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Abstract
Ransdell, LB, Murray, T, Gao, Y, Jones, P, and Bycura, D. A 4-year profile of game demands in elite women’s Division I college
basketball. J Strength Cond Res 34(3): 632–638, 2020—Workload for a Division I women’s collegiate basketball team (0.817 win
percentage) was examined by: (a) season, (b) player position, and (c) game outcome (wins vs. losses). Female athletes (n5 6,mean
19.76 1.5 years, at beginning of study) wore Catapult S5 units during 91.8% of games over a 4-year period. Average PlayerLoad,
PlayerLoad per minute (PL·min21), high inertial movement analysis (high-IMA), and jumps were quantified using Catapult Openfield
software (version 1.14.1+). Data were checked for normality and log- or square-root-transformed when they were non-normal. A
series of linear mixed model analyses were conducted to detect differences in PlayerLoad, PL·min21, high-IMA, and jumps by
season, position, and game outcome. PL·min21 and jumps data were not normal, so they were transformed, analyses were run;
because there were no differences in findings, data are reported in original units to allow for comparisons with other studies.
Cohen’s d and confidence intervals were provided as additional information about the strength of reported differences. The 3 most
consistent findings were that across a 4-year period, jumps increased, PL·min21 was higher in guards compared with posts, and
high-IMA was higher in losses compared with wins. Other workload patterns were inconsistent, and inappropriate for making
conclusive statements. Therefore, comparing jumps across multiple seasons, PL·min21 by player position and high-IMA in losses
are important; in addition, all data can be used to profile National Collegiate Athletic Association Division I women’s basketball
players and set game workload expectations.

Key Words: workload, catapult, athlete monitoring, wearable technology

Introduction

Division I National Collegiate Athletic Association (NCAA)
college basketball is highly competitive, and female athletes
playing at this level represent incredible talent. The Division I
college basketball season is long and demanding. Teams play
30–35 regular season games (1–3 games per week) over a 5-
month period (November–March) before conference tourna-
ments and the NCAA Tournament. Participating in postseason
play can add another 10 games to reach the National Champi-
onship. Because of the length and intensity of the season, many
coaches are now examining game demands (i.e., workload) in an
effort to maximize performance.

Workload consists of whole body movements expressed as an ac-
cumulated load that combines rate of change in acceleration in 3
planes of movement: up/down (z), side/side (y), and forward/
backward (x); movements are ultimately scaled and expressed as
AUs (20). Workload can be effectively assessed in basketball games
and practices by using wearable tracking devices. Tracking of athletes
who compete indoors combines gyroscopes (which determine the
orientation of an athlete’s body position), magnetometers (which

measure direction, similar to a digital compass) and accelerometers
(whichassessmovement in3dimensions) intoanoninvasive, small (96
352mm), wearable device (e.g., Catapult OptimEye S5,Melbourne,
Australia) (6,12,13). These devices are movement-based rather than
position-based, and they collect data on accelerations, decelerations,
jumps, and change of direction (38). Data provide a unique oppor-
tunity for a deep analysis of workload using sport- and position-
specific information.

Wearable devices are revolutionizing how teamsplan training and
manage athletes, and researchers have recently published reviews on
the use of these wearable devices (5,11,12) and the physiological
demands and activity patterns of basketball players (34). Quantify-
ing player workloads is fundamental to understanding the physical
demands of a sport, and managing player risk (e.g., fatigue) and
readiness (e.g., fitness) for sport. Specifically, workload monitoring
during basketball games and practices is essential for (a) un-
derstanding sport-specific activities and metrics (e.g., PlayerLoad,
jumps, and PlayerLoad per minute, an indicator of intensity of effort
over time), (b) explaining acute changes in performance, (c) in-
creasing understanding of training responses (and sport-specific
training), and (d) facilitating effective planning and individualization
of training (12). In addition, load monitoring during games can be
used for technical and tactical evaluations (e.g., subbing and using
specific players in specific situations), educating players and coaches
about their performance, and developing databases of player profile
metrics and elite performance models (18).

Profiling elite collegiate women’s basketball players by season
(longitudinally) gives coaches and researchers an idea of how
players mature over time, and how workloads may increase with
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experience. Halperin et al. (16) suggest that longitudinal studies
have greater external validity (e.g., findings aremore like“real-life”
and generalizable to other groups) and internal validity (e.g., more
confidence that the intervention contributed to the outcome). Ex-
amining workload by game outcome and player position enables
researchers to determine optimal workload, although opponent
strength undoubtedly affects this value, and individual players may
vary in their workload ability. Awareness of workload by game
outcome is relevant, because coaches often tend to practice more
after losses, and during losing seasons, which may increase fatigue
and overuse injury risk. Ideally, knowledge of workloadmetrics by
year, player position, and game outcome enables coaches and
researchers to determine optimal workload.

Despite the well-established benefits of monitoring player
workload, there is little information about the competition
(game) workload demands of female basketball players. Scanlan
et al. (29) compared workloads by player position and game
quarter in state-level Australian women basketball players over 8
games to assess competition demands. Matthew and Delextrat
(19) and Oba and Okuda (23) have also profiled the metabolic
demands of women basketball players during competition (e.g.,
heart rate, blood lactate, and time motion analysis), but previous
data involving female athletes were collected over short periods of
time (19,23,29), and only one study with female athletes has in-
cluded data from a full season (24).

To our knowledge, no previous study has longitudinally quantified
player workloads during games in NCAA Division I women’s bas-
ketball players from theUnited States of America (USA) over a period
of years, by player position, and by game outcome (e.g., wins vs.
losses). Recent studies have called for more research on female bas-
ketball players (34), more longitudinal assessments of player work-
load (7,31), assessmentsof howworkloadmaychangeacrossmultiple
seasons or games (12,29), and how workload varies by player posi-
tion (24) or game outcome (13,30). If we understand game demands
using longitudinal data, more effective short- and long-term planning
can occur by season, player position, and game outcome.

Therefore, the purpose of this studywas to quantify competition
workloads: (a) ofwomen’s basketball players froman eliteDivision
I program over 4 seasons (2014–2017), (b) by player position
(guards vs. posts), and (c) by game outcome (wins vs. losses).

Methods

Experimental Approach to the Problem

A longitudinal, retrospective, and observational study design was
used to examine 4 Catapult metrics by season of competition
(2014–2017), player position (guards vs. posts), and game out-
come (wins vs. losses). Sport science data were regularly collected
by the sports performance coaches at a large urban university in
the southeastern USA, thus data were available from 6 female
basketball athletes during games over the past 4 seasons. Games
in Division I women’s basketball consisted of 2 3 20-minute
halves in 2014–2015 and 2015–2016, and 4 3 10 minute quar-
ters in 2016–2017 and 2017–2018.

Four (4) workload variables were selected for analysis, based on
their common use in basketball, and their value in quantifying player
workload for strength and conditioning staff members. These varia-
bles included: (a) average PlayerLoad (PL), in arbitrary units (AUs),
an overall indicator of work performed during games that includes
change of acceleration (forward, backward, sideways, and upward),
divided by a scaling factor; (b) PlayerLoad per minute (PL·min21),
which indicates intensity of effort over time; (c) average high inertial

movement analysis (high-IMA), which is a metric that combines ac-
celeration, deceleration, change of direction, and free running, when
the acceleration is greater than or equal to 3.50 m·s21·s22, and (d)
average jumps,which are calculatedusing analgorithm that estimates
jumpheight based onhang time in the air (e.g., difference between the
time the athlete leaves the ground until the athlete lands again).

Wearable devices have demonstrated acceptable reliability and
validity in previous studies with soccer (3,6), Australian football (4),
andduring treadmill running (2).Nicolella et al. (22) found acceptable
intra and interdevice accuracy and reliability for Catapult/PlayerLoad
using standardizedmovements inmultipledirectionsat4 levels ofpeak
acceleration. When the devices were compared with a reference ac-
celerometer, effect sizes indicating differences were trivial to small.

Subjects

Six (n 5 6) NCAA Collegiate Division 1 female basketball players
competing in one of the top conferences in women’s college bas-
ketball, the Atlantic Coast Conference, participated in the study.
Athletes ranged in age from 18 to 22 years (mean age 19.7 6 1.5
years at the start of the study). Although data were collected on all
members of the roster, game data used for analysiswere for the top 6
players on the team. From this group, 4 players had complete game
data in 2014–2015 (2were red-shirted), 6 players had complete data
in 2015–2016, 5 in 2016–2017 (one was red-shirted), and 3 in
2017–2018 (3 graduated). These top 6 players were determined
based onminutes played over the course of the season (starters, plus
next highest minute earner), and data were compared across the 4
seasons for athletes, as is described inTable 1.Only guards andposts
were compared in this study, because the universitywhere datawere
collected categorizes players as guards or posts (centers plus for-
wards). Subjects signed informed consent forms to participate in the
study when they started each new competitive season. Institutional
review board approval was secured from the University of
Louisville.

Procedures

The Catapult OptimEye S5, which was used to collect data, was
placed ina supportiveharness andpositionedon theback,between the
scapulae ina standardized location,before everygame; equipmentwas
removed immediately after the game (4). Players were assigned the
samewearable device every game (22), by trained technicians, and the
pre and postgame routines for unit distribution, activation, and col-
lectionwere standardized. In addition, only data that corresponded to
the start and end time of the game, excluding quarter or halftime
breaks or time-outs, were included in the analysis (17). Catapult data
were downloaded and analyzed using Catapult software (Openfield;
Catapult Innovations, Melbourne, Australia), before being exported
to a Microsoft Excel Spreadsheet (Redmond, WA).

Statistical Analyses

Mean and SDs were calculated for all descriptive and workload
variables. Data are presented by season, player position (guards vs.
posts), and game outcome (wins vs. losses). Normality of the 4
workload variables (PlayerLoad, PL·min21, high-IMAs, and jumps)
was checked through Kolmogorov-Smirnov tests (33), and data
were normalized through logarithmic or square root transformation
if the distributions were not normal. Because of the data structure
(i.e., multiple observations were nested within each subject then
across multiple (4) seasons and/or game outcomes), a series of linear
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mixed model analyses were conducted (24). Linear mixed models
were used to determine whether there were differences in the 4
workload variables (i.e., PlayerLoad, PL·min21, high-IMAs, and
jumps) by season, player position, and game outcome.

Normality tests indicated that variables PlayerLoad and high-
IMAs were normally distributed overall, by season, by game out-
come, and by position, p$ 0.05, but PL·min21 and jumpswere not.
Therefore, these 2 variables were normalized (PL·min21 through
logarithmic transformation and jumps through square root trans-
formation). However, the linear mixed model analyses on nor-
malized and non-normalized PL·min21 and jumps data revealed
similar results; therefore, results using original PL·min21 and jumps
data are reported in this paper to facilitate future data comparisons.

Where appropriate, Cohen’s d (9), with 0.2–0.49 as small,
0.5–0.79 medium, and 0.8 and above large, along with 95%
confidence intervals, were reported. All statistical analyses were
conducted using SPSS 25 and significance level was set at 0.05.

Results

Team Success Statistics and Player Monitoring Information

The win-loss records, number of games monitored, and number
of players monitored for the 4 seasons (from 2014 to 2017) are
presented in Table 1. Win percentages were consistently high
across the 4-year period, with the highest win percentage occur-
ring in 2017–2018, when the team advanced to the final 4 of the
NCAA Women’s Division I Championship.

Results by Season

Table 2 presents aggregate average PlayerLoad, PL·min21, high-
IMA, and jumps by season. Linearmixedmodel analyses revealed
a significant main effect on 3 of the 4 variables measured. Average
4-year PlayerLoad was significantly different across seasons (p5
0.002). Further analyses revealed that PlayerLoad was signifi-
cantly higher in 2015–2016 (p 5 0.024, d 5 0.37) and
2016–2017 (p 5 0.047, d 5 0.30) than in 2017–2018. In addi-
tion, PlayerLoad was lower in 2014–2015 than in 2015–2016 (p
5 0.001, d 5 0.58) and 2016–2017 (p 5 0.002, d 5 0.48. Av-
erage 4-year PL·min21 was also significantly different across
seasons, p , 0.001, where PL·min21 in 2016–2017 was signifi-
cantly lower than in the other 3 seasons, and effect sizes for all of
these comparisons were large (d5 0.81–1.03). A significant main
effect of season on jumps was observed (p 5 0.002) where aver-
age jumps in the first season (2014–2015) were statistically lower
than those in 2016–2017 (p 5 0.022, d 5 0.30) and 2017–2018
(p 5 0.001, d 5 0.55), and average jumps in the second season
(2015–2016) were also significantly lower than those in
2017–2018 (p 5 0.01, d 5 0.44).There were no statistical dif-
ferences in high-IMAs across the 4 seasons, p 5 0.114.

Results by Player Position

Table 3 presents game averages by player position, and by season.
In general, it seems as if guards had significantly higher Player-
Load than posts (p 5 0.004); however, a closer look indicates
a significant season-by-position interaction (p , 0.001). There

Table 1

Win-loss records across past four seasons, percentage of games monitored, and number of players monitored.

Season Losses (n) Percentage (%) Wins (n) Percentage (%) Total games (% games monitored) Players monitored (n)

2014–2015 7 20.6 27 79.4 34 (79%) 4

2015–2016 8 23.5 26 76.5 34 (88%) 6

2016–2017 8 21.6 29 78.4 37 (100%) 5

2017–2018 3 7.7 36 92.3 39 (100%) 3

4-year average 6.5 18.3 28.3 81.7 36 (91.8%)

Table 2

Game averages by season.*†

Season Player load Player load/min High IMA Jumps

2014–2015 587.9 6 165.3 7.3 6 1.0 47.1 6 16.5 81.9 6 24.0

2015–2016 682.7 6 162.9 7.4 6 1.3 54.2 6 20.3 85.8 6 26.9

2016–2017 678.1 6 198.0 6.4 6 1.1 52.1 6 19.4 92.4 6 39.2

2017–2018 626.1 6 131.1 7.4 6 0.9 52.3 6 14.2 99.7 6 38.2

4-year average 655.6 6 173.2‡§ 7.1 6 1.2‡§ 52.1 6 18.5 89.8 6 33.4‡§

Season comparisons
Cohen’s

d (95% CI for d)
Cohen’s

d (95% CI for d)
Cohen’s

d (95% CI for d)
Cohen’s

d (95% CI for d)

2014–2015 vs. 2015–2016 0.58 (0.32 to 0.83)§ 0.03 (20.22 to 0.28) 0.37 (0.12 to 0.62) 0.15 (20.1 to 0.4)

2014–2015 vs. 2016–2017 0.48 (0.22 to 0.74)§ 0.91 (0.64 to 1.17)§ 0.27 (0.02 to 0.53) 0.30 (0.04 to 0.56)‖

2014–2015 vs. 2017–2018 0.26 (20.03 to 0.54) 0.13 (20.16 to 0.41) 0.34 (0.06 to 0.63) 0.55 (0.26 to 0.83)§

2015–16 vs. 2016–2017 0.03 (20.18 to 0.23) 0.81 (0.6 to 1.02)§ 0.10 (20.1 to 0.31) 0.20 (20.01 to 0.4)

2015–2016 vs. 2017–2018 0.37 (0.13 to 0.61)‖ 0.07 (20.17 to 0.31) 0.10 (20.14 to 0.34) 0.44 (0.2 to 0.68){
2016–2017 vs. 2017–2018 0.30 (0.05 to 0.54)‖ 1.03 (0.77 to 1.28)§ 0.01 (20.23 to 0.25) 0.19 (20.06 to 0.43)

*IMA 5 inertial movement analysis; CI 5 confidence interval.

†Numbers in upper panel are presented as mean6 SD; numbers in lower panel represents effect size Cohen’s d (95% CIs for d); Cohen’s d effect sizes5 0.2–0.49 is small, 0.5–0.79 is medium, and 0.8 or

higher is large.

‡Significant main effect of season.

§Significant differences between comparisons, where p , 0.005.

‖Significant differences between comparisons, where p , 0.05.

{Significant differences between comparisons, where p , 0.01.
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were many inconsistencies in the data by player position and by
season. Specifically, there were no PlayerLoad differences be-
tween guards and posts in 2015–2016 season (p 5 0.247, d 5
0.16), guards had significantly lower PlayerLoad than posts in
2014–2015 season (p 5 0.008, d 5 0.52), and such differences
reversed in 2016–2017 (p, 0.001, d5 0.62) and 2017–2018 (p
, 0.001, d 5 1.31) when guards had significantly higher Play-
erLoad than posts.

Table 3 also shows that over the 4 seasons, guards had statis-
tically higher PL·min21 than posts (p, 0.001, d5 0.68), and this
was consistent across 2015–2016, 2016–2017, and 2017–2018
seasons (p , 0.001); however, in 2014–2015, no difference in
PL·min21 between guards and posts was observed (p 5 0.071,
d 5 0.34).

When high-IMA was examined over 4 seasons, posts had
higher high-IMAs than guards (p 5 0.003, d 5 0.14). Further
analysis revealed a significant season-by-position interaction (p,
0.001) which showed inconsistent results over time. Guards had
significantly lower high-IMAs than posts in 2014–2015 (p ,
0.001, d 5 0.87) and 2015–2016 (p , 0.001, d 5 0.51), but
higher high-IMAs than posts in 2016–2017 (p, 0.001, d5 0.55)
and similar high IMAs to posts in 2017–2018 (p 5 0.12).

When 4 seasons of jumps were examined, guards registered
more jumps than posts (p, 0.001, d5 0.24). On further analysis,
results were inconsistent over time. Specifically, no statistical
differences were observed in jumps between guards and posts in
2014–2015 (p5 0.35, d5 0.27) and 2015–2016 (p5 0.705, d5
0.06); guards had significantly higher jumps than posts in
2016–2017 (p, 0.001, d5 0.81), and significantly lower jumps
than posts in 2017–2018 (p 5 0.015, d 5 0.41).

Results by Game Outcome (Wins vs. Losses)

Table 4 presents PlayerLoad, PL·min21, high-IMA and jumps by
game outcome. Linear mixed models revealed no statistical dif-
ferences in PlayerLoad (p 5 0.095), PL·min21 (p 5 0.654), and
jumps (p 5 0.766) by game outcome. However, a main effect of

game outcome on high-IMAs was observed (p 5 0.015): players
consistently experienced significantly higher high-IMAs in games
that were lost compared with those that were won, which was
much more evident during the most successful season
(2017–2018), Cohen’s d 5 1.03.

Discussion

The most important findings of the study were that: (a) averages,
effect sizes, and variability for PlayerLoad, PL·min21, high-IMA,
and jumps were established for this sample, such that a range of
values for a player profile nowexists; (b) consistent findings include
an increase in jumps in the last 2 seasons compared with the first 2
seasons, higher PL·min21 in guards comparedwith forwards in the
last 3 seasons measured, and higher high-IMA in losses compared
with wins; (c) with the exception of the consistent workload pat-
terns mentioned above, other values were inconsistent across sea-
son, by player position, and by game outcome.

Previous research has not profiled workload variables in
a sample of NCAA Division I women’s basketball players during
competition, nor has previous research in men or women exam-
ined workload longitudinally over multiple seasons. Because
values for PlayerLoad, PL·min21, high-IMA, and jumps fell
within a consistent range, these values can be used to (a) establish
a range of gamemetrics for the 4measured variables by individual
player, team, or player position, (b) set game expectations, and (c)
establish practices and strength and conditioning sessions that
approximate these values, as part of a periodized program, so that
practice intensity matches that of games. The consistency in these
workload values may also point to the importance of building
a systematic, individualized, data-based, and long-term plan for
athletes.

In one of the few studies to report data that can be compared to
ours, Fox et al. (14) used wearable devices on 15 semiprofessional
male basketball players and reported lower PlayerLoad during
competition (448 6 118) than during games-based training (624
6 113, d5 1.54) or physical conditioning (6326 139, d5 1.36).

Table 3

Game averages by season and player position (guard and post).*†

Year

Player load Cohen’s
d (95% CI for d)

Player load·min21
Cohen’s

d (95% CI for d)Guard Post Guard Post

2014–2015 531.2 6 140.0 614.8 6 170.5 0.52 (0.06 to 0.96)‡ 7.5 6 0.9 7.2 6 1.0 0.34 (20.11 to 0.78)

2015–2016 669.9 6 178.3 695.6 6 145.5 0.16 (20.12 to 0.44) 7.6 6 1.4 7.1 6 1.2 0.38 (0.1 to 0.66)§

2016–2017 751.7 6 175.1# 633.2 6 198.4 0.62 (0.31 to 0.93)§ 6.9 6 1.0 6.1 6 1.0 0.80 (0.48 to 1.11)§

2017–2018 676.4 6 121.8# 529.9 6 88.1 1.31 (0.86 to 1.74)§ 7.9 6 0.8 6.6 6 0.5 1.74 (1.26 to 2.2)§

4-year average 676.8 6 170.9 637.2 6 173.3 0.23 (0.06 to 0.4)§‖ 7.5 6 1.2# 6.7 6 1.1 0.68 (0.51 to 0.85)§‖

Year

High IMA Cohen’s
d (95% CI for d)

Jumps Cohen’s
d (95% CI for d)Guard Post Guard Post

2014–2015 38.0 6 16.2 51.4 6 14.9 0.87 (0.40 to 1.32)§ 86.4 6 22.4 79.8 6 24.7 0.27 (20.17 to 0.72)

2015–2016 49.2 6 22.8 59.2 6 15.9 0.51 (0.22 to 0.79)§ 85.0 6 25.2 86.6 6 28.6 0.06 (20.22 to 0.34)

2016–2017 58.5 6 20.0# 48.2 6 18.1 0.55 (0.24 to 0.86)§ 110.8 6 37.7# 81.2 6 35.9 0.81 (0.49 to 1.12)§

2017–2018 50.6 6 14.3 55.7 6 13.6 0.36 (20.05 to 0.76) 94.5 6 43.4 109.8 6 22.6 0.41 (0 to 0.81){
4-year average 50.7 6 20.2 53.3 6 16.9 0.14 (20.03 to 0.31)§‖ 94.1 6 35.3 86.1 6 31.4 0.24 (0.08 to 0.41)§‖

*IMA 5 inertial movement analysis; CI 5 confidence interval.

†Numbers are presented as mean 6 SD, and effect size Cohen’s d (95% CIs for d); Cohen’s d effect sizes 5 0.2–0.49 is small, 0.5–0.79 is medium, and 0.8 or higher is large.

‡Significant differences between comparisons, where p , 0.01.

§Significant differences between comparisons, where p , 0.005.

‖Significant season by player’s position interaction.

{Significant differences between comparisons, where p , 0.05.

#Significant differences by season, where p , 0.01.
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Heishman et al. (17) and Svilar et al. (35) examined elite male
basketball players (Division I; n 5 10; 20.9 years, and Euro-
league; n5 13; 25.7 years, respectively), and reported that mean
PlayerLoad during practices was 338 6 38, and 315 6 90, re-
spectively. Female PlayerLoad values from the present study were
similar to male PlayerLoad values during games-based training
and physical conditioning (14), and notably higher than that of
men during practices (17,35) and in one study, games (14). What
is unclear from the previous studies withmale athletes (14,17,35),
is the type of activities conducted during practice or the level of
competition faced in game play. It is possible that these studies
with men were done during lower-level game play or practice,
that more substitutes or rest breaks were available (and playing
time differences may explain workload differences), or that game
and practice tactics and strategies were different.

Few data exist that profile jumping during competition and
practice for female athletes. Of the women’s data that were
reported using video analysis (34), a high of 43 6 5 jumps was
reported in the State Basketball League in Australia (29) and a low
of 166 6 jumpswas reported in USADivision II NCAACollegiate
basketball championships (21). Differences between data from the
present study and other women’s data may be related to variations
in level of competition (practice vs. gameplay), length of gameplay,
playing time differences (which may change across a college ca-
reer), or style of play (27). It is also possible that different techni-
ques used to collect data (i.e., video vs. accelerometer) may explain
variation in results (28). More research is needed to profile differ-
ences in jumps during practices and games, using consistent tech-
nology, across various levels of competition, and by age and sex.

In the present study, although many workload values did not
demonstrate a consistent pattern, 3 important patterns were
noted across the sample. First, the number of jumps increased
significantly from the first 2 years of monitoring (2014–2015 and
2015–2016) to the last 2 years (2016–2017 and 2017–2018). An
increase in the number of game-based jumps over time is in-
dicative of high-level longitudinal athletic performance in bas-
ketball (8,32). Theoretically, if an athlete is jumping more in
games as her career progresses, performance should improve.
This significant increase in the number of game-based jumps over

time is consistent with the fact that the win-loss record for the
team over the 4-year period was consistently near 80%, and the
last year win percentage was the highest. So, training to jump and
monitoring number of jumps during games may have a positive
effect on performance, and teams can monitor jumps over time to
see whether increases in jumps are related to improvements in
performance.

Second, average PL·min21 was higher in guards compared with
posts in all but the first year of data collection. Guards often cover
large areas of the court, offensively and defensively, (e.g., dribbling
the ball up the court, breaking a press, or implementing a press),
making this finding consistent with previous literature using time
motion analysis that concluded that guards tend to havemore high-
intensity activity than posts (10,12,15). In addition, previous re-
searchwithmale basketball athletes has shown that comparedwith
posts, guards typically have faster acceleration, agility, and speed
(5- and 10-m performances) (1,25,27,31), and they may be able to
accelerate easier with less applied force because of their lower body
mass (12,26). Theoretically, these positional baseline differences in
acceleration, agility, and speed should be related to guards re-
cording higher PL·min21 values compared with posts (36).

Third, high-IMA was statistically higher during losses com-
paredwithwins. The idea that high-IMAwas higher during losses
could indicate increased workload to regain a lead after a deficit,
or a lack of “flow” that can occur in stressful situations (37).
Interestingly, high-IMA varied significantly by year and player
position. Some years it was higher for posts and other years it was
higher for guards. This may indicate that high-IMA varies
according to the style of play of the team.

There were other interesting fluctuations in workload by po-
sition. For example, PlayerLoadwas significantly higher for posts
than guards in 2014–2015, and it was significantly higher for
guards comparedwith posts in 2016–2017 and 2017–2018.High
inertial movement analysis was significantly higher for posts
compared with guards in 2014–2015 and 2015–2016, but higher
for guards compared with posts in 2016–2017. These fluctua-
tions in workload variables could be due to player maturation
over time or strength of schedule (with strong opposing athletes
matching up with different positions).

Table 4

Game averages by outcome (wins and losses).*†

Year

Player load Cohen’s
d (95% CI for d)

Player load·min21
Cohen’s

d (95% CI for d)L W L W

2014–2015 610.8 6 183.2 580.9 6 160.2 0.18 (20.31 to 0.67) 7.2 6 0.9 7.4 6 1.0 0.24 (20.25 to 0.73)

2015–2016 693.4 6 180.1 679.2 6 157.4 0.09 (20.24 to 0.41) 7.3 6 1.4 7.4 6 1.3 0.1 (20.23 to 0.42)

2016–2017 699.5 6 217.8 672.1 6 192.5 0.14 (20.22 to 0.5) 6.3 6 1.2 6.4 6 1.1 0.11 (20.25 to 0.47)

2017–2018 718.9 6 88.7 617.4 6 131.4 0.79 (0.09 to 1.47) 7.5 6 0.8 7.4 6 1.0 0.09 (20.6 to 0.77)

4-year average 682.4 6 190.0 648.7 6 168.1 0.20 (20.01 to 0.4) 6.9 6 1.3 7.1 6 1.2 0.13 (20.07 to 0.33)

Year

High IMA Cohen’s
d (95% CI for d)

Jumps Cohen’s
d (95% CI for d)L W L W

2014–2015 51.0 6 16.7 45.9 6 16.4 0.31 (20.18 to 0.8) 82.5 6 22.3 81.7 6 24.7 0.03 (20.46 to 0.52)

2015–2016 58.0 6 22.4 52.9 6 19.4 0.25 (20.08 to 0.58) 85.7 6 26.0 85.9 6 27.3 0.01 (20.32 to 0.33)

2016–2017 53.5 6 20.8 51.7 6 19.1 0.09 (20.27 to 0.45) 87.8 6 40.1 93.7 6 39 0.15 (20.21 to 0.51)

2017–2018 65.2 6 10.7 51.1 6 13.9 1.03 (0.33 to 1.72) 109.8 6 38.7 98.8 6 38.2 0.29 (20.4 to 0.97)

4-year average 55.8 6 20.4 51.1 6 17.9 0.26 (0.05 to 0.46)‡§ 87.7 6 32.1 90.4 6 33.8 0.08 (20.12 to 0.28)

*IMA 5 inertial movement analysis; CI 5 confidence interval.

†Numbers are presented as mean 6 SD, and effect size Cohen’s d (95% CIs for d); Cohen’s d effect sizes 5 0.2–0.49 is small, 0.5–0.79 is medium, and 0.8 or higher is large.

‡Significant main effect of outcome.

§Significant differences between comparisons, where p , 0.05.
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In addition to statistically significant differences, nonsignificant
differences are also worth noting. For example, PlayerLoad and
jumpswere similar regardless of game outcome.Consistent profiles
of these values across the team, regardless of player position, year,
or game outcome, may point to the ability of coaches of elite teams
to motivate athletes to put forth consistent game effort, or it may
point to an ability to recruit athletes with similar athletic profiles.
The fact that many of the workload values were not statistically
different across season indicates that all athletes are working sim-
ilarly, regardless of player position. Intuitively, it makes sense that
when teams are all working hard together, they have the most
potential for success.

Although this is the first study to report longitudinal (4-year),
descriptive data on aDivision I elite women’s basketball team, it is
not without limitations. The sample size is relatively small, and
only one team is included. Results are specific to this team, and
based on differences in player ability, fitness, and game scores,
which may vary by opponent ability and tactical game strategies.
Therefore, study results may not be generalizable to other levels of
women’s teams (high school, club, other collegiate levels: Division
II and III, or professional teams such as the Women’s National
Basketball Association or WNBA), or to men who play
basketball.

Finally, because data collection and analysis vary by software
and analysis sought, findings may be difficult to compare. Nic-
ollella et al. (22) recommends that researchers should work to
standardize device placement strategies, metrics used, and the
methods used to calculate results.

In the future, researchers should continue to examine longi-
tudinal training, practice and game habits of elite athletes, and
they should seek to link workload metrics with injury rates and
game statistics (e.g., free throw or field goal percentage). It would
also be interesting to examine whether game demands, perfor-
mance, and injury rates differ when the game is played in halves or
quarters. Finally, researchers and strength and conditioning
coaches should use data collected to develop the optimal peri-
odization scheme, and level of work expected in practices and
games—by individual athlete and as a team.

Practical Applications

Performance or strength and conditioning coaches working
with basketball teams can use these findings in a variety of
ways. Working backwards from a solid understanding of
game workloads, performance coaches can work with
coaching staff to effectively organize daily training (practi-
ces) to optimize player readiness for game day. In addition to
daily loads, ideally performance coaches will organize
weekly and monthly loading plans by including volume and
intensity, to ensure progressions and practice demands are
appropriate and effective for optimizing performance for
each player.

Another way to use game monitoring is to correlate game-
day workload metrics with physiological measures related to
recovery (e.g., creatine kinase, subjective rating of muscle
soreness, rating of perceived exertion, or perceptive recovery
quality.

A more ambitious possibility related to daily load mon-
itoring is the ability to correlate key performance metrics
with key basketball box score metrics. For example,

coaches could ask whether there is a relationship between
multiple day (2-, 3-, and 4-day) PlayerLoads leading in to
games, and subsequent game-day shooting percentage. It is
important to monitor practice loads and to ensure that
weekly totals are planned according to an effective pro-
gression early in the season, ensuring the acute loads align
well with chronic loads.
Similarly, data can be used to identify which variables best

predict optimal player characteristics, or optimal player
characteristics for critical moments within games. Finally, as
previously discussed, coaches can use this information to
identify critical performance benchmarks, develop practice
plans that align with key practice outcomes, andmodel testing
and training protocols after one of the topwomen’s basketball
programs in the USA.
In conclusion, the 3 most consistent findings were that

jumps increased in the last 2 years compared with the first 2
years, PL·min21 was higher in guards compared with posts in
3 of the seasons assessed, and high-IMA was higher in losses
comparedwithwins. Otherworkload patterns examinedwere
inconsistent, unpredictable by season, and they were not ad-
equate for making conclusive statements. Therefore, paying
attention to jumps, PL·min21, and high-IMA relative to sea-
son, player position and game outcomes, respectively, is im-
portant. For example, monitoring jumps during game play
and over an athlete’s career, may provide benchmarks and
motivate athletes to jump more during games, which ulti-
mately could lead to enhanced performance. It is also possible
that monitoring PL·min21 by player position may motivate
forwards to produce higher levels of PL·min21, or facilitate
friendly competition to increase movement intensity during
game play. Finally, recognizing that high-IMA is higher dur-
ing losses compared to wins, it makes sense to encourage
athletes to focus on flow or natural movement during a game
as compared to tense, less coordinated movements that
sometimes occur when an athlete is playing “not to lose”
rather than “playing to win.”
The longitudinal team averages can best be used to profile

athletes and set game workload expectations for NCAA
Division I women’s basketball players. Clearly, objective
game data are essential for advancing the understanding of
game demands, allowing for the implementation of en-
hanced player development and preparation strategies.
Equally important, an understanding of game workloads
and specific intensity metrics are essential for managing
noncontact injury risk. This information should assist per-
formance coaches and basketball coaches alike in developing
improved player monitoring systems during the competitive
season.
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