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Stable computations with flat radial basis functions using vector-valued
rational approximations

Grady B. Wrighta,∗, Bengt Fornbergb

aDepartment of Mathematics, Boise State University, Boise, ID 83725-1555, USA
bDepartment of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA

Abstract

One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they
are ‘flat’ leads to smaller discretization errors. However, the direct numerical approach for computing with
flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning
that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the
property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is
more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on
vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which
are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with
any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating
Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the
effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate
the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then
using these for solving Poisson’s equation in a 3-D spherical shell.

Keywords: RBF, shape parameter, ill-conditioning, Contour-Padé, RBF-QR, RBF-GA, rational
approximation, common denominator, RBF-FD, RBF-HFD

1. Introduction

Meshfree methods based on smooth radial basis functions (RBFs) are finding increasing use in scientific
computing as they combine high order accuracy with enormous geometric flexibility in applications such as
interpolation and for numerically solving PDEs. In these applications, one finds that the best accuracy is
often achieved when their shape parameter ε is small, meaning that they are relatively flat [1, 2].

The so called Uncertainty Principle, formulated in 1995 [3], has contributed to a widespread misconception
that flat radial kernels unavoidably lead to numerical ill-conditioning. This ‘principle’ mistakenly assumes
that RBF interpolants need to be computed by solving the standard RBF linear system (often denoted
RBF-Direct). However, it has now been known for over a decade [4–7] that the ill-conditioning issue is
specific to this RBF-Direct approach, and that it can be avoided using alternative methods. Three distinctly
different numerical algorithms have been presented thus far in the literature for avoiding this ill-conditioning
and thus open up the complete range of ε that can be considered. These are the Contour-Padé (RBF-CP)
method [8], the RBF-QR method [9–11], and the RBF-GA method [12]. The present paper develops a new
stable algorithm that is in the same category as RBF-CP.

For fixed numbers of interpolation nodes and evaluations points, an RBF interpolant can be viewed as
a vector-valued function of ε [8]. The RBF-CP method exploits the analytic nature of this vector-valued
function in the complex ε-plane to obtain a vector-valued rational approximation that can be used as a
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proxy for computing stably in the ε → 0 limit. One key property that is utilized in this method is that all
the components of the vector-valued function share the same singularities (which are limited to poles). The
RBF-CP method obtains a vector-valued rational approximation with this property from contour integration
in the complex ε-plane and Padé approximation. However, this method is somewhat computationally costly
and can be numerically sensitive to the determination of the poles in the rational approximations. In this
paper, we follow a similar approach of generating vector-valued rational approximants, but use a newly
developed method for computing these. The advantages of this new method, which we refer to as RBF-RA,
over RBF-CP include:

• Significantly higher accuracy for the same computational cost.

• Shorter, simpler code involving fewer parameters, and less use of complex floating point arithmetic.

• More robust algorithm for computing the poles of the rational approximation.

As with the RBF-CP method, the new RBF-RA method is limited to a relatively low number of inter-
polation nodes (just under a hundred in 2-D, a few hundred in 3-D), but is otherwise more flexible than
RBF-QR and RBF-GA in that it immediately applies to any type of smooth RBFs (see Table 1 for exam-
ples), to any dimension, and to more generalized interpolation techniques, such as appending polynomials
to the basis, Hermite interpolation, and customized matrix-valued kernel interpolation. Additionally, it
can be immediately applied to computing RBF generated finite difference formulas (RBF-FD) and Hermite
(or compact or implicit) RBF-FD formulas (termed RBF-HFD), which are based on standard and Hermite
RBF interpolants, respectively [13]. RBF-FD formulas have seen tremendous applications to solving various
PDEs [13–22] since being introduced around 2002 [23, 24]. It is for computing RBF-FD and RBF-HFD
formulas that we see the main benefits of the RBF-RA method, as these formulas are typically based on
node sizes well within its limitations. Additionally, in the case of RBF-HFD formulas, the RBF-QR and
RBF-GA methods cannot be readily used.

Another two areas where RBF-RA is applicable is in the RBF partition of unity (RBF-PU) method [25–
28] and domain decomposition [29, 30], as these also involve relatively small node sets. While the RBF-QR
and RBF-GA methods are also applicable for these problems, they are limited to the Gaussian (GA) kernel,
whereas the RBF-RA method is not. In the flat limit, different kernels sometimes give results of different
accuracies. It is therefore beneficial to have stable algorithms that work for all analytic RBFs. Figure 8
in [8] shows an example where the flat limits of multiquadric (MQ) and inverse quadratic (IQ) interpolants
are about two orders of magnitude more accurate than for GA interpolants.

The remainder of the paper is organized as follows. We review the issues with RBF interpolation using
flat kernels in Section 2. We then discuss the new vector-valued rational approximation method that forms
the foundation for the RBF-RA method for stable computations in Section 3. Section 4 describes the
analytic properties of RBF interpolants in the complex ε-plane and how the new rational approximation
method is applicable to computing these interpolants and also to computing RBF-HFD weights. We present
several numerical studies in Section 5. The first of these focuses on interpolation and illustrates the accuracy
and robustness of the RBF-RA method over the RBF-CP method and also compares these methods to
results using multiprecision arithmetic. The latter part of Section 5 focuses on the application of the RBF-
RA method to generating RBF-HFD formulas for the Laplacian and contains results from applying these
formulas to solving Poisson’s equation in a 3-D spherical shell. We make some concluding remarks about
the method in Section 6. Finally, a brief Matlab code is given in Appendix A and some suggestions on one
main free parameters of the algorithms is given in Appendix B.

2. The nature of RBF ill-conditioning in the flat regime

For notational simplicity, we will first focus on RBF interpolants of the form

s(x, ε) =

N∑
i=1

λiφε(‖x− x̂i‖), (1)
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Name Abbreviation Definition

Gaussian GA φε(r) = e−(εr)
2

Inverse quadratic IQ φε(r) = 1/(1 + (εr)2)

Inverse multiquadric IMQ φε(r) = 1/
√

1 + (εr)2

Multiquadric MQ φε(r) =
√

1 + (εr)2

Table 1: Examples of analytic radial kernels featuring a shape-parameter ε that the RBF-RA procedure is immediately applicable
to. The first three kernels are positive-definite and the last is conditionally negative definite.
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Figure 1: The functions pd(N) in the condition number estimate cond(A(ε)) = O(ε−pd(N)) from [33] for d = 1, 2, 3. The nodes
are assumed to be scattered in d-D dimensions and the values of pd(N) are independent of the RBFs listed in Table 1).

where {x̂i}Ni=1 ⊂ Rd are the interpolation nodes (or centers), x ∈ Rd is some evaluation point, ‖ · ‖ denotes
the two-norm, and φε is an analytic radial kernel that is positive (negative) definite or conditionally positive
(negative) definite (see Table 1 for common examples). However, the RBF-RA method applies equally well
to many other cases. For example, if additional polynomial terms are included in (1) [31], if (1) is used to
find the weights in RBF-FD formulas [14], or if more generalized RBF interpolants, such as divergence-free
and curl-free interpolants [32], are desired.

The function s(x, ε) interpolates the scattered data {x̂i, gi}Ni=1 if the coefficients λi are chosen as the
solution of the linear system

A(ε) λ(ε) = g. (2)

The matrix A(ε) has the entries
(A(ε))i,j = φε(||x̂i − x̂j ||) , (3)

and the column vectors λ(ε) and g contain the λi and the gi values, respectively. We have explicitly indicated
that the terms in (2) depend on the choice of ε and we use underlines to indicate column vectors that do not
depend on ε (otherwise they are bolded and explicitly marked). In the case of a fixed set of N nodes scattered
irregularly in d dimensions, and when using any of the radial kernels listed in Table 1, the condition number
of the A(ε)-matrix grows rapidly when the kernels are made increasingly flat (i.e. ε→ 0). As described first
in [33], cond(A(ε)) = O(ε−pd(N)), where the functions pd(N) are illustrated in Figure 1. The number of
entries in the successive flat sections of the curves follow the pattern shown in Table 2. Each row below the
top one contains the partial sums of the previous row. As an example, with N = 100 nodes (at the right
edge of Figure 1), cond(A(ε)) becomes in 1-D O(ε−198), in 2-D O(ε−26) and in 3-D O(ε−14).

As a result of the large condition numbers for small ε, the λi-values obtained by (2) become extremely
large in magnitude. Since s(x, ε) depends in a perfectly well-conditioned way on the data {x̂i, gi}Ni=1 [4, 5, 7],
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Dimension Sequence

1-D 1 1 1 1 1 1 . . .
2-D 1 2 3 4 5 6 . . .
3-D 1 3 6 10 15 21 . . .
. . .

Table 2: The number of entries in the successive flat sections of the curves in Figure 1. If turned 45◦ clockwise, this table
coincides with Pascal’s triangle.
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Figure 2: Example of N = 62 scattered nodes {x̂j}Nj=1 over the unit circle.

a vast amount of numerical cancellation will then arise when the O(1)-sized quantity s(x, ε) is computed in
(1). This immediate numerical implementation of (2) followed by (1) is known as the RBF-Direct approach.
It consists of two successive ill-conditioned numerical steps for obtaining a well-behaved quantity. Like the
RBF-CP, RBF-QR, and RBF-GA algorithms, the new RBF-RA method computes exactly the same quantity
s(x, ε) by following steps that all remain numerically stable even in the ε→ 0 limit. The condition numbers
of the linear systems that arise within all these algorithms remain numerically reasonable even when ε→ 0.
This often highly accurate parameter regime therefore becomes fully available for numerical work.

One strategy that has been attempted for coping with the ill conditioning of RBF-Direct is to increase
ε with N . If one keeps α = ε/N1/d constant in d-D, cond(A(ε)) stays roughly the same when N increases.
However, this approach causes stagnation (saturation) errors [31, 34–36], which severely damage the con-
vergence properties of the RBF interpolant (and, for GA-type RBFs, causes convergence to fail altogether).
While convergence can be recovered by appending polynomial terms, it is reduced from spectral to algebraic.

3. Vector-valued rational approximation

The goal in this section is to keep the discussion of the vector-valued rational approximation method
rather general since, as demonstrated in [37], it can be effective also for non-RBF-type applications. Let
f(ε) : C → CM (with M > 1) denote a vector-valued function with components fj(ε), j = 1, . . . ,M , that
are analytic at all points within a region Ω around the origin of the complex ε-plane except at possibly a
finite number of isolated singular points (poles). Furthermore, suppose that f has the following properties:

(i) All M -components of f share the same singular points.

(ii) Direct numerical evaluation of f is only possible for |ε| ≥ εR > 0, where |ε| = εR is within Ω.

(iii) ε = 0 is at most a removable singular point of f .

4



εR

Re(ε)

Im(ε)

Figure 3: Schematic of the analytic nature of the vector-valued functions f(ε) applicable to our vector-valued rational approxi-
mation method. The small open disks show the location of the poles common to all components of f (taken here to be symmetric
about the axes). Solid black disks mark the locations where f can be evaluated in a numerically stable manner. The goal is to
use these samples to construct a vector-valued rational approximation of the form (4) that can be used to accurately compute
f for |ε| < εR.

We are interested in developing a vector-valued rational approximation to f that exploits these properties
and can be used to approximate f for all ε < εR; see Figure 3 for a representative scenario. In Section 4, we
return to RBFs and discuss how these approximations are especially applicable to the stable computation
of RBF interpolation and RBF-FD/HFD weights, both of which satisfy the properties (i)–(iii), for small ε.
An additional property satisfied by these RBF applications is:

(iv) The function f is even, i.e. f(−ε) = f(ε).

To simplify the discussion below, we will assume this property as well. However, the present method is easily
adaptable to the scenarios where this is not the case, and indeed, also to the case that property (iii) does
not hold.

We seek to find a vector-valued rational approximation r(ε) to f(ε) with components taking the form

rj(ε) =
a0,j + a1,jε

2 + a2,jε
4 + . . .+ am,jε

2m

1 + b1ε2 + b2ε4 + . . .+ bnε2n
, j = 1, . . . ,M. (4)

It is important to note here that only the numerator coefficients depend on j while the denominator coeffi-
cients are independent of j to exploit property (i) above. Additionally, we normalize the constant coefficient
to one to match assumption (iii) and assume the numerators and denominator are even to match the as-
sumption (iv). To determine these coefficients, we first evaluate f(ε) around a circle of radius ε = εR (see
Figure 3), where f can be numerically evaluated in a stable manner. Due to assumption (iv), this evaluation
only needs to be done at K points ε1, . . . , εK along the circle in the upper half-plane. We then enforce
that rj(ε) agrees with fj(ε) for all K evaluation points to determine all the unknown coefficients of r(ε).
The enforcement of these conditions can, for each j, be written as the following coupled linear system of
equations: 

1 ε21 · · · ε2m1
1 ε22 · · · ε2m2
...

...
. . .

...
1 ε2K · · · ε2mK


︸ ︷︷ ︸

E

a0,j...
am,j


︸ ︷︷ ︸
aj

+

−diag(f
j
)


ε21 · · · ε2n1
ε22 · · · ε2n2
...

. . .
...

ε2K · · · ε2nK




︸ ︷︷ ︸
Fj

b1...
bn


︸ ︷︷ ︸
b

=


f(ε1)
f(ε2)
...

f(εK)


︸ ︷︷ ︸

f
j

. (5)

The structure of the complete system is displayed in Figure 4. In total there are (m + 1)M unknown
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Figure 4: Structure of overdetermined linear system (5) for calculating the coefficients in the rational approximations (4).

coefficients corresponding to the different numerators of r(ε) and n unknown coefficients corresponding to
the one common denominator of r(ε). Since each subsystem in (5) is of size K-by-K, the complete system
is of size KM -by-((m+ 1)M + n). We select parameters such that m+ 1 + n/M < K so that the system is
overdetermined.

A schematic of the efficient algorithm we use to solve this coupled system is displayed in Figure 5. Below
are some details on the five steps of this algorithm:

Step 1: If an evaluation of f at some εk happens to have been at or near a pole, then there may be an
exceptionally large row in each Fj matrix and corresponding row of f

j
. For square linear systems,

multiplying a row by a constant will have no bearing on the system solution. However, for least squares
problems, it will influence the relative importance associated with the equation. For each εk, we thus
normalize each of the associated rows (in E, Fj , and f

j
) by dividing them by ‖f(εk)‖∞ to reduce their

inflated importance in the system. After this normalization, we compute a QR factorization of the
(modified) E matrix.

Step 2: We left multiply the system by a block-diagonal matrix with blocks Q∗ on the diagonal. This leaves
the same upper triangular R on the main diagonal blocks, with Q∗Fj in last column of block matrices
and Q∗f

j
in the right hand side blocks.

Step 3: Starting from the top block equation, we re-order the rows so that the equations from the previous
step corresponding to the zero rows of R appear at the bottom of the linear system. This gives an
almost upper triangular system, with a full matrix block of size M(K− (m+ 1))-by-n in the last block
column, which we denote by Ḟ , and the corresponding rows of the right hand side, which we denote
by ḟ .

Step 4: We compute the least squares solution to the M(K− (m+ 1))-by-n overdetermined system Ḟ b = ḟ for
the coefficients of the common denominator of the vector-valued rational approximation.

Step 5: Using the coefficient vector b we finally solve the M upper triangular block equations for the numerator
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Step 1: Normalize large rows among all block
equations and compute a QR factorization of E.

Step 2: Multiply each block equation by Q∗.
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Step 3: Re-order the rows so no zero-rows lie
in the blocks on the diagonal.

Step 4: Solve the decoupled, overdetermined
system for b using least squares.
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Step 3 for aj using b from Step 4.
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Figure 5: Algorithm and schematic diagram for solving the system in Figure 4. Note that in the actual implementation, one
does not actually need to construct the whole linear system and only one copy of Q and R is kept.
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coefficients aj , j = 1, . . . ,M . These systems are decoupled and consist of the same (m+ 1)-by-(m+ 1)
upper triangular block matrix R.

A Matlab implementation of the entire vector-valued rational approximation method described above is
given in Appendix A, but with one modification that is applicable to RBFs. We assume that f(ε) = f(ε),
which additionally implies f is real when ε is real. This latter condition can be enforced on r by requiring that
the coefficients in the numerators and single denominator are all real. Using this assumption and restriction
on the coefficients of r, it then suffices to do the evaluations only along the circle of radius εR in the first
quadrant and then split the resulting K/2 rows of the linear system (5) into their real and imaginary parts to
obtain K rows that are now all real. This allows the algorithm in Figure 5 to work entirely in real arithmetic.

The following are the dominant computational costs in computing the vector-valued rational approxima-
tion:

1. computing fj(εk), j = 1, . . . ,M , and k = 1, . . . ,K, (or k = 1, . . . ,K/2, in the case that the coefficients
are enforced to be real);

2. computing the QR factorization of E, which requires O(K(m+ 1)2) operations;

3. computing Q∗Fj , j = 1, . . . ,M , which requires O(MKmn) operations;

4. solving the overdetermined system for b, which requires O(M(K − (m+ 1))n2) operations; and

5. solving the M upper triangular systems for aj , j = 1, . . . ,M , which requires O(M(m2 +mn)) opera-
tions.

We note that all of the steps of the algorithm are highly parallelizable, except for solving the overdetermined
linear system for b. Additionally, we note that in cases where M is so large that it dominates the cost, it
may be possible to just use a subset of the evaluation points to determine b, and then use these values to
determine all of the numerator coefficients.

In addition to choosing the radius of the contour εR for evaluating f , one also has to choose m, n, and
K in vector-valued rational approximation method. We discuss these choices as they pertain specifically to
RBF applications in the next section.

Remark 1. While we described the vector-valued rational approximation algorithm in terms of evaluation
on a circular contour, this is not necessary. It is possible to use more general evaluation contours, or even
evaluation locations that are scattered within some band surrounding the origin where f can be evaluated in
a stable manner.

4. RBF-RA method

In this section, we describe how the vector-valued rational approximation method can be applied to both
computing RBF interpolants and to computing RBF-FD/HFD weights. We refer to the application of the
vector-valued rational approximation method as the RBF-RA method. We focus first on RBF interpolation
since the insights gleaned here can be applied to the RBF-FD/HFD setting (as well as many others).

4.1. Stable computations of RBF Interpolants

Before the RBF-CP method was introduced, ε was in the literature always viewed as a real valued
quantity. However, all the entries of the A(ε)-matrix, as given by (3), are analytic functions of ε and, in
the case of the GA kernel, they are entire functions of ε. Thus, apart from any singularities associated
with the kernel φ that is used to construct the interpolant, the entries of A(ε)−1 can have no other types of
singularities than isolated poles.

To illustrate the behavior of cond(A(ε)) in the complex plane, consider the N = 62 nodes {x̂i}Ni=1

scattered over the unit circle in Figure 2 and the GA kernel. For this example, pd(N) in Figure 1 is given
by p2(62) = 20, so that cond(A(ε)) = ||A(ε)||2||A(ε)−1||2 = O(ε−20). Since ||A(ε)||2 stays O(N) as ε→ 0, it

8



(a) (b)

Figure 6: (a) Surface plot of log10 cond(A(ε)) for the GA RBF and the N = 62 nodes displayed in Figure 2 together with a
contour plot with 51 equally spaced contours from 1 to 17. (b) Contour plot of the surface in (a) over the first quadrant of the
complex ε-plane, now with 101 equally spaced contours from 1 to 17. The dashed line marks a typical path along which the
RBF-RA algorithm performs its RBF-Direct evaluations.

holds also that ||A(ε)−1||2 = O(ε−20). Figure 6 (a) shows a surface plot of log10(cond(A(ε))) in the complex
ε-plane. The first thing we note in this figure is that cond(A(ε)) is symmetric with respect to both the real
and the imaginary axes since the interpolant (1) satisfies the symmetry relationship

s(x, ε) = s(x,−ε) = s(x, ε) = s(x,−ε). (6)

We also recognize the fast growth rate of cond(A(ε)) not only for ε → 0 along the real axis, but also when
ε → 0 from any direction in the complex plane. Finally, we note sharp spikes corresponding to the poles
of A(ε)−1. To illustrate the behavior of cond(A(ε)) further, we display a contour plot of log10(cond(A(ε)))
in Figure 6 (b), but now only in the first quadrant, which is all that is necessary because of the symmetry
conditions (6). The number of poles is seen to increase very rapidly with increasing distance from the origin,
but there are only a few present near the origin. The dashed line in Figure 6 (b) with radius 0.96 marks
where, in this case cond(A(ε)) ≈ 1012, which is an acceptable level for computing s(x, ε) using RBF-Direct.

Now suppose that we are given M > 1 points {xj}Mj=1 to evaluate the interpolant s(x, ε) at, with ε left
as a variable. We can write this as the following vector-valued function of ε:

s(x1, ε)
s(x2, ε)

...
s(xM , ε)


︸ ︷︷ ︸

s(ε)

=


φε(‖x1 − x̂1‖) · · · φε(‖x1 − x̂N‖)
φε(‖x2 − x̂1‖) · · · φε(‖x2 − x̂N‖)

...
. . .

...
φε(‖xM − x̂1‖) · · · φε(‖xM − x̂N‖)


︸ ︷︷ ︸

Φ(ε)

 A(ε)−1



g1

...
gN


︸ ︷︷ ︸
g

. (7)

The entries of Φ(ε) are analytic functions of ε within some disk of radius εR centered at the origin and
A(ε)−1 can have at most poles in this disk. Thus, s(ε) in (7) is analytic inside this disk apart from the
poles of A(ε)−1. Furthermore, since each entry of s(ε) is computed from A(ε)−1, they all share the same
poles (note the similarity between Figure 6 (b) and Figure 3). Finally, we know that typically, and always
in the case that the GA kernel is used, that ε = 0 must be a removable singularity of s(ε) [5, 7]. These
observations together with the symmetry relationship (6), show that s(ε) satisfies all but possibly one of
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the properties for the vector-valued functions discussed in the previous section that the new vector-valued
rational approximation is applicable to.

The property that may not be satisfied by s(ε) is (ii). The issue is that the region of ill-conditioning of
A(ε), which tends to be disk-shaped, may spread out so far in the complex ε-plane that it is not possible
to find a radius εR for the evaluation contour where RBF-Direct can be used to solve (7) or that does not
enclose the singular points associated with the kernels (branch points in the case of the MQ kernel and poles
in the case of the IQ kernel). The GA kernel has no singular points. However, since it grows like O(exp(|ε|2))
when π/4 < Arg(ε) < 3π/4, this leads to a different type of ill-conditioning in A(ε) in these regions (see
Figure 6) and prevents a radius that is too large from being used. For N . 100 in 2-D and N . 300 in 3-D,
the region of ill-conditioning surrounding ε = 0 is typically small enough (in double precision arithmetic) for
a safe choice of εR. As mentioned in the introduction, these limitations on N are not problematic in many
RBF applications. We discuss some strategies for choosing εR in Appendix B.

After choosing the radius εR of the evaluation contour to use in the vector-valued rational approximation
method for (7), one must choose values for m, n, and K. The optimal choice of these parameters depends on
many factors, including the locations of the singular points from A(ε)−1, which are not known a priori. We
have found that for a given K, choosing m = K−1−n and n = bK/4c gives consistently good results across
the problems we have tried. With these choices, one can work out that the cost of the RBF-RA method
is O(KN(N2 + M) + MK3). As demonstrated by the numerical results in Section 5, the approximations
converge rapidly with K, so that not too large a value of K is required to obtain an acceptable approximation.
With these parameters selected, we can construct a vector-valued rational approximation r(ε) for s(ε) in (7)
that can be used as a proxy for computing the RBF interpolant stably for all values of ε inside the disk of
radius εR, including ε = 0.

4.2. Stable computations of RBF-FD and RBF-HFD formulas

RBF-FD and RBF-HFD formulas generalize standard, polynomial-based FD and compact or Hermite
FD (HFD) formulas, respectively, to scattered nodes. We discuss here only briefly how to generate these
formulas and how they can be computed using the vector-valued rational approximation scheme from Section
3. More thorough discussions of the RBF-FD methods can be found in [14], and more details on RBF-HFD
methods can be found in [13].

Let D be a differential operator (e.g. the Laplacian) and X̂ = {x̂i}Ni=1 denote a set of (scattered) node

locations in Rd. Suppose g : Rd → R is some (sufficiently smooth) function sampled on X̂ and that we wish
to approximate Dg(x) at x = x̂1 using a linear combination of samples of g at the nodes in X̂, i.e.

Dg(x)
∣∣
x=x̂1

≈
N∑
i=1

wig(x̂i). (8)

The RBF-FD method determines the weights wi in this approximation by requiring that (8) be exact
whenever g(x) = φε(‖x− x̂i‖), i = 1, . . . , N , where φε is, for example, one of the radial kernels from Table
1.1 These conditions can be written as the following linear system of equations: A(ε)



w1(ε)
w2(ε)
...

wN (ε)


︸ ︷︷ ︸

w(ε)

=


Dxφε(‖x− x̂1‖)

∣∣
x=x̂1

Dxφε(‖x− x̂2‖)
∣∣
x=x̂1

...
Dxφε(‖x− x̂N‖)

∣∣
x=x̂1


︸ ︷︷ ︸

Dxφε

, (9)

1The RBF-FD (and HFD) method is general enough to allow for radial kernels that are not analytic functions of ε, or that do
not depend on a shape parameter at all [31]. We assume the kernels are analytic in the presentation as the RBF-RA algorithm
is applicable only in this case.
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where A(ε) is the standard RBF interpolation matrix with entries given in (3) and Dx means D applied with
respect to x (this latter notation aids the discussion of the RBF-HFD method below). We have here explicitly
marked the dependence of the weights wi on ε. Using the same arguments as in the previous section, we see
that the vector of weight w(ε) can be viewed as a vector-valued function of ε with similar analytic properties
as an RBF interpolant based on φε. We can thus similarly apply the vector-valued rational approximation
algorithm for computing w(ε) in a stable manner as ε→ 0.

The additional constraint that (8) is exact when g is a constant is often imposed in the RBF-FD method,

which is equivalent to requiring
∑N

i=1 wi = D1. This leads to an equality constrained quadratic programing
problem that can be solved using Lagrange multipliers leading to the following slightly modified version of
the system in (9) for determining w(ε):[

A(ε) e
eT 0

] [
w(ε)
λ(ε)

]
=

[
Dxφε

D1

]
, (10)

where e is the vector of size N containing all ones, and λ(ε) is the Lagrange multiplier. The vector-valued
rational approximation algorithm is equally applicable to approximating w(ε) in this equation.

The HFD method is similar to the FD method, except that we seek to find an approximation of Dg(x) at
x = x̂1 that involves a linear combination of g at the nodes in X̂ and a linear combination of Dg at another
set of nodes Ŷ = {ŷj}Lj=1, i.e.

Dg(x)
∣∣
x=x̂1

≈
N∑
i=1

wig(x̂i) +

L∑
j=1

ẇjDg(x)
∣∣
x=ŷj

. (11)

Here x̂1 /∈ Ŷ , or else the approximation is trivial, also Ŷ is typically chosen to be some subset of X̂ (not
including x̂1), but this is not necessary. The RBF-HFD method from [13] determines the weights by requiring
that (11) is exact for g(x) = φε(‖x − x̂i‖), i = 1, . . . , N , in addition to g(x) = Dyφε(‖x − y‖)

∣∣
y=ŷj

, where

Dy means D applied to the variable y. This gives N +L conditions for determining the weights in (11). We
can write these conditions as the following linear system for the vector of weights:[

A(ε) B(ε)
B(ε)T C(ε)

]
︸ ︷︷ ︸

Ã(ε)

[
w(ε)
ẇ(ε)

]
︸ ︷︷ ︸
w̃(ε)

=

[
Dxφε

DxDyφε

]
, (12)

where w̃(ε) =
[
w1(ε) · · · wN (ε) ẇ1(ε) · · · ẇL(ε)

]T
, A(ε) is the standard interpolation matrix for the

nodes in X̂ (see (3)),

(B(ε))ij = Dyφ(‖xi − y‖)
∣∣
y=ŷj

, i = 1, . . . , N, j = 1, . . . , L,

(C(ε))ij = Dx

(
Dyφ(‖x− y‖)

∣∣
y=ŷj

) ∣∣
x=x̂i

, i = 1, . . . , L, j = 1, . . . , L, and

(DxDyφε)i = Dx

(
Dyφ(‖x− y‖)

∣∣
y=ŷi

) ∣∣
x=x̂1

, i = 1, . . . , L.

The system (12) is symmetric and, under very mild restrictions on the operator D, is non-singular for all
the kernels φε in Table 1; see [38] for more details.

Similar to the RBF-FD method, the vector of weights w̃(ε) in (12) is an analytic vector-valued function
of ε with each entry sharing the same singular points, due now to Ã(ε)−1, in a region surrounding the origin.
We can thus similarly apply the vector-valued rational approximation algorithm for computing w̃(ε) in a
stable manner as ε→ 0.

We note that in the RBF-HFD method it is also common to enforce that (11) is exact for constants. This
constraint can be imposed in a likewise manner as the RBF-FD case in (10). We thus skip the details and
refer the reader to [13] for the explicit construction.
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Figure 7: Comparison of the relative errors (computed interpolant − target function (13)) vs. ε using RBF-Direct (dashed lines)
and RBF-RA (solid lines). Note the different scale on the horizontal axis in (a).

Remark 2. In using the vector-valued rational approximation algorithm for RBF applications, we have
found that it is beneficial to spatially re-scale the node sets by the radius of the evaluation contour in the
complex ε-plane, which allows all evaluations and subsequent computations of the algorithm to be done on
the unit circle. This is the approach we follow in the examples given in Appendix A.

5. Numerical results

In this section, we first present results of the RBF-RA algorithm as applied to RBF interpolation and
follow this up with some results on computing RBF-HFD formulas and their application to a ‘large-scale’
problem. The primary studies of the accuracy and robustness of the algorithm in comparison to the RBF-CP
method and multiprecision arithmetic are given for RBF interpolation as the observations made here also
carry over to the RBF-HFD setting.

5.1. RBF Interpolation results

Unless otherwise noted, all numerical results in this subsection are for the N = 62 nodes over the unit
disk shown in Figure 2 and for the target function

g(x) = g(x, y) = (1− (x2 + y2))

[
sin
(π

2
(y − 0.07)

)
− 1

2
cos
(π

2
(x+ 0.1)

)]
. (13)

We use M = 41 evaluation points X = {xj}Mj=1 scattered over the unit disk in the RBF-RA algorithm and
also use these points to measure errors in the interpolant at various values of ε.

5.1.1. Errors between interpolant and target function

In the first numerical experiment, we compare the relative error in the RBF interpolant of the target
function (13) using RBF-Direct and RBF-RA over a range of different ε. Specifically, we compute the relative
error as

max
1≤j≤M

|s(xj , ε)− g(xj)| / max
1≤j≤M

|g(xj)| , (14)

for s computed with the two different techniques. The results are shown in Figure 7(a)-(c), for the GA,
IQ, and MQ radial kernels, respectively. We see that RBF-Direct works well for all these kernels until ill-
conditioning of the interpolation matrices sets in, while RBF-RA allows the interpolants to be computed in
a stable manner right down to ε = 0. The observed pattern of a dip in the RBF-RA error plots is common
and is explained in [6, 33]; it is a feature of the RBF interpolant and does not have to do with ill-conditioning
of the RBF-RA method.
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5.1.2. Accuracy vs. ε and K

In all the remaining subsections of 5.1 except the last one, we focus on the difference between the
computed interpolant and the exact interpolant. Specifically, we compute

max
1≤j≤M

|s(xj , ε)− sexact(xj , ε)| / max
1≤j≤M

|sexact(xj , ε)| , (15)

where s is the interpolant obtained from either RBF-RA, RBF-CP, or RBF-Direct, and sexact is the ‘exact’
interpolant, computed using multiprecision arithmetic with 200 digits. Additionally, for brevity, we limit the
presented results to the GA kernel as similar results were observed for other radial kernels.
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(c) Errors over 0 < ε ≤ 0.9 for various K

Figure 8: Comparison of the errors (computed interpolant − exact interpolant) as the number of evaluations points K on the
contour varies. Figures (a) and (b) show the relative max-norm error for ε ∈ [0, 1] for K/2 = 22 and K/2 = 32 (we use K/2
since this is this is the actual number of evaluations of the interpolant that are required). Figure (c) shows the relative two
norm of the error taken only over 0 ≤ ε ≤ 0.9 as a function of K/2.

In the first round of experiments, we compare the accuracy of the RBF-RA and RBF-CP algorithms as
a function of ε and K (the number of ε points on the contour used in both algorithms). We present the
results in terms of K/2 since this is the actual total number of evaluations of the interpolants that have to
be made (see comment towards the end of Section 3), which is the dominating cost of the algorithm. Figure
8 (a) shows the relative errors in the interpolants computed using the RBF-RA and RBF-CP methods for
0 < ε ≤ 1 and for K/2 = 22 and K/2 = 32, respectively. It is immediately obvious from these results that
the RBF-RA algorithm gives more accurate results over the entire range of ε and that this is more prominent
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as ε grows. Additionally, increasing K has only a minor effect on the accuracy of the RBF-RA method, but
has a more pronounced effect on the RBF-CP method, with an increased range of ε for which it is accurate.
We explore the connection between accuracy and K further by plotting in Figure 8 (c) the relative errors
in the interpolant for many different K. Here the errors are computed for each K, by first computing the
max-norm error (15) and then computing the two-norm of these errors over 0 < ε ≤ 0.9. We see that the
RBF-RA method converges rapidly with K, while the RBF-CP method converges much slower (but still at
a geometric rate). The reason the error stops decreasing in the RBF-RA method around 10−9 is that this
is about the relative accuracy that can be achieved using RBF-Direct to compute the interpolants on the
contour in the complex ε-plane.

5.1.3. RBF-RA vs. Multiprecision RBF-Direct

An all too common way to deal with the ill-conditioning associated with flat RBFs is to use multiprecision
floating point arithmetic with RBF-Direct. While this does allow one to consider a larger range of ε in
applications, it comes at a higher computational cost as the computations have to be done using special
software packages instead of directly in hardware. Typically, quad precision (approximately 34 decimal
digits) is used since floating point operations on these numbers can combine two double precision numbers,
which can improve the cost. Figure 9 (a) compares the errors in the interpolants computed using RBF-RA
and RBF-Direct with both double and quad precision arithmetic, with the latter being computed using
the Advanpix multiprecision Matlab toolbox [39]. We see from the figure that the range of ε that can be
considered with RBF-Direct and quad precision increases, but that the method is still not able to consider
the full range. There is nothing to prevent quad precision from also being used with RBF-RA and in Figure
9 (a) we have included two results with quad precision. The first uses quad precision only to evaluate the
interpolant (which is the step that has the potential to be ill-conditioned), with all subsequent computations
of the RBF-RA method done in double precision. The second uses quad precision throughout the entire RBF-
RA algorithm. We see from the results that the errors in the interpolant for both cases are now much lower
than the double precision case. In Figure 9 (b) we further explore the use of multiprecision arithmetic with
the RBF-Direct algorithm (again using Advanpix) by looking at the error in the interpolant as the number
of digits used is increased. Now, we consider 10−5 < ε ≤ 10−1 to clearly illustrate that the ill-conditioning
of RBF-Direct cannot be completely overcome with this technique, but that it can be completely overcome
with RBF-RA.

5.1.4. Contours passing close to poles

To demonstrate the robustness of the new RBF-RA algorithm we consider a case where the evaluation
contour runs very close to a pole in the complex ε-plane. For the N = 62 node example we are considering in
these numerical experiments, there is a pole at ε ≈ 1.4617904771448i. We choose for both the RBF-RA and
RBF-CP algorithms a circular evaluation contour centered at the origin of radius εR = 1.4618. This contour
is superimposed on a contour plot of the condition number in Figure 10 (a) (see the dashed curve). Figure
10 (b) shows the max-norm errors (again together with RBF-Direct for comparison) in the interpolants (15)
computed with both algorithms using this contour. We see that the RBF-CP algorithm gives entirely useless
results for this contour, while the RBF-RA algorithm performs as good (if not slightly better) than the case
where the contour does not run close to any poles.

5.1.5. Vector-valued rational approximation vs. rational interpolation

A seemingly simpler approach to obtain vector-valued rational approximations to the interpolant s(ε)
in (7) is to use rational interpolation (or approximation) of each of the M entries of s(ε) separately [40],
instead of the RBF-RA procedure that couples the entries together. However, we have found that this does
not produce as accurate results and can lead to issues with the approximants. Figure 11 illustrates this by
comparing the errors that result from approximating s using the standard RBF-RA procedure to that of using
RBF-RA separately for each of the M entries of s(ε) (which amounts to computing a rational interpolant of
each entry). We first see from this figure that the RBF-RA procedure is at least an order of magnitude more
accurate than the rational interpolation approach. Second, we see a few values of ε where the error spikes in
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Figure 9: (a) Comparison of the errors (computed interpolant − exact interpolant) using double precision and quad precision
arithmetic. The top RBF-RA quad curve corresponds to using quad precision only when evaluating the interpolant, whereas
the bottom quad curve corresponds to using quad precision for all the computations in the RBF-RA method. (b) Similar to
(a) but for multiple precision arithmetic using D digits (here D=16 is double precision and D=34 is quad precision). Here
RBF-Direct results are in the dashed lines; note also the logarithmic scale in ε.
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Figure 10: (a) Contour plot of log10(cond(A(ε))) (similar to Figure 6 (b)) with an evaluation contour (dashed line) running
very close to a pole on the imaginary axis. (b) Comparison of the errors (computed interpolant − exact interpolant) associated
with the RBF-RA and RBF-CP algorithms using the evaluation contour in part (a). Here we used K/2 = 32 evaluation points
on the contour; doubling this number does not appear to improve the RBF-CP results at all.
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Figure 11: Comparison of the errors (computed interpolant − exact interpolant) when using RBF-RA with all the evaluation
points (solid line marked RBF-RA), when applying RBF-RA separately to each evaluation point (dashed line), and when using
RBF-Direct. In the second case, a rational approximant is computed separately for each entry of the vector-valued function.
In both RBF-RA cases, we set K/2 = 40.

the rational interpolation method. These spikes correspond to spurious poles, or “Froissart doublets” [41],
appearing near or on the real ε-axis. Froissart doublets are especially common in rational approximation
methods where the input contains noise [42], which occurs in our application at roughly the unit roundoff
of the machine times the condition number of the RBF interpolation matrix on the evaluation contour of
the RBF-RA algorithm. The least squares nature of determining a common denominator in the RBF-RA
method appears to significantly reduce the presence of these spurious poles. In fact, we have not observed
the presence of Froissart doublets in any of our experiments with RBF-RA.

5.1.6. Timing example for a 3-D problem

Finally, we compare the computational cost of the RBF-RA method to that of the RBF-Direct method.
For this comparison, we use Halton node sets over the unit cube in R3 of increasing size N (generated with
the Matlab function haltonset). For the evaluation points, we also use Halton node sets with the same
cardinality as the nodes (i.e. M = N), but shift them so they don’t agree with the nodes; having M = N
is a common scenario in generating RBF-FD/HFD formulas. The target function g is not important in this
experiment, as we are only concerned with timings. Figure 12 (a) shows the measured wall clock times of
two methods for evaluating the interpolant at ε = 10−2. Included in this figure are the wall clock times
also for computing the interpolants using multiprecision arithmetic, with D = 100 digits for RBF-Direct
and with D = 34 (quad precision) for RBF-RA. For the N > 100 and ε = 0.01, it is necessary to switch to
multiprecision arithmetic with RBF-Direct to get a meaningful result, whereas RBF-RA in double precision
has no issues with ill-conditioning. While D = 100 is larger than is necessary for RBF-Direct with ε = 10−2,
it is reasonable for smaller ε (see Figure 9 (b)), also the timings do not go down very much by decreasing
D. The quad precision results are included for comparison purposes with RBF-Direct in multiprecision
mode; they are not necessary to obtain an accurate result for these values of N . For the double precision
computations, we see that the cost of RBF-RA is about 100 times that of RBF-Direct. However, for small
ε, the comparison should really be made between RBF-Direct using multiprecision arithmetic, in which case
RBF-RA is about an order of magnitude more efficient. Based on the timing results in [12, Section 6.3],
the computational cost of the RBF-RA method is about a factor of two or three larger than the RBF-QR
method and about a factor of ten larger than the RBF-GA method, which (at about 10 times the cost of
RBF-Direct) is the fastest of the stable algorithms (for GA RBFs).

One added benefit of the RBF-RA method is that evaluating the interpolant at multiple values of ε (which
is required for some shape parameter selection algorithms) comes at virtually no additional computational
cost. The same is not true for the RBF-Direct method. We demonstrate this feature in Figure 12 (b), where
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Figure 12: Measured wall clock time (in seconds) as a function of the number of 3-D Halton nodes N for the RBF-RA (with
K/2 = 32) and RBF-Direct methods. (a) A comparison of the methods for computing the interpolant at M = N evaluation
points and for one value of ε (set to ε = 10−2). (b) Same as (a), but for computing the interpolant at ten values of ε (set to
εj = 10−j , j = 0, . . . , 9). The dashed lines were computed using multiprecision arithmetic, with D = 100 digits for RBF-Direct
and D = 34 (quad precision) for RBF-RA. All timings were done using Matlab 2016a on a 2014 MacBook Pro with 16 GB of
RAM and an 3GHz Intel Core i7 processor without explicit parallelization. The multiprecision computations were done using
the Advanpix multiprecision Matlab toolbox [39].

the wall clock times of the algorithms are displayed for evaluating the interpolants at εj = 10−j , j = 0, . . . , 9.
The dominant cost of the RBF-RA method comes from evaluating the interpolant on the contour, which

can be done in parallel. The timings presented here have made no explicit use of parallelization for these
evaluations, so further improvements to the of efficiency the method over RBF-Direct are still possible.

5.2. RBF-HFD results

In this section we consider the application of the RBF-RA method to computing RBF-HFD weights for
the 3-D Laplacian and use these to solve Poisson’s equation in a spherical shell. Specifically, we are interested
solving

∆u = g, in Ω =
{

(x, y, z) ∈ R3
∣∣∣0.55 ≤

√
x2 + y2 + z2 ≤ 1

}
, (16)

subject to Dirichlet boundary conditions on the inner and outer surfaces of the shell. Here we take the exact
solution to be

u(λ, θ, r) = sin

(
20π

9

(
r − 11

20

))[
Y 0
6 (λ, θ) +

14

11
Y 5
6 (λ, θ)

]
,

where (λ, θ, r) are spherical coordinates and Y m
` denote real-valued spherical harmonics of degree ` and order

m. This u is used to generate g in (16) to set up the problem. We use 500, 000 global nodes to discretize
the shell2; see the left image of Figure 13 for an illustration of the nodes. We denote the nodes interior to
the shell by Ξint = {ξk}Pk=1 and the nodes on the boundary by Ξbnd = {ξk}

P+Q
k=P+1. For our test problem,

P = 453, 405 and Q = 46, 595.
The procedure for generating the RBF-HFD formulas is as follows: For k = 1, . . . , P repeat the following

2These nodes were generated by Prof. Douglas Hardin at Vanderbilt University using a modified version of the method
discussed in[43].
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1. Select the N−1 nearest neighbors of ξk from Ξint∪Ξbnd (using a k-d tree for efficiency), with N << P .
These nodes plus ξk form the set X̂ = {x̂i}Ni=1 in (11), with the convention that x̂1 = ξk.

2. From the set X̂, select the L < N nearest-neighbors to x̂1. These nodes form the set Ŷ = {ŷj}Lj=1 in
(11).

3. Use X̂, Ŷ , and D = ∆ in (12), then apply the vector-valued rational approximation algorithm to
compute the weights for given values of ε. Note that standard Cartesian coordinates can be used in
applying D in (12) [21].

In the numerical experiments, we set N = 45 and L = 20 and use the IQ radial kernel. We also set K/2 = 64
and choose n = K/4.

We first demonstrate the accuracy of the RBF-RA procedure for computing the RBF-HFD weights in
the ε→ 0 limit by comparing the computed weights for one of the stencils to the ‘exact’ value of the weights
computed using multiprecision arithmetic with D = 200 digits. The results are displayed in Figure 14 (a),
together with the error in the weights computed with RBF-Direct in double precision arithmetic. We can
see from the figure that the RBF-RA method can compute the weights in a stable manner for the full range
of ε, with no loss in accuracy from the computation using RBF-Direct in the numerically ‘safe’ region.

Next, we use the RBF-HFD weights to numerically solve the Poisson equation (16) for various values of
ε in the interval [0, 8]. Letting u and g denote samples at the nodes Ξint of the unknown solution and right
hand side of (16), respectively, the discretized version of (16) can be written as

Du = Ḋg.

In this equation, D and Ḋ are two sparse P -by-P matrices with the kth row of D containing the explicit
weights wi in (11) and the kth row of Ḋ containing the implicit weights ẇj in (11), for the kth node of Ξint.
To solve this system, we used BiCGSTAB with a zero-fill ILU-preconditioner and a tolerance on the relative
residual of 10−10. Figure 14 (b) shows the relative two-norm of the errors in the approximate solutions as
a function of ε. Marked on this plot is the region where RBF-Direct becomes unstable, and RBF-RA is
used. We see that a reduction of the error by nearly two orders of magnitude is possible for ε values that
are untouchable with RBF-Direct in double precision arithmetic. We note that for all values of ε, the solver
required an average of 27.5 iterations and took 13.95 seconds of wall clock time using Matlab 2014b on a
Linux workstation with 96 GB of RAM and dual 3.1GHz 8-core Intel Xeon processors.

6. Concluding remarks

The present numerical tests demonstrate that the RBF-RA algorithm can be used effectively for stably
computing RBF interpolants and RBF-FD/HFD formulas in the ε→ 0 limit. The method is more accurate
and computationally efficient than the Contour-Padé method, and more flexible than the RBF-QR and RBF-
GA algorithms, in that operations such as differentiation can readily be applied directly to the RBFs instead
of to the more complex bases that arise in these other two methods. Its main disadvantages compared to
these methods are (i) that it is not quite as efficient, and (ii) that it is more limited in the node sizes it
can handle. However, with the main target application of the algorithm being to compute RBF-FD and
RBF-HFD formulas, these disadvantages are not serious concerns. The RBF-RA algorithm is also applicable
to more general rational function approximation problems that involve vector-valued analytic functions with
components that have the same singular points.

A known issue with the RBF-CP, RBF-GA, and RBF-QR method is that the accuracy degrades if the
nodes lie on a portion of a lower dimensional algebraic curve or surface (e.g. a cap on the unit sphere in R3).
This issue also extends to the RBF-RA method and will be a future topic of research.
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−−−−−−−−−−−−→

Figure 13: Illustration of the global and local node set used in the RBF-HFD method for solving Poisson’s equation in a
spherical shell with radius 0.55 ≤ r ≤ 1, which mimics the aspect radius of the Earth’s mantle. The left figure shows the shell
split open, with part of the 5 · 105 global node set marked by small solid spheres. A small subset of the nodes is shown to the
right, with the HFD stencil?s ‘center’ node marked in red.
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(a) RBF-HFD weights (b) Solution to Poisson’s equation

Figure 14: (a) Comparison of the errors in the computation of the RBF-HFD weights for one of the stencils from the node set
shown in Figure 13. The errors are measured against a multiprecision computation of the weights using 200 digits. (b) Relative
two-norm of the error in solving Poisson’s equation (16) using RBF-HFD formulas as a function of ε. The dashed line marks
the values of ε where RBF-Direct can be safely used to compute the RBF-HFD weights, while the solid line marks the values
where RBF-RA is required to get an accurate result. The results in both plots were obtained using N = 45 and L = 20.
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Appendix A. Matlab Code and examples

This appendix contains first the script for two examples, followed by the functions rbfhfd, vvra, and
polyval2. The function vvra (standing for vector-valued rational approximation) implements the general
algorithm described in Section 3. The first example shows how to use the vvra function for RBF interpolation.
The output of this example is a plot showing the maximum difference between the interpolant and the target
function (13) as function of epsilon. It also displays the minimum of these maximum differences and the
corresponding value of ε. These numbers are 2.82 · 10−7 and 0.31, respectively. The second example shows
how to use the vvra function for computing RBF-HFD weights. The code uses the standard 19 node compact
stencil for the 3-D Laplacian [44] and shows that the RBF-HFD weights in the ε→ 0 limit are the same (up
to rounding errors) as the standard polynomials based weights. The output of this example is the relative
two norm difference between and flat limit RBF-HFD weights and the standard weights. This number is
4.38 · 10−13.

%% Example 1: Interpolation problem using GA kernel

phi = @(e,r) exp(-(e*r).^2); % Gaussian

f = @(x,y) (1-(x.^2+y.^2)).*(sin(pi/2*(y-0.07))-0.5*cos(pi/2*(x+0.1)));

N = 60; hp = haltonset(2); y = 2*net(hp,N)-1; % Nodes/centers

M = 2*N; x = 3/2*net(scramble(hp,’rr2’),M)-3/4; % Eval points

epsilon = linspace(0,1,101);

% Compute distances nodes/centers and eval points/centers

D = @(x,y)hypot(bsxfun(@minus,x(:,1),y(:,1)’),bsxfun(@minus,x(:,2),y(:,2)’));

ryy = D(y,y); rxy = D(x,y);

% Determine the radius

rad = fminbnd(@(e)norm(inv(phi(e,ryy)),inf)*norm(phi(1i*e,ryy),inf),0.1,20);

ryy = ryy*rad; % Re-scale the distances by the radius of the evaluation

rxy = rxy*rad; % contour so that a unit radius can be used.

% Compute the interpolant

rbfinterp=@(ep) phi(ep,rxy)*(phi(ep,ryy)\f(y(:,1),y(:,2)));
s = vvra(rbfinterp,epsilon/rad,1,64,64/4);

% Compute the difference between s and f and plot the results

error = max(abs(bsxfun(@minus,s,f(x(:,1),x(:,2)))));

semilogy(epsilon,error,’x-’)

[minerr,pos] = min(error);

fprintf(’Minimum error: %1.2e, Epsion: %1.2f\n’,minerr,epsilon(pos));

%% Example 2: RBF-HFD weights for the 3-D Laplacian using IQ kernel

% Example for the standard 19 node stencil (6 implicit nodes) on lattice

% Explicit nodes

xhat = [[0,0,0];[-1,0,0];[1,0,0];[0,-1,0];[0,1,0];[0,0,-1];[0,0,1];...

[0,-1,-1];[0,-1,1];[0,1,-1];[0,1,1];[-1,0,-1];[-1,0,1];...

[1,0,-1];[1,0,1];[-1,-1,0];[-1,1,0];[1,-1,0];[1,1,0]];

N = size(xhat,1);

% Implicit nodes
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yhat = [[-1,0,0];[1,0,0];[0,-1,0];[0,1,0];[0,0,-1];[0,0,1]];

plot3(xhat(:,1),xhat(:,2),xhat(:,3),’o’,yhat(:,1),yhat(:,2),yhat(:,3),’.’)

% The IQ kernel and it’s 3-D Laplacian and 3-D bi-harmonic

phi = @(e,r) 1./(1 + (e*r).^2);

dphi = @(e,r) 2*e^2*(-3 + (e*r).^2)./(1 + (e*r).^2).^3;

d2phi = @(e,r) 24*e^4*(5 + (e*r).^2.*(-10 + (e*r).^2))./(1 + (e*r).^2).^5;

% Compute the radius

rad = fzero(@(e)log10(cond(rbfhfd(e,xhat,yhat,phi,dphi,d2phi,1)))-6,[0.05,1]);

r = sqrt(D(xhat,xhat).^2 + bsxfun(@minus,xhat(:,3),xhat(:,3)’).^2);

rad = min(rad,0.95/max(r(:)));

% Re-scale the stencil nodes so that a unit evaluation radius can be used.

xhat = rad*xhat; yhat = rad*yhat;

% Compute the weights at various epsilon

epsilon = linspace(0,rad,11);

w = vvra(@rbfhfd,epsilon/rad,1,64,64/4,xhat,yhat,phi,dphi,d2phi);

% Undo the effects of re-scaling from the weights

w(1:size(xhat,1),:) = w(1:size(xhat,1),:)*rad^2;

% Compare the flat limit weights (epsilon=0) to the standard weights

ws = [-8,2/3*ones(1,6),ones(1,12)/3,-ones(1,6)/6]’; % standard weights

fprintf(’Relative two norm difference: %1.2e\n’,norm(w(:,1)-ws)/norm(ws));

function w = rbfhfd(ep,x,xh,phi,dphi,d2phi,flag)

%RBFHFD Computes the RBF-HFD weights for the 3-D Laplacian.

%

% w = rbfhfd(Epsilon,X,Xh,Phi,DPhi,D2Phi) computes the RBF-HFD weights

% at the given value of Epsilon and at the explicit stencil nodes X and

% implicit (Hermite) stencil nodes Xh. Phi is a function handle for

% computing the kernel phi(ep,r) used for generating the weights (e.g.

% the Gaussian or inverse quadratic). Dphi and D2phi are function

% handles for computing the 3-D Laplacian and bi-harmonic of Phi,

% respectively.

%

% A = rbfhfd(Epsilon,X,Xh,Phi,DPhi,D2Phi,flag) returns the matrix for

% computing the weights if the flag is non-zero, otherwise it returns

% just the weights as described above.

if nargin == 6

flag = 0; % Return on the weights

end

N = size(x,1);

x = [x;xh];

ov = ones(1,size(x,1));

% Compute the pairwise distances

r = sqrt((x(:,1)*ov-(x(:,1)*ov).’).^2 + (x(:,2)*ov-(x(:,2)*ov).’).^2 + ...

(x(:,3)*ov-(x(:,3)*ov).’).^2);

temp = dphi(ep,r(1:N,N+1:end)); % Construct the weight matrix

A = [[phi(ep,r(1:N,1:N)) temp];[temp.’ d2phi(ep,r(N+1:end,N+1:end))]];

% Determine what needs to be returned.

if flag == 0

w = A\[dphi(ep,r(1:N,1));d2phi(ep,r(N+1:end,1))];
else

w = A;
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end

end % end rbfhfd

function [R,b] = vvra(myfun,epsilon,rad,K,n,varargin)

%VVRA Vector-valued rational approximation (VVRA) valid near the

% origin to a vector-valued analytic function.

%

% [R,b] = vvra(myfun,Epsilon,Rad,K,n) generates a vector-valued rational

% approximation to the vector-valued analytic function represented by

% myfun and evaluates it at the values in Epsilon. The inputs are

% described as follows:

%

% myfun is a function handle that, given a value of epsilon returns a

% column vector corresponding to each component of the function

% evaluated at epsilon.

%

% Epsilon is an array of values such that |Epsilon|<=Rad where the

% rational approximation is to be evaluated.

%

% Rad is a scalar representing the radius of the circle centered at

% the origin where it is numerically safe to evaluate myfun.

%

% K is the number of points to evaluate myfun at on the contour for

% constructing the rational approximation. This number should be even.

%

% 2n is the degree of the common denominator to use in the

% approximation.

%

% The columns in the output R represent the approximation to the

% components of myfun at each value in the array Epsilon. The optional

% output b contains the coefficients of the common denominator of the

% vector-valued rational approximation.

%

% [R,b] = vvra(myfun,Epsilon,Rad,K,n,T1,T2,...) is the same as above, but

% passes the optional arguments T1, T2, etc. to myfun, i.e.,

% feval(myfun,epsilon,T1,T2,...).

K = K+mod(K,2); % Force K to be even

ang = pi/2*linspace(0,1,K+1)’; ang = ang(2:2:K);

ei = rad*exp(1i*ang); % The evaluation points (all in first quadrant)

m = K-n; % Fix the degree of the numerator based on K and n

W = feval(myfun,ei(1),varargin{:});
M = numel(W);

fv = zeros(K/2,1,M);

fv(1,1,:) = W;

for k = 2:K/2 % Loop over the evaluation points for F

W = feval(myfun,ei(k),varargin{:});
fv(k,1,:) = W;

end

fmax = max(abs(fv),[],3); % Find largest magnitude component for each k

e = ei.^2; % Calculate the E matrix

E = e(:,ones(1,m)); E(:,1) = 1./fmax; E = cumprod(E,2); % Scaled E-matrix
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f = E(:,1:n+1); % Create the F-matrices and RHS

F = f(:,:,ones(1,M)).*fv(:,ones(1,n+1),:);

g = F(:,1,:);

F = -F(:,2:n+1,:);

ER = [real(E);imag(E)]; % Separate E and F and the RHS g into real parts on

FR = [real(F);imag(F)]; % top, and then the imag parts below

gr = [real(g);imag(g)];

[Q,R] = qr(ER); QT = Q’; % Factorize ER into Q*R

R = R(1:m,:); % Remove bottom block of zeros from R

for k = 1:M % Update all FR matrices

FR(:,:,k) = QT*FR(:,:,k);

gr(:,1,k) = QT*gr(:,1,k);

end

FT = FR(1:m,:,:); % Separate F-blocks and g-blocks to the systems for

FB = FR(m+1:K,:,:); % determining the numerator and denominator coeffs.

gt = gr(1:m,:,:);

gb = gr(m+1:K,:,:);

% Reshape these to be 2-D matrices

FT = permute(FT,[1,3,2]); FT = reshape(FT,M*m,n);

FB = permute(FB,[1,3,2]); FB = reshape(FB,M*(K-m),n);

gt = permute(gt,[1,3,2]); gt = reshape(gt,M*m,1);

gb = permute(gb,[1,3,2]); gb = reshape(gb,M*(K-m),1);

b = FB\gb; % Obtain the coefficients of the denominator

v = gt-FT*b; V = reshape(v,m,M);

a = (R\V); % Obtain the coefficients of the numerators

% Evaluate the rational approximations

R = zeros(M,length(epsilon));

b = [1;b];

denomval = polyval2(b,epsilon);

for ii = 1:M

R(ii,:) = (polyval2(a(:,ii),epsilon)./denomval);

end

end % End vvra

function y = polyval2(p,x)

%POLYVAL2 Evaluates the even polynomial

% Y = P(1) + P(2)*X^2 + ... + P(N)*X^(2(N-1)) + P(N+1)*X^2N

% If X is a matrix or vector, the polynomial is evaluated at all

% points in X (this is unlike the polyval function of matlab)

y = zeros(size(x)); x = x.^2;

for j=length(p):-1:1

y = x.*y + p(j);

end

end % End polyval2

Appendix B. Choosing the radius εR of the evaluation contour

We propose two different strategies for choosing the radius εR depending on the type of kernel being
used in the application. As discussed in Section 4.1, entire positive definite kernels, like GA, grow without
bound as one moves out in the complex plane away from the real ε-axis. This growth limits the radius
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of the contour. The strategy we propose for entire kernels is to choose εR based on an estimate of where
the ill-conditioning from the interpolation problem is overtaken by ill-conditioning from the growth of the
kernel on the imaginary ε-axis. Such an estimate is difficult to make from the condition number of the
interpolation or RBF-FD/HFD weight matrix A(ε) because of singularities that can occur in A(ε)−1 for
imaginary ε (cf. Figure 6). Instead, we have found that a good measure for the ill-conditioning that is not
effected by singularities when ε = iβ (β ∈ R) is

σ̃∞(A(β)) = ‖A(iβ)‖∞‖A(β)−1‖∞.

The first factor on the right of this expression captures the growth from the kernel, while the second factor
captures the ill-conditioning from the interpolation problem (since this is just the standard interpolation
matrix for real shape parameters). To find where the transition between the types of ill-conditioning occurs,
we thus set εR equal to an approximate minimum of log σ̃∞(A(β)). This is the approach used in the
interpolation example in the first appendix.

As discussed in Section 4.1, kernels that have singular points, such as IQ, IMQ, and MQ, will lead to
a multitude of singular points in the RBF vector-valued rational function, as each entry of A(ε) will have
two singular points. The evaluation contour that is used should altogether avoid these singular points. The
closest singular points that comes directly from the kernels is located on the positive and negative imaginary
axis at the inverse of the largest distance between the nodes. The radius εR thus needs to be chosen smaller
than this value. In our applications we have used

εR = 0.95

(
max

1≤i,j,≤N
‖x̂i − x̂j‖

)−1
, (B.1)

where {x̂i}Ni=1 are the interpolation (or RBF-FD stencil) nodes. For smaller problems, we have found that
this sometimes results in a radius that is larger than necessary to achieve accurate results. In these case we
often find it is better to use a smaller radius, which in turn allows the number of evaluation points K to be
smaller without diminishing the accuracy. To address this issue, we choose εR to be the minimum between
(B.1) and the approximate real value of ε where the condition number of A(ε) is equal to 106. This is the
approach used in the RBF-HFD example in the first appendix.
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