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Chalcogenide glasses are the advanced materials of choice for the emerging nanoionic memory devices – conductive

bridge random access memory (CBRAM). To understand the nature of the effects occurring in these devices under

influence of electron-beam radiation, the interaction of blanked chalcogenide films and nanostructured films

containing chalcogenide glass and silver (Ag) source are studied. Raman spectroscopy, energy-dispersive X-ray

spectroscopy and X-ray diffraction are used for establishing the structural and compositional effects occurring under

radiation. They have strong compositional dependence with the stoichiometric compositions being most stable

showing less structural changes after radiation. These effects are associated with the availability of lone-pair electrons,

their participation in the bonding configurations and the coupling of electron states in the bandgap. They are further

enhanced in the bilayers by silver diffusion in the chalcogenide matrix, as a result of interaction with electrons. These

effects are used to interpret the electrical performance of CBRAM devices after radiation. The devices are characterized

by their resistance states, threshold voltage and endurance. Those based on selenium-rich and stoichiometric

composition undergo continuous parameters changes with increase in the radiation dose while in the devices based

on germanium-rich composition a counter play of the structural changes and expulsion of silver occur.

1. Introduction
The rapid development of microelectronic systems has spurred the
emergence of many new solutions to memory devices. One of the
most promising of these is the programmable metallization cell or
conductive bridge memory, which often because of the application
these devices are mostly related with, is called conductive bridge
random access memory (CBRAM). Their performance relies on
the formation and dissolution of a conductive bridge between two
electrodes. The bridge formation is driven by an oxireduction
process during which ions from one electrode (anode), usually
silver ions (Ag+), move toward the other electrode (cathode),
which is composed of an electrochemically inert material such as
tungsten (W). At the interface of the tungsten electrode with the
active device material (for example, chalcogenide glass), silver
ions undergo reduction and convert to silver atoms. These silver
atoms start coupling outward from the tungsten electrode,
following the field distribution in the device and extending toward
the silver electrode until a conductive bridge of silver atoms,
connecting the two electrodes, forms. Applying an opposite bias
between the electrodes dissolves this bridge. In this manner, the
two conditions of the device are developed – an ‘off’ or high

resistive state (HRS), in which there is no bridge between the two
electrodes, and an ‘on’ or low resistive state (LRS), when the
conductive bridge between the two electrodes is established.1 One
of the best mediums in which the transport of ions could occur
is based on chalcogenide glass film, particularly germanium
(Ge)–selenium (Se) glass. Often this glass is diffused with silver,
so as to encourage faster establishment of the conductive bridge.2

In order to demonstrate the wide range of applicability of these
devices, it is important to study their performance in specific
environments, particularly under the influence of electron beam
(e-beam).

It is known that electrons cause material changes, for example the
permittivity in the chalcogenide glasses, which inevitably will
affect their electrical performance.3 The authors peculate that this is
due to reorganization of the wrong bonds, but there are no
structural data to prove this theory. In these glasses, the chemical
order could be broken due to their non-equilibrium condition,
especially in compositions containing high concentrations of
germanium, in which there is departure from the N-8 coordination
rule.4 The structure of these films, combining heteropolar Ge–Se
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bonding in tetrahedral organization with units of homopolar Ge–Ge
and Se–Se bonding, is particularly composition dependent.5,6

Other changes that the e-beam can cause in thin films of
chalcogenide glasses are variations in the refractive index and film
thickness, which the authors believe are caused by electron-
induced surface contraction in the films.7 These results and the
reported data about the formation of a relief over the surface of
the chalcogenide films, under e-beam radiation, strongly suggest
that the e-beam significantly affects the structure of the
chalcogenide glasses inducing modifications in it.8–10 The nature
of these modifications is currently not clear due to the lack of
structural studies.

Another effect occurring in the chalcogenide glasses, under
influence of electrons, is the impact of electrons on the silver
distribution and migration within the chalcogenide glass.11,12 This
effect is very important in the context of the CBRAM devices
where silver plays a key role in their performance. In this case, it
is imperative to know if silver migration, as a result of e-beam
radiation, could be expected. The authors’ hypothesis is that the
structural reorganization mentioned earlier has a large influence
on the diffusion of silver into the glass.

To complete the discussion about how an e-beam influences
chalcogenide glasses, one has to also consider the charging effects
it causes. Chalcogenide glasses are wide-bandgap semiconductors
with bandgap ranging from 1·7 to 2·5 eV,13–15 and resistivity on
the order of 1012W cm.15,16 These data qualify them rather as
dielectric than semiconducting material, in which case, especially
in structures with electrodes adjacent to the glass, charge will
couple and redistribute, contributing to ion migration in the
glass.17

Having in mind the plurality of effects that could occur in the
structure of the CBRAM devices, this work studied their
performance after they have been irradiated with e-beam. In order
to understand the nature of these effects, the structural changes
occurring in the chalcogenide germanium-selenium films were
studied, paying attention to the compositional dependence of the
effects in both chalcogen-rich and chalcogen-poor films. Also
studied were the products, forming as a result of the e-beam
introduction of silver into the chalcogenide glasses, which
provides insight into the understanding of the device performance.

2. Experimental setup
Bulk chalcogenide glasses of GexSe100−x (x = 20, 30, 40) were
prepared from high-purity germanium and selenium by using the
traditional melt-quench technique. The GexSe100−x glass was then
thermally deposited onto a silicon (Si) wafer from a semi-Knudsen
cell crucible in an attempt to create the GexSe100−x bare films with
composition close to that of the source material. Additional films
were also produced where a silver source was selectively deposited
onto the film surface to study the effect of e-beam-induced silver
diffusion. Deposition of both GexSe100−x and silver was achieved

by using a Cressington 308R evaporation system at a pressure of
1 × 10−6 mbar. The studied bare GexSe100−x films were 75 nm
thick. The GexSe100−x/silver samples were assembled from 75 nm-
thick film of GexSe100−x and 2mm-dia., 100 nm-thick circular
silver sources deposited on top of the chalcogenide films through a
shadow mask. This structure was chosen since it allows the study
of silver diffusion through its lateral distribution, which reduces the
number of the variables for the result. If the diffusion in depth
is studied, below the silver source, additional error would be
introduced into the results.

The fabricated CBRAM devices were based on a silicon dioxide
(SiO2)/tungsten/GexSe100−x/silver vertical stack. The tungsten film
was deposited by using an AJA Orion 5 sputter machine at a
pressure of 6 × 10−6 mbar. The thickness of each layer in the
CBRAM devices was as follows: 200-nm thermal silicon dioxide,
100-nm tungsten, 75 nm GexSe100−x, 100 nm silver, in the device
configuration shown in Figure 1.

Energy-dispersive spectroscopy (EDS), used to confirm the exact
composition of each of the films, was conducted by using a
Hitachi S-3400N II scanning electron microscope with an Oxford
Instruments Energy + EDS system at a working distance of
10 mm and ×2000 magnification with a 90 s collection time. Each
sample was measured at five different locations for the collection
of an accurate average and the standard deviation. Mapping
profiles of diffused silver atoms, resulting from e-beam
interactions, were acquired by using the same equipment,
obtained from 20–25 averaging scans that rastered the beam to
limit the exposure to electrons during analysis. The Raman
spectra of bare films were collected by using a Horiba Jobin Yvon
T64000 triple monochromator with a liquid-nitrogen-cooled,
multichannel charge-coupled device detector. The films, inside a
chamber at a temperature of 85 K and pressure of 1 × 10−5 mbar,
were excited by using a 441·6 nm helium (He)-cadmium (Cd)
laser focused on an area with an ~0·2 mm diameter and a laser
intensity of 30 mW. At this low temperature and vacuum, no
photoinduced changes were established by sequential checks of
the films by optical studies, although the laser light wavelength
was within the absorption edge of the glasses.

The X-ray diffraction (XRD) patterns of silver diffused laterally
outward from the silver dot sources were obtained by using a
Bruker AXS D8 Discover X-ray diffractometer equipped with
a thallium-doped sodium iodide (NaI(Tl)) scintillation detector
and copper (Cu) Ka X-ray source (l = 0·1506 nm). The XRD

Cathode Anode Chalcogenide film

SiO2 SiO2 SiO2

SiO2
Si wafer

W electrode

Figure 1. Cross-sectional view of W/GexSe100−x/silver CBRAM device
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Commander software was utilized in locked-coupled scan mode
with 2q ranging from 15° to 90° (0·05° step size and 1·2 s/step).

The GexSe100−x-based CBRAM devices were characterized by
using an HP 4146 parameter analyzer. The probe station used for
device characterization was equipped with gold probes and a
Faraday cage, which isolated it from external sources of noise and
diminished charge buildup within the measuring cables. The
devices were characterized with a direct current voltage bias
sweep, ranging from −0·75 to 1·5 V across the tungsten and silver
electrodes, while simultaneously recording the current. In order to
achieve 105 switching cycles and more within a reasonable
amount of time, a signal generator was utilized in addition to the
parameter analyzer. The signal generator was programmed to
supply a square waveform with a minimum of −0·75 V, a
maximum of 2·0 V and a period of 5 ms.

E-beam irradiation experiments were conducted by using a LEO
1430VP scanning electron microscope as an e-beam source with
an accelerating voltage of 30 kV, beam current of 1 nA and a
working distance of 20mm. The beam diameter was 1·3 mm,
which resulted in an electron flux of 2·496 × 1014 electrons/s. Bare
films and such containing a silver source of the three different
compositions were exposed to five separate doses of e-beam
radiation (0, 2·1 × 1011, 4·2 × 1011, 6·3 × 1011 and 1·05 × 1012

rad) in order to provide a range of doses.

3. Results
The EDS study confirmed some differences in the composition of
the studied films compared with the source material. The actual
composition of the films also had some deviations from
deposition to deposition of the same composition. On average, the
samples contained germanium atomic concentrations of x =
22·6–25·6, 32·4–36·2 and 42·2–44·4, which in this study were
termed further as selenium-rich, near-stoichiometric and
germanium-rich films respectively.

The Raman spectra of control samples as evaporated and of
samples that were subjected to the maximum dose of radiation are
shown in Figure 2. They were normalized to the corner-sharing
(CS) peak and fitted with Gaussian curves. The shape of the
spectra demonstrates that the films are amorphous and they
contain the characteristic structural units for the representative
compositions. The Raman spectra of Ge25·6Se74·4 and Ge36·2Se63·8
films confirm the presence of three different structural units: CS
tetrahedral structures (Ge–Se–Ge) with average vibrational mode
are present at 197 cm−1 and edge-sharing (ES) tetrahedral
structures are present at 216 cm−1;18–21 Se–Se chains and rings
are present at 270 cm−1;22,23 and the band that is observed at
308 cm−1 in the Raman spectra23–25 is attributed to the
asymmetric average vibration of the edge-shared tetrahedron. The
Raman spectra of the Ge36·2Se63·8 and the germanium-rich films
(over 40 at.% germanium) also indicate the presence of ethane-
like bonding (ETH) structures (Se3–Ge–Ge–Se3) with an average
vibrational mode at 178 cm−1.

Analysis of the areal intensity of the various peaks reveals a
unique trend as a function of e-beam exposure. The graph of the
ratio of edge-sharing and corner-sharing tetrahedral structures
(ES/CS), shown in Figure 3(a), provides evidence for relatively
small structural changes in the development of the CS and ES
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Figure 2. Raman spectra, normalized to the CS peak, of bare

a-GexSe100−x films exposed to 0 and 1·05 × 1012 rad (highest dose)

of e-beam for (a) Ge25·6Se74·4, (b) Ge36·2Se63·8 and (c) Ge44·3Se55·7
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structural units for selenium-rich samples and samples close to the
stoichiometric composition, while the germanium-rich samples
(x = 42–44 at.%) undergo structural reorganization with a local
maximum at radiation of 5 × 1011 rad dose followed by a
minimum and further reestablishment of the average ratio of the
areal intensity of the ES/CS structural units.4,18,26 The
development of the e-beam-induced effects in the Se–Se chains,
shown in Figure 3(b), is also quite weak, with the biggest changes
occurring for the germanium-rich samples. The ETH structural
units are the most sensitive to irradiation. Their number increases
in all germanium-rich samples at a radiation dose of up to 6·3 ×
1011 rad, after which an abrupt decrease in their areal intensity
occurs (Figure 3(c)).

Raman studies on the silver-diffused germanium-selenium glasses
were not carried out since such samples have a substantially lower
intensity of their Raman modes. More detailed data about these
samples were collected from XRD and EDS studies.

The XRD patterns of the e-beam-diffused silver in the area around
the silver source are presented in Figures 4(a)–4(c). In each of the

three compositions, a-silver selenide (Ag2Se) and the ternary
argyrodite (Ag8GeSe6) form as a result of the reaction between
the germanium-selenium glass film and the diffusing silver in it,
supplied by the silver source (the dots on top of the chalcogenide
films). The phase growth of both the a-silver selenide and
argyrodite nanocrystals in the chalcogenide matrix was observed,
as a function of the radiation dose, which is illustrated in Figure 5.
The a-silver selenide phase was observed at 2q = 38° angle, Joint
Committee Powder Diffraction Standards (JCPDS) card 27-0619,
in analogy with other cases in this system,27 and the argyrodite
phase was observed at 2q = 44°, which is identified by JCPDS
card 71-190. In addition to these two phases, a third phase of pure
phase-separated silver is observed in Ge44·3Se55·7 at 2q = 61°,
identified by JCPDS card 87-0598. Significant growth in the
phase-separated silver was observed with increasing radiation dose.
The distribution of the diffused silver atoms shows a proportional
dependence on the electron energy as presented in Figure 5(b).

The films were also studied by using EDS mapping; the obtained
result for Ge25·6Se74·4 for the control sample and samples irradiated
with 1·05 × 1012 rad is presented in Figures 6(a) and 6(b). When
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silver is detected by the detector, it is represented by a color
depending on the intensity of the signal, while the lack of silver
presence is represented by black regions on the image. The
diameter of the silver source was measured and normalized to
the diameter of the control sample, revealing the total diffusion
distance of silver as a function of electron irradiation dose.
Measured results illustrate a linear dependence between dose and
diffusion distance. The diffusion distance is exaggerated in the

selenium-rich films when compared with the other two
compositions as shown in Figure 6(c).

CBRAM devices, based on three different compositions of
GexSe100−x (x = 25·6, 36·2 and 44·3), were tested for their
current-voltage (I-V) characteristics and endurance before and
after e-beam exposure. Each device endured a minimum of 105

switching cycles. The cumulative distributions of VTh, VEr, LRS,
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and HRS for all compositions of devices are summarized in
Figures 7(a)–7(c). I-V curves are shown in Figure 7 for the
selenium-rich, near-stoichiometric and germanium-rich devices
exposed to three different doses of radiation. The cumulative
distributions of the write/erase voltages for all compositions of
devices are summarized in Figures 7(d)–7(f).

4. Discussion
The post-irradiation EDS data suggest that there are no losses of
elements due to the interaction with the electrons. The electrons
bombarding the sample penetrate into the film and undergo a
number of random collisions by which they lose energy. The
energy lost in the inelastic collisions is used for creation of
electron-hole pairs. As a result of their formation, some of the
bonds break, which further develops into structural changes.
Both the selenium-rich and the near-stoichiometric compositions
undergo relatively weak structural changes as a result of the
electron bombardment. This can be associated with their quite
floppy structure in which, after breakage of some bonding, fast
relaxation occurs due to the structural flexibility. This fast
recombination is facilitated by the intimate position of the
selenium atoms in the selenium chains.28 Despite this, close

evaluation of the areal intensities of the ES/CS ratio and Se–Se
structural units reveals that a transition occurs from ES (six
selenium atoms) to CS (seven selenium atoms) structures,
requiring more selenium, which is provided by the Se–Se chains.
This is affirmed by the decrease in the intensity of the Se–Se
Raman modes for the selenium-rich samples. In the case of the
near-stoichiometric composition, as similarly in the case of the
selenium-rich films, the intensity of the ES/CS ratio decreases
while the Se–Se mode increases, which is also accompanied by an
increase in the ETH structural units. In other words, in these
structures, some atypical ‘wrong bonds’ (Se–Se and Ge–Ge bonds)
appear as a result of the e-beam irradiation. The germanium-rich
compositions undergo the most expressed structural changes,
related to the low energy of the Ge–Ge bonds available, which can
easily break, and the fact that once a dangling bond occurs, it
cannot immediately recombine due to the structural rigidity. The
packing fraction of the germanium-rich glasses is very high,29 and
this retards the diffusion of silver as shown in Figure 6(c). This is
also the reason for the limited growth of silver clusters at low
radiation doses (Figure 5(c)), which undergo fast growth after the
structural changes associated with the destruction of the ETH
structural units (Figure 3(c)) occur.
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The complexity of the effect of electron bombardment is further
justified by the fact of formation of an internal steady state
electric field due to the difference in the mobility of the electrons
and holes. Its presence has been theoretically analyzed and
discussed.30 This field contributes to an active motion within the
solid and has been used for explanation of the processes of
volume change in the chalcogenide glasses under the influence of
e-beam.31 Under the influence of the field, some areas in the
network experience electrostatic pressure, which contributes to the
formation of voids and volume increase. It is for these two
reasons – the field itself and the formation of less dense structure
caused by it – that intense lateral diffusion of silver in the studied
films has been observed.

Once diffused into the chalcogenide film, silver reacts with the
network atoms. All of the silver containing a-GexSe100−x films
revealed growth in both the binary a-silver selenide and ternary
argyrodite phases when exposed to e-beam radiation. However,
the growth rate of the specific phases depends on the composition
of the film as well as the exposure dose. It is important to note the
preferential formation of the a-silver selenide, which is stable
only at temperatures above 133°C, instead of b-silver selenide,
which is stable at room temperature. The authors attribute the
formation of a-silver selenide in e-beam-exposed films, regardless
of the composition, to the presence of high- and low-pressure
regions resulting from radiation. The binary phase develops in
these high-pressure regions, which forces the compound to form
in its closest packed structure, face-centered cubic, rather than the
orthorhombic structure (b-silver selenide). The authors suggest
that the main reasons for the longest diffusion pathway
encountered for the selenium-rich samples are the high affinity
between the silver and chalcogen elements, as well as the low
packing of these films.

The mapping data demonstrate that at the conditions of the
experiment, silver diffusion occurs on a distance much bigger than
the thickness of the studied CBRAM devices. Consequently, one
can expect that the device performance will be strongly affected by
the silver diffusion. In the devices based on selenium-rich films,
the median HRS decreases by a small amount for the lowest
irradiation dose. After the first irradiation dose, proportional growth
in both the a-silver selenide and argyrodite phases are observed in
the XRD patterns (Figures 5(a)) and 5(b)). The superconducting
properties of the a-silver selenide dominate the HRS value of the
device after this first dose. The XRD patterns show that additional
radiation causes further growth in the ternary phase; however,
the binary phase is unchanged. Due to the further development
in the ternary phase and the lack thereof in the binary phase,
the semiconducting properties of the ternary phase govern the
resistance of the device, resulting in a large increase in the HRS.

In devices based on material close to the stoichiometric
composition, a large decrease in the HRS, after the first dose of
irradiation, is revealed. This is attributed to the growth in both the
a-silver selenide and argyrodite phases as determined by the XRD

patterns. After 105 switching cycles, this device shows serious
degradation in the device performance and device failure soon
thereafter. Further e-beam irradiation results in the agglomeration
of the a-silver selenide phase crystal to form larger crystals
spaced farther apart. The phase agglomeration, in addition to the
spacing between these crystals, results in a higher HRS and
decreasing variation in HRS due to fewer conductive paths for the
bombarding electrons.

To summarize the results related to the devices based on
selenium-rich and close to stoichiometric composition, the devices
do not undergo very strong structural changes under electron
radiation. However, because of they are abundant in selenium, the
diffusion of silver is pretty much encouraged, which continuously
changes the device parameters with increase in the dose of
e-beam irradiation.

The HRS values of devices, based on germanium-rich films,
demonstrate a large increase due to irradiation exposure, which
the authors relate also to the observed large changes in the
structure of the films. Virtually no change was observed in the
HRS after the first dose of irradiation. There appears to be a
threshold at irradiation of 4·2 × 1011 rad, where the growth rates
of the binary and ternary phases containing silver decreases.
Additionally, the emergence of a phase-separated silver was
observed from the XRD pattern. Furthermore, the ES/CS ratio
increases dramatically (Figure 3(a)). The increase observed in the
ES/CS ratio results in the formation of voids and opening of the
structural network. Consequently, incident electrons have a more
direct path toward the previously diffused silver. Interaction
between incident electrons and silver ionizes the silver atoms,
making them more mobile. Additionally, charging at the interface
between the silver electrode and the chalcogenide film creates an
electric field. After 4·2 × 1011 rad of e-beam irradiation, the
electric field becomes strong enough to withdraw silver ions from
within the film. At the interface, silver agglomeration occurs, as
shown by XRD patterns. This effect seems to be very similar to
the one observed by Kawaguchi and Maruno32 for chalcogenide
glasses containing silver. The changes culminate in a significant
increase in the HRS after 4·2 × 1011 rad. In this type of
compositions, the device performance is governed by the
counterplay of the structural changes in the chalcogenide matrix
and expulsion of silver from it.

5. Conclusions
This study reveals that the e-beam irradiation affects the structure
of Ge–Se films. The effect is further enhanced by silver diffusion
into the chalcogenide films as a result of interaction with
electrons. The electric field that forms during the bombardment of
the Ge–Se films with electrons causes changes in the density of
films and ion migration. This introduces silver across a much
greater distance than the thickness of the studied CBRAM
devices. As a result, their performance is affected by the presence
of diffusion products such as silver selenide and argyrodite. Their
amount and microcrystal growth are related to the structure of the
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accepting chalcogenide matrix. The devices based on selenium-
rich and close to stoichiometric composition do not undergo very
strong structural changes under electron radiation; but, because
they are abundant in selenium, the diffusion of silver is pretty
much boosted, which continuously changes the device parameters
with increase in the dose of e-beam radiation. In the case of
devices based on germanium-rich composition, their performance
is governed by the counterplay of the structural changes in the
chalcogenide matrix and expulsion of silver from it. These data
could be used in material engineering for control of device
parameters. The authors suggest that the stabilization of the
performance of the CBRAM devices, under the influence of e-
beam, can be achieved by saturation of the chalcogenide network
with silver prior to the e-beam interaction – that is the technology
of devices fabrication has to include a step for silver diffusion and
saturation during device formation.
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