
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Computer Science Faculty Publications and 
Presentations Department of Computer Science 

2-8-2019 

Recommender Systems Notation Recommender Systems Notation 

Michael D. Ekstrand 
Boise State University 

Joseph A. Konstan 
University of Minnesota 

Publication Information Publication Information 
Ekstrand, Michael D. and Konstan, Joseph A. (2019). "Recommender Systems Notation". Computer 
Science Faculty Publications and Presentations, 177. https://doi.org/10.18122/cs_facpubs/177/
boisestate 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.18122/cs_facpubs/177/boisestate
https://doi.org/10.18122/cs_facpubs/177/boisestate


Recommender Systems Notation 
Proposed Common Notation for Teaching and Research 

Michael D. Ekstrand1 and Joseph A. Konstan2 

1 People and Information Research Team, Boise State University. michaelekstrand@boisestate.edu 
2 GroupLens Center for Social and Human-Centered Computing, University of Minnesota. konstan@umn.edu 

INTRODUCTION 
As the field of recommender systems has developed, authors have used a myriad of notations for 
describing the mathematical workings of recommendation algorithms. These notations appear 
in research papers, books, lecture notes, blog posts, and software documentation. The discipli-
nary diversity of the field has not contributed to consistency in notation; scholars whose home 
base is in information retrieval have different habits and expectations than those in machine 
learning or human-computer interaction. 

In the course of years of teaching and research on recommender systems, we have seen the value 
in adopting a consistent notation across our work. This has been particularly highlighted in our 
development of the Recommender Systems MOOC on Coursera (Konstan et al. 2015), as we need to 
explain a wide variety of algorithms and our learners are not well-served by changing notation 
between algorithms. 

In this paper, we describe the notation we have adopted in our work, along with its justification 
and some discussion of considered alternatives. We present this in hope that it will be useful to 
others writing and teaching about recommender systems. This notation has served us well for 
some time now, in research, online education, and traditional classroom instruction. We feel it 
is ready for broad use. 

DESIGN GOALS 
We have several design goals in order to support a wide range of recommender exposition. Some 
of these are in conflict, and we navigate tensions between competing desiderata in some of our 
specific decisions. 

Flexibility 
We desire our notation to be flexible to a wide range of algorithms; it should apply equally well to 
neighborhood models and advanced learning-to-rank applications. 

Clarity 
We want to minimize the guesswork required in order to interpret notation. When feasible, com-
mon symbols should be connected to their referents. Notation should not be ambiguous. 

                                                             



Concision 
At the same time, notation should not be overly verbose. While we favor clarity over terseness, 
clarity is not always well-served by cumbersome explicit notation. 

Commonality 
When practical, we also seek to use common notation from other fields. For example, if it is fea-
sible to reuse common linear algebra notation, we seek to do so. 

Usability by Hand 
To support educational use, as well as whiteboard collaboration in office and lab environments, 
we want our notation to be legible when hand-written. In particular, we avoid distinctions in 
symbols that are difficult to replicate in handwriting. 

RECOMMENDATION INPUTS 
With these in mind, we begin with notation for the underlying objects in a recommender system. 

We denote items 𝑖, 𝑗 ∈ 𝐼 and users 𝑢, 𝑣 ∈ 𝑈. We consistently maintain a distinction between the 
variables used to denote users and items to avoid ambiguity. If we need more than two users or 
items, we use numeric subscripts, such as 𝑖1, 𝑖2, … , 𝑖𝑛. 

User-item preference data is denoted in the form of a |𝑈| × |𝐼| ratings matrix 𝑅. 𝑅 is sparsely 
observed; in a mild abuse of notation, we also consider 𝑅 as a set, and write 𝑟𝑢𝑖 ∈ 𝑅 to denote that 
we have a rating or other observed or inferred preference from user 𝑢 for item 𝑖. 

We can then denote subsets of these sets. 𝑅𝑢 is the set of ratings by user 𝑢 and 𝑅𝑖  is the set of 
ratings of item 𝑖. Since we use distinct variables for user and items, the direction of the subset 
operation is clear from context. We can also denote user and item rating vectors by 𝑟𝑢 and 𝑟𝑖, 
which again are sparsely observed. In typed material we will sometimes use boldface 𝐫𝑢 and 𝐫𝑖. 

We find it useful to also denote subsets of users and items. 𝐼𝑢 = {𝑖 ∈ 𝐼: 𝑟𝑢𝑖 ∈ 𝑅𝑢} is the set of 
items that have been rated by 𝑢, and likewise 𝑈𝑖 = {𝑢 ∈ 𝑈: 𝑟𝑢𝑖 ∈ 𝑅𝑖} is the set of users who have 
rated 𝑖. 

Overload Note: Our use of 𝐼 for the set of items conflicts with the common use of 𝐼 as the identity 
matrix. We find item sets to be a significantly more common notational need than identity ma-
trices. Therefore, when an identity matrix is required, the less common but precedented notation 
of 𝐸 or 𝟏 may be used. 

Summary Statistics 
This notation lends itself well to a number of summary statistics: 

|𝐼𝑢| The number of items rated or consumed by user 𝑢. 



|𝑈𝑖| The number of users who have rated or consumed item 𝑖. 

|𝑅𝑢| The number of ratings provided by 𝑢 (|𝑅𝑢| = |𝐼𝑢| unless there are repeated rat-
ings for the same user-item pair). 

|𝑅𝑖| The number of ratings provided for 𝑖 (likewise, |𝑅𝑖| = |𝑈𝑖| in the absence of re-
peated ratings) 

�̅�𝑢, �̅�𝑖  The average of user 𝑢 or item 𝑖’s ratings: 𝑟𝑢 =
∑ 𝑟𝑢𝑖𝑖∈𝐼𝑢

|𝑅𝑢|
 ̅

Unobserved Underlying Data 
It is sometimes useful to refer to underlying “true preference” scores of which ratings are a noisy 
observation. We denote these scores 𝜋𝑢𝑖 ∈ Π. If we want to model a rating as being preference 
plus Gaussian noise (psychologically unrealistic but precedented in the recommender systems 
literature), we can say: 

𝑟𝑢𝑖 = 𝜋𝑢𝑖 + 𝜖𝑢𝑖 
𝜖𝑢𝑖 ∼ Normal(0, 𝜎) 

RECOMMENDATION OUTPUTS 
Many recommendation algorithms compute an ordering of items for a user. The recommendation 
request may also be associated with a context and/or an explicit representation of a user infor-
mation need, such as a search query. We can denote this with an ordering function 𝑂: 

𝑂(𝑖|𝑢, ℎ, 𝑥): 𝐼 × 𝑈 × 𝐻 × 𝑋 → 𝐼∗ 

Where 𝐻 is a set of queries or task descriptions, and 𝑋 a set of contexts or context cues. 

Recommendation is often performed by a top-N ranking using some per-item score; such a score 
is also the basis of rating prediction or preference estimation. We can similarly denote this with 
a function 𝑠: 

𝑠(𝑖|𝑢, ℎ, 𝑥): 𝐼 × 𝑈 × 𝐻 × 𝑋 → ℝ 

For both of these functions, any given implementation may only depend on a subset of the input 
variables. This enables our notation to encompass a wide range of specific applications in the 
recommendation and search space; for example: 

 𝑠(𝑖|𝑢) — a traditional personalized recommender 
 𝑠(𝑖|ℎ) — a traditional search engine 
 𝑠(𝑖|𝑢, 𝑥) — a context-aware search engine 
 𝑠(𝑖|𝑢, ℎ, 𝑥) — context-aware personalized search 



Note: we have considered several different variables to denote the set of queries or task descrip-
tions. Earlier versions of this notation used 𝑄, but that overloads with the common use of 𝑄 as 
the right-hand side of a matrix decomposition. We also considered 𝑇 for task, but that would 
result in denoting individual task descriptions by 𝑡, which causes unfortunate overload with the 
near-universal use of 𝑡 for time when conducting temporal analysis, evaluations, or algorithm 
implementations. We choose 𝐻 as being a relatively neutral selection that doesn’t conflict with 
other common use cases. 

NOTATING ALGORITHM FAMILIES 
With this general notation in place, we can now apply it to describing various standard recom-
mendation algorithms. 

Bias Model 
Many algorithms build on a user-item bias model, or personalized mean; it is a useful fallback for pre-
dicting ratings when a more sophisticated algorithm cannot produce a score, and it is useful in 
normalization steps prior to running other algorithms (M. D. Ekstrand, Riedl, and Konstan 2010; 
Funk 2006). We notate this as: 

𝑏𝑢𝑖 = 𝑏 + 𝑏𝑖 + 𝑏𝑢 

𝑏 = 𝑟 =
∑ 𝑟𝑢𝑖𝑟𝑢𝑖∈𝑅

|𝑅|
 

𝑏𝑖 =
∑ (𝑟𝑢𝑖 − 𝑏)𝑢∈𝑈𝑖

|𝑅𝑖| + 𝛼𝑖
 

𝑏𝑢 =
∑ (𝑟𝑢𝑖 − 𝑏𝑖 − 𝑏)𝑖∈𝐼𝑢

|𝑅𝑢| + 𝛼𝑢
 

̅

The regularizing constants 𝛼𝑖  and 𝛼𝑢 determine the bias model’s skepticism towards extreme bi-
ases on low-information users and items. The bias model can also be determined by optimization 
instead of the direct formulas above, either on its own or as a part of the optimization of some 
larger scoring model.  

Probabilistic Models 
We can similarly denote probabilistic models using the probability that an item is in a rating set, 
as in this non-personalized popularity model (probability taken over users 𝑢 ∈ 𝑈): 

𝑠(𝑖) = Pr[𝑖 ∈ 𝐼𝑢] 

We can likewise write association rule metrics such as lift (in this formula, the context ℎ is the 
item 𝑗 for which lift is being used to compute related items): 

𝑠(𝑖|𝑗) =
Pr[𝑖 ∈ 𝐼𝑢| 𝑗 ∈ 𝐼𝑢]

Pr[𝑖 ∈ 𝐼𝑢]
 



When clear in the surrounding context, we sometimes simplify to write Pr[𝑖|𝑗]. 

Neighborhood Approaches 
User-based nearest-neighbor scoring (Herlocker, Konstan, and Riedl 2002) can be notated as: 

𝑠(𝑖|𝑢) = 𝑟𝑢 +
∑ 𝑤𝑢𝑣(𝑟𝑣𝑖 − 𝑟𝑣)𝑣∈𝑁(𝑢|𝑖)

∑ |𝑤𝑢𝑣|𝑣∈𝑁(𝑢|𝑖)
 ̅

̅

This introduces two more pieces of notation. 𝑤𝑢𝑣 is the interpolation weight between users 𝑢 and 
𝑣; we prefer this notation over a similarity notation 𝑠𝑢𝑣 or 𝑠(𝑢, 𝑣) so that we can use 𝑠 to denote 
a score and to facilitate the use of other interpolation weighting schemes without changing the 
overall notation. A good choice is the cosine of normalized rating vectors (M. D. Ekstrand et al. 
2011), described for item weights below; many implementations use the Pearson correlation 
(Herlocker, Konstan, and Riedl 2002).  

𝑁(𝑢|𝑖) is the neighborhood for 𝑢 with respect to 𝑖. This will typically be the 𝑘 users most similar 
to 𝑢  that have rated 𝑖 . We can also consider the decontextualized neighborhood 𝑁(𝑢), if we 
simply want to find similar users but do not need them to have rated any particular items. In 
cases where it is useful to explicitly notate the neighborhood size, it can be done with a subscript, 
as in 𝑁𝑘(𝑢|𝑖). 

Item-based nearest-neighbor (Sarwar et al. 2001) can be described as: 

𝑠(𝑖|𝑢) = 𝑟𝑖 +
∑ 𝑤𝑖𝑗(𝑟𝑢𝑗 − 𝑟𝑗)𝑗∈𝑁(𝑖|𝑢)

∑ |𝑤𝑖𝑗|𝑗∈𝑁(𝑖|𝑢)
 

𝑤𝑖𝑗 =
𝑟𝑖 ⋅ 𝑟𝑗

‖𝑟𝑖‖2‖𝑟𝑗‖2

 

=
∑ 𝑟𝑢𝑖𝑟𝑢𝑗𝑢∈𝑈𝑖∩𝑈𝑗

√∑ 𝑟𝑢𝑖
2

𝑢∈𝑈𝑖 √∑ 𝑟𝑢𝑗
2

𝑢∈𝑈𝑗

 

̅
̅

̃ ̃

̃ ̃

̃ ̃

̃ ̃

�̃⃗�𝑖   here denotes a normalized version of rating vector 𝑟𝑖; often �̃�𝑢𝑖 = 𝑟𝑢𝑖 − �̅�𝑖. The weights and 
neighborhoods here are analogous to those in the user-based case. 𝑤𝑖𝑗  is the weight between 
items 𝑖 and 𝑗; while it is often computed as the cosine above, SLIM (Ning and Karypis 2011) pro-
vides an alternative using elastic net regression to learn each item’s neighbor weights. 

𝑁(𝑖|𝑢) is the neighborhood for 𝑖 with respect to 𝑢; this will usually be a subset of a larger pool of 
neighbors 𝑁(𝑖). Both sets are typically the items most similar to 𝑖 (that have been rated by 𝑢, in 
the 𝑁(𝑖|𝑢) case), but other methods such as SLIM’s lasso regularization are precedented. 



Matrix Factorization 
Matrix factorization (Koren, Bell, and Volinsky 2009) typically breaks down the rating matrix into 
composite user-feature and item-feature matrices: 

𝑅 ≈ 𝑃𝑄T 

In this decomposition, 𝑃  is the |𝑈| × 𝑘  user-feature matrix and 𝑄  is the |𝐼| × 𝑘  item-feature 
matrix. We use the 𝑃𝑄T framing so that users and items are both represented by row vectors for 
consistency3. Within these matrices, we use standard matrix entry notation to denote subsets of 
this matrix: 

�⃗�𝑢 or 𝐩𝑢 User 𝑢’s latent feature vector. 

�⃗�𝑖  or 𝐪𝑖  Item 𝑖’s latent feature vector. 

𝑝𝑢𝑓 User 𝑢’s value for feature 𝑓. 

𝑞𝑖𝑓 Item 𝑖’s value for feature 𝑓. 

We can then denote a score: 

𝑠(𝑖|𝑢) = �⃗�𝑢 ⋅ �⃗�𝑖  

We prefer dot product notation over the matrix multiplication equivalent (𝐩𝑢𝐪𝑖T, since latent fea-
ture vectors are row vectors) because it is easier for students without deep intuitive fluency in 
linear algebra to interpret — it is syntax sugar for a simple sum, rather than a special case of a 
more advanced sum. 

This notation works well for a variety of matrix factorization applications, including those for 
both explicit and implicit feedback, and for matrix factorization internals for more sophisticated 
algorithms such as BPR-MF (Rendle et al. 2009).  

NEXT STEPS 
We hope that the recommender systems research and education community finds this useful. 
We do not intend to propose this as a formal standard for the community, but we have found it 
helpful to standardize notation across our own work and think there is merit in greater common-
ality in notation across the field at large. 

                                                             
3 Since most matrix factorization techniques used in practice do not maintain feature weights in a separate singular 
value matrix, we omit it. When using an explicitly weighted model such as a true singular value decomposition, we 
can write 𝑅 ≈ 𝑃Σ𝑄𝑇  where Σ ∈ ℝ𝑘×𝑘 is the diagonal matrix of singular values. 



REFERENCES 
Ekstrand, Michael D, Michael Ludwig, Joseph A Konstan, and John T Riedl. 2011. “Rethinking 

the Recommender Research Ecosystem: Reproducibility, Openness, and LensKit.” In 
RecSys ’11, 133–40. ACM. https://doi.org/10.1145/2043932.2043958. 

Ekstrand, Michael, John Riedl, and Joseph A. Konstan. 2010. “Collaborative Filtering 
Recommender Systems.” Foundations and Trends in Human–Computer Interaction 4 (2): 81–
173. https://doi.org/10.1561/1100000009. 

Funk, Simon. 2006. “Netflix Update: Try This at Home.” December 11, 2006. 
http://sifter.org/~simon/journal/20061211.html. 

Herlocker, Jonathan, Joseph A. Konstan, and John Riedl. 2002. “An Empirical Analysis of 
Design Choices in Neighborhood-Based Collaborative Filtering Algorithms.” Information 
Retrieval 5 (4): 287–310. https://doi.org/10.1023/A:1020443909834. 

Konstan, Joseph A, J D Walker, D Christopher Brooks, Keith Brown, and Michael D Ekstrand. 
2015. “Teaching Recommender Systems at Large Scale: Evaluation and Lessons Learned 
from a Hybrid MOOC.” ACM Transactions on Computer Human Interaction 22 (2): 10:1–
10:23. https://doi.org/10.1145/2728171. 

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. “Matrix Factorization Techniques for 
Recommender Systems.” Computer 42 (8): 30–37. https://doi.org/10.1109/MC.2009.263. 

Ning, Xia, and George Karypis. 2011. “SLIM: Sparse Linear Methods for Top-N Recommender 
Systems.” In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, 497–
506. Washington, DC, USA: IEEE Computer Society. 
https://doi.org/10.1109/ICDM.2011.134. 

Rendle, Steffen, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. 
“BPR: Bayesian Personalized Ranking from Implicit Feedback.” In Proceedings of the 
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 452–461. Arlington, Virginia, 
United States: AUAI Press. http://dl.acm.org/citation.cfm?id=1795114.1795167. 

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. 2001. “Item-Based 
Collaborative Filtering Recommendation Algorithms.” In Proceedings of the 10th 
International Conference on World Wide Web, 285–295. New York, NY, USA: ACM. 
https://doi.org/10.1145/371920.372071. 

 


	Recommender Systems Notation
	Publication Information

	Introduction
	Design Goals
	Flexibility
	Clarity
	Concision
	Commonality
	Usability by Hand

	Recommendation Inputs
	Summary Statistics
	Unobserved Underlying Data

	Recommendation Outputs
	Notating Algorithm Families
	Bias Model
	Probabilistic Models
	Neighborhood Approaches
	Matrix Factorization

	Next Steps
	References

