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Place value is a concept in which students in elementary school struggle and 

instruction and curricular materials continue to introduce and teach place 

value in a disconnected fashion. This study introduced place value through a 

modeling perspective, focusing specifically on using the bar model to represent 

units and quantity.  The investigation piloted a place value module highlighting 

the use of the bar model in four first grade classrooms with high percentages 

of diverse learners, many from low-income families and with limited English 

language proficiency. The results indicated students successfully described the 

differences between units of 1 and 10 and could build and describe numbers in 

their teens and twenties. Students’ vocabulary and understanding of place value 

improved over a three-week period, suggesting visual models can be used as an 

effective model to promote place value understanding. 
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 Place value is a concept in which students in elementary school struggle, 

and instructional and curricular materials continue to introduce place value 

concepts in a fragmented manner.  Understanding place value influences the 

understanding of other mathematical concepts such as number sense, rational 

number, and proportion (Fuson & Briars, 1990; McGuire & Kinzie, 2013). 

When addressing place value, one should be aware of the underlying features: 

relative position, unitizing, and language. 

 Most teachers are aware of place value position and most curricular 

materials highlight the ones, tens, hundreds, etc. In the U.S., students spend 

much time naming each digit’s place. For instance, given the number 123, 

students will say the 2 is in the tens place. However, this does not necessarily 

mean they understand place value. Knowing the 2 represents two tens or twenty 

and that its relationship to units of 1 and 100 is critical (Chan, Au, & Tang, 

2014).  

 This awareness of units is called unitizing and is a critical component to 

develop understanding and number sense (Fuson & Briars, 1990). When 

children fail to visualize this relationship or to see the relative sizes between 
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units of place value, students operate with a procedural understanding of place 

value, not a conceptual understanding (Ross, 1989).  

 The English language might also be a barrier for young children 

beginning to conceptualize place value. Saying thirteen, for example, does not 

help the student imagine one ten and three ones. In many Asian countries 

researchers note students have stronger initial place value because their 

language for numbers between 10 and 20 is more explicitly connected to place 

value. For example, “ten-one” for eleven and “ten-two” for twelve (Miura, 

Okamoto, Kim, Steere, & Fayol, 1993). 

 This paper describes a study in which first graders were introduced to 

place value through a modeling perspective, focusing specifically on using the 

bar model to represent units and quantity (Ng & Lee, 2009; Van den Heuvel-

Panhuizen, 2003). The study investigated the different ways students’ 

understanding of place value changed by incorporating modeling and structure 

into pedagogical practices.  

 

Conceptual Framework  

 

One crucial role of teaching is to create equitable learning conditions 

that foster understanding so students can solve problems in many settings 

(Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Human, P., Murray, 

H., & Wearne, D., 1996). To do this, we used the Developing Mathematical 

Thinking (DMT) framework (Brendefur, 2008;  Brendefur, Thiede, Strother, 

Bunning, & Peck, 2013), comprised of five critical dimensions: (a) taking 

student's ideas seriously, (b) pressing students conceptually, (c) encouraging 

multiple strategies and models, (d) addressing misconceptions, and (e) focusing 

on the structure of mathematics. These five dimensions frame an approach to 

teaching mathematics for understanding (Carpenter & Lehrer, 1999) 

incorporating notions of “progressive formalization” (Treffers, 1987). As 

Gravemeijer and van Galen (2003) describe, progressive formalization is a 

process of first allowing students to develop informal strategies and models to 

solve problems, and then, by critically examining both strategies and models, 

teachers press students to develop more sophisticated, formal, conventional and 

abstract strategies and procedures. By comparing solution strategies and 

examining the relationship among enactive, iconic and symbolic models  

(Brendefur, 2008; Bruner, 1964), students learn which manipulations make 

sense for given contexts and are encouraged to develop more generalizable 

procedures. In this paper, we highlight modeling, using mathematical 

representations and notations, as well as structure for developing a conceptual 

understanding place value. 

Modeling is a key component of developing mathematical thinking. 

Knowledge originates from students’ attempts to model or represent situations 

that can be mathematized and these initial models become the basis for solving 

related problems, as well as a means of support for more formal mathematical 
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reasoning (Gravemeijer & van Galen, 2003). As Cobb (2000) describes, this 

use of modeling implies a shift in teaching where informal mathematical 

activity is used to support more formal mathematics. In classrooms, this is 

necessitated by the challenge to extend informal ideas to new situations. In this 

way, how we mathematize through representational models is a fundamental 

process in learning mathematics.  

Progressive formalization is the process of formalizing students’ ways 

of modeling through enactive, iconic, and symbolic representations without 

making huge leaps.  This view of models and modeling contrasts with current 

practices in mathematics instruction in which models are used to “concretize 

expert knowledge” (Gravemeijer & van Galen, 2003, p. 118), such as when 

students are taught to model the traditional borrowing algorithm for subtraction 

with base-10 blocks. In contrast, the DMT module framework provides teachers 

with tasks that allow students to use, discuss, and practice moving among more 

informal and formal enactive, iconic, and symbolic models.  

The focus of the DMT place value module is on building connections 

among mathematical strategies and models and to progressively formalize 

students’ ideas and methods regarding place value. Discourse around 

mathematical ideas supports all students, including struggling learners 

(Brendefur & Frykholm, 2000; Moschkovich, 2012). By analyzing, comparing, 

and discussing different methods, students begin to conceptualize and then 

formalize their thinking. For example, first graders might initially solve a 

problem by using cubes, then represent the situation using a bar model or 

number line and then eventually use symbolic notations. By asking students to 

connect models, methods, and their thinking, a teacher can move students to 

effectively utilize new mathematical approaches involving mathematical 

formalization. 

Focusing on structure allows students to build an understanding of and 

establish connections among fundamental concepts and particular topics being 

studied (National Council of Teachers of Mathematics, 2000). Structure, in this 

study, is defined as elements of the mathematics that remain constant across 

grade levels. For instance, the concepts of unit, equivalence and relationships 

and ways of interpreting these concepts, composing, decomposing, iteration, 

and partitioning are structural components for number. Understanding that the 

number 28 is composed of two units of size ten and eight units of size one is 

necessary to understand place value. For another example, by partitioning a 

single unit of one into ten equivalent size units, students learn to create a new 

unit of one-tenth, which iterates itself 10 time to compose one. Maintaining a 

focus on structure helps students internalize how foundational ideas extend 

across grade levels and topics. The module embeds the language of the 

structural components within each lesson’s task and provides examples of how 
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students might articulate and critique their own and others’ mathematical 

models.  

Methods 

 

 The study involved four Title 1 schools, where 77% of the students 

received free and reduced lunch. All four of the teachers were female with at 

least six years of teaching experience. One first grade teacher from each school 

was selected to teach the three-week module. Each of the teachers had attended 

a three-day workshop earlier in the summer on how to teach mathematics 

through the five DMT dimensions. This paper specifically highlighted one 

teacher’s instruction and her students’ modeling of place value over 10 lessons.  

 Similar data were collected from the four schools. We highlighted a 

representative set of students’ work in one teacher’s classroom.  Students 

participated in all 10 module lessons. The module specifically incorporates 

modeling, structure and language (written and spoken) of the DMT framework. 

Each lesson took the teachers one to two days to teach and focused on 

modeling through enactive, iconic, and symbolic representations to improve 

students’ understanding of place value as evidenced through their drawings and 

language. Table 1 highlights the topics of the lessons. Elements of each lesson, 

and student work, are described in the discussion section. 

 

Table 1 

Module Lessons 

Lesson Focus 

1 Unit of 1, iterating, bar model 

2 Units of 1 and Units of 10, iterating, bar model, comparing units 

3 Decomposing by units of place value 

4 Tree diagrams and bar model comparisons 

5 Correcting misconceptions and errors 

6 Comparison problems 

7 Problem solving 

8 Modeling the context 

9 Number lines, composing numbers 

10 Number lines and language 

 

 Students kept a mathematics journal where the teachers cut and pasted 

problems for students to solve or asked them to construct bar models that 

represented different numbers. The journals were collected at the end of the 

three weeks and used as the primary data source. Two researchers visited and 

observed each teachers’ classroom instruction twice throughout the study. A 

general inductive approach was used to evaluate the qualitative data (Thomas, 

2006). In order to examine how teachers used student thinking, various sources 

of data were collected and analyzed using principles of qualitative research. 

Sources included interviews (audiotaped) and observations (audiotaped and 

field notes). In an iterative process, the data were coded and organized around 
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an inductive approach to identify and understand themes and relationships 

within the data. General assertions were made through induction for each of 

these codes, which were then confirmed and disconfirmed by a third reader. 

 

Results  

 

Lesson 1: Initial Understanding of Place Value 

 Our goal was to provide first graders the opportunity to construct an 

initial understanding of place value through modeling and progressive 

formalization. In lesson 1, students learned to model a number by constructing 

bar models. Students used a single cube, which we named our “unit of 1” to 

iterate (copy) it 5 times with no gaps or overlaps to compose the number. The 

end result was an iconic representation, or bar model, of the number 5. To finish 

the model, we asked students to label the drawing. Figure 1 demonstrates 

Carol’s modeling. 

 

  
 

Figure 1. Constructing a bar model of the quantity 5.  

 

 Students were next asked to predict what their bar model would like for 

the quantities of 7, 12, 18, and 20. Most students said they would be longer, but 

the teacher pressed them to estimate how much longer by using their fingers. 

The idea was to begin thinking about 5 as a quantity to be iterated two or more 

times. Students constructed new bar models in a similar fashion to how the 

teacher demonstrated.  

 There were a few students, similar to the two children’s work in Figure 

2, whose iconic model needed more precision. Both students were able to use 1 

cubes to construct the bar model. The teacher discussed with one of the students 

how to remove gaps and place each unit of 1 next another unit of 1. The other 

student was encouraged to use the cube and line up each mark. 

 

  
Figure 2. Initial construction of 18. 
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Lesson 2: Understanding Units of 1 and 10 

 After spending time building numbers by constructing bar models, tasks 

in lesson 2 focused on place value. During a whole class lesson, the teacher 

used units of 1 (cubes) to construct an enactive bar model of 10. Then, the 

teacher wrapped tape around the ten cubes and said, “we now have 1 unit of 

size 10.” She displayed the following Figure 3 to students.  

 

 
Figure 3. Bar model representing 10 as ten units of 1 and 1 unit of 10. 

 

 The teacher led the students through a discussion asking the following 

questions: What do you notice about the two different bar models? What is 

similar about them and what is different? The teacher shifted the conversation 

to focus the students on the concept that it takes 10 units of size 1 to get the 

same length of 1 unit of size 10. She asked students to practice telling partners: 

“This bar model is 10 units of size one. It is the same size as 1 unit of ten, but 

we are counting in different units.” “This bar model is 1 unit of ten. It is the 

same size as 10 units of one.” The teacher then constructed a word wall 

demonstrating a unit of 1, unit of 10, and the process of iterating.  

 After much practice, pointing to the iconic models and using this 

language, the students moved to constructing the number 12. Using enactive 

units of 1 and 10, each student constructed the number 12 iconically using 12 

units of 1 and then with 1 unit of ten and 2 units of one. The teacher asked 

students to label their diagrams as is shown in Figure 4. Here the teacher 

highlighted and connected the symbolic notation to a) the iconic bar model, and 

b) the language: 

 
Teacher: Notice the first bar model has 12 units of one. Point to your model 

and say 12 units of 1. Now look at the second model. Point to the rod and say 

1 unit of 10. How many units of one? [Student shout 2!] If we look at this 

number [10], the 1 represents the 1 unit of 10 [pointing] and the 0 represents 

zero units of 1. Here, [pointing to the 12], what does the digit 1 represent and 

what does the digit 2 represent?  

Avery: 1 unit of 10 and 2 ones. 

Teacher: Correct. Everyone turn to partners and explain what the digits in 10 

and 12 mean. 
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Figure 4. Composing 12 with units of 1 and 10. 

 

The students continue this work by examining different numbers (15, 18, and 

20).  

 

Lesson 3: Enactive, Iconic and Symbolic Representations 

 Lesson 3 expanded on lesson 2 by focusing on units of 1 and units of 10 

to model different number sets enactively (cubes and rods), iconically (bar 

model) and symbolically (numbers). Students were given sentences strips and 

challenged to use units of 1 and 10 to compose various two-digit numbers a 

variety of ways using only place value. For instance, students composed the 

number 36 with 36 units of 1, one unit of 10 and twenty-six units of 1, two units 

of 10 and sixteen units of one, or three units of 10 and six units of 1 (as 

demonstrated in Figure 5). Again, a word wall was used as a reference when 

using the structural language of units, iterate, compose and decompose. The 

written language in Figure 5 serves as an example.  

 

Figure 5. Ariana’s representation of 36 

 

Students’ written response: Ԑ (3) units of ton (ten) and 6 units of 1 

 

Lesson 4: Modeling Place Value with the Tree Diagram  

 Lesson 4 tasks were similar, but added the tree diagram as a symbolic 

model to represent numbers. Another student  (see Figure 6) iconically 

displayed two units of 10 and three units of three. He labeled it correctly and 

used the tree diagram to demonstrate symbolically the relationships between 

the model and formal notation. He also showed the 3 represented three units of 

1. Students continued building models enactively and iconically and then 

labeling the models symbolically. This was completed for the numbers 28, 36, 

43, 48, 53 and 57. 
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Figure 6. Lian’s modeling of 23. 

 

Lesson 5: Focusing on Misconceptions through Mistakes 

 In order to address potential student misconceptions, Lesson 5 focused 

on using bar models and tree diagrams to help students understand mistakes as 

listed in Table 2.  

 

Table 2 

Student’s Incorrect Statements 

Student Number Statement (mistake) 

Edgar 24 “24 is 20 units of ten and 4 units of 

one.” 

Alice 41 “41 is 4 units of one and 1 unit of ten.” 

Steven 38 “38 is 2 units of ten and 28 units of 

one.” 

 

Students had to correctly model the numbers, and then stated specifically where 

Edgar, Alice and Steven made their mistakes.  

 

Lesson 6: Comparison between Units of 1 and Units of 10 

 Lesson 6 focused on comparisons between two different numbers 

composed of units of 1 and 10. Figure 7 highlights two pairs of students 

comparing the numbers 43 and 31. Two other students, a boy and a girl, were 

able to iterate the unit of 10 and unit of 1 to create the numbers but mixed up 

the ones place and modeled 41 and 35. Their proportions were quite accurate 

and the teacher was able to work with them on explaining what the iconic bar 

model represented versus what they wrote down symbolically. The teacher 

encouraged them to attempt the next problem 18 and 35 (displayed in the second 

row). Here, the two were able to correctly model the quantities and find 

differences between them as noted with a yellow line that marked the 2, 10 and 

5 and labeled 17. 

  In the third row, two additional students, another boy and another girl 

were able to model the numbers correctly and discuss the differences between 

the numbers: 1 unit of ten and 4 units of one, or 14. Students challenged 

themselves by representing and comparing numbers sets using the bar model 

and then used structural language to note the relative differences. Number sets 

began with 61 and 43 and extended to 114 and 44. 
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Figure 7. Comparison of numbers 45 and 31. 

 

Lessons 7 & 8: Composing Numbers with Units of Ten and One within 

Contexts  

 Lessons 7 focused on using their skills and understanding of composing 

numbers with units of ten and one to solve problems in context. Students were 

asked to model the situation using iconic models and to describe how their 

model matched the situation. Task: Each shelf holds 10 books. How many 

shelves are full and how many books are left over if there are 34 books? 

Extension numbers were 65, 82, 103, and 125 books. In Figure 8, One female 

student used the bar model to represent 3 sets of 10 for the 30 books with 4 

books left over. Lesson 8 continued with two more contextual problems each 

with 5 sets of numbers that increase in difficulty.   

 
Figure 8. Iconic representation of the book-shelf problem. 

Lesson 9: Progressively Formalizing Students’ Work  

The focus of lesson 9 was to progressively formalize students’ work by 

introducing the number line as a way to model or represent the place value 
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situation and then solve the expression. Students worked as a class to create a 

bar model of 34 using units of ten and one and then made jumps to compose 

this number. The transition is shown in Figure 9 where students, without 

support of the tools, composed the numbers by making jumps on the number 

line representative of proportional relationships between units. Three students’ 

examples show how they did indeed progress to create proportional 

representations of the different numbers by focusing on units of ten and one.  

 

 

 

 

 

 

 
Figure 9. Progressive formalization of models: Bar model to number line 
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Lesson 10: Misconceptions and Language  

 Lesson 10 was the final lesson, which again pressed students to make 

sense of place value by focusing on other students’ misconceptions. Students 

were asked to evaluate other students’ comments about place value (see Table 

3 below). 

 

Table 3 

Student Statements about Place Value 

Student Statements 

Student 1 “I know that 74 is 70 tens and 4 ones.” 

Student 2 “I know that the only way to compose 125 is with 12 units of 

ten and 5 units of one.” 

Student 3 “98 and 89 are the same amount but you just write them 

differently.” 

Student 4 “13 units of ten and 7 units of one is more than 12 units of ten 

and 17 units of one.” 

Student 5 “200 has no units of ten or units of one. It is only 2 units of 

one hundred.” 

 

It should show table format – APA format, top and bottom 

lines and tile has a line also.  Look at a sample online 

 

Discussion and Conclusion 

 

Five findings from this study highlight students’ progression of 

understanding place value. More specifically, this study suggests that students 

were able to: (a) demonstrate quantities using visual representations and discuss 

differences in the relative size of the quantities, (b) construct and describe the 

differences between a number and the amounts each digit represented, (c) 

compare number lengths by their relative digit positions, (d) create proportional 

representations of numbers by place value; and, (e) use structure language to 

describe the processes of solving place value problems in context and describe 

the components of constructing visual representations.  

 The DMT approach suggests first graders were able to model and use 

structural language to discuss place value concepts (Brendefur et al, 2013). 

Unlike traditional approaches, students in this study were introduced to place 

value through linear situations and meaningful models to describe and notate 

units of 1 and 10. Initially, students used a measuring situation to construct 

numbers by iterating a cube, which represented a unit of 1, and constructing a 

bar model. This visual representation allowed students to begin visualizing 

quantity and use the language of composing and iterating. This is foundational 
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to examining relationships and proportional size of numbers (Fuson & Briars, 

1990; Ross, 1989).  

 Students were also able to describe the differences between units of 1 

and 10 and could compose and describe numbers in their teens and twenties. 

Students focused on the relative position of the digits (e.g., 12 and 21) and 

constructed bar models that represented the appropriate number of units of 1 

and 10. Again, their earlier work on the relative size or proportion of units of 1 

and 10, allowed them to unitize multidigit numbers. This is critical for 

recognizing the difference in the placement of the digit 2 and 1 and their 

representational differences in quantity and proportion; this awareness is what 

Fuson and Briars (1990) calls unitizing. Ross (1989) described this as building 

a needed conceptual understanding in conjunction with procedural knowledge.  

 After working through the last few lessons, students’ vocabulary 

included more structural language, which is a proxy for understanding place 

value. Here, we claim that linear models such as the bar model and number line 

allowed students to gain deeper knowledge about magnitude and proportion as 

related to place value. For example, focusing on iterating the spatial quantities 

of one and ten allowed 7 students to unitize in a similar way as to what Piaget 

found in the 1960s related to the conservation of length (Piaget, Inhelder, & 

Szeminska, 1960).   

 In addition, by having students create direct and indirect comparisons 

and by focusing on unit iteration and unit size in this study, we found first 

graders were able to describe with iconic models, symbols and language the key 

concepts of place value. We propose that using enactive models to build iconic 

models, while focusing on one unit of 1 and one unit of 10 to compose multi-

digit numbers, and then connecting these iconic models to number notation and 

context, students builds a stronger foundation for understanding place value.  

 Moreover, the findings from our study addresses Baroody’s (1990) 

question of how to effectively sequence the introduction of different models.  

Our results indicate that by incorporating modeling and structure into 

pedagogical practices students’ understanding of place value increases in ways 

that build a foundation for learning future topics such as multi-digit place value, 

fraction and decimal understanding, and ratio and proportion. Future research 

is needed to determine whether learning place value as discussed in this article 

can be applied in different contexts, problem solving situations, and with upper 

grade students.  

 

References 

 

Baroody, A. J. (1990). "How and when should place-value concepts and skills 

be taught?" Journal for Research in Mathematics Education: 281-286. 

Brendefur. (2008). Connecting elementary teachers’ mathematical knowledge 

to their instructional practices. The Researcher, 21(2), 1-18.  



Brendefur, Strother, & Rich 43 

 

 

Brendefur, J. L., & Frykholm, J. A. (2000). Promoting mathematical 

communication in the classroom: Two preservice teachers' conceptions 

and practices. Journal of Mathematics Teacher Education, 3(2), 125-

153.  

Brendefur, J. L., Thiede, K., Strother, S., Bunning, K., & Peck, D. (2013). 

Developing mathematical thinking: Changing teachers' knowledge and 

instruction. Journal of Curriculum and Teaching, 2(2).  

Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 

19(1), 1-15.  

Carpenter, T. P., & Lehrer, R. (1999). Teaching and learning mathematics with 

understanding. In E. Fennema & T. Romberg (Eds.), Mathematics 

Classrooms that Promote Teaching for Understanding (pp. 19 - 32). 

Mahwah, NJ: Lawerance Erlbaum Associates. 

Chan, W. W. L., Au, T. K., & Tang, J. (2014). Strategic counting: A novel 

assessment of place-value understanding. Learning and Instruction, 29, 

78-94.  

Cobb, P. (2000). Conducting classroom teaching experiments in collaboration 

with teachers. In R. Lesh & A. Kelly (Eds.), Handbook of research 

design in mathematics and science education (pp. 307-334). Mahwah, 

NJ: Lawrence Erlbaum. 

Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching 

approach for first-and second-grade place-value and multidigit addition 

and subtraction. Journal for Research in Mathematics Education, 180-

206.  

Gravemeijer, K., & van Galen, F. (2003). Facts and algorithms as products of 

students' own mathematical activity. In J. Kilpatrick, W. G. Martin, & 

D. Schifter (Eds.), A research companion to principles and standards 

for school mathematics (pp. 114-122). Reston, VA: NCTM. 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Human, P., Murray, 

H., . . . Wearne, D. (1996). Problem solving as a basis for reform in 

curriculum and instruction: The case of mathematics. Educational 

Researcher, 25(4), 12-21.  

McGuire, P., & Kinzie, M. B. (2013). Analysis of Place Value Instruction and 

Development in Pre-Kindergarten Mathematics. Early Childhood 

Education Journal, 41(5), 355-364.  

Miura, I. T., Okamoto, Y., Kim, C. C., Steere, M., & Fayol, M. (1993). First 

graders' cognitive representation of number and understanding of place 

value: Cross-national comparisons: France, Japan, Korea, Sweden, and 

the United States. Journal of Educational Psychology, 85(1), 24.  

Moschkovich, J. (2012). Mathematics, the Common Core, and language: 

Recommendations for mathematics instruction for ELs aligned with the 

Common Core. Understanding language: Commissioned papers on 



44   Building Place Value Understanding 

language and literacy issues in the Common Core State Standards and 

Next Generation Science Standards, 17-31.  

Ng, S. F., & Lee, K. (2009). The model method: Singapore children's tool for 

representing and solving algebraic word problems. Journal for 

Research in Mathematics Education, 282-313.  

NGA. (2010). Common core state standards for mathematics. Washington DC: 

National Governors Association and the Council of Chief State School 

Officers. 

Treffers, A. (1987). Three dimensions: A model of goal and theory description 

in mathematics instruction – The Wiskobas Project. Reidel: Dordrecht, 

The Netherlands. 

Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic 

mathematics education: An example from a longitudinal trajectory on 

percentage. Educational Studies in Mathematics, 54(1), 9-35.  

Brendefur. (2008). Connecting elementary teachers’ mathematical knowledge 

to their instructional practices. The Researcher, 21(2), 1-18.  

Brendefur, J. L., & Frykholm, J. A. (2000). Promoting mathematical 

communication in the classroom: Two preservice teachers' conceptions 

and practices. Journal of Mathematics Teacher Education, 3(2), 125-

153.  

Brendefur, J. L., Thiede, K., Strother, S., Bunning, K., & Peck, D. (2013). 

Developing mathematical thinking: Changing teachers' knowledge and 

instruction. Journal of Curriculum and Teaching, 2(2).  

Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 

19(1), 1-15.  

Carpenter, T. P., & Lehrer, R. (1999). Teaching and learning mathematics with 

understanding. In E. Fennema & T. Romberg (Eds.), Mathematics 

Classrooms that Promote Teaching for Understanding (pp. 19 - 32). 

Mahwah, NJ: Lawerance Erlbaum Associates. 

Chan, W. W. L., Au, T. K., & Tang, J. (2014). Strategic counting: A novel 

assessment of place-value understanding. Learning and Instruction, 29, 

78-94.  

Cobb, P. (2000). Conducting classroom teaching experiments in collaboration 

with teachers. In R. Lesh & A. Kelly (Eds.), Handbook of research 

design in mathematics and science education (pp. 307-334). Mahwah, 

NJ: Lawrence Erlbaum. 

Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching 

approach for first-and second-grade place-value and multidigit addition 

and subtraction. Journal for Research in Mathematics Education, 180-

206.  

Gravemeijer, K., & van Galen, F. (2003). Facts and algorithms as products of 

students' own mathematical activity. In J. Kilpatrick, W. G. Martin, & 

D. Schifter (Eds.), A research companion to principles and standards 

for school mathematics (pp. 114-122). Reston, VA: NCTM. 



Brendefur, Strother, & Rich 45 

 

 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Human, P., Murray, 

H., . . . Wearne, D. (1996). Problem solving as a basis for reform in 

curriculum and instruction: The case of mathematics. Educational 

Researcher, 25(4), 12-21.  

McGuire, P., & Kinzie, M. B. (2013). Analysis of Place Value Instruction and 

Development in Pre-Kindergarten Mathematics. Early Childhood 

Education Journal, 41(5), 355-364.  

Miura, I. T., Okamoto, Y., Kim, C. C., Steere, M., & Fayol, M. (1993). First 

graders' cognitive representation of number and understanding of place 

value: Cross-national comparisons: France, Japan, Korea, Sweden, and 

the United States. Journal of Educational Psychology, 85(1), 24.  

Moschkovich, J. (2012). Mathematics, the Common Core, and language: 

Recommendations for mathematics instruction for ELs aligned with the 

Common Core. Understanding language: Commissioned papers on 

language and literacy issues in the Common Core State Standards and 

Next Generation Science Standards, 17-31.  

Ng, S. F., & Lee, K. (2009). The model method: Singapore children's tool for 

representing and solving algebraic word problems. Journal for 

Research in Mathematics Education, 282-313.  

NGA. (2010). Common core state standards for mathematics. Washington DC: 

National Governors Association and the Council of Chief State School 

Officers. 

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative 

evaluation data. American Journal of Evaluation 27(2), 237-246.  

Treffers, A. (1987). Three dimensions: A model of goal and theory description 

in mathematics instruction – The Wiskobas Project. Reidel: Dordrecht, 

The Netherlands. 

Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic 

mathematics education: An example from a longitudinal trajectory on 

percentage. Educational Studies in Mathematics, 54(1), 9-35.  

 

 

 

 

Corrisponding Author: 

 

Jonathan Brendefur, PhD 

Boise State University 

Email: jbrendef@boisestate.edu 

 


	Boise State University
	ScholarWorks
	3-1-2018

	Building Place Value Understanding Through Modeling and Structure
	Jonathan L. Brendefur
	Sam Strother
	Kelli Rich

	tmp.1524755478.pdf.A28TF

