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Abstract

Statistical process control (SPC) charts are widely used in industry for monitoring the stability

of certain sequential processes like manufacturing, health care systems etc. Most SPC charts assume

that the parametric form of the “in-control” process distribution F1 is available. However, it has been

demonstrated in the literature that their performances are unreliable when the pre-specified process

distribution is incorrect. Moreover, most SPC charts are designed to detect any shift in mean and/or

variance. In real world problems, shifts in higher moments can happen without much change in

mean or variance. If we fail to detect those and let the process run, it can eventually become worse

and a shift in mean or variance can creep in. Moreover, the special cause that initiated the shift can

inflict further damage to the system, and it may become a financial challenge to fix it. This paper

provides an efficient and easy-to-use control chart for Phase II monitoring of univariate continuous

processes when the parametric form of the “in-control” process distribution is unknown, but Phase

I observations that are believed to be i.i.d. realizations from unknown F1 are available. Data-driven

practical guidelines are also provided to choose the tuning parameter and the corresponding control

limit of the proposed SPC chart. Numerical simulations and a real-life data analysis show that it can

be used in many practical applications.

Key Words: Control chart, Distributional change, Kolmogorov-Smirnov test, Non-

parametric SPC, P-value.

1 Introduction

The statistical process control (SPC) charts are widely used in industry for monitoring

stability of certain sequential processes like manufacturing, health care systems etc. Tradi-
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tional models under SPC assume that there are two causes of variability in the process mea-

surements: one is “common cause” which is due to unavoidable randomness and another

one is “special cause” which is usually due to mechanical defects or improper handling of

machines, human errors etc. that can potentially be identified and removed. When common

causes are the only source of variability then the process is said to be “in-control”. When

a system is “in-control”, the process measurements can be considered as realizations of

some random model, for example, independent and identically distributed (i.i.d.) observa-

tions from a cumulative distribution function (c.d.f.) F1. In case a special cause intervenes,

the process measurements no longer appear as i.i.d. realizations of F1, and then the system

is said to be “out-of-control”. Practitioners usually divide SPC into two phases. A set of

process measurements are collected and analyzed in Phase I. Adjustments and fine tuning

of the system are made if any “unusual” patterns in the process measurements are found.

When all such special causes are removed, we have a set of process measurements data

under stable operating conditions and they are representative of the actual process perfor-

mance. In phase II, the major goal of SPC control charts is to detect any change in the

distribution of process measurements after an unknown time point.

A change in the process distribution can be of many types. For example, shift in (i)

mean, (ii) variance, (iii) skewness, (iv) kurtosis, or (v) higher moments, or (vi) any arbitrary

combination of (i)-(v). Furthermore, changes can either be isolated, i.e. the systems goes

“out-of-control” and then returns to “in-control”, or persistent, i.e. once the system goes

“out-of-control” it remains “out-of-control” or even goes further away from control until

the special cause is removed. Among existing SPC charts, Shewhart-type (Shewhart 1931)

charts are used to detect isolated changes, cumulative sum (CUSUM) type charts (e.g., Page

1954) are used to detect persistent changes. However, most SPC charts mainly consider

shifts in mean and/or variance, because they are most common and often captures other

departures. In real world problems, shifts in skewness and kurtosis can happen without

much change in mean and/or variance. For example, the response distribution changes from

N(0, 1) to a standardized version (i.e., mean 0 and variance 1) of Student’s t-distribution

with 5 degrees of freedom. If we fail to detect those changes and let the process run, it

can eventually become worse and a shift in mean or variance can creep in. Moreover,

the special cause that initiated the change can cause more damage to the system, and it

may become a financial challenge to fix it. If we can detect such change in kurtosis, we
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can avoid subsequent troubles. Therefore, it is desirable to develop an SPC chart that can

detect changes in the process distribution. This paper focuses on univariate processes and

aims to detect such changes when the “in-control” c.d.f. F1 is continuous but its parametric

form is unavailable. It is also assumed that Phase I data are available.

Many different versions of SPC control charts have been proposed in the literature in-

cluding Shewhart type charts (Shewhart 1931), cumulative sum (CUSUM) type charts (e.g.,

Page 1954), exponentially weighted moving average (EWMA) type charts, charts based on

change point detection (CPD) (e.g., Hawkins et al. 2003, Zhou et al. 2009) etc. Many con-

trol charts in the literature assume that “in-control” response distribution F1 has a paramet-

ric form (e.g., normal). However, the process observations may not follow a pre-specified

parametric form in a real life problem. It has been demonstrated in the literature that the

charts using pre-specified distribution in their design many not be reliable in such cases

(e.g., Amin et al. 1995, Hackl and Ledolter 1992, Lucas and Crosier 1982). To address

this, a number of distribution free or non-parametric methods have been proposed. For ex-

ample, Albers and Kallenberg (2004, 2009), Albers et al. (2006), Amin et al. (1995), Amin

and Searcy (1991), Amin and Widmaier (1999), Bakir (2004, 2006), Bakir and Reynolds

(1979), Chakraborti et al. (2004, 2009), Chakraborti and Eryilmaz (2007), Hawkins and

Deng (2010), Liu et al. (2014), and so on. An overview on the existing research area

on univariate distribution free SPC can be found in Chakraborti et al. (2001). Related

discussions in the multivariate cases can be found in Qiu and Hawkins (2001, 2003) and

Qiu (2008). Some SPC charts (e.g., Yeh et al., 2004, Hawkins and Zamba 2005) consider

joint monitoring of process mean and variance. Moustakides (1986) provides a method to

detect distributional change when both “in-control” and “out-of-control” distributions are

known. Ross and Adams (2012) provide two nonparametric control charts to detect any

distributional change under the change point detection (CPD) framework when both “in-

control” and “out-of-control” distributions are unknown. A thorough literature review on

SPC charts can be found in Hawkins and Olwell (1998), Qiu (2013) etc.

Most existing SPC charts mentioned above aim to detect changes in process mean

and/or variance, but do not consider higher moments. Moreover, many of those meth-

ods require multiple observations at each time point. This paper proposes a nonparametric

SPC chart for detecting change of univariate process distribution that neither assumes any

parametric form of the “in-control” distribution nor requires multiple observations at each
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time point. The only mild underlying assumptions are: (i) the “in-control” distribution

function F1 is continuous, (ii) the process measurements are independent of each other,

and (iii) Phase I data are available. The major steps of the proposed SPC chart are the

following: First, we estimate F1 by the “in-control” (IC) Phase I data. Next, we calculate

corresponding quantiles of the Phase II data with respect to estimated F1 (expression (1)).

Under no distributional change, these quantiles should be uniformly distributed between

0 and 1. Using an appropriate amount of previous quantiles along with the present, we

keep performing one-sample Kolmogorov-Smirnov (KS) tests to check that and calculate

corresponding p-values. We signal a distributional change once a p-value is small. Some

practical guidelines are also provided when to use or not to use the proposed chart. In addi-

tion to this, another major contribution of this paper is the idea of pruning parts of Phase II

data from distant past based on current p-values (Section 2.1) that can potentially be useful

in many popular charts when Phase II data arrive rapidly.

The remainder of the paper is organized as follows. The proposed control chart is

described in Section 2. Numerical studies to evaluate its performance in comparison with

several existing control charts are presented in Section 3. Section 3 also provides some

discussions about the proposed chart in various scenarios. One real data analysis by the

proposed chart and its competitors is presented in Section 4. A few remarks in Section 5

conclude this paper.

2 The Proposed Control Chart

As mentioned before, the proposed nonparametric SPC chart aims to detect distributional

change when a parametric form of the “in-control” distribution F1 is unknown. The only

assumptions made are: F1 is continuous, the observations at both Phases I and II are inde-

pendent of each other, and an “in-control” data-set has been collected at Phase I analysis.

Although it is still challenging to perform Phase I analysis when F1 is unknown (Jones-

Farmer et al. 2009), it is not the focus of this paper.

2.1 Description of the proposed control chart

The first step of the proposed SPC chart is to estimate F1. In this paper, we do this by

the conventional empirical distribution function F̂1 based on i.i.d. Phase I data denoted
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by X1, X2, . . . , XM where M is the total number of Phase I observations. Let Y(n) =

(Y1(n), Y2(n), . . . , Ym(n))
T be m i.i.d. observations obtained at the time point n during

Phase II process monitoring. In the literature, they are often called batch data or sub-

grouped data. When m = 1, it is called single-observation data. Once we get a batch of

data Y(n) during Phase II monitoring, we estimate its corresponding quantiles, assuming

no distributional change in Phase II, by the following formula:

Q̂i(n) = F̂1(Yi(n)) =
1

M
|{j : Xj ≤ Yi(n), 1 ≤ j ≤ M}| for i = 1, 2, . . . ,m, (1)

where |.| is the cardinality of a set. When M is large and there is no distributional change,

then we know that Q̂i(n) approximately follows the Uniform distribution U [0, 1]. This re-

sult is due to Glivenko-Cantelli’s Theorem (Loève 1955) and probability integral transform

(Casella and Berger, 2002). The proposed control chart uses this result to signal any dis-

tributional change. As we keep collecting Phase II batches of data at each time point, we

keep performing one-sample Kolmogorov-Smirnov (KS) tests to check whether a pool of

‘recent’ estimated data quantiles (i.e., Q̂i(n)) follow U [0, 1] distribution. As soon as we

find a significant evidence against it, we signal a distributional change.

The algorithm of the proposed control chart runs as follows. Once we receive the first

batch of data Y(1) = (Y1(1), Y2(1), . . . , Ym(1))
T , we calculate the corresponding Q̂i(1)’s

by the formula provided in (1). Next, we define an effective set of data quantiles (ESDQ)

at the first time point as ESDQ(1) = {Q̂1(1), Q̂2(1), . . . , Q̂m(1)} and perform the one-

sample KS test to check if the numbers in ESDQ(1) are i.i.d. realizations from U [0, 1]

distribution. Obviously, when m = 1, we can not perform one-sample KS test. In that

case, we define the p-value p1 to be 1.0. In case the p-value p1 is smaller than the control

limit hP , we signal a distributional change. Otherwise, we collect the second batch of data

Y(2) = (Y1(2), Y2(2), . . . , Ym(2))
T and define ESDQ(2) by including new quantiles in

ESDQ(1), i.e., ESDQ(2) = {ESDQ(1), Q̂1(2), Q̂2(2), . . . , Q̂m(2)}. Like before, we then

perform the one-sample KS test to check if the numbers in ESDQ(2) follow U [0, 1] distri-

bution. If p2 < hP , we signal a distributional change, and if p2 is so large that p2 > kP ·hP ,

where kP is a tuning parameter of the proposed control chart, we decide to check whether

we need to prune some batches of quantiles from past. The major reason behind pruning is

to increase the efficiency of the proposed control chart in detecting a distributional change.

If we do not prune at all at any stage of the algorithm, then once the “in-control” Phase

II data-set becomes large, it will require a lot of “out-of-control” Phase II data to detect a
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distributional change. Intuitively, the amount of pruning should depend on the value of p2

in comparison with kP ·hP . If p2 is large, say, close to 1.0, then we may want to prune quite

a large amount from the past. On the other hand, if p2 is not so large, then we should not

prune much from the past. One simple approach is to prune 100
(

p2−kP hP

1−kP hP

)2

% of the oldest

batches. However, to make sure that we do not prune too much in a single step, we pro-

pose pruning the oldest
⌊
2.min

(
0.2,

(
p2−kP hKS

1−kP hKS

)2
)⌋

batches of quantiles from ESDQ(2),

where
⌊
ψ
⌋

is the largest integer smaller than or equal to ψ. We keep on proceeding like this.

On the receipt of the n-th batch of data Y(n) = (Y1(n), Y2(n), . . . , Ym(n))
T where n > 1,

if we can go that far, we define ESDQ(n) = {ESDQ(n − 1), Q̂1(n), Q̂2(n), . . . , Q̂m(n)}.

Similar to previous iterations, we perform the one-sample KS test to check if the quan-

tiles in ESDQ(n) follow U [0, 1] distribution. In the case pn < hP , we signal a dis-

tributional change, and if pn > kP · hP , we re-define ESDQ(n) by pruning the earli-

est b(n, pn, kP , hP ) =
⌊
n.min

(
0.2,

(
pn−kP hP

1−kP hP

)2
)⌋

number of batches of quantiles from

ESDQ(n). We keep on collecting future batches of data until we detect any distributional

change. A summary of the proposed chart is provided below.

The algorithm of the proposed control chart

Initialization Part: (when n = 1)

1. Set the time point n = 1, collect the first batch of Phase II data, and define ESDQ(1) =

{Q̂1(1), Q̂2(1), . . . , Q̂m(1)} using the formula in (1).

2. Find the p-value p1 of the one-sample KS test to check whether the numbers in

ESDQ(1) are i.i.d. realizations from U [0, 1] distribution. If m = 1, one-sample

KS test can not be performed. In that case, define p1 = 1.0.

3. If p1 < hP , signal a distributional change and stop the algorithm.

4. Increase n by 1.

Main Part: (when n > 1)

1. Define ESDQ(n) = {ESDQ(n− 1), Q̂1(n), Q̂2(n), . . . , Q̂m(n)}.

2. Find the p-value pn of the one-sample KS test to check whether the numbers in

ESDQ(n) are i.i.d. realizations from U [0, 1] distribution.
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3. If pn < hP , signal a distributional change and stop the algorithm.

4. If pn > kP · hP , re-define ESDQ(n) by pruning the earliest b(n, pn, kP , hP ) batches

of quantiles from ESDQ(n).

5. Increase n by 1.

6. Keep repeating the steps in ‘Main Part’ until a distributional change is signaled.

2.2 Determination of the control limit hP based on specified average

run length (ARL0), and selection of the tuning parameter κP

The performance of the SPC charts are often measured by their run length (RL) distribution,

i.e., the number of samples needed to signal a change in process distribution. When the

process is “in-control”, the run lengths should typically be long, but when the process goes

“out-of-control” then the run lengths should be short. In practice, the comparisons of the

RL distributions are often performed by average run lengths (ARL). The “in-control” (IC)

ARL is usually controlled at a given level ARL0. Then, an SPC chart performs better

if its “out-of-control” (OC) ARL is shorter. Hawkins and Olwell (1998) provide related

discussions.

The control limit hP of the proposed SPC chart for a specified tuning parameter kP and

given ARL0 is searched as follows. We keep simulating Phase II data quantiles, i.e. Q̂j(i)’s

of batch size m from U [0, 1], because under no distributional change, Q̂j(i) ∼ U [0, 1]. The

proposed control chart for the specified kP and an arbitrarily chosen control limit keeps

running until a distributional change is signaled. These steps are repeated many times

(say, 10, 000 times) and the average run length (ARL) is calculated. If this ARL value is

substantially different from ARL0, we run the proposed chart with different choices of the

control limit. We keep doing this until the average run length based on a large number

of repetitions is reasonably close to ARL0. Unless otherwise specified, the control limits

of the proposed chart is chosen by this data-driven approach in the numerical examples in

this paper. Note that we do not need to simulate Phase II data Yi(n)’s to simulate Q̂j(i)’s,

because under no distributional change, Q̂j(i) ∼ U [0, 1].

To select kP , we first find the control limits of the proposed chart for various values of

kP . Then, we select the tuning parameter kP that generates the smallest “out-of-control”
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ARL when a specified shift that we are interested in, e.g., a mean increase of 0.6 has taken

place. An elaboration is provided in Section 3.2.

3 Numerical Studies

In this section, some numerical examples are presented to evaluate the performance of

the proposed control chart in comparison with a few existing popular ones. Specifically,

we compare the performance of the control charts in terms of shift detection in mean,

variance, skewness and kurtosis separately. We call the proposed chart as PROPOSED

hereafter. The existing control charts considered here are briefly introduced in Section 3.1.

Then, the related control charts are compared in various scenarios in Section 3.2. Some

discussions about the proposed control chart in various scenarios are provided in Section

3.3.

3.1 Some representative existing control charts

The traditional CUSUM chart is a standard tool for monitoring the mean of univariate

processes in practice. Its charting statistics of the two-sided version are defined by

u+
n,N = max

(
0, u+

n−1,N + Y (n)− kN
)
,

u−
n,N = min

(
0, u−

n−1,N + Y (n) + kN
)
,

where n > 1, u+
0,N = u+

0,N = 0, kN is an allowance constant, Y (n) = 1
m

∑m
j=1 Yj(n),

and the subscript “N” denotes the fact that this method is based on the normal-distribution

assumption. Then, a mean shift in Y(n) is signaled if

u+
n,N > hN or u−

n,N < −hN (2)

where the control limit hN > 0 is chosen to achieve a given IC ARL level. This chart is

called N-CUSUM chart in this paper.

When the process distribution is not normal, Borror et al. (1999) showed that a properly

designed EWMA (exponentially weighted moving average) chart is robust to departures

from normality. More specifically, the EWMA charting statistics is defined by

vn = λY (n) + (1− λ)vn−1,
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where v0 = 0, λ ∈ [0, 1] is a weighting parameter, and Y (n) = 1
m

∑m
j=1 Yj(n). Then, a

mean shift in Y(n) is signaled if

|vn| ≥ hR, (3)

where hR > 0 is a control limit chosen to achieve a pre-specified IC ARL level. This chart

is called EWMA chart in this paper.

This paper also considers distribution-free control charts for monitoring the mean of an

univariate process. The chart originally proposed by Chakraborti and Erylmaz (2007) is a

Shewhart-type chart, based on the statistic

ψ(n) = 2W+
n − m(m+ 1)

2
, n ≥ 1,

where W+
n is the Wilcoxon signed-rank statistic of Y(n), defined to be the sum of the

ranks of {|Yj(n)− θ0|, j = 1, 2, . . . ,m} over all positive components of {Yj(n)− θ0, j =

1, 2, . . . ,m}, and θ0 is the IC median of the process distribution which can be estimated

from Phase I data. Since, we want to detect persistent shifts, rather than one-time shifts, a

CUSUM chart based on ψ(n) can easily be constructed as follows. Let u+
0,S = u−

0,S = 0,

and for n ≥ 1

u+
n,S = max

(
0, u+

n−1,S + (ψ(n)− ψ0)− kS
)
,

u−
n,S = min

(
0, u−

n−1,S + (ψ(n)− ψ0) + kS
)
,

where kS is an allowance constant, and ψ0 is the IC mean of ψ(n) which can be estimated

from IC Phase I data. Then, this CUSUM chart signals a mean shift in Y(n) if

u+
n,S > hS or u−

n,S < −hS, (4)

where the control limit hS is chosen to achieve a given IC ARL level. This chart is called

S-CUSUM hereafter.

For monitoring location shift in the unknown process distribution, Hawkins and Deng

(2010) proposed a change-point detection control chart based on Mann-Whitney two-sample

statistic. This chart is based on the assumption that the observations are un-batched, i.e.,

the batch size is m = 1. Therefore, if the batch size m is larger than 1, we pretend

that in each batch we get the observations in a random order. Suppose, the sequential

observations after time n are V1, V2, . . . , Vt, where t = M + mn, V1, V2, . . . , VM is a
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random sequence of the Phase I data, VM+1, VM+2, . . . , VM+m is a random sequence of

Y(1) = (Y1(1), Y2(1), . . . , Ym(1)), VM+m+1, VM+m+2, . . . , VM+2m is a random sequence

of Y(2) = (Y1(2), Y2(2), . . . , Ym(2)), and so on. This chart is based on the following

statistic:

Tk,t =
Uk,t√

k(t− k)(t+ 1)/3
,

where Uk,t = 2
∑k

i=1 Ri−k(t+1) is equivalent to Mann-Whitney statistic, k is the possible

change point under consideration, Ri is the rank of Vi among currently available observa-

tions (i.e., V1, V2, . . . , Vt). The test statistic for testing location shift in the IC distribution

is defined by

Tmax,t = max
1≤k≤t−1

|Tk,t|.

We conclude that there is a location shift before Vt, if

Tmax,t > ht. (5)

In that case we detect a distributional shift at or before time n. ht is chosen to achieve a

given IC ARL level. Please note that the change detection starts after VM in the numerical

studies in this paper. We refer to this chart by HD-MW hereafter. Implementations of

HD-MW in this paper are performed by the R package ‘cpm’ developed by Ross (2013).

Next, we discuss some popular control charts for detecting shifts in variance. Hawkins

(1981) proposed using the transformed observations

Wn =

√|Zn| − 0.822

0.349

in the traditional CUSUM chart for detecting shifts in variance. It works because Phase

II single observation data Zn, and Wn approximately follow the same IC distribution, spe-

cially when the IC distribution is normal. In case of our batched data, Y (n) is used in place

of Zn. This chart is called VC-HK hereafter.

Another simple chart to detect shifts in variance uses Sn − 1 in place of Y n in the

traditional CUSUM chart, where Sn is the sample standard deviation of the observations at

the n-th time point. We call this chart SD-CUSUM hereafter.

Ross and Adams (2012) provide two distribution free charts for detecting distributional

changes during Phase II monitoring. They integrate Kolmogorov-Smirnov and Cramer-

von-Mises tests into change-point model framework. As recommended in Ross and Adams
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(2012) the chart based on Cramer-von-Mises is considered in this paper. This control

chart is also based on single observation data. Similar to HD-MW chart, we pretend

that in each batch we get the observations in a random order. Suppose the sequential

observations after time n are V1, V2, . . . , Vt, where t = M + mn, V1, V2, . . . , VM is a

random sequence of the Phase I data, VM+1, VM+2, . . . , VM+m is a random sequence of

Y(1) = (Y1(1), Y2(1), . . . , Ym(1)), VM+m+1, VM+m+2, . . . , VM+2m is a random sequence

of Y(2) = (Y1(2), Y2(2), . . . , Ym(2)), and so on. This control chart is based on the follow-

ing statistic:

Wk,t =
t∑

i=1

|F̂S1(Vi)− F̂S2(Vi)|,

where

F̂S1(v) =
1

k

k∑
i=1

I(Vi ≤ v),

F̂S2(v) =
1

t− k

t∑
i=k+1

I(Vi ≤ v),

and k is the possible change point under consideration. Under the change-point framework

this leads to the following maximized test statistic:

Wt = max
k

Wk,t − μWk,t

σWk,t

, 1 < k < mn,

where μWk,t
= (t + 1)/(6t), σ2

Wk,t
= (t + 1)[(1 − 3/4k)t2 + (1 − k)t − k]/[45t2(t − k)].

We conclude that a distributional change has occurred at or before Vt, i.e., at or before time

n if

Wt > ht

for suitable chosen threshold ht to achieve a give IC ARL level. Please note that the change

detection starts after VM in the numerical studies in this paper. This chart is referred to as

RA-CvM hereafter. Implementations of RA-CvM in this paper are performed by the R

package ‘cpm’ developed by Ross (2013).

3.2 Numerical comparison of the control charts

In this subsection, we compare the performances of the PROPOSED chart with a few popu-

lar ones. The performances of the SPC charts are measured by “out-of-control” (OC) ARL
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values when “in-control” ARL are controlled at a given level. Shorter the OC-ARL value,

better the performance.

First, we focus on scenario (i), i.e., when the mean of the IC distribution changes,

but the variance remains unchanged. The IC distribution is chosen to be the standardized

version with mean 0 and variance 1 of the one of the following four distributions: N(0, 1),

t(4), χ2(1) and χ2(4). t(4) represents symmetric distributions with heavy tails, and χ2(1)

and χ2(4) represent skewed distributions with different skewness. It is assumed that the

pre-specified IC ARL value is 200, and the batch size of Phase II observations at each time

point is m = 5.

We compare the “out-of-control” (OC) performance of the related control charts when

IC Phase I sample size M = 1, 000, i.e., 200 × 5. In order to make fair comparisons,

we intentionally adjust the control limits of the charts N-CUSUM, EWMA, S-CUSUM,

HD-MW and RA-CvM so that their actual IC ARL values equal 200 in each of all IC

distributions considered. In the step of determining the control limits of all charts except

HD-MW and RA-CvM, we simulate Phase II data assuming the IC distribution is known.

In case of HD-MW and RA-CvM, the control limits, that do not depend on the IC distri-

bution, are used as provided by the R package ‘cpm’. In this study, 10 mean shifts ranging

from −1.0 to 1.0 with step 0.2 are considered, representing large, medium and small shifts.

Due to the fact that different control charts have different parameters (e.g., kP in PRO-

POSED, kN in N-CUSUM, λ in EWMA, and kS in S-CUSUM), and that the performances

of different charts may not be comparable if their parameters are pre-specified, we use the

following approach to set up their parameters. We choose the parameters of all charts to be

optimal ones for detecting a given positive shift of size 0.6 in each case of the IC distribu-

tions, by minimizing the OC ARL values of the charts for detecting that shift while their

pre-specified IC ARL values are 200, and we use the chosen parameter in all other shifts

as well. This approach is widely used in the statistical process control literature (e.g., Qiu

and Li 2011).

Based on 10, 000 replications, the OC ARL values of the related control charts, when

the procedure parameters are chosen to be the optimal ones for detecting the positive shift

of 0.6, are shown in Figure 1. To better demonstrate the difference among different control

charts when detecting relatively large shifts, the scale on the y-axis is in natural logarithm.

From Figure 1, we see that the PROPOSED control chart is better than its competitors

12
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Figure 1: The OC ARL values of six control charts when the IC ARL is 200, m = 5,

M = 1, 000, and the actual IC process distribution is the standardized version of N(0, 1)

(plot (a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Tuning parameters are

chosen to be the ones that minimize their OC ARL values when detecting the positive

mean shift of 0.6. Scale on the Y-axis is in natural logarithm. The results are based on

10, 000 replications.

when the IC distribution is non-normal. When the IC distribution is normal, then the PRO-

POSED, N-CUSUM, EWMA, HD-MW and RA-CvM charts have comparable OC ARL

values when the mean shift is medium or large.

Next, we consider scenario (ii), when the variance of the IC distribution changes, but
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Figure 2: The OC ARL values of four control charts when the IC ARL is 200, m = 5, M =

1, 000, and the actual IC process distribution is the standardized version of N(0, 1) (plot

(a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Tuning parameters are chosen

to be the ones that minimize their OC ARL values when shifted standard deviation is 1.6.

Scale on the Y-axis is in natural logarithm. The results are based on 10, 000 replications.

the mean remains unchanged. As in the previous scenario, the IC distribution is chosen

to be the standardized version with mean 0 and variance 1 of one of the following four

distributions: N(0, 1), t(4), χ2(1) and χ2(4). Similar to scenario (i), it is assumed that the

pre-specified IC ARL value is 200, and the batch size of Phase II observations at each time

point is m = 5.
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We compare the OC performance of the related control charts when the IC sample size

M = 1, 000. Similar to the previous scenario, we intentionally adjust the control limits of

the charts VC-HK, SD-CUSUM and RA-CvM so that their actual IC ARL values equal 200

in all cases considered. In this study, 9 shifted standard deviations from 0.2 to 2.0 with step

0.2 are considered, representing large, medium and small shifts. Please note that we are

considering the OC ARL values when the shifted standard deviations are 0.2, 0.4, and so

on when the IC standard deviation is 1.0. Similar to scenario (i), we choose all parameters

to be the optimal ones for detecting the particular shift of standard deviation from 1.0 to

1.6, by minimizing the OC ARL values of the charts for detecting that shift, and we use the

chosen parameter in all other shifts as well.

Based on 10, 000 replications, the OC ARL values of the related control charts are

shown in Figure 2. In this Figure also, the scale on the y-axis is in natural logarithm, to

better demonstrate the difference among different control charts when detecting relatively

large shifts. From Figure 2, we see that the PROPOSED control chart is not performing

well when the IC distribution is normal or t(4). The PROPOSED chart is much better

than its competitors when the IC distribution is χ2(1). When the IC distribution is χ2(4),

then PROPOSED chart detects the reduction in variance well, but can not detect increase

in variance very well. The performance of RA-CvM is not good in all cases except χ2(1).

Therefore, if the IC distribution is not highly skewed, and the major anticipated change of

IC distribution is in variance, then the PROPOSED chart should not be used.

Next, we consider scenario (iii), when the skewness of the IC distribution changes with

no change in mean and variance. The IC distribution is chosen to be the standardized ver-

sion with mean 0 and variance 1 of χ2(4). Similar to previous simulations, it is assumed

that the pre-specified IC ARL value is 200, and the batch size of Phase II observations at

each time point is m = 5. The OC performances are studied when the IC distribution

changes to the standardized versions of χ2 distributions with various degrees of freedom.

The PROPOSED chart is compared with RA-CvM, HD-MW, and two commonly used

charts N-CUSUM and VC-HK. Although N-CUSUM and VC-HK are not designed to de-

tect changes in skewness, the purpose of this comparison is to see what happens when a

skewness change occurs. From Figure 3(a), the performances of RA-CvM and HD-MW are

comparable with the PROPOSED chart in detecting decrease in skewness. N-CUSUM and

VC-HK can not detect skewness changes well if the smaller moments remain unchanged,
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but the PROPOSED method detects those changes reasonably well. In this study also, the

IC sample size is M = 1, 000. Since N-CUSUM and VC-HK are not designed to detect

the change of higher moments when mean and variance remain fixed, it is not quite clear

how to choose the allowance parameters. For simplicity, the allowance parameters of these

two charts are chosen to be the ones as in case (d) of Figure 1.
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Figure 3: The OC ARL values of five control charts when the IC ARL is 200, m = 5,

M = 1, 000, and the actual IC process distribution is the standardized version of χ2(4)

(plot (a)) and t(4) (plot (b)). The OC distributions are standardized versions of χ2 and

t with various degrees of freedom as indicated in the labels of X-axes, respectively. The

results are based on 10, 000 replications.

The numerical study on the detection of the change of kurtosis (scenario (iv)) when the

mean and variance remain unchanged, is performed similarly. In this example, the IC dis-

tribution is the standardized version of t(4), and the OC distributions are the standardized

versions of t-distributions with various degrees of freedom. From Figure 3(b), it is clearly

seen that N-CUSUM and VC-HK can not detect decrease in kurtosis, but VC-HK can de-

tect one instance of increase in kurtosis. HD-MW and RA-CvM can not detect increase

in kurtosis, but can detect decrease in kurtosis to some extent. The PROPOSED chart can

detect changes in kurtosis reasonably well. In this comparison also, the allowance param-

eters of N-CUSUM and VC-HK are chosen to be the ones as in case (b) of Figure 1. t(1)

and t(2) are not considered, because they do not have finite variance, and therefore their

16

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online
at Statistical Papers, published by Springer. Copyright restrictions may apply. doi: 10.1007/s00362-015-0668-0



standardized versions do not exist.

While checking numerical comparisons when M = 1, 000, and m = 1, we consider

only mean shift because this is the most common way the IC distribution changes. Since

S-CUSUM is designed for batched data, it is not used in this case. Figure 4 shows that

the PROPOSED chart is better than its competitors when the IC distribution is χ2(1), and

comparable to its closest competitors in other cases. In case of χ2(1), both HD-MW and

RA-CvM perform quite well compared to N-CUSUM, EWMA. In this case, since m is

small (equal to 1), the IC ARL of 1, 000 is considered instead of 200. Similar performances

are observed when M = 1, 000, and m = 2, and the IC ARL is 500. Figure 5 presents the

performances of the charts in this case.

From the simulation studies above, we see that the PROPOSED chart performs well

in detecting the mean shift, when the variance remain unchanged. It is much better than

its competitors when the IC distribution is highly non-normal. The PROPOSED chart

detects changes of variance well when the IC distribution is highly skewed. In all other

cases considered, the performances of the PROPOSED chart to detect changes in variance

are not good. It is also seen that the PROPOSED chart detects changes in skewness and

kurtosis well, and better than commonly used control charts in most cases. Therefore, the

PROPOSED chart can be used in many applications except when the major anticipated

change of the IC distribution is in variance while the IC distribution is not highly skewed.

The PROPOSED chart can not only detect changes in any particular moment, it can

also detect any arbitrary changes in the process distribution. To demonstrate that, following

changes in process distribution are considered: (i) changes in rate parameter of exponential

distribution, (ii) changes in shape parameter of gamma distribution when the rate param-

eter is unchanged, (iii) changes in shape parameter of Weibull distribution when the scale

parameter is fixed at 1, and (iv) changes in the shape parameters of beta distribution. In this

example, ARL0 = 1, 000, m = 1, M = 1, 000 and the number of replications is 10, 000.

To make fair comparisons, the control limits are determined assuming that the correspond-

ing IC distribution is known. Table 1 presents the OC ARL values of HD-MW, RA-CvM

and the PROPOSED chart. In each case, the PROPOSED chart either performs similarly

with the best competitor(s), or outperforms its closest competitor.
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Figure 4: The OC ARL values of five control charts when the IC ARL is 1, 000, m = 1,

M = 1, 000, and the actual IC process distribution is the standardized version of N(0, 1)

(plot (a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Tuning parameters are

chosen to be the ones that minimize their OC ARL values when detecting the positive

mean shift of 0.6. The results are based on 10, 000 replications.

3.3 More about the proposed control chart

In this section, some discussions about the proposed chart are provided along with a few

practical guidelines of its use.
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Figure 5: The OC ARL values of six control charts when the IC ARL is 500, m = 2,

M = 1, 000, and the actual IC process distribution is the standardized version of N(0, 1)

(plot (a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Tuning parameters are

chosen to be the ones that minimize their OC ARL values when detecting the positive

mean shift of 0.6. The results are based on 10, 000 replications.

3.3.1 hP values in various cases when Phase I sample size is large

The control limit hP of the PROPOSED chart is provided when kP is 1.0, 2.0, 3.0, 4.0

or 5.0, the batch size is 1, 5 or 10, pre-specified ARL0 values are 100, 200, 500 or 1, 000,

and we have a large number of Phase I data. hP values are calculated by the procedure

19

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online
at Statistical Papers, published by Springer. Copyright restrictions may apply. doi: 10.1007/s00362-015-0668-0



Table 1: The OC ARL values of three control charts for some distributional changes. In this

example, ARL0 = 1, 000, m = 1, M = 1, 000, and the number of replications is 10, 000.

HD-MW RA-CvM PROPOSED

Exp(1) → Exp(3) 14.57 14.85 15.15

Exp(3) → Exp(1) 13.38 13.81 15.08

Gamma(2,2) → Gamma(3,2) 22.81 24.41 27.01

Gamma(3,2) → Gamma(2,2) 21.87 23.67 26.67

Weibull(1) → Weibull(3) 231.15 40.38 32.78

Weibull(3) → Weibull(1) 40.69 26.18 26.78

Uniform(0,1) → Beta(5,5) 4377.39 60.81 53.24

Beta(5,5) → Uniform(0,1) 64.06 35.80 36.19

described in Section 2.2. Please note that in this numerical task, Phase II quantiles Q̂j(i)

are independently generated from U [0, 1], not from explicit Phase I data as long as we

assume that Phase I data-set is large. For practical purposes, we need a few thousand

observations in Phase I so that we can use the computed hP values in Table 2. From that

table, we see that hP increases with the increase of kP for each selected choices of m and

ARL0. Moreover, as expected, hP decreases with the increase of ARL0, for each case of

m and kP .

3.3.2 Choice of kP in various practical applications

We compare the OC ARL of the PROPOSED chart when m = 5, ARL0 = 200 and kP is

1.0, 2.0, 3.0, 4.0 or 0.5, and only the mean of the process distribution changes. In Figure

6, we can hardly distinguish the lines corresponding to various values of kP . Therefore,

the choice of kP within the range of 1.0 to 5.0 does not influence the performance of the

PROPOSED chart by much in many applications. Therefore, in a practical application, we

do not seem to lose much if we arbitrarily choose kP = 3.0, when ARL0 is around 200

or higher. The results are similar when the distributional change is in either of variance,

skewness or kurtosis.
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Table 2: The value of the control limit hP , when kP is 1.0, 2.0, 3.0, 4.0 or 5.0, the batch

size is 1, 5 or 10, and the pre-specified ARL0 value is 100, 200, 500, or 1, 000. We need at

least a few thousand Phase I data so that we can use these values in practical applications.

kP

m ARL0 1.0 2.0 3.0 4.0 5.0

100 0.0310 0.0318 0.0325 0.0340 0.0355

m = 1 200 0.0150 0.0153 0.0156 0.0159 0.0161

500 0.0058 0.0058 0.0058 0.0058 0.0059

1000 0.0027 0.0027 0.0027 0.0027 0.0027

100 0.0285 0.0300 0.0305 0.0318 0.0330

m = 5 200 0.0140 0.0144 0.0147 0.0149 0.0150

500 0.0053 0.0053 0.0053 0.0054 0.0055

1000 0.0025 0.0025 0.0025 0.0025 0.0025

100 0.0283 0.0292 0.0300 0.0315 0.0328

m = 10 200 0.0138 0.0141 0.0142 0.0146 0.0150

500 0.0051 0.0052 0.0053 0.0054 0.0054

1000 0.0024 0.0024 0.0024 0.0024 0.0024

3.3.3 Choice of hP when Phase I sample size is small

When Phase I sample size is small, typically around a thousand or less, the computed hP

values in Table 2 does not produce actual IC ARL. Figure 7 shows that the actual ARL

values can be substantially smaller than pre-specified ARL value of 200. This is due to

the fact that the empirical distribution of Q̂j(i) quantiles calculated from Phase I data-set

(c.f., expression (1)) differs substantially from U [0, 1]. Figure 7 shows that the average

detection times for various mean shifts from 0.2 through 1.0 across various curves for

M = 10, 000, 1, 000, and 500 are practically same. However, if Phase I sample size is

small, and the “in-control” process distribution is unknown, we can simulate Phase II data

by sampling from Phase I sample with replacement. We start with an arbitrary value of hP

and let the precess run until we get a signal. We repeat this many times, say 10, 000, and

calculate the average run length (ARL). We adjust the hP value until we get an ARL value
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Figure 6: The OC ARL values of the PROPOSED control chart when the value of the tuning

parameter kP is 1.0, 2.0, 3.0, 4.0 or 5.0, the IC ARL is 200, M = 1, 000, m = 5, and the

actual IC process distribution is the standardized version of N(0, 1) (plot (a)), t(4) (plot

(b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). The results are based on 10, 000 replications.

The curves for various kP values are hardly distinguishable.

that is reasonably close to the pre-specified value. Figure 8 presents the performances of

the control charts based on 10, 000 replications when Phase I sample size is only 100, and

we simulated Phase II data by this approach. In case of HD-MW and RA-CvM, the control

limits, that do not depend on IC distribution, are used as provided by the R package ‘cpm’.

In this scenario also, the PROPOSED chart outperforms others in most cases.
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Figure 7: The OC ARL values of the PROPOSED control chart when Phase I sample size

M = 10, 000, 1, 000, or 500, the value of the tuning parameter kP is 0.3, the IC ARL is 200,

m = 5, and the actual IC process distribution is the standardized version of N(0, 1) (plot

(a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). The results are based on 10, 000

replications. The curves for various kP values are hardly distinguishable when mean shift

is larger than or equal to 0.2.

3.3.4 Choice of the cut-off value 0.2 in b(n, pn, kP , hP )

Instead of 0.2 in b(n, pn, kP , hP ), if we choose a smaller value, say 0.05 or 0.1, we expect

smaller amount of pruning. In that case, there are two major consequences: (i) If a distri-
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Figure 8: The OC ARL values of five control charts when the IC ARL is 1, 000, m = 1,

M = 100, and the actual IC process distribution is the standardized version of N(0, 1) (plot

(a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Tuning parameters are chosen to

be the ones that minimize their OC ARL values when detecting the positive mean shift of

0.6. In this simulation, Phase II data samples are generated by the method in Section 3.3.3.

The results are based on 10, 000 replications.

butional change occurs after a large amount of IC Phase II data, the chart requires a large

amount of OC data to detect the change. (ii) The computation is more extensive. On the

other hand, if we choose a larger value, say 0.4, then pruning is expected to be large. If

the distributional change is not large, say, only a small shift in mean, pruning can still be
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large even for such OC data. This can negatively influence the performance of the pro-

posed chart. The performance of the proposed chart is not very sensitive to the choice of

the cut-off value between 0.15 and 0.30.

4 A Real-data Application

In this section, the proposed SPC chart and relevant other competing SPC charts are ap-

plied on a real-data about seasonal snowfall measurements in Minneapolis St. Paul area

starting from 1884-85 season through 2013-14. Figure 9(a) shows that the seasonal snow-

fall measurements were quite stable early on until 1965-66 season, and after that the IC

distribution of the seasonal snowfall measurement seems to have changed. The snowfall

data were collected from the website of “Minnesota Climatology Working Group” (http:

//climate.umn.edu/doc/twin_cities/twin_cities.htm). The proposed

method, like many other Phase II SPC charts, assumes that observations at different time

points are independent of each other. Durbin-Watson test using the R function dwtest(.)

in the package lmtest (Zeileis and Hothorn 2002) reveals that the annual snowfall values

are not significantly autocorrelated. We consider the data from 1884-85 season through

1965-66, i.e. first 82 seasons as Phase I IC data. The sample mean and standard devia-

tion of Phase I IC data are found to be m = 41.4293 and s = 15.8892, respectively. For

simplicity, we transform all (both Phase I and Phase II) data by first subtracting m and

then dividing by s, and we call the transformed data by Z. Figure 9(b) presents Z values

sequentially. All Z data before the time point 82, (i.e. until 1965-66 season) are used as IC

Phase I data, and rest are used as Phase II test data.

Table 3: First four sample moments of various segments of Z. Phase I data: First 82 Z

values, i.e., from 1884-85 season through 1965-66.

Mean Standard deviation Skewness Kurtosis

Phase I data 0.00 1.00 0.82 3.67

Phase II data until 1983-84 1.11 1.33 -0.10 2.96

In Figure 9(a)-(b), the IC Phase I data, and the Phase II test data are separated by a

vertical thick dotted line. From Figure 9(b), we see that the mean, variance and possibly
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Figure 9: (a) Original observations of the snowfall data. (b) Transformed data, i.e., Z. (c)

Density histogram, estimated density curve (solid) of the IC Phase I data, and the density

curve (dotted) of N(0, 1). (d) Original observations, with the point of signal by the PRO-

POSED chart. In plots (a), (b) and (d), the vertical dotted lines separate the IC Phase I data

from Phase II test data. In plot (b), the horizontal dotted lines are for Z = ±1 lines. In

plot (d), the horizontal solid line is for the sample mean of the first 82 observations, the

horizontal dotted lines are for sample mean ± sample standard deviation of those numbers,

and the solid vertical line indicates 1978-79 season when the PROPOSED chart signals.

some higher moments of Z data changed right after 1965-66. Table 3 provides these infor-

mation quantitatively. In this table, seasons until 1983-84 in Phase II data, i.e., until 100-th
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time point are considered, because from Figure 9(b) the process distribution seems to have

changed again after that time as well. Computations of skewness and kurtosis are done

using the R package moments (Komsta and Novomestky 2012).

Before applying any SPC chart, we first check the normality of the Phase I IC data.

Shapiro-Wilk’s test for checking normality gives a p-value of 0.0053, i.e. the Phase I IC

data are significantly non-normal. To demonstrate this, the density histogram of the IC data

is presented in Figure 9(c), along with its estimated density curve (solid) and the density

curve of the standard normal distribution. Now, we apply N-CUSUM, EWMA, HD-MW,

VC-HK, RA-CvM and the PROPOSED chart. Since S-CUSUM is designed for batched

data, it is not considered in this single-observation case. Similar to other single-observation

scenarios as in Figures 4 and 8, the pre-specified IC ARL value is 1, 000 in all charts. The

allowance parameters of N-CUSUM and EWMA are chosen to be ones that minimizes the

OC ARL when there is a positive mean shift of 0.6, while the variance remains unchanged.

The allowance parameter of VC-HK is chosen to be the one that minimizes the OC ARL

when there is a standard deviation increase of 0.6, while the mean remains unchanged.

While determining the control limits of N-CUSUM, EWMA and VC-HK, the method in

Section 3.3.3 is applied. N-CUSUM and EWMA signal at time point 98, i.e., at 1981-82

season, VC-HK signals at time point 100, i.e., at 1983-84 season, HD-MW and RA-CvM

signal at time point 96, i.e., at 1979-80 season, while the PROPOSED chart signals at time

point 95, i.e. at 1978-79 season in both cases when the control limit is determined from

Table 2, and by resampling Phase I data as suggested in Section 3.3.3. Therefore, in this

example, the PROPOSED chart signals distributional change earlier than other competing

charts.

5 Concluding Remarks

In this paper, a new SPC chart is proposed to detect any arbitrary change in univariate pro-

cess distribution when the process distribution is continuous, and a bunch of “in-control”

Phase I data are available. From the numerical study and a real data analysis, it is seen that

this chart can be used in many applications. Another major contribution of this paper is

the idea of pruning parts of Phase II data from distant past based on current p-values. It

is worth trying similar approach to many standard SPC charts (e.g., EWMA chart) when
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large amount of Phase II data are anticipated before a distributional change or Phase II data

arrive rapidly. If the number of Phase I sample is very small, say around 10, then ESDQ(n)

can have a lot of ties. Since Kolmogorov-Smirnov test can not handle the case when there

are lot of ties, this chart is not reliable in this case. One direction of future research is to

generalize the proposed chart in a multivariate process.
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