
NON-BLOCKING HARDWARE CODING

FOR EMBEDDED SYSTEMS

by

Derek Caleb Klein

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Engineering

Boise State University

May 2011

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Derek Klein

Thesis Title: Non-Blocking Hardware Coding for Embedded Systems

Date of Final Oral Examination: 16 March 2011

The following individuals read and discussed the thesis submitted by student Derek
Klein, and they also evaluated his presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination, and that
the thesis was satisfactory for a master’s degree and ready for any final modifications that
they explicitly required.

Sin Ming Loo, Ph.D. Chair, Supervisory Committee

Thad B. Welch, Ph.D. Member, Supervisory Committee

Hao Chen, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the
Supervisory Committee. The thesis was approved for the Graduate College by John R.
Pelton, Ph.D., Dean of the Graduate College.

iv

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Sin Ming Loo, for his guidance and

patient support throughout this process. His contribution has been essential to my

academic pursuits.

Additionally, I would like to thank those who were involved in this research: Josh

Kiepert, Jim Hall, Michael Pook, Kelsey Drake, and Ross Butler. Their significant

contributions made this research possible. I would like especially thank Josh Kiepert, Jim

Hall, and Michael Pook for their participation in the implementation of several of the

non-blocking techniques discussed in this thesis. Michael Pook deserves further thanks

for his assistance in the final editing of this thesis.

 Finally, I would like to thank my family. Their love and support has made my

success in academics and life in general possible. I would like to specifically

acknowledge my brother, Daren Klein, who inspired me to go to college with his

dedication to overcoming dyslexia while learning to read. My mother deserves special

thanks for putting up with me as my teacher and mother growing up. A person could not

ask for a better mother. Thanks, mom.

This work is funded by FAA Cooperative Agreement No. 04-C-ACE-BSU and 07-C-
RITE-BSU1.

1 Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research.
The presentation of this information is in the interest of invoking technical community comment on the
results and conclusions of the research.

v

ABSTRACT

NON-BLOCKING HARDWARE CODING

 FOR EMBEDDED SYSTEMS

Derek Klein

Master of Science in Computer Engineering

Embedded Systems can be found in devices that people use every day. In the

pursuit of faster and smarter devices, more powerful processing units are needed in these

embedded systems. A key component of powerful processing units is the supporting

software. While the raw processing power of microcontroller has been continually

advancing, the improvements in the supporting software for medium scale embedded

systems have been lacking. This thesis focuses on improving the software on medium

scale systems by discussing the practical application of non-blocking coding techniques.

The basic concept of how non-blocking code improves the performance of a system is

relatively easy to understand. However, non-blocking code is considerably more

challenging to implement in practice. This thesis shows that, by utilizing some commonly

known coding techniques and practices together in a systematic manner, it is possible to

obtain practical non-blocking software on medium scale embedded systems. It was found

that under certain conditions more than 20% of the total processor time can be saved by

converting a blocking I2C driver to non-blocking. The freed processing time improved the

performance of the network tasks by increasing the throughput from 68% to 100%.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 Embedded Systems ... 1

1.2 Embedded System Categories ... 3

1.3 Software for Sensor Networks .. 5

1.4 Thesis Purpose .. 6

1.5 Overview ... 7

CHAPTER 2: RESEARCH BACKGROUND ... 8

2.1 Limited Related Research ... 8

2.2 Common Coding Practice ... 9

2.2.1 Hardware Interface ... 10

2.2.2 Main Function .. 12

vii

2.3 Operating Systems .. 14

2.3.1 Dynamic Memory .. 15

2.3.2 Process Scheduler .. 15

2.3.3 I/O Subsystem .. 16

2.4 Scheduler ... 18

2.4.1 Superloop ... 19

2.4.2 Time Triggered ... 19

2.4.3 Cooperative .. 19

2.5 Systems without Operating System .. 20

CHAPTER 3: HARDWARE PLATFORM ... 21

3.1 Sensor Modules ... 21

3.2 Processor ... 22

3.3 Breakout Board Sensor Interface .. 22

3.4 Power .. 24

3.5 Network Communications .. 25

3.6 Data Storage .. 25

CHAPTER 4: NON-BLOCKING CODING PRACTICES.. 27

4.1 Blocking Code .. 27

4.2 Non-Blocking Code .. 29

viii

4.2.1 Circular Buffer ... 31

4.2.2 State Machine... 35

4.2.3 Callback Function .. 38

4.3 Example Code ... 40

4.3.1 Blocking Code Example .. 40

4.3.2 Non-Blocking Example ... 41

4.4 Appropriate Uses of Blocking Code ... 44

CHAPTER 5: NON-BLOCKING ANALISIS .. 46

5.1 I2C Hardware Driver Analysis .. 48

5.1.1 I2C Blocking Driver Description ... 49

5.1.2 I2C Non-Blocking Driver Description ... 50

5.1.3 I2C Waveform Analysis .. 52

5.1.4 I2C Throughput Analysis ... 59

5.2 UART Driver Analysis .. 62

5.2.1 UART Blocking Driver .. 63

5.2.2 UART Non-Blocking Driver .. 64

5.2.3 UART Waveform Analysis .. 65

5.2.4 UART Blocking Driver Effects on Network Throughput 68

CHAPTER 6: CONCLUSIONS AND FUTURE WORK .. 71

ix

6.1 Summary and Conclusions ... 71

6.2 Future Work .. 72

6.2.1 Linked List ... 72

6.2.2 SD Card Interface .. 73

REFERENCES ... 75

x

LIST OF TABLES

Table 1.1: Embedded System Catagorization ... 4

Table 5.1: Non-Blocking I2C Driver Effect on Network Tasks .. 60

Table 5.1: Blocking I2C Driver Effect on Network Tasks .. 60

Table 5.3: Non-Blocking UART Driver Effect on Network Tasks 70

Table 5.4: Blocking UART Driver Effect on Network Tasks ... 70

xi

LIST OF FIGURES

Figure 2.1: ADC Reading Function .. 11

Figure 2.2: Common Main Function in Embedded Systems .. 13

Figure 3.1: Sensor Module Board ... 21

Figure 4.1: Basic Function Call Format .. 29

Figure 4.1: Circular Buffer ... 32

Figure 4.3: Generic Circular Buffer .. 35

Figure 4.4: State Machine ... 37

Figure 4.5: Callback Function... 39

Figure 4.6: Blocking Transmit Function ... 41

Figure 4.7: Non-Blocking Transmit Request .. 42

Figure 4.8: Non-Blocking Transmit Interrupt Service Routine .. 43

Figure 4.9: Non-Blocking Transmit Task ... 43

Figure 5.1: Fusion Network Software Interface ... 48

Figure 5.2: Fusion I2C Driver ... 51

Figure 5.3: Blocking I2C Waveform ... 54

Figure 5.4: Non-Blocking I2C Waveform .. 58

Figure 5.5: I2C Effect on Network Throughput ... 62

Figure 5.6: Fusion UART Driver ... 64

Figure 5.7: Blocking UART Waveform .. 67

xii

Figure 5.8: Non-Blocking UART Waveform .. 68

Figure 5.9: UART Effect on Network Throughput ... 70

xiii

 LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter
DC Direct Current
FAA Federal Aviation Administration
FAT File Allocation Table
FIFO First In First Out
GPIO General Purpose Input/Output
I/O Input/Output
I2C Inter-Integrated Circuit
ISR Interrupt Service Routine
OS Operating System
PMON Personal Monitor
SD Secure Digital
SDIO Secure Digital Input Output
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TWI Two Wire Interface
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Buss
UART Universal Asynchronous Receiver/Transmitter

1

CHAPTER 1: INTRODUCTION

1.1 Embedded Systems

 An embedded system is an electronic system that is part of a larger system. They

can be found in devices that most people use on a daily basis. For example, embedded

systems can be found in everything from communication systems (e.g., cellular phones,

radios, etc.) to household appliances (e.g., dishwashers, refrigerators, etc.). Consumers

continue to desire faster and smarter features on our devices and appliances that require

more powerful processing units. A key component of a powerful processing unit is its

supporting software. This thesis will discuss some practical concepts that can greatly

improve the supporting software of embedded systems.

As the demands of embedded systems continue to grow, there is a need to produce

systems that are more flexible, responsive, robust, and cost effective. For example, the

original home thermostats were electromechanical systems that used bimetal strips to

simply open and close a circuit based on the ambient temperature. The user interface was

simple. Due to the demand for a better user interface and power management, today’s

thermostats have considerably more functionality. The ability to schedule different

temperature settings for different times of the day is common for thermostats currently on

the market. Some of the nicer thermostats even have touch screen interfaces. These

additional features require a more advanced embedded system with supporting software.

Embedded hardware is continually adapting to meet the increasing requirements

2

of more demanding applications. One area where hardware technology has made notable

increases is the processing units on embedded systems. Depending on the type of

embedded system, the processing unit is typically a microprocessor or one of many

different types of microcontrollers. The main difference between microprocessors and

microcontrollers is that microprocessors are only composed of a processing unit.

Whereas, microcontrollers include timers, memory, and specialized I/O hardware along

with the processor in a single package. The exact quantity, variety, and type of specialized

hardware on an embedded system are dependent on the application and embedded system

complexity. For all types of embedded systems, the hardware capabilities such as

available memory, processing speed, power efficiency, interface flexibility, and cost

effectiveness are continually advancing.

Advances in the supporting software are needed to take full advantage of the

improvements in hardware. Hardware and software need to work together to create the

powerful processing units in embedded systems today. Without software, the hardware

will be useless. Without hardware, the software will have no place to run. Even with the

advancements continually being made, embedded systems hardware still has limited

resources. Two of the most common limitations are memory and processor capacity. In

order to make up for these limitations, some embedded hardware (particularly

microcontrollers) has specialized devices that are designed to optimize specific tasks.

Embedded software is responsible for managing hardware resources, processing the data,

and controls how a system operates. In order to take advantage of advances in hardware,

the software needs to make effective use of the available hardware capabilities. What is

3

meant by “effective use” is that the software does not add unnecessary obstacles to the

performance of the hardware. For example, blocking code (a piece of code that prevents

other processes from running while it waits for information to complete execution) in a

hardware driver might prevent another specialized piece of hardware from being fully

utilized. Development of effective non-blocking software is highly dependent on the

hardware platform. The focus of this thesis is to demonstrate a systematic way of

applying non-blocking coding practices to embedded systems in such a way as to take

full advantage of advances in embedded hardware.

1.2 Embedded System Categories

There is a wide variety of embedded systems, so it is difficult to have a set of

coding techniques apply to every type of system. The coding techniques and practices

discussed in this thesis primarily apply to a limited category of embedded systems. So it

is important to clarify what type of embedded system will be the focus of this thesis.

There are multiple ways to categorize embedded systems. Embedded systems could be

categorized based on the type of application, cost of the system, system functionality,

complexity, or hardware capabilities. The capability of the hardware is one particularly

relevant aspect for embedded software. For the purpose of this thesis, embedded systems

will be organized into three categories: small scale, medium scale, and large scale, based

on the hardware capabilities of the system. A description of these categories is provided

in this section and summed up in Table 1.1.

4

Table 1.1: Embedded System Catagorization
Category Category Description

Small Scale Capable of supporting 1 to 2 applications. Typically on smaller 8-bit
microcontrollers that do not have enough memory to support an operating
system.

Medium Scale Capable of supporting multiple applications. Typically on 32-bit and smaller
microcontrollers that do not have enough memory to support an embedded
operating system.

Large scale Capable of supporting multiple applications. Typically on large microcontrollers
or microprocessors that have more than enough memory to support an
embedded operating system.

For this thesis, small scale systems will be defined as being capable of supporting

only one or two applications. These systems typically have smaller 8-bit microcontrollers

with very limited memory. An example of this type of system would be a garage door

opener. A garage door opener has one application that monitors a button and sends a

signal to the garage door controls when the button is pushed. The application is

composed of two tasks: the first is monitoring the button and the second is

communicating wirelessly with the garage door controls.

Medium scale systems are capable of supporting multiple applications running at

the same time. For this thesis, medium scale systems will be defined as systems that have

enough hardware capabilities to support multiple applications but do not have the

hardware capability to practically support an operating system at the same time. A good

example of this would be the controller in a refrigerator. The control system on an

advanced refrigerator is responsible for making ice and dispensing water in addition to

controlling the temperature of two separate compartments. Each of these responsibilities

is composed of multiple tasks themselves. Since the fridge’s responsibilities do not

5

change over time, a processing unit with expansion capabilities or an operating system is

not practical.

Large scale systems are similar to general computing systems (e.g., desktop

computers) in that they are capable of supporting a wide variety of applications. They

typically have an abundance of memory to support their various functions. Large scale

systems typically have enough memory and processing speed to support a compact

operating system. A smart phone is a good example of a large scale embedded system.

1.3 Software for Sensor Networks

A sensor network is a good example of a medium scale embedded system. Like

the name suggests, the sensor network’s main purpose is to collect data from a network of

sensors. A network is composed of multiple sensor nodes. The number and variety of

sensors on each node is dependent on the sensing application. The data collected from

each sensor node is typically transmitted across a wireless network to a central location

for processing. So, with each sensor node, there are multiple applications that often need

to operate at the same time. The data collection itself is often broken up into multiple

tasks. The drivers for the interfacing hardware, the initial processing of the data, and

scheduling the intervals for collecting data are just a few of the more common tasks that

are directly used to collect the sensor data. In addition to collecting sensor data,

transmitting the data across the network can involve multiple tasks. First, there is the

driver for interfacing with the network radio. Second, if the system needs to be able to

send the data to different locations on the network, a network manager/server has to be

6

maintained by a task. Occasionally, the data is stored locally in addition to being

transmitted. Sensor networks are typically designed to continuously monitor the subject

of interest. Consequently, all of sensor node's tasks need to continuously run alongside

each other. If one of the tasks is prevented from performing its duties, the entire system

could be negatively affected. One solution to such a problem is to upgrade the system

scale and include an operating system. However, since the general idea is to have a sensor

network composed of a large number of nodes, it is desirable to keep each node as cost

effective as possible. Thus, large scale embedded systems are impracticable for the

typical sensor network.

1.4 Thesis Purpose

This thesis demonstrates coding techniques for non-blocking software on medium

scale embedded systems. The scientific community has focused on establishing coding

techniques and practices for large scale embedded systems. However, there is still a need

for medium scale embedded systems in research and industry. Industry typically relies on

the experience of designers to produce a quality non-blocking code. However, differences

in the abilities of designers can lead to a variety of approaches that results in software that

is difficult to maintain and port from one platform to another. A formulated systematic

approach can help establish more consistent coding practices that are easier to port across

platforms. By examining how the different aspects of non-blocking coding techniques

work together, a systematic approach of applying these techniques to medium scale

systems can be established.

7

1.5 Overview

The following chapters will discuss many of the aspects of non-blocking coding

practices as they apply to medium scale embedded systems. This discussion will focus on

sensor networks in particular. Chapter 2 will cover the background of embedded system

software and how it relates to this thesis. Chapter 3 will provide a description of the

sensor node hardware used for this research. Chapter 4 will discuss several coding

techniques that are used in developing non-blocking code. Chapter 5 provides analysis

for two non-blocking coding examples. Finally, the conclusions and possible future work

are presented in Chapter 6.

8

CHAPTER 2: RESEARCH BACKGROUND

2.1 Limited Related Research

There is a significant amount of research focused on improving software in

embedded systems. Unfortunately, most of the research is dedicated to large scale

embedded systems. Over the years, there have been a lot of operating systems based

software research developed on general computing systems (e.g., desktop computers).

Presently, the hardware on large scale embedded systems has advanced to the point where

an operating system is a practical option. Embedded software research is primarily

focused on applying the operating system principle developed on general computing

systems to large scale embedded systems. Consequently, there is a lot of potential with

research focused on large scale embedded systems. Unfortunately, this research based on

operating systems does not really apply to the medium scale embedded systems that are

the focus of this thesis. Medium scale systems typically do not have the memory

resources to support an embedded operating system. In addition to this, medium scale

systems tend to be very specialized. This specialization makes applying generalized

operating systems a challenging option. So developing a generic operating system that

covers medium scale embedded systems is not practical.

To date, general coding guidelines for coding practices in medium scale

embedded systems have not been established in the industry. There is very little published

research that is applicable to medium scale systems. The only published research found

9

that relates to medium scale systems have to do with schedulers [1]. Although schedulers

are a crucial component of embedded systems with or without an operating system, they

are not the only important aspect to which coding guidelines could be applied. With the

wide variety of specialized medium scale embedded systems, it is also difficult to

establish coding techniques that apply directly to every application. Consequently, coding

techniques for these types of systems have been gained primarily through personal

experience and instruction. Some of these techniques are discussed in Section 2.2. With

such a limited amount of research for medium scale systems, there is still a need to

develop effective coding practices that are not based on an operating system. This thesis

attempts to demonstrate techniques and methods that will produce effective non-blocking

software that can be applied to these types of systems.

2.2 Common Coding Practice

Since there is limited published research on coding practices in embedded

systems, most coding practices are based on experience. This experience typically

consists of problems encountered and instruction from experienced colleagues.

Embedded system designers often have different experience based on the variety of

hardware platforms on which they have worked. Consequently, coding practices can vary

quite a bit among designers. In spite of this, certain common practices have been

developed. Most of the practices stem from the need to use a common framework for

development and the clear benefits of each technique/practice. These common practices

cover a wide range of applications and systems. The more notable practices are related to

10

interfacing with hardware, and the main system loop.

2.2.1 Hardware Interface

The main purpose for most embedded systems is interfacing with hardware

whether it is a sensor, control device (e.g., DC motor, Solenoid etc.), or communication

(e.g., UART, wireless transceiver, etc.). There are many different approaches taken to

interfacing with hardware. Three of the more notable approaches are polling, waiting, and

interrupting.

Polling can be used by itself or in concert with the other two approaches. As a

result, polling is a little bit harder to distinguish from the others. The basic idea of polling

is that the condition of some hardware is periodically checked. When polling is used by

itself, a task/application that is accessing the hardware will periodically check the status

registers associated with the hardware. If the status registers indicate that the hardware is

ready, the task will perform the related operations and return control back to the

scheduler. If the status registers indicate that the hardware is not ready, then the task will

return the control back to the scheduler without performing the related action. The

problem with polling by itself is that there is high probability of missing a hardware

action while another task is being handled.

Another common method is the wait-poll approach. When a hardware interface

function is called by an application, the function waits until the hardware action is

complete. For example, suppose an application needs to access the value of an analog-to-

digital converter (ADC). The process flow of the ADC reading function using this

11

method is shown in Figure 1.1. At the beginning of the function, the hardware to starts an

ADC read. The function then waits for the ADC hardware to finish. This usually involves

polling a flag in a hardware register. After the ADC finishes, the function returns the

result from the ADC register. The advantage of this method of interfacing with the

hardware is that it is very simple to implement. Unfortunately, this blocks other

potentially useful work from being completed. Processor cycles are wasted during each

wait.

Figure 2.1: ADC Reading Function

Another approach to interfacing with hardware is through the use of interrupts.

Most of the hardware interfaces on microcontrollers have interrupts that are triggered

when either a monitored device changes state or a particular hardware task completes.

When an interrupt occurs, the microcontroller will pause the current process and execute

an interrupt service routine (ISR). The ISR will perform the operations for the hardware

that triggered the interrupt. It is important to keep an ISR short, because it will prevent

other lower level interrupts from occurring. So, it is generally not a good idea to call

functions from inside an ISR (especially I/O functions such as "printf"). Sometimes, in

order to keep the entire ISR short, only the absolutely necessary operations are performed

inside the ISR. The rest of the operation is performed by a task that polls a flag set by the

12

ISR. Interrupts are important to non-blocking systems as they give an effective alternative

to the wait-poll method. Unfortunately, interfacing with an interrupt is not always trivial.

When using an interrupt, it is necessary to figure out how much of a given process must

occur in the interrupt. Typically, for an interrupt to be used effectively, it has to control a

state machine. Sometimes this is done indirectly through the use of flags. Other times, the

interrupt service routine has to modify the state machine directly. One must carefully

balance the time critical nature of a given process against the need to keep ISR's as short

as possible.

2.2.2 Main Function

One of the most common practices in medium scale embedded systems is related

to the centralized control of the main function. The main by default is the first function

executed upon startup. One thing that medium embedded systems have in common is that

there are a variety of settings that have to be initialized at start up. Additionally, there are

typically a few tasks that continually run. Consequently, a typical main will have an

initialization routine followed by a while loop like the example in Figure 2.2. Notice that

the initialization routines are executed first and are responsible for setting all of the

hardware registers to the appropriate values for the applications involved. The actual

organization of the initialization sequence will depend on the hardware platform and the

designer’s preferences. The next piece of code to be executed is the main loop. The main

while loop is the core of a typical embedded system. It is responsible for continually

updating the tasks for the different applications running on the system. While there are

different scheduling systems, some of which are discussed in Section 2.4, this type is the

13

most common. This scheduling routine is commonly referred to as the super loop (an

infinite loop). There are a couple of reasons this method is commonly used. The first is

that it is simple. Each task will eventually get its turn to run as long as none of the tasks

block indefinitely. The other reason is that embedded systems operate continually. The

main while loop will continue to execute the application tasks indefinitely as long as

there is not a catastrophic failure.

main()

{

 Init_sensor1(); // setup i/o register and calibration values

 Init_uart(); // setup baud rate and port

While()

{

 Interface_sensor1(); //get data from sensor1

 Interface_uart(); // output collected data to uart and

 // send status message

}

 }

Figure 2.2: Common Main Function in Embedded Systems

The potential problem with this method is that, if one task blocks for too long,

then the other processes will be losing processing time. So, it is important to minimize

the execution length of each task. Most designers are aware of this potential problem.

Unfortunately, the effective ways to implement non-blocking techniques covered in this

thesis are not universally understood. Consequently, blocking techniques are still

commonly used in these types of embedded systems. For example, it is still common to

have I/O calls to use the wait-poll method described in Section 2.2. This is typically used

14

when accessing hardware that has a more defined communication length (e.g., an I2C

read or write). Many of the problems from blocking code will not create a problem until

the hardware platform is pushed to its limits, such as when the processing speed is barely

fast enough to execute all of the tasks in time. Another situation were a system is pushed

to its limits is when the particular piece of code is continually needing to be processed.

On the other hand, systems that are not pushed to their limits do not always suffer the

same detrimental effects from blocking software. Consequently, the individual designers

still frequently use blocking calls in certain situations based on their experience.

2.3 Operating Systems

Operating systems are composed of multiple aspects and components that make

them hard to define. One way of viewing an operating system is as a resource allocator

[2]. In other words, an operating system is designed to manage the data, processes, and

hardware. The purpose of an operating system is to create an easy-to-use interface that

effectively uses the hardware. Operating systems have been around for some time in

general computing systems. Consequently, most of the aspects of operating systems have

been well established. The operating system program itself is referred to as a kernel. A

kernel is a standalone process that directly controls all of the aspects of the operating

systems. A few of the more notable aspects that the kernel is responsible for managing are

dynamic memory, process scheduling, and I/O subsystem. The fact that operating systems

have been well defined and provide easy portability makes them an attractive option for

embedded systems today.

15

2.3.1 Dynamic Memory

Memory usage is a problem faced by all computing systems. In any system, there

is a limited amount of memory available. Processes can require various amounts of

memory at different times during their given tasks. An operating system minimizes the

amount of memory consumed by dynamically allocating memory. By dynamically

allocating memory when it is needed, memory can be shared and re-use by multiple

processes. So, when one process is finished using a piece of memory, it becomes

available for another process.

2.3.2 Process Scheduler

The primary function of an operating system is scheduling. An operating system

has multiple schedulers each with a unique purpose. However, the most commonly

referred to scheduler (referred to hereafter as the process scheduler) is responsible for

allocating processing time for the different processes. A process, in its essence, is simply

a task that is being executed. Furthermore, the execution of a process must progress in a

sequential fashion [2]. The operating system keeps track of a process through a process

control block. The process control block holds all the information pertaining to the

process such as process state, memory information, program counter, and all other

relevant information.

The typical embedded computing system can only run one process at a time. So

the different processes have to take turns using the processor. When processes are

switched, the state of the current process is stored to its process block, and the saved state

16

of the next process is loaded. This is known as context switching. Depending on the

system, a considerable amount of processing time can be spent on context switching.

Sometimes, a process is divided up into multiple smaller light-weight processes known as

threads. Threads take turns using the processor just like processes. However, multiple

threads are part of the same process, so they can be switched out with less overhead since

they share much of the same information. All of the switching between processes and

threads is controlled by the process scheduler.

There are a multitude of scheduling algorithms to accomplish context switching,

some of which will be discussed in greater detail in Section 2.4. All of them have the

basic idea of minimizing wasted clock cycles while still remaining fair to all of the

processes and threads. So, when a process or thread is idle, it is switched out for another

in the scheduler’s ready queue. Furthermore, when a process is waiting for I/O, it is

rotated out of the scheduler’s ready queue into a waiting queue.

One advantage of operating systems is that a blocking code does not actually

block. This accomplished by rotating idle processes out of the ready queue into a waiting

queue [2]. Thus, designers are able to write simpler codes without the concern that one

process will block another on the system. This is another reason why the wait-poll I/O

access technique described in Section 2.2.1 is a common practice in embedded

applications without operating systems.

2.3.3 I/O Subsystem

The I/O subsystem is the part of the kernel that is responsible for managing the

17

hardware. The purpose of the I/O subsystem is instrumental in achieving the goals of the

operating system as a whole. First, the I/O subsystem provides a standardized interface

for the applications. The standardized interface significantly increases the portability of

applications between hardware systems as well as the extendibility of the hardware

interfaces. Consequently, additional hardware can be easily integrated into the system by

creating device drivers that follow a standard interface. “The purpose of the device driver

layer is to hide the differences among device controllers from the I/O subsystem of the

kernel” [2]. The second goal of the I/O subsystem is to optimize access to the hardware.

What is meant by "optimizing" is to reduce that amount of resources spent on accessing

the I/O hardware, which is accomplished through scheduling and buffering. The exact

approach and method for scheduling and buffering are different for each operating

system. However, the main concepts remain the same.

With multiple processes running on a system, there are occasions where two or

more processes will need to access a particular piece of hardware at the same time. Since

both systems cannot have access to the hardware at the same time, the I/O scheduler is

responsible for scheduling their access to the hardware. I/O system calls that are not

immediately processed are placed on a queue until the I/O is free. The general concept for

the I/O scheduler is to organize the system calls in a way that reduces the overall wait

time while still treating each process fairly [2].

Buffering is another way in which the effectiveness of interfacing with I/O

hardware is improved. A couple of the problems that buffering helps resolve in embedded

systems are the different data transfer rates and sizes [2]. The different rates can occur

18

between an application running on the main processor and an I/O port or between two

different I/O ports. With the different speeds, the faster device will have to wait for the

slower device. By storing the data temporarily in a buffer, the faster device is free to

perform other tasks and then transmit the data in bursts. Buffering is also used to adapt

devices that have different data-transfer sizes. Data is often transmitted in segments

called packets. When communicating across a medium that only supports smaller packet

sizes, the larger packets have to be broken down and then recombined on the other end.

Buffers help facilitate the breaking down and recombination of the packet by providing a

place to store the smaller packets until all the components of the larger packet have been

transmitted.

2.4 Scheduler

As mentioned in Section 2.2.2, there are a variety of scheduling approaches. This

section will discuss how each of these approaches manages access to the processor. A

process scheduler is necessary for any system with more than one process operating at the

same time. This is true for embedded systems with or without an operating system.

Because process schedulers play such a significant role in multitasking systems, it is

possible to find published research covering a wide variety of scheduling methods. Some

research that is of particular interest to this thesis is found in [1]. This research covers

scheduling methods that can be directly applied to embedded devices without an

operating system. The three scheduling methods discussed are Superloop, time triggered,

and cooperative [1].

19

2.4.1 Superloop

The Superloop is one of the most simple and commonly used schedulers in

embedded systems. In fact, this is the same scheduling method described in Section 2.2.2.

A Superloop, like its name suggests, is simply an infinite loop through all of the tasks of

the system in the order specified by the designer. Scalability is easy since a task is simply

added to the while loop in the necessary order. The primary drawback is responsiveness

and reliability. Embedded systems often have time-critical components. The Superloop

does not have the ability of to accurately schedule a period for each task.

2.4.2 Time Triggered

The Time Triggered scheduler uses a timer interrupt to determine when each task

is called. Since a timer is used for each task, this is not a very scalable scheduler system.

As a result, Time Triggered schedulers are not commonly used in embedded systems.

2.4.3 Cooperative

A Cooperative scheduler is essentially a combination of the two previously

discussed schedulers. One timer is set to interrupt at a regular interval, which will be the

minimum time resolution for the different tasks. Each task is then assigned a period that

is a multiple of the minimum resolution of the interrupt interval. A function is then

constantly called to update the interrupt count for each task and run tasks that have

reached their interrupt period. This results in a scheduler that has the scalability of the

Superloop with the timing reliability of the Time Triggered scheduler. This is a

commonly used scheduler for sensor systems. However, this type of scheduler is not

20

without its limitations. It is still important that the task calls in a cooperative scheduler

are short. If one task blocks longer than one timer interrupt period, a time-critical task

might be missed.

2.5 Systems without Operating System

While operating systems' overhead make them impractical for a significant

portion of embedded systems, there are concepts that can still be applied to embedded

systems without a full operating system. A couple of concepts that are particularly useful

are buffering and storing process state information. Although the implementation is

different (and can be difficult) without an operating system, buffering I/O data is still just

as relevant. An embedded system still has to deal with different transfer rates and data

packet sizes with or without an operating system. A key aspect of an operating system

that prevents a process from blocking is its ability to store the process state into a process

control block. Likewise, any non-blocking system has to have the ability to store the

state of a process so another process can have its turn on the processor. Without an

operating system, the responsibility of saving its state falls to each individual process.

By applying these concepts to some of the existing coding practices and

scheduling techniques, an embedded system can still make effective use of the hardware

without an operating system. However, the implementation of these concepts without the

use of an operating system can be quite a challenge. It is the goal of this thesis to

demonstrate a generic and systematic way to accomplish this task and thereby reduce the

development time required to design a system.

21

CHAPTER 3: HARDWARE PLATFORM

3.1 Sensor Modules

The platform used to implement the non-blocking coding techniques discussed in

this thesis is the Fusion board shown in Figure 3.1. The Fusion board was developed by

the Hartman Systems Integration Laboratory at Boise State University to replace the old

PMON board [3, 4]. Each Fusion board can be used as a single sensor collecting device,

or it can be combined with multiple Fusion sensor nodes to form a sensor network. The

Fusion board has been designed to increase performance while maintaining the flexibility

of the older PMON modules [3]. The fusion module takes advantage of the improved

hardware capabilities developed over the past few years.

Figure 3.1: Sensor Module Board

22

3.2 Processor

Many sensor networks used in embedded applications in particular require a

flexible microcontroller with plenty of memory. The ATMEL microcontroller

AT32UC3A3256S, a 32-bit microcontroller, was chosen for the sensor modules because

of its ability to meet these requirements [5]. With 256 kbytes flash and 64 kbytes high-

speed SRAM, this microcontroller has plenty of memory to work with. Additionally, the

96 DMIPS and 66MHz processing unit found in this microcontroller is significantly

faster than the PMON’s 8-bit microcontroller PIC18F8722 [6].

This microcontroller also has a wide variety of hardware communication modules

that make it ideal for a flexible system. It has one multimedia secure digital card

communication port for storing data to removable media. Also, a high-speed universal

serial bus (USB) module is available for data transmission with a computer. An eight

channel 10-bit analog to digital converter is available for interfacing with analog sensors.

Additionally, there are two SPI modules with the capability of being set as a master or a

slave. Each SPI module has 4 chip select signals allowing for communication with 8

devices across the two ports. There are also two TWI modules that are capable of

communicating using the I2C protocol. Finally, there are also four USART modules that

are available on the microcontroller.

3.3 Breakout Board Sensor Interface

The greatest asset of the PMON modules is their flexible sensor interface [3]. In

order to maintain this flexibility, the Fusion sensor modules are designed to have a sensor

23

breakout board attached to the main board through a header. This allows different

communication protocols to be used for different applications without redesigning the

entire system. Each application has a unique breakout board that is designed to

communicate to the microcontroller through the header. A variety of communication

protocols are routed to the header to maximize options for different sensor applications.

One of the most common sensor communication protocols is I2C. The lines from

both of the I2C capable modules are routed to the header. By having accesses to both I2C

capable modules, two sensors with the same address can be used.

Another common communication protocol used for sensors is UART. For the

Fusion modules, UART is the primary method for transmitting data directly to a

monitoring computer. Unfortunately, only one device can interface with each UART

module at a time. Consequently, it does not take very many sensors to use up the

available UART modules. Therefore, the lines from three of the microcontroller’s four

available UART modules are routed to the breakout board header. However, UART0 is

primarily used for sending data to the computer (as a terminal or debugging port). This

leaves only two UART lines dedicated to sensor use.

SPI communication protocol is not as common for sensors as UART and I2C, but

there are occasions where it is the only option. There are also occasions when the higher

speed of SPI is very useful. One of the SPI modules is dedicated to communicating with

the ZigBit module as described in Section 3.5. So the lines from only one of the SPI

modules are routed to the breakout header.

24

Sensors are not always set up to communicate digitally. In fact, a fair portion of

sensors have analog output signals. Some analog sensors are self-contained with a simple

voltage output that can be read directly by an ADC. Other analog sensors require

additional circuitry to produce a meaningful voltage output. In either case, an ADC is

required in order for the signal to be processed and recorded. Therefore, seven of the

eight channels of the ADC module on the microcontroller are routed to the breakout

board header. Three of the seven share the I/O lines with the SPI module. So, there are

only four dedicated ADC channels on the header. If more ADC channels are needed,

external ADC's with I2C communication protocols can be added to the breakout board.

3.4 Power

There are a variety of voltages required to operate different sensors. The digital

sensors generally require a set voltage. This voltage is usually 3.3V, but occasionally it is

5V. Analog sensors usually have a range of voltages at which they can operate. So, one

can often use 3.3V or 5V depending on what is available. But some analog sensors

operate with greater accuracy at 5V than 3.3V. Also, it is common for analog sensors

using a 5V source to require a -5V as well. There are sensors that require other voltages.

But 3.3V, 5V, and -5V are the most common for sensors that are suited for battery

operated systems where low power is necessary. Therefore, the Fusion sensor modules

are designed with power regulation for these common voltage levels. The positive 3.3V

and 5V are obtained by using simple switcher regulators. An inverter is used to get the

-5V from the +5V.

25

3.5 Network Communications

One of the critical components of a sensor network is the communication between

sensor modules. The wireless communication between sensor modules is handled by

Atmel’s ZigBit wireless module. The ZigBit module operates at 2.4 GHz with a dual chip

antenna. The ZigBit is compatible with the IEE 802.15.4 ZigBee wireless network

protocol stack [7]. The ZigBee protocol supports a mesh network that supports self-

healing. The ZigBit hardware has several different communication protocols available to

interface with the microcontroller. The options available are USART, I2C, and SPI. The

SPI module was utilized for the purpose of speed. SPI on the ZigBit can transmit as fast

as 500 kbps, whereas I2C can only transmit at 250 kbps, and UART can only transmit at

115.2 kbps. The SPI is transmitting slower than normal because it is actually

synthesizing SPI communication over the USART hardware. Also, the synthesized SPI

can only operate as a Master device. Therefore, the microcontroller operates as the SPI

slave device. Even with these drawbacks, the SPI is the optimal choice because it is faster

and does not have to share I2C lines with other devices.

3.6 Data Storage

It is often necessary to store data either temporarily or long term on the sensor

modules. This usually requires more memory than is available on the microcontroller. A

Secure Digital (SD) memory card is used for this purpose because of its flexibility. The

ability to load files directly from a computer makes the SD card ideally suited to store the

calibration and various sensor settings. The SD memory size can be chosen based on the

26

needs of the application, although it is difficult to find a sensor application that requires

more memory than the smallest SD card on the market today. The SD memory card slot

interfaces with the microcontroller using four bit SD protocol. The microcontroller is able

to support SD V2.0 and SDIO V1.1 specifications.

27

CHAPTER 4: NON-BLOCKING CODING PRACTICES

Non-blocking code, like its name suggests, is code that does not block other

processes from accessing the processor. In an embedded system, there are multiple tasks

that need to be processed at the same time. However, the typical embedded processor can

execute only one task at a time. Anytime one task is being processed, the other tasks are

unable to run. In other words, the other tasks are being blocked. So technically, any time

any task is being executed, it is blocking other tasks from being executed. By this

definition, any system that has more than one task is technically non-blocking. Clearly,

non-blocking code needs to be more clearly defined. A more precise definition of the

practical differences between blocking and non-blocking code will be provided in the

following sections. This chapter will also discuss several coding techniques that are used

in developing non-blocking code.

4.1 Blocking Code

For the purpose of this thesis, code will be considered blocking when one of the

two following conditions is met. It will be considered blocking code whenever the

process being executed is waiting for some external condition. For example, a loop that is

simply waiting for an I/O response before executing the rest of the process (e.g., the wait-

pole approach discussed in Section 2.2). This is not the same as when an array of

characters is processed by a processing loop. In other words, blocking code occurs when

28

processor cycles are spent on something other than useful computation. This results in

inefficient use of processing resources. The second condition is when one task keeps a

time-critical task from being processed. For example, one task performs a processor

intensive calculation on some data that could be done at a later time. This results in

another task that handles incoming data to miss an incoming packet. This type of

blocking code is difficult to detect. The effect of this blocking condition can be fatal to

the system when critical information is either corrupted or lost entirely. These two

blocking conditions are not mutually exclusive. The first blocking condition can often

cause the second condition to occur.

Interfacing with external hardware is not the only situation where blocking code

can become an issue. Avoiding blocking code is also a concern when communicating

from one application to another. Communication between applications can be divided

into two main categories: synchronous and asynchronous. Synchronous communication

has the advantage that the data transmission is guaranteed. However, synchronous

communication is essentially blocking code since communication only occurs when both

applications are ready. For example, suppose that a sensor application requires data from

another sensor in order to complete its calculations. The first sensor application will have

to wait for the results from the second sensor application before it can finish its own

calculations. Consequently, the data throughput can be significantly limited.

Asynchronous communication between applications has the advantage of higher

throughput since data is sent without regard to the receiving application’s status.

However, this requires data buffering, which runs the risk of lost data when the receiving

29

application does not retrieve the data in a timely manner. Asynchronous communication

is typically the better option due to the high throughput, especially when all of the

applications are updated frequently enough to minimize the buffering issues.

While blocking code has a detrimental effect on processing efficiency and can,

under certain conditions, cause serious failures. There are some benefits to using blocking

code. First and foremost, it is easier to write. The very logical flow of code testifies to

this. Consider the basic function call in C shown in Figure 4.1. A function is given some

input parameters. The function then performs an operation and returns a value. Function

calls are sequential in nature. One function finishes its operation before the next function

is started. Blocking code is sequential as well. One task must finish before the next one

gets to start. The sequential nature of blocking code makes it easy to follow and develop.

There are occasions where a task is critical enough to make blocking a necessity.

<Return Type> <Function Name> (<Input Parameters>)

Figure 4.1: Basic Function Call Format

4.2 Non-Blocking Code

Non-blocking code is essentially code that does not block in the manner described

in Section 4.1. However, according to Silberschatz and Galvin, this definition of non-

blocking code can be further divided into categories. The first is when a function call

returns immediately with whatever results are available. The second type is referred to as

asynchronous. For this type, the function call returns immediately, but a callback function

30

is registered for when the data is ready [2]. For the purpose of this thesis, non-blocking

code will be defined as the absence of blocking code defined in the previous section. This

definition encompasses both types described by Silberschatz and Galvin.

As with anything else, there are tradeoffs for implementing non-blocking code.

The primary tradeoff with non-blocking code is its complexity. While it offers a more

effective use of processing resources, it does add a significant amount of complexity. In

order to better understand this complexity, several techniques used to achieve non-

blocking code need to be considered. The first is buffing data. For a task to be non-

blocking, it cannot pause while waiting for data to arrive. Therefore, it is necessary to

safely store data until the task is given an opportunity to process the data. The type of

buffer that is considered in this thesis is the circular buffer (see Section 4.2.1). The

second technique used in the implementation of non-blocking code is a state machine. It

is often necessary to leave a task or function before it is completed to keep from blocking

another task. So, it is important to keep track of what point in the process the task left. A

state machine accomplishes this by having multiple states that represent different points

in the process. The effects and operation of a state machine will be discussed in further

detail in Section 4.2.2. The final technique is the callback function. It is sometimes

necessary to let a task know when an action it requested is completed. A callback function

is an effective way to let the task know without having the task continue to poll the

hardware driver. In Section 4.2.3, the details of callback functions will be discussed in

further detail.

31

4.2.1 Circular Buffer

Most of the buffering needs in embedded systems usually involve transferring

data. When transferring data, it is typically a requirement that the data maintain its order.

The best way to keep it in order is to use a first in first out (FIFO) buffer. A circular buffer

is a FIFO buffer that is well suited for embedded systems. In embedded systems, memory

and processing speed remain two of the most significant limiting factors. Buffers tend to

contribute significantly to memory usage. In larger computing systems, the memory for

buffers is allocated dynamically by a memory manager. However, memory managers tend

to add significant overhead that makes them impractical for small to medium scale

embedded systems. Consequently, buffer memory on embedded systems is usually

permanently allocated. So, it is important for buffers to optimize their use of the available

memory. Circular buffers are one of the simplest buffering methods used to optimize

memory. The basic circular buffer shown in Figure 4.1 is composed of a couple of

pointers and an array of some data type. The two pointers reference the head and tail of

the data. The head points to the location in the array where the next incoming data is

placed. So, as data is received, it is placed at this location and the head is moved to the

next location in the array. The tail points to the location in the array containing the next

data that will be removed from the buffer. After the data is removed, the tail will be

moved to the next location in the array. When either the head or tail reach the end of the

array, they wrap around to the beginning of the memory array. Consequently, this wrap

around results in a buffer that is circular in nature shown in Figure 4.1. Since the buffer is

circular, it continually reuses the memory available without having to be reset. Each read

32

and write only involves one memory access, the increment of a pointer, and a few safety

checks. So, the processing overhead is relatively low.

Figure 4.1: Circular Buffer

While circular buffers are one of simplest techniques used in non-blocking coding

practices, it does have a few potential complications. First, there is the risk of a race

condition occurring. Consider an example where the buffer is empty so that the head and

tail point to the same location on the array. The head is incremented first and the process

is interrupted before the data is loaded. Thus, the pointers indicate that the buffer has data

when it is actually still empty. If the interrupting routine reads from the tail location, it

will get invalid data. This situation is easily prevented by having the head increment only

after the data has been placed in the buffer. Another type of race condition has the

potential to occur when the head or tail is accessed from more than one location. For

example, consider the situation where data is read from the tail, and the process is

33

interrupted before the tail is incremented. If the interrupting routine attempts to read the

memory from the tail, this location will be read twice, and the next location will be

skipped. This problem cannot be fixed by reordering the memory access and pointer

progression. The only solution is to ensure that the head and tail each be accessed from a

single location.

Another complication is that, since the size of the buffer is constant, circular

buffers have the potential to overflow. One approach to solve this problem is to make the

buffer ridiculously big. This ensures that the buffer never has the chance of overflowing.

While this method may be necessary for critical applications, it would negate the point of

using a circular buffer (to make optimal use of memory). In either case, there is always a

chance that some condition will occur that fills the buffer. Therefore, it is important to

minimize the consequences of buffer overflow. The solution could be different

depending on the application. One application might require a flag to be set to stop

incoming data. Another application might be able to simply throw incoming data away

when the buffer is full. In either case, it is necessary to accurately determine when the

buffer is full. This would seem simple except for the fact that the head and tail will point

to the same location on the array when the buffer is full or empty. The key is to not let the

buffer completely fill up. However, due to fact that the buffer wraps around, it is difficult

to determine the amount left in the buffer using math. One of the simplest solutions is to

simply have a variable keep track of how much data is in the buffer. The variable needs

to be updated after the data has been place in the buffer for the same reasons as those

discussed for incrementing the head pointer in the same fashion.

34

While the circular buffers are conceptually simple and efficient, there are a few

subtle problems that make them detail intensive to implement. However, circular buffers

are possibly one of the most effective techniques widely used in implementing non-

blocking code. Circular buffers can be made even more effective by eliminating some of

the details of implementation. This can be accomplished by making a generic circular

buffer that can be reused in multiple applications. This way, the detail intensive testing

part of the implantation only has to be performed once. An example of this can be seen in

Figure 4.3. The circular buffer is composed of a structure that contains information about

the buffer and a memory array that stores the data. The structure stores a pointer to the

start of the data array. When the tail and head reach the end, it is important to know

where to start again. Pointers to the head and tail are also located in the structure. It does

not matter if the head and tail are literally pointers or just offsets from the start of the

array, as long as they accurately reference the locations of the head and tail. The circular

buffer for this research actually used offsets to simplify the math. The used space and size

variables indicate the amount of data in the buffer and the size of the buffer respectively.

By implementing a generic circular buffer, the main problem left is to prevent accessing

the head or tail from more than one spot. For most embedded applications, this is simple.

If the circular buffer is used for a hardware driver, then one end is accessed by the

hardware. This is commonly accomplished in an interrupt routine. The other end of the

circular buffer, in this case, is accessed by the application responsible for using the given

piece of hardware. Solving this problem can get more difficult when circular buffers are

used in high level applications. This is particularly true in embedded systems that are

35

flexible and have a wide variety of applications, as is the case for sensor networks. A

problem occurs when multiple applications need the data from one piece of hardware. In

these situations, it may be necessary to use a data manager.

Figure 4.3: Generic Circular Buffer

4.2.2 State Machine

The finite state machine is essential to non-blocking coding practices. Embedded

systems are generally used in applications that require microcontrollers to interface with a

considerable amount of hardware. Hardware interfaces usually operate at a different

speed to that of the main processor. Consequently, the processor is required to wait when

communicating with hardware interfaces. The waiting can be implemented with blocking

code or by using a state machine to keep track of the hardware’s progress. It is also not

uncommon for embedded systems to have more than one application that is constantly

running. In order for these applications to take turns using the processor, it is necessary to

keep track of the state of each process. Although it is possible under certain conditions to

have a circular buffer operate in an efficient manor without the help of a state machine, it

36

would be highly unlikely to have an entire embedded system running off of non-blocking

code without the use of a state machine.

There are two types of state machines: synchronous and asynchronous. The

essential difference between these is that a synchronous state machine will only change

its state in sync with a particular event. In fact, another name for a synchronous state

machine is an event-driven state machine. In hardware, all the changes in a synchronous

state machine occur at a clock edge [8]. In other words, the clock functions as the event

that drives the state machine. The nature of software is such that the changes to the state

machine will occur in some type of function call. So the function calls work as the event

that drives software state machines. For the purpose of this thesis, state machines will be

referring to the event-driven type. Event-driven state machines can be further categorized

by the type of event that drives them. State machines used for hardware drivers are

usually interrupt driven. Most hardware interfaces have interrupts associated with them.

The interrupts trigger when certain aspects of the hardware interface, defined by the user,

change. These changes are usually designed to coincide with specific states in the driver’s

state machine. Therefore, it usually makes sense to have the state machine be driven by

the interrupt of the associated hardware. On the other hand, application level state

machines are typically driven by a scheduler.

Typically, in embedded systems, the state machines default to an idle state. Upon

receiving a start request from an application or hardware, the driver transitions to the

starting state of the desired action. On simple state machines, there may only be one

possible action sequence that continues to propagate through a set order of states like the

37

one shown in Figure 4.4. Each state is used for keeping track of the time or number of

events that have occurred. Unfortunately, an embedded system is rarely that simple.

Typically, the state machine will have multiple action sequences with their different

starting points. Each action sequence will usually have more factors determining the next

state other than the event driving the state machine. Sometimes, an error will occur in

hardware, and the hardware driver state machine needs to be able to account for the error

condition. It is evident that state machines can be considerably complex. The

considerable differences between each application prevent the easy reuse of a state

machine template. The complexity of state machines is probably one of the most

significant drawbacks to implementing non-blocking code.

Figure 4.4: State Machine

The complexity is not the only issue facing the use of state machines.

Synchronous state machines are critically dependent on the timing of the driving event. In

hardware driven state machine, the driving event is a clock edge, which is typically

reliable. Whereas in software, the driving event is either the task function being called or

38

an interrupt occurring. So, an important state transition will be missed if a condition for

transitioning the state machine occurs momentarily, and the driving event does not occur

during this time. For example, consider a situation where incoming data from a sensor for

an application is received into the applications buffer, but the applications task

responsible to process the data is not called before the data is overwritten. This will result

in the overwritten data never getting processed. It is not always necessary for driving

events to occur at a precise time interval, but it is necessary for them to occur often

enough to not miss any changes of conditions. The timing for applications and other task

driven state machines is usually handled by a scheduler. With a scheduler, it is important

for each task to follow the good citizen approach and release as soon as possible.

Otherwise, another task might miss a critical event.

Another problem is that each state machine requires permanent memory

allocation to keep track of the state and related variables. Good coding practices dictate

that one should avoid using global variables as much as possible for two reasons. First a

global variable permanently consumes a piece of memory which is a valuable resource.

Secondly, global variables decrease the readability of the code [9].

4.2.3 Callback Function

While callback functions are not essential to non-blocking coding practices, they

provide several beneficial services. Callback functions facilitate more efficient use of

memory and processing resources. One benefit to callback functions is that wasted

processing cycles devoted to calls used to monitor the condition of another application

39

are reduced. Furthermore, memory used for flags that indicate when action is completed

is freed up as a result of the use of callback functions.

Callback functions are simply functions that are used to call the user back when a

particular action is complete. Consider a typical example represented in Figure 4.5. In

this case, an application task makes a function call to the hardware driver to perform an

action. What the application and action requested is not important. What is important is

that the action involves waiting for the hardware to respond. So, the hardware driver

starts the action in motion on the hardware, and then immediately returns control back to

the application task. The application then completes whatever else it needs to and returns

control to the scheduler. This is often simply involves the application saving its state. The

scheduler continues to provide the driver task its share of processing time to complete the

action. After the action is complete, the driver task will call the application callback

function to indicate that it is complete. The callback function can update the state

machine or a flag to let the application know that the action is complete. However, even

more importantly, if the application has any time-critical actions based on the ending of

the driver’s action, they can be in the callback function instead of waiting for the

applications task to be executed again.

Figure 4.5: Callback Function

40

The same thing can be accomplished with the use of global flags or a polling

function called from the application. With non-blocking code, there is already more than

enough permanent variables adding to the clutter and consuming memory. So,

eliminating the need for global flags can be a very useful accomplishment in non-

blocking code. Having a polling function inside an application task means that it will be

called every time. This might not seem like much of a cost in processing time, but, if the

application is not doing anything other than checking to see if the driver is finished, it is

doubling the processing cost of the application task at this time. Additional cluttering of

the software aside, this processing time can add up quickly. Since implementation

complexity is one of the largest limitations of non-blocking code, anything that can

simplify the code is a good thing.

4.3 Example Code

It is sometimes easier to see the difference of blocking and non-blocking coding

techniques by comparing an example of each style. The example code shown for both

cases is responsible for transmitting data using specialized hardware on the

microcontroller. The general method would be same for any of the common

communication protocols (UART, SPI, I2C, etc). These examples demonstrate how

blocking techniques are simpler to implement, and how the blocking techniques can be

optimized.

4.3.1 Blocking Code Example

A blocking example of transmitting data using specialized hardware designed to

41

implement a generic digital communication protocol is shown in Figure 4.6. With

blocking code, all of the process occurs in the function call itself. This means that each

function has to wait for each byte to finish before loading the next one. The waiting is

typically done by polling the hardware in a while loop as shown in Figure 4.6. This

method has the advantage that the requested process is complete when the function

returns. The completed process, upon returning control, makes it easier to write

sequential executing code for the calling application.

void blocking_transmit(char *data, int length)
{
 unsigned int i;

 for (i = 0; i < size; i++)
 {
 Example_Write_Register = data++; // put character in hardware

 // write register.

 while(example_Hardware_is_Busy); // poles the hardware waiting
 // for the transmission of the
 // previous character to finish.

 }
 return;
}

Figure 4.6: Blocking Transmit Function

4.3.2 Non-Blocking Example

 The non-blocking transmit is composed of multiple components. This is the main

reason why non-blocking code is so complicated. The first component of the transmit

request is shown in Figure 4.7. The transmit request loads the relevant information into

buffers. The relevant information is composed of the data that needs to be transmitted and

42

a callback function that is used to indicate when the data transmission is complete. The

transmit request immediately returns after loading the buffers and makes sure that the

related interrupt is turned on. By returning as quickly as possible, it prevents other tasks

from being unnecessarily blocked.

void nonblocking_transmit_request(char *data, int length, void *CallbackFunction)
{
 unsigned int i;
 Circular_Buffer_Add(Callback_Buffer,CallbackFunction);

 for (i = 0; i < length; i++)
 {
 Circular_Buffer_Add(Data_Buffer,data++);
 }
 Start_hardware_interupts(); // sometime interrupts need to be restarted
 Return;
}

Figure 4.7: Non-Blocking Transmit Request

The second and most important component of a non-blocking data transmission is

the interrupt service routine shown in Figure 4.8. The interrupt service routine is

responsible for loading the next byte of data into the hardware register after previous byte

is finished transmitting. In order to get the highest performance out of the hardware, the

bytes need to be loaded into the register as soon as the previous one is finished sending.

The interrupt is designed to interrupt the other tasks to execute the service routine. So, the

loading of the register occurs as quickly as possible. If this were handled in the task, it

could occasionally take some time before each byte is loaded. Some data transmissions

are time sensitive, especially when receiving data. Since service routine interrupts other

process, it is important that they are kept as short as possible. So, it is not a good idea to

43

call functions from inside an ISR.

__attribute__((__interrupt__))
void interrupt_service_routine(void)
{
 if (write_register_empty)

{
Write_register = Circular_Buffer_Get(Data_Buffer);

 }
}

Figure 4.8: Non-Blocking Transmit Interrupt Service Routine

The final component is the task shown in Figure 4.9. The task is used to execute

processes that are not time critical and do not fit inside an ISR. The callback function is

called from the driver's task function. The task function monitors the status of the packet

being transferred as a whole and then calls the callback function associated with that

packet after it has completely transmitted. The callback function is typically not time

critical but can be computationally intensive. Consequently, it is better to have the task

handle the callback functions.

void Nonblocking_transmit_task(void)
{
 if (packet_is_completely_sent)
 {
 CallbackFunction = Circular_Buffer_Get(Callback_Buffer);
 (*CallbackFunction)();
 }
 return;
}

Figure 4.9: Non-Blocking Transmit Task

The fact that non-blocking is composed of multiple parts inherently makes it more

complicated. However, by establishing generic structures (i.e., circular buffers) that can

44

be used over again in a similar manner, the development time can be reduced. For

example, implementing the non-blocking I2C driver using these techniques took far less

time than implementing the non-blocking ZigBit Driver did without these techniques. It

is fair to say that developing the ZigBit driver had plenty of problems not related to these

techniques. However, problems with a non-generic circular buffer increased the time it

took to solve these problems. Having established non-blocking techniques decreased

development time by reducing repetition and conflict between developers.

4.4 Appropriate Uses of Blocking Code

While this paper is focused on the benefits and implementation of non-blocking

coding practices, it is necessary to recognize times where blocking code is a better option.

This section will attempt to better define the times when using blocking code is

necessary.

The most common reason for implementing non-blocking code is development

time. There are, in fact, times where it is necessary to sacrifice performance for the sake

of time. For example, during the development stage, in order to test hardware or other

aspects of the system, it may be necessary to temporarily implement some blocking code.

Also, there are situations were speed of operation and full functionality are not as

important as getting the system running as soon as possible. However, this reasoning is

probably used too often.

Another reason for using blocking code could be dictated by the simplicity of a

system. Blocking code might not have detrimental effects on extremely simple systems

45

where there is only one application. When there are not multiple applications competing

for processing time, then the one application will not be able to block other applications.

Initialization routines are another area where it is acceptable to have blocking

calls. It is usually not critical how long the initialization sequence takes to execute. What

is important is that all of the initialization sequences are executed in order. In

microcontrollers, the initialization of one component often requires the initialization of

another component first. Consequently, it is usually necessary to have each initialization

call block until it is complete.

Finally, if an embedded system is complex and large enough, the advantages of

the OS system outweigh the drawbacks of the OS overhead. An operating system behaves

as non-blocking while the coding style is essentially the same as blocking. This is only an

option if the hardware is able to support the OS.

46

CHAPTER 5: NON-BLOCKING ANALISIS

Due the complex nature of embedded systems, it is difficult to measure and show

the practical effectiveness of non-blocking coding practices. It is more meaningful to

examine and analyze the individual parts of the system separately. A hardware driver is

one part of the overall system where the differences are easier to identify and understand.

Sections 5.1 and 5.2 will examine two hardware drivers to show the effects of non-

blocking code techniques. The first driver is an I2C hardware driver that is used to

interface with some sensors. The second is a UART hardware driver responsible for

streaming data to a computer. The Fusion platform described in Chapter 3 is used to

implement the non-blocking code for both examples. Therefore, it would be useful at this

time to provide brief descriptions of the software framework for the hardware drivers.

There are a couple of key aspects to the Fusion sensor node framework that are pertinent

to the driver analysis. These aspects of the framework are scheduling techniques,

network communication layers, and the software framework. The scheduling software is

responsible for calling the applications that use the hardware drivers. This system actually

uses two of the scheduling techniques described in Section 2.4. The code as a whole is

scheduled by a Superloop. That is, the tasks for all the applications and drivers are called

in order from a while loop. This allows each state to continually update their present

status. This is one of the more common scheduling methods used in embedded systems

for blocking and non-blocking techniques. However, in either case, it places the burden

47

of each task to complete its task in the minimum time possible (be a “good citizen”). In

addition to the top level Superloop, a cooperative scheduler is used to control time

sensitive actions like sensor reading. This scheduling technique will be used for both

examples.

In addition to determining the effects of non-blocking code, it will also be useful

to examine the effects of blocking code on a system. Thus, the network communication

will be used to examine the effects that blocking code has on other processes. Many

embedded systems currently use some type of wireless communication. The Fusion

sensor nodes are setup to communicate using Atmel’s ZigBit radios as mentioned in

Section 3.5. The ZigBit radios are responsible for handling the ZigBee wireless mesh

networking. A basic diagram of the code layers for the Fusion network can be seen in

Figure 5.1. The microcontroller is setup to communicate with the Zigbit Driver itself and

utilizes two circular buffers. The Network layer on top of this is responsible for breaking

up large data packets into small enough packets to be sent across the network. The Fusion

Server layer sets up ports between different Fusion modules. The data manager layer is

not actually part of the network. The data manager is responsible for controlling were the

data from the applications is sent. Consequently, it interfaces the network with the

application layer. For the fusion sensor nodes, the application layer consist of the sensor

drivers and any other task that collects data. The Network layers are all implemented

using non-blocking techniques. The network communication will be the process used to

examine the effects that blocking I2C and UART drivers have on other processes.

48

Figure 5.1: Fusion Network Software Interface

The entire Fusion framework, which includes the network and schedulers, is built

on top of the software development framework that was provided with the Atmel

microcontroller. This development framework includes drivers and service routine for

interfacing with the hardware [10]. Unfortunately, there are large parts of the supplied

framework that are implemented using blocking techniques. In these situations, it is often

necessary to replace the existing blocking framework using non-blocking techniques. For

example, the non-blocking UART driver bypassed the supplied UART driver that was

supplied with the microcontroller. On the other hand, the blocking example of UART

driver was built on top of the supplied UART driver.

5.1 I2C Hardware Driver Analysis

The I2C communication on the Fusion sensor nodes is primarily used to

communicate with sensors. For this example, it will be communicating with three

different sensors: a magnetometer, an accelerometer, and a gyroscope. These sensors

were chosen due to the fact that they are commonly used in applications requiring high

sample rates. These sensors are designed to sample at tens of milliseconds. Some I2C

49

sensors, designed for slower applications, do not have the ability to sample at this rate. In

this example, three measurements each are read from the magnetometer and

accelerometer while four measurements are read from the gyroscope for a total of ten

measurements. However, since it is possible to retrieve all of the measurements from one

sensor with one I2C reading, it will only require three I2C communication packets to

retrieve all ten measurements.

 I2C is a fairly complicated communication protocol. Each I2C communication is

composed of several parts. Every communication starts with a device address so that the

devices (sensors in this case) can tell to which one the communication is directed. The

last bit in the device address byte is used to indicate a read or write. In addition to

sending a device address, some sensors have multiple registers and require a register

address to indicate which one to access. In addition to the complicated formats of I2C,

start and stop bits are also required at the beginning and end of the communication along

with acknowledgement signals after each byte. Fortunately, the Fusion microcontroller

has specialized I2C hardware that is capable of handling the signaling details. Hardware

registers still need to be set for the I2C hardware to know what to communicate.

Consequently, each communication needs to have all the relevant information associated

with it. Furthermore, multiple I2C devices will share the same buffer and the information

will be different for each device.

5.1.1 I2C Blocking Driver Description

The blocking I2C driver is fairly simple. It does not use a state machine or circular

50

buffer. It waits for each stage (device address, the register address, and each data byte) to

finish before moving on to the next stage. Only after the entire I2C communication is

finished and an acknowledgement is received from the device for the last stage does the

function return control to the calling application.

5.1.2 I2C Non-Blocking Driver Description

Since I2C is a relatively complicated communication protocol, it requires all of the

non-blocking techniques discussed in Chapter 4. It utilizes a couple of generic circular

buffer, a state machine, and callback functions.

A circular buffer of pointers is used for both the read and the write

communications in the I2C driver. Pointers are used to minimize memory usage and

complexity. The pointers in the buffer point to I2C packet structures as shown in Figure

5.2. Each packet contains the relevant information for an I2C communication. The packet

structure contains pointers to both a device structure, data buffer, and a callback function.

The device structure contains the information relevant to that device, such as its address

and the module to which the device is connected. So, multiple communication packets

can be created for one device and pointed to its device structure. The data buffer that the

structure points to shown in Figure 5.2 is used for the purpose of storing the actual data.

The device structure also contains communication details such as data length, register

address, register address length, and a read/write indicator. The device driver application

is responsible for instantiating and maintaining the device structures and buffers for each

I2C communication packet. So, memory is only set aside for the applications requiring

51

I2C communication. This minimizes the amount memory that is required for the circular

buffers. However, this implementation does have the drawback that the users of the I2C

module have the responsibility of managing the structures themselves.

Implementing a circular buffer has added a considerable amount of complexity.

However, using a generic buffer has reduced the complexity via the use of pointer to

structures. The generic circular buffer discussed here is the same format as the one used

in the UART example. The pointer setup on the circular buffer has the additional benefit

of reducing the overhead on read and write request calls. When the read or write function

is called, the only input parameter needed is a pointer to the structure created in the

device driver. The read/write function simply places the pointer on the circular buffer and

then returns.

Figure 5.2: Fusion I2C Driver

52

The callback function is used to further simplify the operation of letting each

device driver know when its packet has been sent or received. With the variety of devices

and sensor packets, it would take a complex system of flags to indicate to each device

driver which packets had been processed. By having a pointer to the callback function in

the I2C packet structure, the device driver has complete control over the callback

response. The callback function is typically used to simply set a flag for the device driver

once a communication has finished.

The state machine on the I2C goes through the same process as the blocking

communication. The main difference is that, wherever the blocking driver would wait, the

state machine has a state representing that position. This state is maintained without

keeping control of the processor until the hardware receives the required information. The

state machine is driven by the hardware interrupt. The hardware interrupt is set to trigger

when changes relevant to the state machine occur. At each interrupt, a series of conditions

are checked to make sure that there are not any errors, and that the system is ready to

move to the next state.

5.1.3 I2C Waveform Analysis

For this example, the same three sensors previously mentioned are read using

both blocking and non-blocking I2C function calls. Each of these sensors is read every

5ms. In order to visually examine the effects of blocking code, a couple of general

purpose input output (GPIO) pins were used to indicate the start and end of function calls

53

related to I2C communication. These GPIO pins were viewed on a digital logic analyzer

along with the associated I2C signals. Snapshots of the blocking and non-blocking results

from digital analyzer are shown in Figures 5.3 and 5.4, respectively. The signal used to

represent the time spent executing the I2C functions is D11. It is set high at the beginning

and set low at the end of every I2C function call. So, the amount of time spent in each

function is indicated by the signal remaining high. In a similar fashion, the D10 signal

represents the time spent executing the Sensor Task. The D10 signal is set high when

entering the Sensor Task function and is set low when upon completion. The sensor task’s

application is responsible for the devices that use the I2C communication. Signals D1

and D0 represent the I2C data and clock lines, respectively.

54

Figure 5.3: Blocking I2C Waveform (a) 20ms Resolution (b) 1ms Resolution

With the Superloop scheduling method, the processor continually loops through

all of the tasks. When none of the tasks block, the main scheduling loop will be executed

in a very short time. This results in signal D10, which represents the sensor task

execution time, toggling so quickly that it appears as solid section in Figure 5.3(a). There

is a resolution of 20 ms per division for Figure 5.3(a). When I2C communication occurs,

signal D10 is held high indicating that the sensor task is blocking the main scheduling

loop. The I2C communication is indicated by the solid portions on the D1 and D0 signals

in Figure 5.3(a). The reason the scheduling loop is blocked during I2C communication is

55

due to the fact that the I2C read function indicated by D11 block the sensor task, which in

turn blocks the scheduler. In this example, the accelerometer and gyroscope are typically

read from inside the same sensor task call. This is why both D11 and D10 are held high

during the blocking I2C communication.

 In the wider section of I2C activity, the D11 signal has two sections indicating

that there are two I2C communications that take place in one sensor task call. These are

the I2C communications for reading the accelerometer and gyroscope sensors. The

narrower I2C activity sections indicate when the magnetometer is read. It can be seen

from Figure 5.3(a) that all of three sensors are read once every 50ms in this example.

Figure 5.3(b) displays a zoomed-in view of accelerometer and gyroscope sensor readings

at a resolution of 1ms per division. The decoded I2C message is displayed in the lower

part of Figure 5.3(b). The I2C address of the accelerometer is 0x1D, and the gyroscope is

0x69. The relatively slow nature of I2C communication results in the sensor reads taking

considerably longer than the typical scheduler cycle. Figure 5.3(b) shows that the

scheduler typically cycles well over ten times per millisecond. Whereas, the I2C sensor

read can easily exceed 4ms. Figure 5.3(b) shows that it typically takes longer than 8ms to

complete the sensor task when the two sensors are read. Figure 5.3(a) show a

magnetometer takes about half as much time, which is 4ms. So, there is a total of 20ms

activity on the I2C communication lines every 50ms. During this time, the main

scheduling loop is kept from cycling. This means that approximately 24% of processing

time is wasted on simply polling I2C hardware. Furthermore, Superloop schedulers work

on the basis that all of the tasks are cycled though at least once before any state machine

56

needs to change. So, if one of the tasks block for much more than a millisecond, there is a

good chance another task will miss an important state update. For some systems (e.g., this

sensor system), this could only result in losing a couple of data samples. However, for

some systems (e.g., a critical control system), a missed state change could result in

catastrophic failure. So, it is important to consider the possible failures before risking the

use of blocking code.

In contrast, Figure 5.4 shows that, with the non-blocking example, the sensor task

does not block the main scheduler from cycling through the tasks. For ease of

comparison, Figure 5.4 displays the non-blocking example similarly to the blocking

example in Figure 5.3. All of the signals are represented by the same names (D0, D1,

etc.) that were used for the blocking example in Figure 5.3. The only difference for the

example shown in Figure 5.4 is the use of a non-blocking I2C driver to interface with the

sensor. The non-blocking driver uses an I2C task to execute callback functions. Thus,

signal D11 is held high whenever the I2C task function is called in addition to the I2C

read and writes. Since the non-blocking I2C driver releases control back to the sensor task

when read requests are called, the scheduler continues to cycle while the sensors are

being read. Figure 5.4(a), which is also has a resolution of 20ms per division, shows both

the I2C tasks and the sensor tasks are cycling at the same time as the microcontroller is

communicating with the sensors. There is the occasional blip where a task takes a little

longer than usual. This blip is usually caused by the sensor task processing the data

directly after the I2C read is completed. Figure 5.4(b), which has a resolution 1ms per

division, shows an example of how the processing of the data usually takes about 0.5ms.

57

So, even though the total I2C communication activity is still over 12ms every 50ms, there

is only 2ms of this time where the Sensor Task blocks the main scheduling loop from

cycling at its normal pace. This means that about only 4% of the processing time is spent

waiting on the sensor task with a non-blocking I2C driver. This means that about 20% of

the processer availability is freed in this example. If the system never uses more than

80% of the processing time, then wasting 20% may not be a significant problem. This is

particularly true if the system’s only task is reading the sensors. However, there are

occasions where the system using less than 50% might still have a time-critical occasion

that cannot afford to be blocked for more than 1ms at a time. In this situation, the wasted

time is irrelevant since the I2C reads block for more than 4ms at a time.

58

Figure 5.4: Non-Blocking I2C Waveform (a) 20ms Resolution (b) 1ms Resolution

While a sample period of 50ms may be very short for some sensors, it is actually

relatively slow for inertial navigation applications where accelerometers, gyroscopes, and

magnetometers are commonly used. This is a practical example of how blocking code can

have a detrimental effect on a system. Clearly, the exact effects of blocking code are

different in each application. As a result of many of the factors involved, it is difficult to

determine analytically how blocking code will affect other tasks.

59

5.1.4 I2C Throughput Analysis

One of the biggest problems with blocking calls is how they affect the

performance of other tasks. For this example, the effects of blocking calls on the network

communication tasks are examined. This section will examine how blocking I2C calls

will affect other completely separate tasks. The other tasks for this example will be the

network. In order to examine the effects on the network, measurements from analog

sensors are sent across the network. Analog sensors were chosen for the simple fact that

they are not directly affected by the I2C driver. The two analog sensors were read every

120ms and sent through the data manager directly to UART0 and across the ZigBee

network to the Fusion coordinator module. This works out to be about 16.7

measurements per second. A monitoring computer receives the measurements from

UART0 and the Fusion coordinator. The number of measurements are compared to see

how many measurements are dropped by the network communication. This provides a

practical way to measure the effects of blocking and non-blocking I2C drivers on the

network by comparing the amount of lost measurements for both.

All of the tests in this example use the same analog sensor measurement and

network setup. Each test involves several I2C sensors reading at different rates with

blocking and non-blocking drivers. In order to keep the I2C sensor measurements from

directly affecting the throughput of the network, the measurements were not sent to the

network or the UART. As in Section 5.1.3, the three I2C sensors used are an

accelerometer, gyroscope, and a magnetometer. Five tests with different sampling periods

were performed using both blocking and non-blocking I2C drivers. The different

60

sampling periods demonstrate how the effects change when the system is pushed to its

limits. The length for each test was approximately 5 minutes.

The results of using the non-blocking I2C driver are shown in Table 5.1. The

results from the blocking I2C driver are shown in Table 5.1. The imprecise time it takes

for the network to establish a connection resulted in slight variation in the total number of

measurements for each test. Only measurements after a network connection was made

were counted in this test since they would be the only measurements for which

transmitting across the network was attempted. As shown in Table 5.1, none of the analog

measurements were dropped by the network task when the non-blocking I2C reads were

used. On the other hand, 1,611 of the 4,995 analog measurements were dropped by the

network tasks for the test utilizing blocking function calls.

Table 5.1: Non-Blocking I2C Driver Effect on Network Tasks
I2C Non-Blocking Code Sample Period 50 ms 40 ms 30 ms 20 ms 10 ms

Analog Sensor Measurements Collected 4994 4983 5015 4989 4992

Analog Sensor Measurements Dropped by Network 0 0 0 0 0

Table 5.1: Blocking I2C Driver Effect on Network Tasks
I2C Blocking Code Sample Period 50 ms 40 ms 30 ms 20 ms 10 ms

Analog Sensor Measurements Collected 4991 4995 5019 4995 4995

Analog Sensor Measurements Dropped by Network 0 0 17 18 1611

Another way to look at these test results is displayed in Figure 5.5. The

throughput represents the percentage of measurements that make it through the network.

Since none of the measurements were dropped when the non-blocking I2C driver was

61

being used, the throughput was 100% for all non-blocking I2C tests (shown in Figure

5.5). The frequency of I2C function calls indicates how often the I2C sensors were being

read. So, for the test where all three sensors were being read every 10ms, there were 300

function calls every second.

Figure 5.5 shows that increasing the frequency of blocking I2C calls also increases

the adverse effects on the network. The network throughput dramatically drops off to

68% when the when the I2C blocking functions are called 300 times a second. However,

these drastic effects of the blocking I2C calls only occur when the system is taxed to its

limits. Even under the best conditions, the network cannot handle much more than the

16.7 analog measurements per second without dropping measurements. At lower sample

rates, the effects of blocking code are not noticeable. In fact, the network’s throughput is

still over 99% at a 150Hz sample rate. This demonstrates that there are occasions where

blocking code does not have the detrimental effects on other tasks if they are not very

long and the maximum performance of the system is not needed.

62

Figure 5.5: I2C Effect on Network Throughput

5.2 UART Driver Analysis

The UART protocol is used to communicate with both sensors and the monitoring

computer. In addition to status information of the network, it is often necessary to send all

of the data from the sensors to the monitoring computer. Since the fusion modules are

designed to be capable of supporting a considerable number of sensors, the quantity of

data sent to the monitoring computer can be quite large. Consequently, the UART

interface needs to be capable of handling a high data rate.

UART communication is one of the simplest forms of serial communication. One

aspect in particular that makes UART simple is the fact that it is limited to interfacing

between only two devices (point-to-point communication). UART protocol has two

communication lines in addition to a ground. As indicated by the name, one of the lines is

for transmitting and the other is for receiving. Data is sent from one device’s transmit line

to the other device’s receive line. Data is typically transmitted one byte at a time. The

0
10
20
30
40
50
60
70
80
90

100

60 75 100 150 300

N
e
tw

o
rk
 m

e
as
u
rm

e
n
t
Th

ro
u
gh
p
u
t
(%

)

Frequency of I2C Function Calls (Hz)

Non‐Blocking I2C Code Blocking I2C Code

63

microcontroller on the fusion module’s UART hardware has received and transmit data

registers that hold one byte of data. Since data is being sent to one location one byte at a

time, the communication procedure simply consists of loading the transmit register one

byte at a time and reading the receive register one byte at a time. The difficulty lies with

the fact that, if another byte of data is sent before the receive register is read, the previous

byte of data will be lost. Also, the UART module has to finish sending before the next

byte can be loaded into the transmit register. This can present difficulty since most of the

data messages sent are multiple bytes long.

5.2.1 UART Blocking Driver

The blocking UART driver is shown in Figure 5.6(a). The write function of the

blocking driver is directly responsible for loading all of the byte from one message into

the transmit register. So, the write function loads one byte into the transmit register and

then sits there and poles the hardware until the byte is finished sending. Upon the

completion of sending one byte, another is loaded into the transmit register. The write

function continues this process until the entire message is sent, at which point the

function releases control of the processor. The read function will retrieve a specified

number of bytes from the receive transmitter as they come in. The read function

continues to poll the receive register until the entire message is received. Since the time

for the message to arrive is indeterminate, it is necessary to have a timeout counter that

stops the waiting if it takes too long. However, it should be noted that the receive

function is not used in the following tests.

64

Figure 5.6: Fusion UART Driver (a) Blocking Driver (b) Non-Blocking Driver

5.2.2 UART Non-Blocking Driver

The UART driver is an example of a simpler non-blocking system. The only one

of the non-blocking components discussed in Chapter 4 that was needed for this driver is

a circular buffer. The main reasons for this are the simplicity of UART communications.

UART communication simply consists of transmitting a series of bytes on one line, and

receiving a series of bytes on another line. A couple of circular buffers are used: one for

the receive side and the other for the transmit side (as shown in Figure 5.6(b)). The write

function simply loads the message into the transmit buffer and returns. A direct memory

access (DMA) module on the fusion board automatically loads the next byte into transmit

65

register from the circular buffer after each byte is sent. The DMA further reduces the load

on the processor since transferring of data occurs in hardware without the need to

interrupt the processor at every byte. However, the DMA also adds to the complexity of

the system since a modified circular buffer is needed to interface with the DMA. The

receive set up is essentially the reverse of the write setup, with the DMA loading the

circular buffer and the receive function retrieving data from the circular buffer. The

primary difference is that, while the write function placed the entire message on the

buffer, the read will only retrieve whatever data is available until it reaches the requested

message length. Since each byte of a message is sent in the same manner, there is no need

for a state machine. Consequently, it is also unnecessary to have a UART task to update a

state machine. In addition, since the applications do not typically need to know exactly

when a message is sent, using callback functions is not really necessary.

5.2.3 UART Waveform Analysis

For this example, the effects of a blocking UART driver were tested on UART1 of

the Fusion modules. UART1 was chosen since UART0 is already being used to

communicate directly with the monitoring computer. The rest of the framework on the

Fusion module continued to run, including the non-blocking driver on UART0. For this

example, a 100 byte long message was transmitted every 5ms on UART1. Similarly to

the way the I2C waveform analysis was performed, GPIO signals were triggered to

indicate when a UART function started and ended. The digital analyzer was used to

capture the results, which are displayed in Figures 5.7 and 5.8. Signal D13 is held high

66

during any function call related to UART1. Signal D10 is used to represent the sensor

task function just as it was in the I2C example. Signals D2 and D3 are the UART’s

receive and transmit lines, respectively.

The effects of using blocking UART write function calls are displayed in Figure

5.7(a) at a resolution of 20ms per division. The thicker portions of D3 show exactly when

the data is being transmitted. During this time, D13 is held high, indicating that the

UART write function is maintaining control of the processor. The other tasks on the

Superloop are blocked from being executed while the UART is sending the message. This

is demonstrated by signal D10 being held low when the message is transmitted and

continually cycles the rest of the time. Figure 5.7(b) displays a zoomed in view of the

message at a resolution of 1ms per division. The 100 byte message blocks for well over

8ms as seen in Figure 5.7(b). Since this message is sent every 50ms, about 16% of the

processing time is spent on the UART write function.

67

Figure 5.7: Blocking UART Waveform

Figure 5.8(a) shows the non-blocking results at a resolution of 20ms per division.

Signal D13 shows that UART functions are called briefly at the beginning and end of the

message transmission. The blip at the beginning of the transmission is the write function.

Figure 5.8(b) has a resolution of 1ms per division, and shows that the write function takes

less than 0.2ms to load the data into the circular buffer. The blip at the end of the message

is the DMA interrupt routine, indicating the data transfer requested is complete. This

interrupt is used for updating the reference pointers on the circular buffer, and requires

even less time than the write function. The total processing time used for one message is

68

less than 0.25ms. So, less than 0.5% of the processing time is dedicated to the UART

when the driver is non-blocking. For this example, 15.5% percent of processor cycles are

saved by using a non-blocking driver.

Figure 5.8: Non-Blocking UART Waveform

5.2.4 UART Blocking Driver Effects on Network Throughput

Similarly to the I2C example, the network communication tasks are used to

examine the effects of the blocking UART driver on other system tasks. About 16.7

analog measurements per second are sent through the data manager directly to the

69

monitoring computer through UART0 and across the ZigBee network to the Fusion

coordinator module. The number of measurements dropped by the network

communication is used to determine the effects of blocking and non-blocking UART

drivers. In order to keep the blocking driver from having any direct effect on the collected

analog measurements, the UART0 driver was kept non-blocking for all of the tests. Only

the UART1 driver was tested with blocking and non-blocking code. The same 100 byte

long message used in Section 4.2.3 was sent directly to UART1 at different intervals. The

different message intervals demonstrate how the effects change when the system is

pushed to its limits. Just like the I2C tests, the length for each of these tests was about 5

minutes.

The results of the using the non-blocking and blocking UART drivers are shown

in Tables 5.3 and 5.4, respectively. The imprecise time it takes for the network to

establish a connection resulted in slight variation in the total number of measurements for

each test. Like the I2C example, the non-blocking UART driver does not cause the

network task to lose any of the transmitted measurements as shown in Table 5.1. Unlike

the I2C example, the blocking effects are still noticeable at the lower communication rates

of the UART. It is easier to see this aspect in Figure 5.9, which graphically displays the

network throughput as a percentage of analog measurements that make it to the

coordinator. While higher frequency of blocking function calls generally resulted in the

lower network throughput (85% at 100Hz), this trend was not consistent for all

frequencies. The network only dropped 6 measurements with a blocking UART driver

sending measurements at intervals of 30ms (see Table 5.4). It is possible that at 30ms the

70

timing is such that network events do not occur at the same time as the blocking UART

communication. However, the sensor scheduler resolution of 10ms prevented this

explanation from being examined further. Consequently, the exact level of detrimental

effects from blocking code is unpredictable. The only certainty is that, if the blocking

function call is long enough or occurs often enough, they will have detrimental effects on

other system tasks.

Table 5.3: Non-Blocking UART Driver Effect on Network Tasks
UART Non-Blocking Call Interval 50 ms 40 ms 30 ms 20 ms 10 ms

Analog Sensor Measurements Collected 4985 4984 5006 5000 5008

Analog Sensor Measurements Dropped by Network 0 0 0 0 0

Table 5.4: Blocking UART Driver Effect on Network Tasks
UART Blocking Call Interval 50 ms 40 ms 30 ms 20 ms 10 ms

Analog Sensor Measurements Collected 4981 5000 4987 4993 4984

Analog Sensor Measurements Dropped by Network 198 316 6 443 745

Figure 5.9: UART Effect on Network Throughput

0
10
20
30
40
50
60
70
80
90

100

20.0 25.0 33.3 50.0 100.0

N
e
tw

o
rk
 M

e
as
u
rm

e
n
t
Th

ro
u
gh
p
u
t
(%

)

Frequency of UART Function Calls (Hz)

Non‐Blocking UART Code Blocking UART Code

71

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

Software is a critical component of most embedded systems. Several coding

techniques were discussed in this thesis that can greatly improve the effective use of

embedded system hardware. Medium scale embedded system microcontrollers have

specialized hardware that is designed to interface with different communication

protocols. With supporting software that does not block, it is possible to fully utilize the

specialized hardware that will, in turn, improve the performance of the embedded system.

This thesis has demonstrated that blocking code in one area can have severely detrimental

effects on other parts of a system. The degree to which blocking code affects the rest of

the system is dependent on multiple factors of which the duration and frequency of the

blocking calls play a significant part. Due to the unreliability of blocking code, it is

highly recommended that the non-blocking techniques be used on critical systems (e.g.,

vehicle controls, weapons systems, etc.).

Developing non-blocking code can be quite a time-consuming challenge. By

using the techniques in a systematic manner as described this thesis, the development

time can be reduced. However, the wide variety of embedded systems makes it difficult

to apply the same generic non-blocking coding techniques to all embedded systems.

Consequently, it is not possible to reduce development time for non-blocking code to a

72

level directly compatible with blocking code. So, blocking code is still worth using on

occasions were reliability and performance are not as important as a quick development

time.

An operating system accomplishes many of the same goals as non-blocking

coding practices without significantly increasing development time. However, operating

systems typically require more overhead in the form of memory and processor speed. So,

in cases where the system has enough memory and processing speed to support an

operating system, it is typically the better choice.

6.2 Future Work

Many non-blocking coding techniques relevant to medium scale embedded

systems were covered in this thesis. However, there were other aspects that stood out as

having the potential to contribute to this systematic approach to non-blocking systems.

These areas are linked lists and secure digital (SD) card interface.

6.2.1 Linked List

Linked lists are standard data structures that can be used for buffering or long

term storage. The primary advantage of linked lists is that data can be removed from any

part the list. Whereas, circular buffers data can only remove data from one part of the

buffer. The simplicity of circular buffers works very well for data that needs to be

transferred in the order it is loaded into the buffer. However, there are situations when it

is desirable to have the ability to prioritize data buffers so that more time-critical

communication is processed first. This is particularly applicable to I2C where multiple

73

sensors are attached to the same module and use the same buffer. Some I2C sensors have

higher time constraints than other sensors. Therefore, there are occasions where it is

beneficial to place sensors with higher time constraints at the front of the buffer. A linked

list with each link having a priority would effectively achieve this purpose. The I2C driver

could load the links with the highest priority. There a few potential issue with priority

management to consider. However, it would be worth examining if a generic linked list

would be a practical non-blocking solution for this type of situations. It may be that a

generic linked list solution is not possible without incurring too much overhead for

medium scale embedded systems.

6.2.2 SD Card Interface

SD card are commonly used on embedded systems to store data. The Fusion node

has an SD card to store sensor measurements and calibration data in separate files. A file

management system is used to make it significantly easier to read and write data to the

SD card. A file management system is included in the provided framework for the

microcontroller on the Fusion sensor nodes [10]. This file management system supports

the file allocation table (FAT) files system that most SD cards use [11]. The FAT file

system is a common protocol that is supported by almost all computers, allowing files

generated on an embedded system like the Fusion nodes to be read on SD reader on a

computer. This is one of the reasons why SD are cards commonly used in embedded

systems. However, the file management system included in with the framework uses

blocking techniques. It would be worth investigating to see how difficult it would be to

74

replace the blocking code with non-blocking code using the techniques described in this

thesis. Like other embedded systems, the fusion node’s file management system is

composed of multiple levels [11]. The multiple layers add to the complication of

implementing non-blocking techniques. Implementing non-blocking techniques requires

all of the interfacing layers to conform to the same non-blocking practices. Therefore, it

may be necessary to completely redo the file management, which could take a

considerable amount of development time. It is possible that implementing non-blocking

coding techniques could prove to be impracticable on complex file management systems.

75

REFERENCES

[1] Madhusudan, R., Keerthi, T., & Nitin, N. "Comparison of Process Scheduling
Methodologies for Embedded Systems," Emerging Trends in Engineering and
Technology (ICETET), 2009 2nd International Conference on , vol.1, no.1, pp.387-
391, 16-18 Dec. 2009

[2] Silberschatz, A. and Galvin, P. Operating System Concepts, 5th. Menlo Park
California: Addison-Wesley 1998. Print

[3] Owen, M. "Portable Wireless Multipurpose Sensor System for Environmental
Monitoring," M.S. thesis, Boise State University, Boise, ID, 2007.

[4] Loo, S., Owen, M., & Kiepert, J. “Modular, Portable, Reconfigurable, and Wireless
Sensing System,” Journal of ASTM International, Vol. 5, No. 4, May 2008.

[5] AT32UC3A3/A4 Series Preliminary." Atmel Corporation. March 2010. Web, 28
Feb 2011.

[6] “PIC18F8722 Family Datasheet” Microchip Technology Inc. Feb 2008. Web 28
Feb 2011

[7] “ZigBit 2.4 GHz Wireless Modules” Atmel Corporation. 2011, Web, 28 Feb 2011.

[8] Brown, Stephen, and Zvonko Vranesic. Fundamentals of Digital Logic with VHDL
Design. 2nd. NY: McGraw-Hil, 2005. Print

[9] Pook, M., Loo, S. M., Planting, A., Kiepert, J., & Klein, D. (2010). “Coding
Practices for Embedded Systems,” 2010 ASEE Annual Conference 10.1 (2010).
Print.

[10] “AVR UC3 Software Framework”.Atmel Corporation. May 2007. Web, 28 Feb
2011.

[11] “AVR114: Using the ATMEL File System management for AT32UC3x,
At90USBx, and ATmega32U4” Atmel Corporation. Sept. 2008. Web, 28 Feb 2011.

