
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Computer Science Faculty Publications and 
Presentations Department of Computer Science 

2018 

XPA: An Open Source IDE for XACML Policies XPA: An Open Source IDE for XACML Policies 

Roshan Shrestha 
Boise State University 

Shuai Peng 
Boise State University 

Turner Lehmbecker 
Eastern Washington University 

Dianxiang Xu 
Boise State University 

Publication Information Publication Information 
Shrestha, Roshan; Peng, Shuai; Lehmbecker, Turner; and Xu, Dianxiang. (2018). "XPA: An Open Source IDE 
for XACML Policies". Proceedings of the International Conference on Software Engineering and 
Knowledge Engineering, SEKE, 2018-July, 188-192. https://doi.org/10.18293/SEKE2018-027 

This document was originally published in Proceedings of the International Conference on Software Engineering 
and Knowledge Engineering, SEKE by Knowledge Systems Institute Graduate School. Copyright restrictions may 
apply. doi: 10.18293/SEKE2018-027 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.18293/SEKE2018-027
https://doi.org/10.18293/SEKE2018-027


DOI reference number: 10.18293/SEKE2018-027  

XPA: An Open Soruce IDE for XACML Policies 
 

Roshan Shrestha 

Department of Computer Science  

Boise State University 

Boise, ID 83725, USA 

roshanshrestha@boisestate.edu 

Shuai Peng 

Department of Computer Science  

Boise State University 

Boise, ID 83725, USA 

shuaipeng@boisestate.edu 

Turner Lehmbecker  

Department of Computer Science  

Eastern Washington University 

Cheney, WA, USA 

edmfrosty@gmail.com 

Dianxiang Xu 

Department of Computer Science  

Boise State University 

Boise, ID 83725, USA 

dianxiangxu@boisestate.edu

 
Abstract—This paper presents XPA (XACML Policy 

Analyzer), an open source IDE (Integrated Development 

Environment) for testing, debugging, and mutating XACML 3.0 

policies. XACML is an OASIS standard for specifying attribute-

based access control policies. XPA provides a variety of new 

techniques for generating test cases from policies, localizing bugs 

in faulty policies, and repairing faulty policy elements. XPA has 

been applied to numerous XACML policies from the literature 

and real-world applications. These policies have been used to 

quantitatively evaluate the effectiveness of various testing and 

debugging methods. For system developers and administrators, 

XPA is a practical IDE for developing dependable XACML 

policies. For access control researchers, XPA offers a versatile 

toolkit for studying and evaluating new testing, debugging, and 

verification techniques.  

Keywords—access control, XACML, testing, fault localization, 

debugging 

This work was supported in part by US National Science Foundation 
(NSF) under grants CNS 1618229 and CNS 1461133. 

I. INTRODUCTION 

Attribute-Based Access Control (ABAC) is a new 
generation of access control techniques. It makes authorization 
decisions based on attributes of users, resources, actions, and 
environments [1]. Due to its fine granularity and high 
flexibility, ABAC is playing an increasing role in business and 
federal security domains. XACML (eXtensible Access Control 
Markup Language) is an OASIS standard for specifying ABAC 
policies in the XML format [2]. It has been integrated in major 
identity management products, such as Oracle Identity 
Manager and WSO2 Identity Server. Although these products 
allow user to edit and query XACML policies, there is a lack of 
tool support for policy testing, debugging, and evaluation.  

The inherent complexity of real-world ABAC policies and 
the expressiveness of the XACML language indicate the likely 
existence of access control defects and the difficulty in finding 
them. The access control defects may result from omission or 
misunderstanding of access control requirements, unexpected 
interactions between security policy and business logic, and 
coding errors. These defects need to be uncovered and fixed 
before the system is deployed; otherwise they may lead to 
unauthorized access or denial of service. For quality assurance 
purposes, we argue that, similar to system and software 
development, policy development should follow a rigorous 
engineering process, including requirements analysis, design 
(e.g., decomposition and modularization), coding (e.g., in the 
XACML language), validation (e.g., testing and debugging), 
deployment and maintenance. Thus, an integrated development 
environment (IDE) is needed to provide computer-aided 
support for various activities in this engineering process.   

This paper presents XPA (XACML Policy Analyzer), an 
evolving IDE for the development and implementation of 
dependable XACML policies. It consists of a variety of tools 
for editing, compiling, testing, debugging, and mutating 
XACML policies. The main features are: (1) coverage-based 
test generation using a constraint solver for XACML policies, 
(2) mutation-based test generation using a constraint solver for 
XACML policies, (3) coverage-based fault localization of 
XACML policies, and (4) mutation-based repair of XACML 
policies. The underlying technical approach of each feature 
implies substantial research effort and its elaboration requires a 
separate paper. The fault localization and repair methods for 
debugging XACML policies appeared in our previous work [3] 
[4], but their implementations have been improved for 
efficiency and user-friendliness. The policy mutator in XPA is 
currently the only one that supports XACML 3.0 and second-
order mutation (i.e., application of two mutation operators). 
Other mutation tools for XACML [5][6] can only apply one 
mutation operator to XACML 1.0 and 2.0 policies.   

The remainder of this paper is organized as follows: 
Section II gives a brief introduction to XACML policies. 
Section III presents the architecture of XPA, Section IV 
describes the mutation tool for XACML 3.0 policies. Sections 
V and VI present coverage-based and mutation-based test 
generators, respectively. Sections VII introduces fault localizer 
and policy repairer. Section VIII summarizes the evaluations of 
XPA. Section IX reviews and compares related work. Section 
X concludes this paper.  

II. XACML POLICIES 

The first class entities in XACML are policy and policy set. 
A policy set consists of a policy set target, a policy-combining 
algorithm identifier, a list of policies or policy sets, an 
obligation expression, and an advice expression. Policy set 
target, obligation expression, and advice expression are 
optional. An obligation expression describes the string attached 
to the access privilege, whereas an advice expression describes 
an optional suggestion on the access. A policy comprises a 
policy target, a rule-combining algorithm identifier, a list of 
rules, an obligation expression, and an advice expression. A 
rule consists of a target, a condition, an effect (permit or deny), 
an obligation expression, and an advice expression. The rule 
target specifies the set of requests to which the rule is intended 
to apply. The rule condition refines the applicability of the rule 
established by the rule target. The target of a rule, policy, or 
policy set is a conjunctive sequence of AnyOf clauses. Each 
AnyOf clause is a disjunctive sequence of AllOf clauses, and 
each AllOf clause is a conjunctive sequence of match 



 

predicates. A match predicate compares attribute values in an 
access request with the embedded attributes. Logical 
expressions for match predicates and rule conditions can apply 
a great variety of predefined functions and data types (such as 
string, Boolean, integer, double, time, and dates) to attributes. 
XACML provides four pre-defined categories of attributes: 
subject, resource, action, and environment. It also allows user 
to introduce additional attribute categories.  

When an access request is fed to an XACML engine that is 
running a policy set or policy, the engine will return an access 
decision (permit, deny, not applicable, or indeterminate) per 
the policy set or policy. The decision may be attached with 
obligation or advice, depending on the policy or policy set. An 
access request consists of a list of attribute names, types, and 
values. In this paper, it is also call test input, specified in a text 
file. A complete test case is composed of both test input and 
expected access decision (i.e., oracle value). The oracle value 
for a test input is usually determined by the access control 
requirements of the system under development. When a policy 
set or policy is known to be correct (e.g., for experiment 
purposes), the actual response of the policy set or policy can be 
recorded and then used as the oracle value of the corresponding 
test input. In an evolving policy development process, the 
actual access decisions of test inputs from earlier policy 
versions can be recorded and then used as the oracle values of 
corresponding test inputs for testing the current or future 
versions if their correctness has been confirmed before. Given 
a test case for a policy set or policy, the actual response 
returned by the XACML engine depends on the evaluation of 
all policy elements. Consider a typical policy set with a list of 
policies, where each policy is composed of a list of rules. The 
final access decision per the policy set depends the evaluation 
results of the policy set target, access decisions of individual 
policies within the policy set, and the policy combining 
algorithm. The access decision of each individual policy 
depends on the evaluation results of the policy target, access 
decisions of individual rules in the policy, and the rule 
combining algorithm. XCAML3.0 provides 11 rule combining 
algorithms and 12 policy combining algorithms. The most 
commonly used combining algorithms are Deny-overrides, 
Permit-overrides, First-applicable, Deny-unless-permit, and 
Permit-unless-deny. 

III. THE ARCHITECTURE OF XPA 

Figure 1 shows the architecture of XPA. The main 
components are: editor, test runner, fault localizer, policy 
repairer, policy mutator, mutation-based test generators, and 
coverage-based test generators. It is implemented in Java and 
AspectJ (an aspect-oriented extension to Java). The editor is 
adapted from the open source project UMU-XACML-Editor 
[7], which was originally developed for XACML 1.0 and 2.0. 
The XACML engine is Balana [8], the only open source 
implementation for XACML 3.0 when we started this project. 

The test runner feeds a test suite to the XACML engine 
running a policy set or policy and reports the pass/fail result of 
each test. For a test case without an oracle value (expected 
response), the actual response is recorded. For a test case with 
an oracle value, the test runner also compares the oracle value 
with the actual response and makes a verdict of pass or fail. 

The failure of a test case indicates that the policy or policy set 
under test has one or more faults if the test input and the oracle 
value are both correct.  

 

Graphical User Interface 

Editor  Test 

runner  
Policy  

Repairer  

Fault  

localizer  

debugger 

Policy 

mutator  

Mutation-

based test 

generators  

Cov
base

gene

erage-
d test 

rators 

ormer 

Balana  

(XACML engine) 
Z3 

(constraint solver) 

Constraint transf

Fig. 1. Architecture of XPA 

When there is a test failure, the fault localizer can be used 
to pinpoint the possible locations of faults (e.g., policy 
elements in the policy or policy set under test). It ranks all 
policy elements in the descending order of their suspicion 
scores calculated from the execution of the entire test suite. 
The user can then examine the top-ranked elements to 
determine whether they are faulty and how to fix them. 
Because Balana does not keep track of test execution 
information, we use an aspect-oriented instrumentation 
technique in AspectJ to monitor the evaluation result of each 
policy element when each test case is executed. This technique 
does not need to modify the source code of Balana.   

The policy repairer takes a step further, aiming to repair a 
faulty policy automatically. It attempts to make a series of 
changes to the faulty policy, i.e., mutate the faulty policy, so as 
to make all test cases pass. The repair attempt may or may not 
be successful, depending on the faults. Note that automatic 
repair is a hard problem. To the best of our knowledge, our 
work is the first effort toward automatic repair of XACML 
policies and policy sets. The current repairer can fix a fault 
policy with no more than two simple faults. A simple fault is 
one that can be corrected by one mutation operation.  

The policy mutator is a program that generates mutants of a 
given policy or policy set. Each mutant is a variation of the 
original policy or policy set. A first-order mutant is obtained by 
applying one mutation operator to make one change, whereas a 
second-order mutant is created by applying two mutation 
operators to make two changes. As the mutants of a correct 
policy contain different types of faults, they are commonly 
used to evaluate the effectiveness of a testing method, i.e., how 
many faults can be detected.  

XPA also exploits policy mutation for test generation 
purposes. Given an original policy and its mutant, a mutation-
based test generator produces an access request such that the 
two policies yield different responses. To do so, it first collects 
the constraint on attributes by comparing the two policy 
versions and then feeds the constraint to Z3 to find attribute 
values to satisfy the constraint, and converts the result into an 
access request. For a set of policy mutants, the mutation-based 
test generators can produce an optimal test suite that reveal all 
faulty mutants. This test suite can be used to test a policy or 

 



 

policy set without knowing whether the policy or policy set is 
faulty. It can also be used to measure other testing methods. Z3 
is an SMT (Satisfiability Modulo Theories) Solver from 
Microsoft Research [9]. It is worth pointing out that, although 
policy mutation is commonly used for evaluating testing 
methods in the literature, mutation-based test generation and 
mutation-based policy repair in our work are new. 

Coverage-based test generators are a set of programs that 
generate a test suite from a given policy or policy set according 
to a chosen coverage criterion. The main coverage criteria are 
rule coverage, rule pair coverage, permit/deny rule pair 
coverage, decision coverage, MC/DC (modified-condition and 
decision coverage), non-error decision coverage, and non-error 
MC/DC.  Each coverage-based test generator first collects the 
constraints on attributes according to the chosen coverage 
criterion, feeds each constraint to Z3, and converts the result 
into an access request. The coverage-based test generators 
focus on the extent to which the policy elements are exercised 
by tests, whereas the mutation-based test generators aim to 
produce tests that can reveal hypothesized faults. Both are 
useful for quality assurance of XACML policies.    

IV. POLICY MUTATOR 

The policy mutator creates mutants of a policy set or policy 
by applying mutation operators to the policy set or policy. 
Mutation operators are defined with respect to a fault model, 
which represents a comprehensive set of fault types in 
XACML. Table I shows the fault model (i.e., column 1) and 
mutation operators for each fault type. Application of one 
mutation operator may result in a number of mutants. For 
example, the rule combining algorithm of a policy can be 
changed to any of the other rule combining algorithms.  

TABLE I.  FAULT MODEL AND MUTATION OPERATORS 

Fault type Mutation operator 

Name Mutation 

Incorrect policy/ PTT set Policy/set Target True 
policy set target  PTF set Policy/set Target False 

Incorrect 

rule/policy 
CRC Change Rule/Policy Combining algorithm 

combining 

algorithm 

Incorrect rule 
CRE Change Rule Effect 

effect 

Incorrect rule RTT set Rule Target True 

target RTF set Rule Target False 

Incorrect rule RCT set Rule Condition True 
condition RCF set Rule Condition False 

ANF Add Not Function in condition 

RNF Remove Not Function in condition 

Incorrect rule FPR First Permit Rules 
ordering FDR First Deny Rules 

Missing rule RER REmove a Rule 

Missing target 
RPTE Remove Parallel Target Element 

element 

 

Mutation operators in Table I are named with respect to 
correct policy sets and policies. Mutants of a correct policy set 
or policy may or may not contain faults. It is possible that a 
mutant is functionally equivalent to its original version, i.e., 
they always yield the same access decision for any access 

request. Mutants of a correct policy set or policy are commonly 
used for evaluating the fault detection capability of a testing 
method in term of mutation score. A mutant is said to be killed 
if a failure is reported by any test case produced by the testing 
method. A mutant that is not killed may be equivalent to the 
original policy. Given a test suite produced by a testing 
method, its mutation score or mutant-killing ratio is as follows: 

 

number of killed mutants 

total number of mutants – number of equivalent mutants 

Note that mutation operators can be applied to a policy set 
or policy no matter whether the policy set or policy is known to 
be correct or faulty. In particular, XPA applies mutation to test 
generation (Section VI) and policy repair (Section VII). In 
these cases, the fault types in Table I do not represent the 
meanings of mutation operators.  

V. COVERAGE-BASED TEST GENERATORS 

The coverage-based test generators produce access requests 
from a given policy set or policy to satisfy a chosen coverage 
criterion. As policies are special cases of policy sets, we 
describe the coverage criteria with respect to policy sets.  

Rule coverage: A test suite for a policy set is said to satisfy 
rule coverage of the policy set if, for each rule in each policy of 
the policy set, there is as least one test in the test suite that 
evaluates the rule to its specified effect (permit or deny). 

Decision coverage: A test suite for a policy set is said to 
satisfy decision coverage of the policy set if the test suite 
covers all three decisions (true, false, error) of each decision 
expression, including the policy set target, the target of each 
policy, the target and condition of each rule in each policy.   

Non-error decision coverage: A test suite for a policy set 
is said to satisfy non-error decision coverage of the policy set 
if the test suite covers all non-error decisions (true and false) 
of each decision expression, including the policy set target, the 
policy target of each policy, the rule target and condition of 
each rule in each policy.   

MC/DC: A test suite for a policy set is said to satisfy 
MC/DC of the policy set if the test suite satisfies MC/DC and 
covers the error condition of each decision expression, 
including the policy set target, the policy target of each policy, 
the rule target and condition of each rule in each policy.  

Non-error MC/DC: A test suite for a policy set is said to 
satisfy MC/DC of the policy set if the test suite satisfies 
MC/DC of each decision expression, including the policy set 
target, the policy target of each policy, the rule target and 
condition of each rule in each policy.   

Rule pair coverage: A test suite for a policy set is said to 
satisfy rule pair coverage of the policy set if, for each pair of 
rules within each policy, the test suite has a test to make both 
rules evaluate to their specified effects. 

The above coverage criteria can also be used to measure the 
coverage adequacy of a given test suite. Such a test suite may 
be produced by other testing methods when a policy is 
developed or represent actual access requests in operation. 



 

Generally speaking, test suites of different coverage criteria 
have different levels of fault detection capabilities. The 
measurement of coverage adequacy provides important 
guidelines for the development of access control tests.    

VI. MUTATION-BASED TEST GENERATORS  

Given a policy set or policy whose correctness is unknown, 
mutation-based test generators create access requests by 
comparing the policy set or policy with each of its mutants 
(i.e., a hypothesized fault). The mutants are obtained by 
applying the mutation operators in Table I. A mutation-based 
test generator with respect to a mutation operator tries to 
generate one access request for each mutant obtained by the 
mutation operator. For such an access request, the original 
version and the mutant will respond with different access 
decisions. Assuming that one version is correct and the other 
version is faulty, the idea of mutation-based test generation 
relies on the following fault detection conditions: (1) 
Reachability condition: the access request must reach the 
mutated policy element, such as  rule target, rule condition, 
rule effect, policy target, policy set target, and rule/policy 
combining algorithm. (2) Necessity condition: the access 
request must make the mutated element and the corresponding 
element in the original version evaluate to different 
intermediate results; (3) Propagation condition: the access 
request must make the mutant and the original produce 
different responses. Propagation condition largely depends on 
the rule and policy combining algorithms. 

By comparing the two policy versions, the mutation-based 
test generator derives a constraint that is composed of all three 
conditions. Then it feeds the constraint to Z3. If the constraint 
is solved, the solution is converted into an access request; 
otherwise the two policy versions are considered to be 
equivalent, assuming Z3 is sound and complete.  

The key challenge of mutation-based test generation is the 
formalization of reachability condition, necessity condition, 
and propagation condition for each kind of mutants. The idea 
originated from fault-based testing or constraint-based testing 
in the software testing community. However, practical 
mutation-based test generators for software remain to be seen 
unless for toy examples – it is difficult, if not impossible, to 
formulate the fault detection conditions because of the inherent 
complexity of software. Due to the special structure of 
XACML policy sets and policies, we have been able to 
automatically derive complete fault detection conditions of all 
mutants. The details will be described in a separate paper.  

VII. AUTOMATED DEBUGER 

The automated debugger consists of the fault localizer and 
the mutation-based policy repairer. Fault localizer aims to 
identify which element of a policy set or policy is likely faulty 
if there is a failure when it is tested with a test suite. The basic 
idea is to build a correlation between the evaluation result 
(firing or not) of each policy element and the test verdict (pass 
or fail) for each test case. The correlation data is then used to 
rank all policy elements with a certain scoring method. A 
policy element with a high suspicion score has a high 
probability of having fault(s). XPA has implemented 14 

scoring methods selected from the best-performing spectrum-
based methods for software fault localization [10].  

The policy repairer takes a step further to modify the policy 
set or policy so that no test in the test suite will fail. According 
to the suspicion rankings from the fault localizer, the repairer 
starts with the most suspicious policy element, mutates it to 
create a new policy set or policy, and runs the new policy set or 
policy to check if all tests pass. If there is no failure, the repair 
is successful; otherwise the repairer will try another mutation 
or another suspicious element. Because a policy set or policy 
may have a number of faults, the repairer exploits the notion of 
plausible fix. A plausible fix does not make all tests pass. 
Instead, it makes the debugging progressive, indicated by a 
decreased number of failed tests. The repairer allows user to set 
up the depth of mutation for repair, a scoring method for 
sorting suspicious elements, and select some or all of the 
mutation operators. If the repair attempt is successful, XPA 
presents the relevant policy elements of both original and 
repaired versions.  

VIII. EVALUATION AND APPLICATION 

We have applied a number of XACML policies to XPA, as 
listed in Table II. All of them are available at the project 
website. Three policies, continue, fedora, and itrust, were 
obtained from the literature. They were originally coded in 1.0 
or 2.0. We upgraded them to 3.0 without changing their 
semantics. We also created three variations of itrust (itrust5, 
itrust10, and itrust20) for studying scalability of testing and 
debugging methods. itrustX has X times as many rules as itrust. 
The new rules are created by replicating original rules with 
new attribute values. HL7 is a real world policy set provided by 
an XACML developer. The system that uses the HL7 policy 
set is not available, though. GPMS (Grant Proposal 
Management System) is an open source Java project that we 
have developed as an exemplar application of XACML. The 
motivation behind GPMS was that there is no real-world 
XACML3.0 application whose policy files and application 
source code are publicly available. GPMS is a web-based 
application for an academic institution to manage the internal 
workflow for grant submissions. It uses XACML to implement 
a fine-grained access control of the workflow.  

TABLE II.  SAMPLE XACML3.0 POLICIES 

Policy # of rules # of lines of the XACML file 

continue  15 229 

1fedora  12 227 

2itrust  64 1,283 

itrust5 320 6,403 

itrust10 640 12,803 

itrust20 1,280 25,603 

HL7 19 809 

GPMS policy 97 7,678 

1 http://www.fedora.info 
2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start 

Evaluation of the coverage-based test generators: Six 
policies (continue, fedora, itrust, itrust5, itrust10, and itrust20) 

                                                           



 

have been used to evaluate all coverage-based test generators. 
As they are considered to be the correct version, the oracle 
value of each test input is the actual response from the original 
policy. The fault detection capability of each test generator is 
assessed through mutation testing, where both first-order and 
second-order mutants were generated by the policy mutator. 
The results show that the MC/DC test suite has the highest 
mutation score, whereas the rule coverage test suite was only 
able to kill about 50% of the mutants. All test generators have 
acceptable time performance for all policies.  

Evaluation of the mutation-based test generators: All 
policies in Table II have been applied to the mutation-based 
test generators. They are able to generate a test input for every 
non-equivalent first-order mutants.   

Evaluation of the fault localizer: All policies except 
itrust20 and the GPMS policy in Table II have been applied to 
the fault localizer. The first-order and second-order mutants of 
each policy are used as inputs to the fault localizer. The 
experiments show that the 14 scoring methods have varying 
accuracy. Naish2 and CBI-Inc can accurately localize the faults 
regardless of the policy size. The actual faulty policy element 
is usually among a few top candidates that are suggested by the 
Naish2 and CBI-Inc methods. 

Evaluation of the policy repairer: All policies except 
itrust20 and the GPMS policy in Table II have been applied to 
the policy repair. Both first-order and second-order mutants of 
each policy are used as inputs. All scoring methods were able 
to repair them. This indicates that the mutation operators for 
policy mutation and the mutation operators for policy repair are 
reversible. The Naish2 and CBI-Inc methods have the best time 
performance to locate the faulty elements. 

Application to GPMS: XPA was used to test the GPMS 
policy in the development process of GPMS. The mutants of 
the GPMS policy is currently being used to evaluate the fault 
detection capability of a model-based test method for GPMS.  

IX. RELATED WORK 

Several methods have been proposed to generate test inputs 
for XACML policies: Cirg [11] generates access requests from 
counterexamples produced by the change-impact analysis of 
two synthesized versions. The difference of the two versions of 
a policy targets a test coverage goal (e.g., rule, or condition).  
Because access requests are encoded in XML, they must 
conform to the XML Context Schema. Bertolino et al., have 
developed different test generation algorithms by considering 
the structures of the Context Schema, such as Preliminary XPT 
and Incremental XPT [12]. Li et al. [8] used symbolic 
execution technique to generate access requests by converting 
the XACML policy under test into semantically equivalent C 
Code Representation (CCR) and symbolically executing CCR 
to create test inputs and translating the test inputs to access 
requests. The coverage-based test generators in XPA are 
different from the above work except for the rule coverage. In 
addition to the new coverage criteria, XPA generates access 
requests for exercising error conditions. Policy mutation has 
 

 

been used to evaluate the above testing methods, but limited to 
1.0 and 2.0 [5][6]. XPA also uses policy mutation for test 
generation and policy repair.  

X. CONCLUSIONS 

We have presented a comprehensive toolkit, XPA, for 
editing, testing, debugging, and mutating XACML policies. It 
also provides an infrastructure for experimentation with new 
testing and debugging methods. For example, when mutation is 
used to evaluate a new testing method against a policy, XPA 
can apply the test suite to all mutants of all or selected mutation 
operators and produce a summary of test execution results.  

Our future work will focus on tool support for access 
control requirements analysis and policy maintenance in the 
policy engineering process. We plan to develop a computer-
aided approach for transforming access control requirements 
specification in a natural language (e.g., English) into XACML 
policies. We will also implement various refactoring methods 
to facilitate changes of XACML policies.  

REFERENCES 

 
[1] V. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, K. 

Scarfone, “Guide to attribute based access control (ABAC) definition 
and considerations,” NIST Special Publication 800-162, October 2013.  

[2] OASIS, “eXtensible Access Control Markup Language (XACML) 
Version 3.0,” http://www.oasisopen.org/committees/xacml/, Jan. 2013. 

[3] D. Xu, Z. Wang, S. Peng, N. Shen, “Automated fault localization of 
XACML policies,” Proc. of the 21st ACM Symp. on Access Control 
Models and Technologies (SACMAT’16), pp. 137-147, June 2016. 

[4] D. Xu and S. Peng, “Towards automatic repair of access control 
policies,” Proc. of the 14th IEEE Conference on Privacy, Security and 
Trust (PST’16), pp. 485-492, Auckland, New Zealand, December 2016. 

[5] E. Martin, and T. Xie, “A fault model and mutation testing of access 
control policies,” Proc. of WWW’07, pp. 667-676, May 2007. 

[6] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, “XACMUT: 
XACML 2.0 mutants generator,” Proc. of 2013 IEEE Sixth International 
Conference on Software Testing, Verification and Validation 
Workshops, pp. 28-33, 2013. 

[7] P. G. Morcillo, A. J. Lázaro, G. Tormo UMU-XACML-Editor. 
http://umu-xacmleditor.sourceforge.net/ 

[8] WSO2. “Balana: An open source XACML 3.0 implementation.” 
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-
implementation/ 

[9] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” Proc. of the 
14th International Conference Tools and Algorithms for the 
Construction and Analysis of Systems (TACAS'08), LNCS volume 
4963. 2008, Springer. 

[10] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. “A theoretical analysis of the 
risk evaluation formulas for spectrum-based fault localization,” ACM 
Trans. on Software Engineering and Methodology (TOSEM), 22(4):31. 

[11] E. Martin, and T.Xie. "Automated test generation for access control 
policies via change-impact analysis." Proceedings of the Third 
International Workshop on Software Engineering for Secure Systems. 
IEEE Computer Society, 2007, pp.5-11. 

[12] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "The X-
CREATE Framework-A Comparison of XACML Policy Testing 
Strategies." Proc. of the 8th International Conference on Web 
Information Systems and Technologies (WEBIST). pp.155-160. 


	XPA: An Open Source IDE for XACML Policies
	Publication Information

	Paper Title (use style: paper title)

