
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Mathematics Faculty Publications and 
Presentations Department of Mathematics 

6-3-2016 

Maximum Waring Ranks of Monomials and Sums of Coprime Maximum Waring Ranks of Monomials and Sums of Coprime 

Monomials Monomials 

Erik Holmes 
University of Hawaii at Manoa 

Paul Plummer 
University of Oklahoma 

Jeremy Siegert 
George Washington University 

Zach Teitler 
Boise State University 

This is an Accepted Manuscript of an Article published in Communications in Algebra (2016) available online at 
doi: 10.1080/00927872.2015.1087534 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math
https://doi.org/10.1080/00927872.2015.1087534


MAXIMUM WARING RANKS OF MONOMIALS AND SUMS OF
COPRIME MONOMIALS

ERIK HOLMES, PAUL PLUMMER, JEREMY SIEGERT, AND ZACH TEITLER

Abstract. We show that monomials and sums of pairwise coprime monomials in four or
more variables have Waring rank less than the generic rank, with a short list of exceptions.
We asymptotically compare their ranks with the generic rank.

1. Introduction

Let F (x1, . . . , xn) be homogeneous polynomial of degree d, a d-form, in the variables
x1, . . . , xn with complex coefficients. The Waring rank of F , denoted r(F ), is the least
number of terms needed to write F as a linear combination of dth powers of linear polyno-
mials, F = c1�

d
1 + · · ·+ cr�

d
r . For example, F (x, y) = xy can be written as

xy =
1

4
(x+ y)2 − 1

4
(x− y)2

which shows r(xy) ≤ 2. On the other hand we must have r(xy) > 1 because if xy = c1�
2
1

then xy would be a perfect square, which it is not. Therefore r(xy) = 2.
Waring ranks of homogeneous forms have been studied since the 19th century by Sylvester

and others. For modern introductions see for example [14], [17], [21]. For numerous appli-
cations in engineering, sciences, and other areas of mathematics, see for example [11], [17].
We write rgen(n, d) for the rank of a general d-form in n variables. This value, called the

generic rank, is well-known by the Alexander–Hirschowitz theorem, see Section 2.
In contrast it is difficult to determine the maximum Waring rank occuring for d-forms in

n variables. Clearly the maximum value of rank is at least the generic value. In [5] it is
shown that the maximum value of rank is at most twice the generic value, so the candidates
for the maximum rank are the integers in the interval [rgen(n, d), 2 rgen(n, d)]. We can narrow
this range either by finding new upper bounds or by finding forms with greater than generic
rank.

Another reason to look for forms of high rank is that such examples may have interesting
applications in the theory of computational complexity. See for example [2], [20] for dis-
cussions of complexity-theoretic conclusions from tensors of high rank. See [18] for a more
general introduction to connections between geometry and complexity.

We examine some candidate forms—monomials and sums of pairwise coprime monomials—
and find that in most cases they fail to have greater than generic rank.

It turns out that very few examples are known of forms with greater than generic rank,
with n ≥ 3 variables. (Plenty are known for n = 2.) In fact, it seems that until recently only
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2 ERIK HOLMES, PAUL PLUMMER, JEREMY SIEGERT, AND ZACH TEITLER

finitely many such examples were known: just some cubics and quartics (d = 3, 4) in n = 3
or 4 variables, see Section 2. (See also [7].)

Recently, however, Carlini, Catalisano, and Geramita pointed out an infinite family of
forms with greater than generic rank. Specifically, they showed in [9] (see also [6]) that for
a monomial M = xa1

1 · · · xan
n with 0 < a1 ≤ · · · ≤ an, the Waring rank of M is

r(M) = (a2 + 1) · · · (an + 1).

We denote by r̄mon(n, d) the maximum rank of a monomial in n variables of degree d. Carlini–
Catalisano–Geramita observed that for n = 3 and d ≥ 5 there are monomials of greater
than generic rank, r̄mon(3, d) > rgen(3, d) for d ≥ 5. And they observed also that for n ≥
4, limd→∞ r̄mon(n, d)/ rgen(n, d) < 1, so for each n ≥ 4 there are (at most) finitely many
monomials with greater than generic rank.

Our first main result is that in fact, in four or more variables there are absolutely no
monomials with higher than generic rank.

Theorem 1. Let M be a monomial in n ≥ 4 variables and let d = degM > 1. Then
r(M) < rgen(n, d). That is, r̄mon(n, d) < rgen(n, d) whenever n ≥ 4 and d > 1.

This is proved in Section 3.
Carlini–Catalisano–Geramita showed also in [9] that for a sum of coprime monomials

F = M1 + · · ·+Mk, where the terms are monomials in independent sets of variables,

r(M1 + · · ·+Mt) = r(M1) + · · ·+ r(Mt).

(It is conjectured that such an equality holds for any sum of polynomials in independent sets
of variables, see for example [8].)

Example 2. The form F = x1x
2
2 + x3x

2
4, with n = 4, d = 3, has higher than generic rank:

r(x1x
2
2 + x3x

2
4) = r(x1x

2
2) + r(x3x

2
4) = 6 > rgen(4, 3) = 5.

The forms x1x2x3 + x3
4 and x1x

2
2 + x3

3 + x3
4 each have rank 5, equal to the generic rank.

In fact these are the only sums of coprime monomials with greater than or equal to generic
rank (up to reordering the variables). We denote by r̄Σ-mon(n, d) the maximum rank of a
sum of coprime monomials in n (total) variables of degree d.

Theorem 3. Every sum of pairwise coprime monomials in n ≥ 4 variables, of degree d ≥ 3,
has rank strictly less than the generic rank, except for the three forms listed in Example 2.
That is, r̄Σ-mon(n, d) < rgen(n, d) whenever n ≥ 4 and d ≥ 3, except for (n, d) = (4, 3).

This is proved in Section 4.
Finally we asymptotically compare the maximum ranks of sums of pairwise coprime mono-

mials with the generic rank.

2. Background

By the Alexander–Hirschowitz theorem [1] the generic rank is given by

(1) rgen(n, d) =

⌈
1

n

(
d+ n− 1

n− 1

)⌉
,

except if (n, d) = (n, 2), (3, 4), (4, 4), (5, 3), (5, 4). In the exceptional cases rgen(n, 2) = n
(instead of �(n+1)/2�), rgen(3, 4) = 6 (instead of 5), rgen(4, 4) = 10 (instead of 9), rgen(5, 3) =
8 (instead of 7), and rgen(5, 4) = 15 (instead of 14).
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Having said that, we will only occasionally need information about the exceptional cases
(and we will in fact never need to know that these are the only exceptional cases, which is
the significant part of the Alexander–Hirschowitz theorem). At most points we will just need
that rgen(n, d) ≥ 1

n

(
d+n−1
n−1

)
for all n, d ≥ 2, which follows from a standard dimension count.

For some recent progress on upper bounds for Waring rank, see [4], [15], [3], and [5]. But
there are only a few cases in which the actual maximum rank, or even explicit forms of
greater than generic rank, are known. Binary (n = 2) forms of degree d have rank at most d,
with r(xyd−1) = d. For quadratic forms (d = 2) the maximum rank is n. For (n, d) = (3, 3),
rgen(3, 3) = 4 while the maximum rank is 5 [22, §96], [11], [16], [19, §8]. For (n, d) = (3, 4),
rgen(3, 4) = 6 while the maximum rank is 7 [16], [12]. For (n, d) = (4, 3), rgen(4, 3) = 5 while
the maximum rank is again 7 [22, §97]. Finally, very recently it has been determined that
for (n, d) = (4, 4) the maximum rank is 10 [13], [7] (the latter gives an explicit form of rank
10).

For (n, d) = (3, 3), each one of [22, §96], [11], [16], [19, §8] shows that, up to a linear change
of coordinates, the unique form of greater than generic rank is z(x2 + yz), the union of a
smooth conic and a tangent line. For (n, d) = (3, 4), z2(x2 + yz) is the unique form (again
up to a linear change of coordinates) of greater than generic rank, see [16, Proposition 3.1].
For (n, d) = (4, 3), w(x2 + y2 + zw), the union of a smooth quadric and a tangent plane,
has rank 7, greater than the generic rank [22, §97]. (In this case there are other forms with
greater than generic rank, see [22, §97].) For more on hypersurfaces consisting of a quadric
plus a hyperplane see [10].

3. Ranks of monomials in four or more variables

Proof of Theorem 1. Let M be a monomial in n ≥ 4 variables and let d = degM > 1. We
do not assume that M actually involves every variable.

Say k ≤ n of the variables appear in M = xa1
1 · · · xak

k , 0 < a1 ≤ · · · ≤ ak. Write
M = xa1

1 · · · xan
n , ak+1 = · · · = an = 0. By the arithmetic-geometric mean inequality,

r(M) = (a2 + 1) · · · (an + 1) ≤
(
a2 + · · ·+ an + n− 1

n− 1

)n−1

=

(
d+ n− 1− a1

n− 1

)n−1

≤
(
d+ n− 2

n− 1

)n−1

.

We finish by the following lemma. �

Lemma 4. For n ≥ 4 and d ≥ 2,(
d+ n− 2

n− 1

)n−1

<
1

n

(
d+ n− 1

n− 1

)
.

Proof. We will show the equivalent equation

(2)

(
d+ n− 2

d+ n− 1

)
· · ·

(
d+ n− 2

d+ 1

)
<

(n− 1)n−1

n!
=

(
n− 1

n

)
· · ·

(
n− 1

2

)
.

First, it is easy to check that(
d+ n− 2

d+ n− 1

)(
d+ n− 2

d+ n− 3

)
<

(
n− 1

n

)(
n− 1

n− 2

)
.
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4 ERIK HOLMES, PAUL PLUMMER, JEREMY SIEGERT, AND ZACH TEITLER

This takes care of the first three factors on each side in (2). (Here we use the hypothesis
n ≥ 4; otherwise d+n−2

d+n−3
and n−1

n−2
are absent.) For the remaining factors,

(d− 1) + (n− 1)

(d− 1) + a
<

n− 1

a

for 2 ≤ a < n− 1. This proves (2) and completes the proof. �

4. Sums of pairwise coprime monomials

Lemma 5. If d ≥ 4 and d ≥ n ≥ 2, then 1
n
r̄mon(n, d) ≥ 1

n−1
r̄mon(n− 1, d).

Proof. First, if n = 2, r̄mon(2, d) = d while r̄mon(1, d) = 1, so the claim is true. Second,
suppose d > n > 2. Let M be a monomial in n − 1 variables of degree d with rank
r̄mon(n − 1, d). Up to reordering the variables, M = x1

1x
a2
2 · · · xan−1

n−1 with a2 ≤ · · · ≤ an−1 ≤
a2 + 1. We have

an−1 =

⌈
d− 1

n− 2

⌉
> 1.

Let M ′ = x1
1x

a2
2 · · · xan−1−1

n−1 x1
n, so M ′ still has degree d, and

r̄mon(n, d) ≥ r(M ′)

= r(M)
2an−1

an−1 + 1

= r̄mon(n− 1, d)
2� d−1

n−2
�

� d−1
n−2

�+ 1

≥ r̄mon(n− 1, d)
2(d− 1)

d+ n− 3

≥ r̄mon(n− 1, d)
n

n− 1
,

where the first equality comes from the Carlini–Catalisano–Geramita expression for Waring
rank of monomials and the remaining steps are straightforward algebraic manipulations.

Finally, if d = n ≥ 4 then r̄mon(n, d) = 2d−1 and r̄mon(n − 1, d) = 3 · 2d−3 = 3
4
r̄mon(n, d).

Since n ≥ 4, n−1
n

≥ 3
4
, so 1

n
r̄mon(n, d) ≥ 1

n−1
r̄mon(n− 1, d). �

Proof of Theorem 3. First suppose d ≥ n ≥ 4. Let F = M1 + · · · + Mt be a sum of
pairwise coprime monomials of degree d, where Mi involves exactly ni variables, n =

∑
ni,

n1 ≥ · · · ≥ nt ≥ 1. For each i,

r(Mi)

ni

≤ r̄mon(ni, d)

ni

≤ r̄mon(n, d)

n

by Lemma 5. We use the elementary inequality that if ai, bi > 0 and ai
bi

≤ x for all i, then

(
∑

ai)/(
∑

bi) ≤ x. Thus
r(F )

n
=

∑
r(Mi)∑
ni

≤ r̄mon(n, d)

n
,

hence r(F ) ≤ r̄mon(n, d). That is, for d ≥ n ≥ 4, r̄Σ-mon(n, d) = r̄mon(n, d) < rgen(n, d).
Second we deal with the case n > d ≥ 4. We will use that

(3)
1

n2

(
d+ n− 1

n− 1

)
>

2d−1

d
.
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We prove this by induction on n starting from n = d ≥ 4, where we have 1
d2

(
2d−1
d−1

)
> 2d−1

d
by

Lemma 4. And for n ≥ d ≥ 4 we have

1

n2

(
d+ n− 1

n− 1

)
=

1

n2
· n

n+ d

(
d+ n

n

)

=
(n+ 1)2

n(n+ d)
· 1

(n+ 1)2

(
d+ n

n

)

<
1

(n+ 1)2

(
d+ n

n

)

since d > 2. This completes the proof of (3).
Now let F = M1 + · · · +Mt be a sum of pairwise coprime monomials of degree d, where

Mi involves exactly ni variables, n =
∑

ni, n1 ≥ · · · ≥ nt ≥ 1. Note each ni ≤ d. We have

r(Mi)

ni

≤ r̄mon(d, d)

d
=

2d−1

d
.

Therefore

(4)
r(F )

n
=

∑
r(Mi)∑
ni

≤ 2d−1

d
<

1

n2

(
d+ n− 1

n− 1

)

by (3), which gives us

r(F ) <
1

n

(
d+ n− 1

n− 1

)
≤ rgen(n, d)

as desired. This completes the case n > d ≥ 4.
Third we take care of the case d = 3, n ≥ 5. Let F be a sum of pairwise coprime monomials

of degree 3 with rank r̄Σ-mon(n, 3). The only monomials that can appear are of the form x3,
xy2, xyz, with ranks 1, 3, 4 respectively. We can replace each occurence in F of xyz with
xy2 + z3 without changing the rank or number of variables. So we can assume every term
in F is of the form x3 or xy2. This shows that if n is even, r̄Σ-mon(n, 3) = 3n/2, and if n is
odd, r̄Σ-mon(n, 3) = (3n− 1)/2. On the other hand,

rgen(n, 3) ≥ 1

n

(
n+ 2

3

)
=

3n

2
+

n(n− 6) + 2

6
.

When n ≥ 6, n(n − 6) + 2 ≥ 2, which shows rgen(n, 3) >
3n
2

≥ r̄Σ-mon(n, 3). When n = 5,
rgen(5, 3) = 8 (by the Alexander–Hirschowitz theorem) while r̄Σ-mon(5, 3) = 7.
Fourth and finally, we consider the case (n, d) = (4, 3). Up to reordering terms and

variables, the sums of pairwise coprime monomials that use all the variables are the following:
x3
1 + x3

2 + x3
3 + x3

4, x1x
2
2 + x3

3 + x3
4, x1x2x3 + x3

4, and x1x
2
2 + x3x

2
4; and these have rank 4,

5, 5, and 6, respectively. Since rgen(4, 3) = 5, this shows that the exceptions listed in the
statement of the theorem are the only ones. �
Remark 6. We have seen that if d ≥ n then r̄Σ-mon(n, d) is attained by a monomial. What if
n > d? The greatest rank monomial of degree d is a product of d variables. So a “greedy”
way to construct a high-rank sum of pairwise coprime monomials is to add up products of
d variables, with any remaining variables placed into one more monomial. But this does
not necessarily maximize Waring rank, as we have seen for (n, d) = (4, 3): the greedy choice
x1x2x3 + x3

4 has rank 5, while the non-greedy choice x1x
2
2 + x3x

2
4 has rank 6. Similarly, for

(n, d) = (5, 4), the greedy choice x1x2x3x4 + x4
5 has rank 9, while the non-greedy choice
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6 ERIK HOLMES, PAUL PLUMMER, JEREMY SIEGERT, AND ZACH TEITLER

x1x2x
2
3 + x4x

3
5 has rank 10; and for (n, d) = (6, 5), the greedy choice x1 · · · x5 + x5

6 has rank
17, while the non-greedy choice x1x

2
2x

2
3 + x4x

2
5x

2
6 has rank 18.

Remark 7. It was noted in [9] that, for n fixed and d going to infinity, r̄mon(n, d) is asymptot-
ically dn−1/(n− 1)n−1, while rgen(n, d) is asymptotically dn−1/n!. So r̄mon(3, d)/ rgen(3, d) →
3/2, while for n > 3,

r̄mon(n, d)

rgen(n, d)
→ n!

(n− 1)n−1
< 1 as d → ∞.

Similarly, if n ≥ 4 is fixed and d → ∞, then, for d ≥ n, r̄Σ-mon(n, d) = r̄mon(n, d), and once
again,

r̄Σ-mon(n, d)

rgen(n, d)
→ n!

(n− 1)n−1
< 1 as d → ∞.

Finally, fix d to find the limit of the ratio as n → ∞. In the proof of Theorem 3 we
found that, for a fixed d ≥ 3, r̄Σ-mon(n, d) is bounded by a linear function for large enough

n: r̄Σ-mon(n, d) ≤ 3n
2

when d = 3 and r̄Σ-mon(n, d) ≤ n2d−1

d
when n > d ≥ 4, by (4). However

for d ≥ 3, rgen(n, d) = O(nd−1) grows faster than a linear function of n, so

r̄Σ-mon(n, d)

rgen(n, d)
→ 0 as n → ∞.
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