

intrinsically higher levels of ROS, they may not possess an equal ability as normal cells 

to handle further exogenous assaults from reactive oxygen species. This can translate into 

a greater susceptibility of cancer cells to drugs that induce ROS in cells (Trachootham et 

al., 2009).  In fact, several anti-cancer drugs take advantage of this as a mechanism of 

action (Fang et al., 2007). Rescue via antioxidant pretreatment was also used to directly 

implicate ROS as the primary mechanism of NP toxicity in epithelial cancer cells (Figure 
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3.6) as a follow up on previous studies performed in leukemia cells (Hanley et al., 2008).  

Thus, NP-induced ROS appears to be a common consequence across cell lineages. 

 Recent studies have suggested that mitochondrial disruption by dissolved zinc 

cations contribute to intracellular ROS production and subsequent toxicity (Xia et al., 

2008; George et al., 2010). Other research has shown that ZnO NP are capable of abiotic 

ROS production, which suggests that ROS are, at least in part, generated through a 

mechanism independent of dissolution (Song et al., 2010). Studies were performed to 

determine the extent to which our ZnO NP dissolve into free zinc cations and potentially 

contribute to the toxicity mechanism using the Newport Green DCF zinc indicator dye. 

We observed that NP prepared for use in cell culture experiments were at least 20-fold 

less soluble than ZnCl2 salt, and that levels of dissolved zinc (from ZnCl2) equivalent to 

that calculated for ZnO NP are not significantly toxic to cells. The effect of potential 

NP dissolution in the toxicity mechanism was further tested by preparing NP-free 

supernatant containing resulting dissolved free zinc cations. Studies demonstrated no 

significant toxicity from the NP supernatant in contrast to the expected cytotoxicity 

observed at corresponding concentrations of intact ZnO NP. Although these data 

collectively suggest that extracellular dissolution of ZnO NP is not the primary mode of 

toxicity, low levels of zinc ion release are likely. In addition, experiments indicated that 

active endocytic mechanisms are required for toxicity (Figure 3.9), suggesting that 

internalized NP would be subject to the acidic environment of the lysosome or endosome. 

In this intracellular location, appreciable dissolution of NP and release of free zinc ions 

may occur, resulting in mitochondrial disruption and subsequent ROS generation. 
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However, whether intra-organelle zinc ions play a major role in the ultimate toxicity 

mechanism will require future studies, and the outcome isn’t a crucial determining factor 

for exploring the potential usefulness of NP in therapeutic applications. Nanoparticles 

benefit not only from the inherent selective toxicity toward hematopoietic malignancies, 

possibly through delivery of zinc cations to cells, but, unlike dissolved zinc, are also able 

to selectively target tumor sites via the enhanced permeation and retention (EPR) effect. 

Due to leaky vasculature and poor lymphatic drainage, NP tend to enter tumors easily 

from the bloodstream and become trapped, causing preferential accumulation at these 

sites (Cho et al., 2008). Further, NP can be modified to more effectively target cancerous 

cells, using antibodies for enhanced localization or through combination with existing 

therapeutics.. 

 We further show that the charge on the surface of the nanoparticle is important for 

its toxicity to cancer cells. When NP are engineered to have reduced positive charge on 

the particle surface, the toxicity of NP appears to be reduced (Figure 3.10). This may be 

due to either reduced NP uptake by cells or decreased mitochondrial disruption by more 

neutral NP.  In support of these possible modes of action, previous studies have shown 

that cancerous cells maintain more negative charges at the cell surface, which could 

facilitate greater uptake of positively charged NP by cancer cells (Abercrombie and 

Ambrose, 1962). It has also been shown that cancerous cells maintain a greater 

mitochondrial membrane potential, leading to targeting of this organelle by positively 

charged substances, leading to mitochondrial disruption and subsequent ROS generation 

(Trapp and Horobin, 2005). Regardless of the ultimate mechanism of action, these proof-
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of-concepts experiments demonstrate that varying the electrostatic charge of NP can be 

one means to modify the cytotoxicity potential against target cells. 

Conclusion 

In this study, we demonstrate that ZnO NP show potential utility against 

hematopoietic malignancies, while additional studies are needed to more effectively 

compare NP toxicities for non-adherent vs. adherent cell types. The factors governing the 

toxicity of NP to certain cancer cells are assessed including proliferation potential, NP 

dissolution and surface charge, and ability to induce ROS differentially between 

cancerous and normal cells. Current work in our lab is focused upon further altering NP 

surface charge and doping NP in order to enhance their ability to produce reactive 

oxygen. With charge and targeting ligand modification, ZnO NP may display exciting 

potential as anticancer treatments.  
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Figure 3.1. Differential cytotoxicity of ZnO NP.  A. Immortalized Jurkat T cells and 

Daudi B cells, or normal primary T or B cells were treated with varying concentrations of 

ZnO NPs for 24 h and viability determined by PI uptake and flow cytometry. Data from 

three independent experiments is presented. B. Primary human mammary epithelial cells 

(HMEC; n=9) and T47D breast cancer cells (n=3) were plated in 24 well plates prior to 

NP treatment for 24 h, and cell viability assessed using the Alamar Blue assay. C. 

Primary Prostate Epithelial Cells (PrEC; n=4) and PC3 (n=3) cancerous prostate cells 

were plated and treated in the same manner described for the breast lines.  For all figures, 

error bars depict standard error and asterisks indicate statistical significance as defined by 

p<0.05..  Data was analyzed using a repeated measures ANOVA and model based means 

post test.   
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Figure 3.2.   Erythrocyte susceptibility to ZnO NPs. A) Cells were incubated with 1-60 

mM ZnO NP for 24 h and hemolysis determined based on the percentage of hemoglobin 

or LDH released relative to positive control cells completely lysed using 1% Triton-X. 

Data from three independent hemoglobin release experiments is depicted (dark colored 

bars). Data from a representative LDH assay performed in triplicate is presented with 

values normalized to % viability in control (NT) samples (light colored bars). B) 

Immortalized K562 erythroleukemia cells were plated at 1.2 x 10
5
 cells/well and treated 

with NP for 24 h. Alamar Blue reduction was used to assess viability in four independent 

experiments.  Error bars depict standard error. 
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Figure 3.3. Proliferation rates of hematopoietic and epithelial cells.  Cells were incubated 

for 4 hours with Alamar Blue each day (added at 10% total well volume each day) and 

fluorescence read using a spectrophotometer. A 4-day proliferation curve was generated 

for each cell type by plotting hours vs. fluorescence. A Cancerous and normal T cells 

were plated at 2 x 10
4
 cells/well. B. Breast epithelial T47D cells were plated at 5 x 10

4
 

cells per well, while the larger HMEC were seeded at 1 x 10
4
 per well to avoid 

confluence-induced growth inhibition. C. Prostate cells were plated identically to breast 

cells. For all panels, data from representative experiment performed in triplicate is 

shown. Cell doubling times were calculated as described in methods and shown in Table 

1. 
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Table 3.1. Cell Proliferation Rate Compared with IC50 for ZnO Nanoparticles 

Normal Cells  

Lineage Doubling  

Time (hrs) 

IC50 

(mM) 

Myeloid Erythrocytes quiescent >10.0 

Lymphoid CD4
+
 T cells quiescent >10.0  

 

Epithelial 

HMEC Breast 35.1 +/- 1.7  0.75 

PrEC Prostate 35.7 +/- 1.7 0.4 

Cancerous Cells 

Lineage Doubling  

Time (hrs) 

IC50 

(mM) 

Myeloid K562 

Erythroleukemia 

23.3 +/- 2.0 0.57 

Lymphoid Jurkat T  23.6 +/- 4.1  0.25 

 

Epithelial 

T47D Breast 29.3 +/- 1.1 0.3 

PC3 Prostate 35.3 +/- 1.3  0.4 
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Figure 3.4. Effect of growth factor deprivation on susceptibility to ZnO NP toxicity. A) 

Jurkat cells (5 x 10
5
 cells/mL) were incubated in standard media (10% FBS) or media 

containing only 2% FBS (serum deprivation) for 24 h, resuspended at 1 x 10
5
 cells/well, 

and NP treated for 24 h. Viability was assessed by PI exclusion and flow cytometry. Data 

presented is from a representative experiment performed in triplicate.  B) The inhibition 

of Jurkat T cell growth by serum starvation was verified by plating cells at 2 x 10
4
 

cells/well and Alamar Blue added each day at 10% well volume for 4 h. A curve of 

Alamar reduction fluorescence versus time was plotted from a representative experiment 

performed in triplicate. C) MCF10A cells were plated with or without epithelial growth 

factor (EGF) and cholera toxin, and effects of ZnO NPs (24 h) on cell viability 

determined using an Alamar Blue assay. Data from three independent experiments are 

presented. D) The inhibition of MCF10A cell growth was verified as described above 

(panel B) with data from a representative experiment performed in quadruplicate being 

presented. For all panels, error bars depict standard error and asterisks denote statistical 

significance (p< 0.05). 
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Figure 3.5.  Effect of cell cycle inhibition on susceptibility to NP toxicity. A,B T47D 

cells were treated with 0.02μg/mL Nocodazole or 0.01 μg/mL Colcemid for 17 h. Cells 

were washed, cultured with fresh inhibitor-free media for 1-2 h, treated with NP for 24 h, 

and viability determined via Alamar Blue fluorescence. Data is presented from seven 

independent experiments (Nocodazole), or a representative experiment performed in 

triplicate (Colcemid).  C,D. PC3 cells were treated with .02μg/mL Nocodazole or 0.008 

μg/mL Colcemid, treated with NP for 24 h, and viability determined via an Alamar Blue 

assay. Five independent experiments are depicted for Nocodazole studies, and a 

representative experiment performed in triple is shown for Colcemid.  For all panels, 

error bars depict standard error and asterisks denote statistical significance (p<0.05). 
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Figure 3.6.  Effects of ROS on NP cytotoxicity. A) T47D cells were plated at 4 x 10
4 

cells/well, allowed to adhere to well bottoms overnight, and then treated with 5 and 10 

mM NAC for 1-2 h prior to treatment with NP for 24 h. Viability was determined as the 

percent reduction of Alamar Blue. Data presented is from three independent experiments 

with standard error and asterisks denoting significance.  B,C) PC3 cells were plated in the 

same manner as T47D and pretreated with 2.5 or 5 mM NAC (B) or 1 or 2 mM Glth (C) 

before NP treatment and viability assessment as described above. Data from three 

independent experiments is depicted for both (B) and (C), and asterisks denote statistical 

significance. 
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Figure 3.7. Superoxide induction by ZnO NP in primary vs. cancerous cells. Jurkat and 

primary T cells were plated at 1 x 10
5
 cells/well and NP treated for 16-18 hrs. The 

fluorescence dye indicate Mitosox Red was added and flow cytometry used to assess 

superoxide anion production. A representative experiment performed in triplicate is 

presented with error bars depicting standard error and asterisks denoting statistical 

significance. 
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Figure 3.8. Dissolution potential of ZnO NP.  A) To generate a standard curve for Zn
2+

 

dissolution, ZnCl2 was dissolved in deionized water at 10 mM and 0.2 mL serial 1:10 

dilutions to 1 nM added to wells. ZnO NP were suspended at 10 mM in media and left to 

dissolve for 24 hrs.  NP were subsequently centrifuged at 13,000 rpm for 20 min and 

serial 1:10 dilutions of supernatant (dissolved Zn
2+

) made in the same range as the 

standard curve. Newport Green DCF (.1µM) was added to each well and fluorescence 

read on a spectrophotometer at 505/535 excitation/emission. Representative experiments 

performed in triplicate are depicted and asterisks denote statistical significance (p<.05). 

The dotted line indicates dissolution levels of 1 mM ZnO NP relative to the  ZnCl2 

standard curve. Inset depicts toxicity of zinc cations from ZnCl2 at concentrations equal 

to calculated dissolution levels for 1 mM ZnO NP. B) Effects of nanoparticle dissolution 

on toxicity.  Nanoparticle stock solutions (50mM) were made in PBS or culture media, 

left 24 hours to dissolve, and centrifuged at 13,000 rpm for 20 min. NP supernatant or NP 

stock solutions were added to cells at equivalent concentrations, and PI uptake used to 

assess toxicity. 
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Figure 3.9.  Effect of endocytosis inhibition on ZnO NP toxicity to two different 

cancerous cell types.  A)  Jurkat cells were pretreated with 1.5 µg/mL Cytochalasin D 

(Cyt D) for 2-3 h, plated at 1 E 5 cells/ well, and NP treated for ~16 h. Viability was 

assessed by PI staining and flow cytometry. Data presented is from a representative 

experiment performed in triplicate. B) T47D were plated at 2 E 4 cells/ well, allowed to 

adhere to bottom of wells, and pretreated with 1.5 µg/mL Cytochalasin D for 2-3 h. The 

inhibitor was removed, cells treated with NP for ~ 16 h and viability assessed using an 

Alamar Blue assay (n=5).  Error bars depict standard error and asterisks denote statistical 

significance. 
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Figure 3.10. Effect of ZnO NP zeta potential on cytotoxicity. A) Jurkat cells were plated 

at 1 x 10
5 

cells/well and treated with either 4 nm sized positively charged (ZnO I) or 

neutral (ZnO II) NPs for 24 h at 0.1, 0.3, and 0.5 mM. Viability was assessed using the PI 

exclusion assay and flow cytometry, n=3.  Error bars depicted standard error and 

asterisks statistical significance as defined as p<0.05. Zeta potentials of 4 nm sized ZnO I 

and ZnO II NP were experimentally determined to be +40 +/- 5 mV and +15 +/- 12 mV, 

respectively (not shown). 
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CHAPTER 4: CONCLUSION 

 The study described herein was undertaken in two stages, and addressed as such 

in two separate chapters. This final chapter bridges the two studies and suggests future 

avenue of research.  

Selective Toxicity 

The second chapter explores the toxicity of ZnO NP to T cells of the human 

immune system, then further shows that the toxicity displays selectivity toward cancerous 

T cells relative to other hematopoietic cells evaluated. Importantly, the IC50 for ZnO NP 

is 28-35-fold lower in cancer cells than for normal T cells isolated from human blood. 

This selectivity was shown for both a T cell leukemia and lymphoma, Jurkat and Hut-78, 

respectively. Chapter 3 extends this work to cover another immune cell and its cancerous 

counterpart, primary B cells and Daudi B cell lymphoma. The third chapter also 

examines NP toxicity in cancerous and primary cells of epithelial origin from the prostate 

and the breast. Human mammary epithelial cells were compared with T47D breast 

carcinoma cells, and prostate epithelial cells were compared with the PC-3 prostate 

carcinoma line. It was found that cancerous B cells display similar susceptibility to NP 

cytotoxicity compared to normal B cells, much like the T cells previously examined. 

However, the differential toxicity seen between normal and cancerous cells of epithelial 

origin was much less striking. Breast cancer cells were significantly more susceptible 
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than were normal breast epithelial cells, but the difference between IC50 was around 2-3-

fold. Cells of epithelial origin isolated from the prostate showed no significant resistance 

to NP cytotoxicity compared with prostate cancer cells. However, our research indicates 

that the relative lack of NP susceptibility between cancerous and primary prostate cells is 

related to their nearly identical growth curves in contrast to the markedly different growth 

rates observed between normal and cancerous hematopoietic cells, and the modest 

difference in proliferative potential between cancerous and normal mammary epithelial 

cells.  The relative lack of difference in NP susceptibility observed in prostate cells could 

also be related to differences in cell size affecting the relative NP dose per given cell.  

Future experiments are planned to address this possibility as well as examining additional 

transformed and normal prostate cell isolates and additional cell lineages including lung 

cancers of both epithelial and fibroblast origin. In combination with alternate cell culture 

formats, including 3D cultures systems, these future studies will help determine if 

selective toxicity is dependent upon the cell lineage (hematopoietic, epithelial, or 

fibroblast) or reflect differences in NP exposure.   

Cell Proliferation as a Mechanism for Selectivity 

In light of the observed differential cytotoxicity of ZnO NP, experiments were 

performed in Chapter 3 to determine whether differences in cellular proliferation rates 

correlate with NP susceptibility.  These experiments show that normal T cells have 

markedly slower growth rates than do cancerous T cells; in fact, no cell doublings 

occurred over three days, while leukemia cells doubled approximately every day. This is 

consistent with the known behavior of circulating immune cells in the literature, and is 
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expected to be true for B cells as well. Normal cells of epithelial origin, however, showed 

nearly similar proliferation rates as cancerous cells, with normal breast cells dividing 

slightly slower than cancerous, while no statistical difference was observed between 

growth rates of cancerous and normal prostate cells. This data correlates well with the 

difference, or lack thereof, in IC50 between cancerous and normal cells, suggesting 

proliferation as a mechanism for selective cytotoxicity. 

To provide further evidence that rapid proliferation is among the causes of NP 

susceptibility, we directly inhibited the growth rate of cancerous cells of epithelial and 

hematopoietic lineage, both chemically and through serum deprivation. Leukemia cells 

became significantly more resistant to NP toxicity when proliferation was slowed through 

serum deprivation. A breast cell line, MCF10, which is immortalized but not cancerous, 

was cultured with and without Epithelial Growth Factor, and also displayed increased 

resistance when growth was slowed. Two chemical inhibitors that synchronize cells in 

mitosis were used in the breast and prostate cancer cells and both cell lines showed 

increased resistance using both inhibitors. Collectively, these data directly demonstrate 

that selective NP toxicity exists toward cells that divide rapidly, as cancer cells and some 

normal cells in the human body do. Thus, in vivo studies are needed to assess the overall 

toxicity profiles of ZnO NP to normal body cells and tissues.  

Generation of Reactive Oxygen as a Mechanism for Toxicity and Selectivity 

Chapter 2 of this work uses a general ROS indicator dye to show induction of 

reactive oxygen in cells upon NP treatment. Interestingly, lymphoma T cells showed 

greater increases of ROS production in response to NP exposure than that in normal T 
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cells. This is despite the much greater NP concentration used in primary T cells over 

lymphoma cells (5 mM vs. 0.5 mM). Chapter 3 uses primary T cells again, compared this 

time with leukemia cells, but employs a highly specific indicator dye, Mitosox Red, 

which detects only mitochondrial superoxide. Results were similar to those seen in 

Chapter 2, with eight times the concentration of NP treatment required to induce equal 

levels of superoxide in primary T cells as those seen in leukemia cells. This suggests that 

disruption of the mitochondrial membrane, and therefore electron transport, resulting in 

increased superoxide generation, is the ultimate toxic response of cells to ZnO NP. The 

higher levels of superoxide generated in cancer cells are likely due to an inability to 

neutralize excess reactive oxygen due to higher intrinsic oxidative stress inherent in 

cancer cells, resulting from increased proliferation/metabolism and greater mitochondrial 

instability. This was not shown experimentally here, but has been discussed extensively 

in existing literature. 

Further experiments were performed to show that ROS generation is the ultimate 

toxic mechanism of NP in cancer cells. Pretreatment with the antioxidant N-Acetyl 

Cysteine showed dose-dependent and nearly complete rescue in leukemia cells (Chapter 

2), as well as prostate and breast cancer (Chapter 3).  A second antioxidant, Glutathione, 

was tested to confirm results, and showed similar rescue.  

Nanoparticles as a potential clinical treatment benefit from their ability to be 

locally targeted to locations in the body where cancer cells densely populate; the 

generation of reactive oxygen may present the method through which NP can chemically 

target cancer cells. 
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Nanoparticle Dissolution 

An important aspect to explore with respect to NP toxicity is their potential 

dissolution properties, both to estimate the tendency of these NP to accumulate in tissues 

and cells with repeated exposure, and to determine if toxicity occurs only upon 

dissolution. Experiments showed that after 24 hours, less than 10% of NP had dissolved 

to yield zinc cations relative to ZnCl2 dissolution. In addition, levels of zinc ions 

calculated to result from NP dissolution at 1 mM were not toxic to cells, though this 

concentration of intact NP results in near complete cell death. Further experiments 

allowed NP to dissolve in suspension 24 hours, then centrifugation was used to pellet 

undissolved particles. Cells were treated with the supernatant from this suspension to 

determine if dissolved zinc cations directly from the NP were responsible for toxicity. 

Our studies collectively show that ZnO NP do not extensively dissolve acellularly, 

though it is possible that dissolution occurs after cell uptake. Other research, discussed in 

Chapter 3, suggests that zinc cations are the main culprit for toxicity; we speculate that 

while extracellular dissolution is not complete, low pH as is found in the lysosome may 

result in dissolution and release of free zinc, which then perturbs mitochondrial function, 

leading to generation of superoxide and subsequent cell death.  

Cellular Uptake of Nanoparticles 

Another important aspect of NP toxicity is assessment of cellular internalization. 

It is important to understand whether NP uptake is necessary for toxicity, and which 

routes are utilized by NP to enter the cell. We utilized one general inhibitor of 

endocytosis and a highly specific inhibitor of caveolae-mediated endocytosis to explore 
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possible routes of NP uptake. Cytochalasin D pretreatment, which depolymerizes actin, a 

molecule required for any cytoskeleton rearrangements needed to uptake molecules, 

resulted in significant rescue from NP toxicity in both leukemia and breast carcinoma 

cells. Both cell types were also pretreated with Filipin, which disrupts lipid raft dynamics 

and inhibits caveolin-dependent endocytosis, without significant effect on cytotoxicity 

(data not shown). This suggests an uptake method independent from caveolin. The data, 

while not pinpointing the exact mechanism for cellular uptake of NP, do demonstrate the 

necessity of NP uptake for cytotoxicity.  This further supports the idea that dissolution, if 

any occurs, likely takes place in cellular compartments. Zinc cations, if released upon NP 

dissolution in media prior to uptake, would necessitate carrier proteins to our knowledge 

not inhibited by Cytochalasin D, to be distributed inside cells and cause mitochondrial 

superoxide production and resultant cell death. Nanoparticles may represent an exciting 

method for delivering zinc cations capable of inducing ROS production to cancer cells. 

Where zinc salts would dissolve in aqueous solutions and be cleared prematurely, NP 

appear to resist dissolution at least until cell entry and exposure to lower pH, liberating 

zinc cations to kill cells and being consumed in the process to avoid buildup. 

Modification of Nanoparticles to Improve Selective Toxicity 

We have shown that ZnO NP are more cytotoxic to cancer cells than to normal 

cells in several cell types; a logical next step is improvement of this selective toxicity 

toward cancer cells. We further show that increasing the positive charge on the NP 

surface increases cytotoxicity. Future modifications should include an addition of 
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targeting molecules, along with existing chemotherapeutic drugs to maximally enhance 

specificity and toxicity to cancer cells. 

Conclusion 

Collectively, this work has demonstrated the ability of zinc oxide NP to 

selectively kill certain types of cancer cells relative to their normal counterpart cells and 

explored characteristics of both NP and immortalized cells that contribute to the toxicity. 

In general, cancer cells appear to be more susceptible in a proliferation-dependent 

manner, and toxicity involves the generation of reactive oxygen species.  This study 

describes the framework by which to explore the potential use of zinc oxide NP to treat 

hematological malignancies.  
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