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ABSTRACT 
 
Soil moisture is an important environmental variable that impacts military operations and 
weapons systems. Accurate and timely forecasts of soil moisture at appropriate spatial scales, 
therefore, are important for mission planning. We present an application of a \ soil moisture 
data assimilation system to military trafficability assessment. The data assimilation system 
combines hillslope-scale (e.g., 10s to 100s of m) estimates of soil moisture from a hydrologic 
model with synthetic L-band microwave radar observations broadly consistent with the 
planned NASA Soil Moisture Active-Passive (SMAP) mission. Soil moisture outputs from the 
data assimilation system are input to a simple index-based model for vehicle trafficability. 
Since the data assimilation system uses the ensemble Kalman Filter, the risks of impaired 
trafficability due to uncertainties in the observations and model inputs can be quantified. 
Assimilating the remote sensing observations leads to significantly different predictions of 
trafficability conditions and associated risk of impaired trafficability, compared to an approach 
that propagates forward uncertainties in model inputs without assimilation. Specifically, 
assimilating the observations is associated with an increase in the risk of “slow go” conditions 
in approximately two-thirds of the watershed, and an increase in the risk of “no go” conditions 
in approximately 40% of the watershed. Despite the simplicity of the trafficability assessment 
tool, results suggest that ensemble-based data assimilation can potentially improve 
trafficability assessment by constraining predictions to observations and facilitating 
quantitative assessment of the risk of impaired trafficability. 

 
Highlights: 
1. We apply a soil moisture data assimilation system (DAS) to military trafficability 
2. Assimilation improves prediction of impaired trafficability 
3. Ensemble-based assimilation supports quantification of trafficability risk  
 
Keywords: Soil moisture; military trafficability; data assimilation; remote sensing, microwave radar; hillslope scale 
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1. Introduction 
 
The purpose of this study is to demonstrate how forthcoming satellite radar observations that are sensitive to soil 
moisture can potentially be used to improve assessment of military vehicle trafficability by combining those 
observations with information from a hydrologic model. Estimation of the spatiotemporal distribution of soil 
moisture is critical for weather, climate, and hydrologic forecasting [1]. As a military battle-space environment 
variable, moreover, soil moisture exerts considerable influence on mobility and trafficability [2]. At scales of 
individual hillslopes (10s to 100s of m), for instance, soil wetness can limit mobility of military vehicles and 
personnel over the land surface, thereby potentially impacting mission outcomes and decision-making. Because of 
the importance of soil moisture on mission planning and execution, improving the accuracy, timeliness, and spatial 
resolution of soil moisture can enhance military decision support systems. 
 
An increasingly important methodology for estimating soil moisture is data assimilation – the mathematical 
combination of model- and observation-based soil moisture information [3, 4]. Advantages of data assimilation as a 
soil moisture estimation technique include the ability to: (1) use observations and models of different spatial 
resolutions [5], (2) ingest observations of geophysical variables that are indirectly related to soil moisture [6-8], and 
(3) constrain model soil moisture predictions to observations that are intermittently available [9]. Ensemble-based 
techniques, such as the ensemble Kalman Filter (EnKF) [10, 11] and Markov Chain Monte Carlo [12] methods, are a 
particular class of data assimilation methods that support the use of Monte Carlo simulation to resolve the 
spatiotemporal distribution of soil moisture in a probabilistic way. Other techniques, known as smoothers [13], can 
use observations to update model estimates at all times. For the sake of simplicity, we limit our discussion to the 
introduction of data assimilation techniques based on the EnKF. Readers interested in a broader review of data 
assimilation techniques should refer to reviews by [14]. 
 
In the EnKF framework, uncertainties in boundary (e.g., soil properties, rainfall forcing) and initial (e.g., soil 
moisture) conditions are represented explicitly by producing stochastic realizations of model states (e.g., soil 
moisture and temperature), parameters (e.g., soil and vegetation parameters) and forcings (e.g., precipitation and 
humidity). Stochastic realizations of initial and boundary conditions are then propagated through the hydrologic 
forecasting model. The output is an ensemble of soil moisture realizations (referred to as the forecast) from which 
the sample mean, variance, and covariance are computed. These sample statistics are assumed to approximate the 
underlying spatial probability density function of soil moisture. The ensemble of model soil moisture estimates is 
conditioned on observations that are also associated with uncertainty, expressed as an error covariance matrix. The 
conditioned ensemble of model soil moisture estimates (referred to as the analysis) is an initial condition to the 
hydrologic model, which is evolved forward in time (under still-uncertain boundary conditions) until a new 
observation is available. This forecast-analysis process repeats for every subsequent observation. 
 
We use the outputs of a soil moisture data assimilation system as input to a simple model of vehicle mobility. The 
vehicle mobility model is based on the concept of the Rating Cone Index (RCI) [15,16], a measure of soil surface 
load-bearing capacity, and a Vehicle Cone Index (VCI) [16,17], vehicle-specific critical values of RCI that are 
indicative of impaired mobility. The soil moisture data assimilation system, described in detail by Flores et al. 
[2012], uses a physics-based ecohydrology model (described below) to simulate the spatiotemporal distribution of 
soil moisture at the hillslope scale. Uncertainty in boundary conditions is represented in: (1) soil parameters using a 
Latin-hypercube based sampling strategy (see [18]), and (2) hydrometeorologic forcings using a stochastic weather 
generator (see [8,19]). Observations used to condition soil moisture ensembles take the form of synthetic L-band 
microwave radar images broadly consistent with NASA’s forthcoming Soil Moisture Active-Passive (SMAP) 
satellite [20]. Because this satellite is not yet in orbit, we use an Observing System Synthetic Experiment (OSSE) 
approach in which the ecohydrologic model is used to simulation a notionally true realization of the spatiotemporal 
distribution of soil moisture. Output from the ecohydrology model is supplied as input to the Integral Equation 
Model [7,21-23]] to yield synthesized images of radar backscatter in two polarization states (see [8]). Because 
topography is correlated with factors affecting reflection of microwave energy like soil moisture (e.g., [24]) and 
controls the local incidence and polarization, the observation synthesis approach explicitly accounts for topography 
(e.g., [25,26]). 
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We seek to address the following applied science questions: 
 
(1) Do improvements in the accuracy of soil moisture knowledge correspondingly improve the accuracy of 
trafficability maps? 
 
(2) For a given vehicle, does constraining model-derived soil moisture to satellite observations significantly change 
the perceived risk of impaired trafficability conditions? 
 
In section 2 below we describe the study methods. This includes a brief overview of the data assimilation system 
used to obtain soil moisture ensembles used for trafficability assessment and the trafficability assessment technique. 
Section 3 presents the results of the simulation experiments. Key findings, implications, and potential directions for 
future study are discussed in Section 4. 
 

2. Methods 
 
The SMAP satellite is not scheduled for launch until late 2014 and there is currently no L-band radar satellite that 
provides adequate spatial resolution and temporal revisit to support military trafficability assessment using the data 
assimilation approach described here. An OSSE approach is therefore required. The OSSE framework is commonly 
used in geophysical inversion, remote sensing, and data assimilation studies to develop inversion algorithms and test 
the accuracy of data assimilation routines prior to the availability of actual observations [6-8]. In an OSSE 
framework, a model of the physical system is used to produce a synthetic (i.e., hypothetical) distribution of soil 
moisture that is conceptually “true.” A geophysical forward model is then used to create a corresponding set of 
synthetic observations of the variable that is observed by the sensor (i.e., brightness temperature for passive 
microwave, or radar backscatter or travel time for radar). Synthetic observations are then perturbed with noise that is 
consistent with the anticipated observational error to produce synthetic satellite products that are used in a data 
assimilation experiment (i.e., with the EnKF algorithm). Outputs of the data assimilation experiment – estimates of 
the distribution of soil moisture and a measure of uncertainty – are then compared with the model-derived true soil 
moisture distribution. Typically, a corresponding ensemble simulation – without assimilation performed – is also 
conducted to quantify uncertainties in soil moisture in the absence of constraint on observational data. This is 
referred to as an open loop (OL) simulation. The relative estimation errors of the data assimilation and open loop 
simulations reveal the extent to which ingesting observational data improves predictions in soil moisture, assuming 
that the model and observations are not biased with respect to each other. 
 
This section details the development of the hillslope-scale data assimilation system and how it is applied to produce 
trafficability maps. 
 
2.1 Hillslope-scale research data assimilation system 
 
This subsection provides an overview of the data assimilation system used to derive soil moisture ensembles that are 
subsequently used to perform a simple trafficability analysis. The core components of this research data assimilation 
system are the: (1) ecohydrologic model, (2) satellite observations, (3) data assimilation algorithm, and (4) 
experimental conditions and assumptions. A conceptual workflow of this data assimilation-based trafficability 
assessment tool is shown in Figure 1. 
 
2.1.1 Hillslope-scale soil moisture modeling 
 
The simulation core of the hillslope-scale data assimilation system is a coupled biophysical and hydrologic system 
referred to as the Triangulated Irregular Network (TIN)-based Realtime Integrated Basin Simulator (tRIBS) [27,28] 
and VEGetation Integrated Evolution (VEGGIE) [29,30] models (collectively tRIBS-VEGGIE). The tRIBS-
VEGGIE resolves mass, energy and carbon balance at hillslope scales (10s to 100s of m) within a watershed. 
Watershed topography is represented with a TIN and associated Voronoi polygon map obtained an underlying 
digital elevation model (DEM)  (e.g., [31]). The TIN representation leads to a variable spatial resolution within a 
watershed, reducing computational demands of model simulations while preserving the distribution of slope, aspect, 
and other key attributes of topography. A full description of the tRIBS-VEGGIE model is outside the scope of this 
applied study. The reader is referred to [27-30] for a more extensive overview of the model physics and [8,18,26] for 
its application in the development of the data assimilation framework used in this study. 
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Inputs to the tRIBS-VEGGIE model include hourly hydrometeorological forcings, soil hydraulic and thermal 
properties, vegetation parameters, and a static elevation field representing watershed topography. 
Hydrometeorological forcings to the model include hourly precipitation, sky fractional cover or incoming solar 
radiation, air temperature, dew temperature, and wind speed. 
 
2.1.1 Synthetic L-band microwave radar observations 
 
Because the soil dielectric in the microwave region of the electromagnetic spectrum is sensitive to the degree of 
saturation [32], microwave remote sensing has become a critical tool for global soil moisture observation. The L-
band (1-2 GHz) of the microwave region is particularly advantageous for soil moisture observation because in this 
region the atmosphere is essentially transparent and microwave penetration into the soil is deeper than at higher 
frequencies [20,33,34]. As a result, two satellite platforms (one operational, one planned) utilize L-band microwave 
technology to measure soil moisture globally approximately every 2-3 days. The European Space Agency's Soil 
Moisture and Ocean Salinity (SMOS) mission, operational since late 2009, uses a microwave radiometer to retrieve 
soil moisture at spatial resolutions of approximately 50 km [33,34]. The NASA Soil Moisture Active-Passive 
(SMAP) satellite, scheduled to launch in late 2014 [20], will co-locate an L-band microwave radiometer with a 
frequency of 1.41 GHz (spatial resolution ~40 km) and a synthetic aperture radar with a frequency of 1.26 GHz 
(spatial resolution ~1-3 km). A combined active-passive soil moisture product will achieve a global spatial 
resolution of approximately 10 km. Despite the timely nature of the 2-3 day revisit period of these satellites, the 
resolution of the associated data products is nevertheless too coarse for direct insertion into trafficability assessment 
tools requiring information at hillslope scales. 
 
These coarse-scale observations can still be used in a data assimilation framework to improve estimates of soil 
moisture at hillslope scales derived from the tRIBS-VEGGIE model. Assimilation systems can be formulated such 
that either the retrieved (e.g., soil moisture) or geophysically observed (e.g., backscatter or radiance) quantity is used 
to update the model. In the case of the data assimilation system used here, L-band radar backscatter observations at 3 
km spatial resolution and two polarization states (hh and vv) are assimilated directly. This approach necessitates a 
forward model to predict the observed quantity (radar backscatter) given the soil moisture estimate from tRIBS-
VEGGIE. Soil moisture maps derived from tRIBS-VEGGIE are used to derive corresponding maps of the soil 
dielectric constant using the Topp model [32]. Based on the local topographic slope and aspect maps, local incidence 
and polarization rotation angles are computed [25,26], and together with the derived dielectric constant, soil 
reflectivity maps in horizontal and vertical co-polarized states are determined through the Fresnel equations [7,21-
23]. The Integral Equation Model (IEM) is then used to compute the spatial maps of radar backscatter in hh- and vv-
polarization, assuming known roughness characteristics of the soil. Hillslope-scale maps of radar backscatter on the 
tRIBS-VEGGIE TIN mesh are then averaged to a 3 km square grid (consistent with the SMAP level 1 radar product, 
see [20]). A thorough overview of this forward model is presented in Flores et al. [8,26]. 
 
2.1.3 Data assimilation algorithm 
 
The ensemble Kalman Filter (EnKF) is a sequential data assimilation algorithm and a Monte-Carlo simulation-based 
generalization of the Kalman Filter [10,11,35]. A key strength of the EnKF is that, because the state error covariance 
is estimated from an ensemble of Monte Carlo simulations, it does not require the use of a model with linear or 
linearized dynamics. Additionally, because the update involves only stopping and starting an ensemble of 
simulations, the observations being assimilated can be temporally intermittent. On the other hand, because the model 
state update is based only on first- and second-order statistics, it assumes that the state and observational errors are 
Gaussian and white. A full review of the EnKF is beyond the scope of this paper. The particular EnKF algorithm 
used in the data assimilation system is outlined in [11]. 
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In the context of this work, the following represent the key sequential steps in the EnKF framework to update 
hillslope-scale estimates of soil moisture from tRIBS-VEGGIE with L-band microwave radar observations: 
 
1. The tRIBS-VEGGIE model is initialized with an initial ensemble of soil moisture realizations. 
 
2. Each realization of the initial soil moisture ensemble is propagated forward in time using the tRIBS-VEGGIE 
model, subject to a corresponding realization of boundary conditions (hydrometeorological forcings) and soil 
parameters. This yields a forecast ensemble at the time of L-band radar observation. 
3. Using the forward model, each realization of the forecast ensemble is used to produce a corresponding prediction 
of the microwave radar observation. This produces an ensemble forecast of the 3 km L-band radar observations. 
 
4. The sample cross-covariance matrix between the forecast soil moisture ensemble and forecast observation 
ensemble is computed. 
 
5. With the actual 3 km L-band radar observation, and an assumed or deduced error covariance matrix associated 
with the observations, the Kalman gain matrix is computed. 
 
6. The Kalman gain matrix is multiplied by the innovations, the difference between the forecast and actual L-band 
radar observation, and the product added to the forecast soil moisture ensemble. This matrix is the analysis soil 
moisture ensemble; individual soil moisture realizations that have been conditioned on the observation. 
 
7. The soil moisture realizations within the analysis ensemble are used to re-initialize the tRIBS-VEGGIE model, 
and steps 2-6 repeated for subsequent observations. 
 
A conceptual diagram of the EnKF algorithm is shown in Figure 2. 
 
2.1.4 Experimental Setup 
 
The OSSE is set in the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA (area148 km2). The 
semiarid watershed is associated with a mean annual temperature of 17.7 C, while mean annual precipitation is 312 
mm [36]. The distribution of elevation, topographic slope, soil textures, and total precipitation over the course of the 
experiment, as well as the location of the watershed, is shown in Figure 3. Vegetation cover in WGEW is dominated 
by desert shrubs, which cover approximately two-thirds of the watershed. The most common shrubs include 
creosote, tarbush, mortonia, and whitethorn. The remaining one-third of the watershed is covered by grasslands with 
black grama, curly mesquite grass, and tobosa grass predominating. 
 
Hydrometeorological forcings for the OSSE were produced with a stochastic weather generation approach. Hourly 
precipitation was generated using the Modified Bartlett-Lewis (MBL) model (e.g., [37]) using parameters for 
Tucson International Airport, Arizona, USA [19]. An ensemble of precipitation realizations was produced by 
stochastically disaggregating hourly precipitation values to a 4 km grid using a multiplicative cascade [38]. The 
remainder of the hydrometeorological forcings required by tRIBS-VEGGIE (e.g., temperature, humidity, 
windspeed) were obtained using the stochastic weather generator summarized in [19]. 
 
The spatial organization of soil textural classes corresponding to mapped soil units is assumed known, but the soil 
parameters required as input to tRIBS-VEGGIE for each mapped soil unit is assumed uncertain. The spatial 
distribution of soil units for WGEW was obtained from the Soil Survey Geographic (SSURGO) database maintained 
and published by the USDA. For brevity we do not reproduce here a table of soil textures along with the map in 
Figure 3(e), but the reader is referred to [8] for this information. Within each soil textural unit in the map (Fig. 3(c)) 
an ensemble of soil parameters was generated stochastically using a Latin Hyper-cube based approach outlined in 
[18]. This approach produces an ensemble of parameters that preserves observe correlation among soil properties. 
 
An additional and independent realization of soil properties and hydrometeorological forcings was propagated 
through tRIBS-VEGGIE to produce the synthetic true soil moisture distribution. This synthetic true simulation was 
648 hours (27 days) in duration, with parameters for the MBL consistent with July. At 72-hour intervals (consistent 
with the SMAP mission revisit), the true soil moisture distribution was input to the forward model to yield the 
synthetic true L-band radar observations in horizontally and vertically co-polarized states. These synthetic true 
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observations were then perturbed with additive Gaussian noise that is zero mean with a standard deviation of 0.5 dB. 
This yields synthetic observations to be assimilated. Speckle noise common to radar images is more appropriately 
simulated as multiplicative noise (e.g., [39]). However, due to the small number of radar pixels required to cover the 
domain (7 x 10) the differences in the spatial structure of simulated noise between error models is negligible. 
 
The EnKF experiment was performed with 256 ensemble replicates. The 648 hr experiment period corresponds to 
nine simulated SMAP over-flights and, therefore, nine forecast-analysis cycles. For comparative purposes, a 1024 
member open loop (OL) ensemble was also simulated. In the OL simulation, uncertainties in model parameters and 
initial and boundary conditions are propagated through the tRIBS-VEGGIE model, without being conditioned on the 
synthetic radar observations. The OL represents an “uninformed” forecast of soil moisture and trafficability 
conditions. 
 
The reader is referred to the work of [8] for a thorough presentation of these experiments, results, underlying 
assumptions, and limitations of the experimental framework. For the purposes of this trafficability assessment 
application, we focus on results of the third analysis cycle (AN3) at hour 216 of the experiment. This analysis 
occurred immediately after a large rainfall event when we would expect the influence of increased moisture on 
impaired trafficability to be at its maximum during the experiment. We are specifically interested in the degree to 
which soil moisture data assimilation with the EnKF allows for improved knowledge of soil moisture, expected 
trafficability, and trafficability risk compared to the OL experiment. Estimation errors in both soil moisture and a 
trafficability index for both the EnKF and OL experiments are computed relative to the synthetic true tRIBS-
VEGGIE soil moisture and associated trafficability index at AN3. Characteristics of the synthetic experiment are 
summarized in Table 1. 
 
2.2 Trafficability assessment model 
 
Trafficability assessment is often done using field-based surveys performed by military personnel (e.g., [16, 40-42]). 
The US Army Corps of Engineers has developed standard in situ techniques for trafficability assessment, using a 
variety of devices including a handheld cone penetrometer (PCP) ([41]). The PCP measures the compressive and 
frictional resistance of the soil as it is forced vertically downward into the soil column. This resistance, typically 
reported in units of force per unit area, is referred to as the cone index (CI). For fine grained soils, CI is multiplied 
by a reducing index of soil remoldability (RI) to achieve the remold cone index (RCI) . The soil layer supporting the 
mass of the vehicle is referred to as the critical layer and varies by the soil type, soil strength profile, and the type 
and weight of the vehicle [42]. Consistent with [43], we assume the critical layer extends from the surface to 40 cm 
in depth, and use the following statistical model to predict RCI as a function of volumetric soil moisture, 

 RCI  exp a  b ln%  (1) 

where soil moisture is expressed as a percentage value �%, and regression coefficients a and b depend on the soil 
textural class. Values of a and b for different soil textural classes are shown in Table 2. As the values of b in Table 2 
suggest, RCI decreases as soil moisture increases, and the relationship between RCI and soil moisture varies by soil 
texture. Ensemble soil moisture estimates from the EnKF and OL experiments are input to equation (1) to produce 
corresponding ensembles of RCI. The spatial distribution of ensemble RCI statistics, however, are difficult to 
interpret in the context of trafficability assessment without additional refining. Therefore, we investigate how the 
spatial variability of hillslope-scale soil moisture, through its influence on RCI, impacts the trafficability 
performance of a particular vehicle-type. 
 
The vehicle cone index (VCI) is defined as a minimum value of RCI for fine-grained soils and CI for coarse-grained 
soils required for a particular vehicle to achieve a given number of passes over a soil [40]. The single-pass vehicle 
cone index (VCI1) is a vehicle performance metric that corresponds to the value of RCI at which that vehicle-type 
would experience impaired mobility after one pass through the soil. Similarly, the fifty-pass vehicle cone index 
(VCI50) corresponds to the value of RCI at which that vehicle-type would experience impaired mobility after fifty 
passes through the soil. VCI1 and VCI50 are used together in trafficability assessment, along with other landscape 
metrics not considered here such as ground slope, as indicators of expected performance for a particular vehicle-
type. For the purpose of this study, we refer to VCI1 < RCI  VCI50 as “slow-go'” conditions, and RCI  VCI1 as “no-
go” conditions. In this work, we investigate the expected trafficability conditions for a wheeled Light Armored 
Vehicle (LAV) armored personnel carrier. Values of VCI1 and VCI50 for the LAV-25 are 32 and 72, respectively (see 
[44], Appendix D). 
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In this trafficability case study we are interested in: (1) the spatial distribution expected trafficability conditions, as 
measured by the ensemble mean of RCI, and (2) the risk of the vehicle encountering impaired trafficability 
conditions throughout the landscape. Risk of impaired trafficability conditions are diagnosed from the ensemble of 
RCI values. At a particular location in the watershed, the risk of slow-go conditions is calculated as the number of 
ensemble replicates exhibiting VCI1 < RCI  VCI50, relative to the ensemble size (256 for EnKF, 1024 for OL). 
Similarly, the risk of no-go conditions is calculated as the number of ensemble replicates exhibiting RCI  VCI1, 
relative to ensemble size. 
 
It should be noted that the trafficability model presented here assumes that soil moisture is the only landscape factor 
limiting mobility of the hypothetical LAV. This is an oversimplification of the multi-factorial and potentially 
interacting terrain variables (e.g., slope gradient, land cover) that potentially limit vehicle mobility that may 
overemphasize the importance of soil moisture. For instance, in areas of slope steepness that exceed a maximum 
slope that limits trafficability of a particular vehicle, the soil moisture/strength is irrelevant. Hence, the trafficability 
assessments presented here are not meant to reflect an all-encompassing tactical decision aid that might be used in 
application. Although simplistic, this approach does allow us to examine the extent to which assimilation of 
remotely sensed information into a model can improve the component of trafficability knowledge that is related to 
soil moisture in isolation of these other, potentially confounding, variables. 
 

3. Results 
 
The results of the EnKF and OL simulations used to perform the trafficability assessment presented in this work are 
a subset of the larger set of experiments conducted and described in [8]. For brevity, we present results of those 
experiments related to soil moisture only insofar as they assist in interpreting the results of the trafficability 
assessment. Those readers interested in a more detailed discussion of the impact of data assimilation on soil 
moisture estimates are referred to that previous work. For comparative purposes, the distribution of soil moisture 
associated with the true soil moisture is shown in Figure 4(a). Ensemble mean soil moisture in the top 40 cm of the 
soil profile is substantially different between the EnKF and OL experiments (Figs. 4(b) and 4(c)). The spatial 
distribution of the ensemble mean soil moisture of the OL simulation reflects the influence of spatial heterogeneity 
in soil texture and topography (Fig. 4(b)). Heterogeneity in soil texture and topography on the spatial distribution of 
soil moisture is also apparent in the EnKF ensemble mean, but exhibits vertical and horizontal linear features visible 
in the central part of the watershed (Fig. 4(c)). These linear features are coincident with the grid cells of the rainfall 
forcings, indicating that assimilation of the radar observations somewhat compensates for uncertainty in rainfall. 
This is significant because AN3 (analysis cycle 3) closely follows a significant rainfall event. The spatial 
distribution of soil textural classes can also clearly be seen and are often are associated with relatively large spatial 
gradients in the ensemble mean soil moisture while channels and valley networks are often visible within a 
particular soil type (Fig. 4(c)). Assimilation of the observations decreases the estimation error throughout the vast 
majority of the watershed, depicted as the root mean squared error (RMSE) in soil moisture in the top 40 cm of the 
soil column relative to the open loop ensemble (Figs. 4(d) and 4(e)). At each pixel within the watershed, RMSE is 
reduced by an average of 36% due to assimilation (Table 3). However, some of the larger channel and valley 
network features, which are associated with substantially wetter conditions (Fig. 4(c)), still exhibit large estimation 
errors after assimilation (Fig. 4(e)). Table 3 summarizes the watershed averaged ensemble mean soil moisture and 
RMSE in soil moisture for the OL and EnKF experiments. Lack of a substantial reduction in estimation errors after 
assimilation in these regions suggests that they: (1) do not occupy sufficient area to substantially influence the 
predicted 3 km-scale radar observations, and/or (2) are associated with locally unique soil and topographic 
conditions that are not sufficiently correlated with the predicted radar observations during the update. 
 
Despite relatively wet conditions, the majority of the watershed is associated with relatively high values of RCI, 
indicating relatively strong local soil conditions (Figs 5(a)-(c)). Assimilation of the synthetic observations, however, 
results in substantial differences in the ensemble mean RCI between the EnKF and OL experiments.  Specifically, 
assimilation leads to some soil types (particularly in the South-central and central portions of the watershed) that 
exhibit substantially lower values of RCI than in the OL case (Figs. 5(b) and 5(c)). Hence, in areas where the EnKF 
results in more moisture than the OL case, assimilation has the potential to reveal trafficability conditions that are 
worse than the OL estimate would suggest. Assimilation also leads to a substantially lower RMSE in RCI 
throughout much, though not all, of the watershed (Figs. 5(d) and 5(e)). 
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Data assimilation has a fairly dramatic impact on the diagnosed trafficability risk. The EnKF estimate of 
trafficability risk is associated with substantially higher frequency of slow-go conditions in several soil units (Figs. 
6(a) and 6(b)). In some soil units in the southwestern portion of the watershed, for instance, the probability of 
encountering slow-go conditions is relatively low (< 33% chance) for the OL experiment, but high (> 66% chance) 
for the EnKF experiment (Figs. 6(a) and 6(b)). While the spatial organization of soil units explains much of the 
differences in trafficability risk, some finer scale effects, related to topography, are seen in the south-central part of 
the watershed (Fig. 6(b)). There are also dramatic differences in the risk of no-go trafficability conditions between 
the EnKF and OL experiments (Figs. 6(c) and 6(d)). Some soil units in the south-central part of the watershed 
exhibit a low probability (0.00-0.20) of no-go conditions in the OL experiment (Fig. 6(c)), yet exhibit very high 
probability (0.80-1.00) of no-go conditions in the EnKF experiment (Figs. 6(d)). The EnKF experiment suggests a 
slightly higher risk of no-go conditions in other areas of the watershed, relative to the OL experiment (Figs. 6(c) and 
6(d)). 
 
The relative difference between the EnKF and OL experiments is also visualized by normalizing the trafficability 
risk diagnosed from the EnKF experiment by those diagnosed from the OL experiment. Figure 6(e) shows the 
probability of slow-go conditions diagnosed from the EnKF experiment normalized by the probability of slow-go 
conditions diagnosed from the OL experiment. Values of this ratio greater than unity indicate areas in the watershed 
where the EnKF experiment suggests higher trafficability risk than the OL experiment, while values less than unity 
suggest the contrary (Fig. 6(e)). Note that where the OL probability is zero and EnKF probability is non-zero, the 
ratio is plotted in red. This is consistent with locations where the EnKF probability is greater than the associated OL 
probability. In much of the eastern and southwestern part of the watershed, the risk of slow-go conditions suggested 
by the EnKF experiment is substantially higher than the corresponding risk diagnosed from the OL experiment (Fig. 
6(e)). On the other hand, in the northwest, north central, and northeastern part of the watershed, the EnKF 
experiment suggests a substantially lower risk of slow-go conditions than the OL experiment (Fig. 6(e)). The 
corresponding visualization for the ratio of probability of no-go conditions for the EnKF experiment to that for the 
OL experiment is shown in Figure 6(f). Again, where the OL probability is zero and EnKF probability is non-zero, 
the ratio is plotted in red. In much of the watershed, the probability of no-go conditions is lower in the EnKF 
experiment than in the OL experiment (Fig. 6(f)). Again in the southwest portion of the watershed, however, the 
EnKF suggests higher probability of no-go conditions than the OL experiment. 
 

4. Discussion 
 
For the OSSE conducted in this study, the EnKF experiment was associated with substantially different probabilities 
of slow- and no-go conditions the corresponding probabilities of slow- and no-go conditions associated with the OL 
experiment. Specifically, for an analysis (EnKF update) that closely followed the occurrence of a large rain event, 
the EnKF framework suggested risks of encountering impaired trafficability conditions in parts of the watershed that 
were substantially above the risks diagnosed from the OL experiment. 
 
This case study was designed as a synthetic experiment to demonstrate the potential use of anticipated microwave 
observations that are broadly consistent with the SMAP mission for military trafficability assessment. In particular, 
we use the EnKF as a mathematical framework to downscale synthetic L-band microwave radar observations with a 
spatial resolution of 3 km to spatial scales consistent with trafficability assessment (10s to 100s of m). The results 
suggest that assimilation of soil moisture data can improve model-based soil moisture estimates at scales useful for 
military trafficability assessment, even when the observations are of a significantly coarser spatial resolution than 
the model. In the discussion of [8], the authors provide a broader discussion of how the data assimilation system 
applied here to trafficability assessment could be enhanced to further increase realism or improve soil moisture 
estimation in advance of the launch of SMAP. Here, we focus more narrowly on how the data assimilation system 
might be better tailored to meet the needs of military trafficability assessment. 
 
The IEM is best suited to sparsely vegetated or bare soil conditions [21]. Although volume scattering due to 
vegetation is likely low (particularly at L-band) in the desert environment considered in this cast study, in non-desert 
environments microwave volume scattering caused by water in vegetation canopies can be significant [45]. 
Vegetation also plays a significant role in the redistribution of moisture in the subsurface and particularly in the 0 to 
40 cm horizon considered in this study. Future efforts will consider forested catchments where the role of vegetation 
in both moisture redistribution and microwave scattering is non-negligible. As previously mentioned a multiplicative 
error model is more appropriate to represent the speckle noise common to radar images than the Gaussian additive 
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white noise assumed in this study. In larger simulation domains, the difference between a multiplicative and additive 
error mode will be more pronounced, necessitating the use of the more appropriate multiplicative error model. We 
are also pursuing further data assimilation experiments to evaluate the anticipated hillslope-scale estimation errors 
for a range of noise levels and radar resolutions. 
 
Ongoing effort also seeks to use the developed soil moisture data assimilation system within a more comprehensive 
trafficability assessment regime. This will require integration of additional landscape variables that are important 
when assessing the likelihood that a particular vehicle will encounter impaired mobility. A number of existing 
decision-making aids or experimental trafficability assessment frameworks could be applied for use with the soil 
moisture data assimilation system used here. 
 
The Integrated Weather Effects Decision Aid (IWEDA), for example, is a software platform that ingests weather 
information from a variety of sources and, based on a suite of heuristic rules, provides maps of potential locations 
where military operations and weapons systems will be impaired by weather [46]. The weather data input to 
IWEDA go beyond soil moisture information and can include topography, forecast wind fields, cloud conditions, 
and air temperatures. More recently, the Army Remote Moisture System (ARMS) evolved from a tri-agency effort 
(US Department of Agriculture, USACE and NASA) to develop a platform capable of predicting soil moisture over 
large areas (up to 25,000 km2) down to tactical scales (<100 m) [47]. The ARMS relies heavily upon simulation 
modeling, but also uses SAR imagery to constrain soil hydraulic parameters input to land surface hydrology models 
using the Parameter ESTimation (PEST) platform. Although not operational, the objective of ARMS is to provide a 
user-friendly tool to predict soil moisture at spatial scales appropriate for tactical mobility assessment at any location 
regardless of the paucity of data. Future work will investigate how a data assimilation system like the one applied 
here could be used to support more comprehensive assessment of weather impacts on military operations and 
weapons systems than the simple trafficability assessment index used in this study. 
 

5. Conclusions 
 
In this study, we applied an existing data assimilation system for soil moisture prediction at the hillslope scale to a 
relatively simple trafficability assessment exercise. An index of trafficability, RCI, was calculated from a series of 
empirical equations that require volumetric soil moisture information as input. This soil moisture information was 
obtained from either the outputs of a data assimilation state update (the EnKF experiment) or from an open loop 
(OL) experiment. Based on benchmark values of RCI for a particular vehicle (i.e., the VCI1 and VCI50 values), the 
locations where impaired trafficability would be encountered could be mapped. Because the numerical experiments 
performed here were based on Monte Carlo simulation, an ensemble of these vehicle trafficability maps were 
produced and analyzed. Specifically, the ensemble of trafficability maps allowed for the assessment of the risk or 
probability of impaired trafficability conditions in the landscape. This probabilistic trafficability assessment allows 
us to communicate some measure of uncertainty in the predicted trafficability conditions. 
 
Beyond military trafficability assessment, other applications requiring soil moisture information at these spatial 
scales could benefit from data assimilation approaches using microwave observations from platforms like SMAP 
and SMOS. The use of ensemble-based simulation in these applications allows for the communication of not only a 
spatial map of occurrence of some outcome, but also the associated risk of that outcome. Some applications that 
have a need for soil moisture information at hillslopes scales include soil water deficit for irrigation scheduling and 
slope-stability formulations for landslide hazard assessment. 
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Tables 
 
Table 1: Properties of tRIBS-VEGGIE mesh and EnKF experiment 
 

Property Value 
Watershed area [km2] 148 
Number of pixels [-] 19,447 
Effective resolution [m] 87.2 
Number of soil layers [-] 10 
Number of soil textures [-] 27 
Minimum/maximum/mean elevation [m] 1222/1933/1420 
State vector dimension  [-] 194,470 
Number of observations  [-] 60 
Number of EnKF replicates [-] 256 
Number of analysis periods [-] 9 

 
 
Table 2: Coefficients for trafficability index-soil moisture relationship  
 

Soil textural class a b 
Silty sand 12.524 -2.955 
Clayey sand 15.506 -3.530 
Clay 11.936 -2.471 
Silt 14.236 -3.137 
Clay of high plasticity 13.686 -2.705 
Silt of high plasticity 23.641 -5.191 
Organic silt, organic clay 17.399 -3.584 
Organic clay, organic silt 12.189 -1.924 

 
 
Table 3: Summary of ensemble mean soil moisture, RMSE, and percent reduction in RMSE 
 
 OL Experiment EnKF Experiment  
Ensemble mean soil 
moisture 

0.206 0.204 
Average % Reduction 

RMSE 
Ensemble RMSE soil 
moisture 

0.105 0.064 35.7 
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Figures 
 
Figure Captions 
Figure 1: A data assimilation-enhanced trafficability assessment workflow depicting the numerical experiments 
outlined in this study. Tools and models are shown in light gray, while outputs of the trafficability assessment are 
shaded in dark grey. 
 
Figure 2: A conceptual diagram of the EnKF algorithm. Initial soil moisture estimates are propagated forward in 
time to produce a forecast when an observation is available. This soil moisture forecast is input to the forward 
geophysical model to produce a forecast of the observations. These are then used together with the actual 
observations, taking into account their uncertainty, to update the forecast soil moisture. This updated soil moisture 
ensemble – the analysis – is then used to reinitialize the hydrologic model. 
 
Figure 3: The distribution of (a) elevation, (b) slope gradient, (c) soil textural classes, and (d) total precipitation 
during the course of the experiment for WGEW, which is located in (e) southwestern Arizona, USA. The reader is 
referred to Flores et al. [2012] for a table of the soil textural classes, which is not repeated here for brevity. 
 
Figure 4: Ensemble mean soil moisture in the top 40 cm of the soil column is shown for the (a) true, (b) OL and (c) 
EnKF experiments. Corresponding root mean squared error (RMSE) values relative to the synthetic true soil 
moisture are shown for the (d) OL and (e) EnKF experiments.  
 
Figure 5: Ensemble mean RCI values based on soil moisture in the top 40 cm of the soil column are shown for the 
(a) synthetic true, (b) OL and (c) EnKF experiments. Corresponding RMSE values relative to the corresponding RCI 
values based on the synthetic true soil moisture are shown for the (d) OL and (e) EnKF experiments. 
 
Figure 6: Probability of slow-go conditions diagnosed from the soil moisture ensembles is shown for the (a) OL and 
(b) EnKF experiments. Probability of no-go conditions is shown for the (c) OL and (d) EnKF experiments. In (e) the 
ratio of probability of slow go conditions diagnosed from the EnKF to the OL experiment is shown. In (f) the 
corresponding ratio for no-go conditions is shown.
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outlined in this study. Tools and models are shown in light gray, while outputs of the trafficability assessment are 
shaded in dark grey. 
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Figure 2: A conceptual diagram of the EnKF algorithm. Initial soil moisture estimates are propagated forward in 
time to produce a forecast when an observation is available. This soil moisture forecast is input to the forward 
geophysical model to produce a forecast of the observations. These are then used together with the actual 
observations, taking into account their uncertainty, to update the forecast soil moisture. This updated soil moisture 
ensemble – the analysis – is then used to reinitialize the hydrologic model.   
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(a) (b) 

(c) (d) 

 
(e) 

Figure 3: The distribution of (a) elevation, (b) slope gradient, (c) soil textural classes, and (d) total precipitation 
during the course of the experiment for WGEW, which is located in (e) southwestern Arizona, USA. The reader is 
referred to Flores et al. [2012] for a table of the soil textural classes, which is not repeated here for brevity.  
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(a) 

(b) (c) 

(d) (e) 
Figure 4: Ensemble mean soil moisture in the top 40 cm of the soil column is shown for the (a) true, (b) OL and (c) 
EnKF experiments. Corresponding root mean squared error (RMSE) values relative to the synthetic true soil 
moisture are shown for the (d) OL and (e) EnKF experiments.  
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(a) 

(b) (c) 

(d) (e) 
Figure 5: Ensemble mean RCI values based on soil moisture in the top 40 cm of the soil column are shown for the 
(a) synthetic true, (b) OL and (c) EnKF experiments. Corresponding RMSE values relative to the corresponding RCI 
values based on the synthetic true soil moisture are shown for the (d) OL and (e) EnKF experiments. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 6: Probability of slow-go conditions diagnosed from the soil moisture ensembles is shown for the (a) OL and 
(b) EnKF experiments. Probability of no-go conditions is shown for the (c) OL and (d) EnKF experiments. In (e) the 
ratio of probability of slow go conditions diagnosed from the EnKF to the OL experiment is shown. In (f) the 
corresponding ratio for no-go conditions is shown. 
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