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ABSTRACT

This study evaluates the performance of NASA’s Modern-Era Retrospective Analysis for Research and Ap-

plications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation

events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are de-

veloped to model the trends and changes in the patterns of extreme precipitation events over the contiguous

United States during 1979–2010. The Climate Prediction Center (CPC)U.S. Unified gridded observation data are

used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States

are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of

change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not

previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to

overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends

to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months.

MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value

and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the

Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are

identified: 1)MERRAshows a spurious negative trend inNebraska andKansas, which ismost likely related to the

changes in the satellite observing system over time that has apparently affected the water cycle in the central

United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be

correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation

extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the

southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast

region is due to an incorrect trend in winter precipitation extremes.
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1. Introduction

Reanalysis (or retrospective analysis) is a method that

assimilates observational data into a model forecast to

update the status of the system to eventually produce a

comprehensive record of atmospheric and oceanic var-

iables (Smith et al. 2014). Reanalysis products help the

scientific and user communities investigate how Earth’s

weather and climate systems are changing over the

course of time. Reanalyses usually provide more than

three decades of data globally. Such characteristics

make them well suited for long-term climate studies,

particularly in the warming climate (IPCC 2013). In

particular, reanalysis products can be used to study the

impacts of climate change on the extreme phases of our

climate system (e.g., floods, droughts, hurricanes, heat

waves, and cold snaps). These events claim lives all

around the world and cause billions of dollars in eco-

nomic damage and human hardship (NCDC 2012; Smith

and Katz 2013). Examples of these events are the 2013

flood in Colorado, the 2013 Supertyphoon Haiyan in the

Philippines, and the 2010 Pakistani flood and Russian

heat wave, among many other events worldwide.

To date, many studies with regard to climate extremes

have been carried out (e.g., Karl et al. 1993; Easterling

et al. 2000; Higgins et al. 2000; Groisman et al. 2005,

2012; Wehner 2005; Alexander et al. 2006; Kharin et al.

2007; Brown et al. 2008; Karl et al. 2009; DeGaetano

2009; Kunkel et al. 2010; Karl et al. 2012; Peterson et al.

2013, 2014; Dulière et al. 2013; Westra et al. 2013;

Kharin et al. 2013; Kunkel et al. 2013; Gervais et al. 2014;

Wuebbles et al. 2014a,b). However, not as much atten-

tion has been paid to the application of the reanalyses in

studying weather and climate extremes (Schenkel and

Hart 2012). Zolina et al. (2004) compared the statistical

characteristics of daily precipitation in the National

Centers for Environmental Prediction (NCEP) and the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) reanalysis products over Europe. The

study reported that NCEP-2 outperformed NCEP-1 and

the ECMWF reanalyses (ERA-15 and ERA-40),

showing the closest performance to rain gauge data. In

the meantime, many studies using reanalyses either

consider long-term climate means or individual weather

events (e.g., Bosilovich et al. 2008; Ma et al. 2009;

Trenberth et al. 2011; Rana et al. 2015). This evaluation

study of weather extremes considers the weather-scale

occurrences of extreme precipitation events over a long

period, which will aid in the understanding of the ability

of reanalyses to reproduce weather events. Our focus is

on NASA’s Modern-Era Retrospective Analysis for

Research and Applications (MERRA) precipitation

product (Rienecker et al. 2011; Lucchesi 2012) and how

well this product captures the behavior of historical

extreme precipitation events. MERRA has been used in

different studies (e.g., Bosilovich et al. 2011; Trenberth

et al. 2011; Bosilovich 2013). This product has been

shown to reproduce relevant large-scale dynamics in-

volved in the formation of regional climate extremes

(Schubert et al. 2011; Wang et al. 2014). However, be-

cause precipitation in reanalyses is related to the physical

parameterizations in the modeling system, we investigate

the precipitation focused on extreme analyses.

In this study, we seek to evaluate how well MERRA

would reproduce the probability distribution of histori-

cal extreme precipitation events. For this purpose, we

deploy methods from statistics that specifically deal with

rare weather events. Extreme value theory (EVT) has

recently emerged as one of the widely used methods in

modeling climate extremes (Zhang et al. 2001; Katz

et al. 2002; Cooley 2009; Cooley and Sain 2010; Kharin

et al. 2007; Katz 2010; Towler et al. 2010; Villarini et al.

2011; Katz 2013). Wehner (2013) used the EVT distri-

butions to analyze 20-yr return values of seasonal ex-

treme daily precipitation in the ensemble of the North

American Regional Climate Change Assessment Pro-

gram (NARCCAP) regional climate models and found

that performance of regional models of approximately

50 km in horizontal resolution varied widely in their

ability to reproduce observed precipitation extremes. In

another study, Lee et al. (2014) developed statistical

models from the EVT to estimate trends in monthly

extreme temperature events in the 48 contiguousUnited

States (CONUS). The results showed that, while

monthly maximum temperatures are not significantly

changing, monthly minimum temperatures depict a

significant warming trend.

In this study, we examine both the annual maximum

precipitation events and the precipitation peaks above a

certain threshold. We will first conduct a trend analysis

on the annual maxima and investigate how well

MERRA can capture those trends when compared to

observational data. Then using EVT generalized ex-

treme value (GEV) statistical methods, each extreme

category is modeled with a specific type of GEV distri-

bution, and the accuracy of MERRA in capturing those

distributions is assessed. To account for the non-

stationarity effects of climate change and global warm-

ing (IPCC 2013) and possible changes in the probability

distribution of extremes, we will let one of the parame-

ters of the GEV distribution (in the case of annual

maxima) be able to change over time. A statistically

significant trend, if any, in this parameter is an identifi-

cation of a statistically significant trend in the distribu-

tion of the extremes. This is implemented for both

MERRA and the observational data products to
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evaluate the performance of MERRA. The study is

conducted over the CONUS for 1979–2010, and the

Climate Prediction Center (CPC) U.S. Unified pre-

cipitation data are used as the observational dataset.

The paper is organized as follows: in section 2, we

present a brief description of the data that are used; in

section 3, the two EVT approaches selected for model-

ing the precipitation extremes in this study are explained

in detail; the results are presented in section 4; in section

5, we discuss some of the features identified in the results

section; and finally, in section 6, we provide a summary

of the key findings of this research.

2. Data

a. The CPC U.S. Unified precipitation product

TheNationalOceanic andAtmosphericAdministration’s

(NOAA) CPCU.S. Unified precipitation product is part

of the CPC Unified global precipitation project. CPC

uses its data sources and interpolation objective analysis

techniques to create consistent and high-quality global

precipitation products. Chen et al. (2008a) used three

objective techniques, including two inverse-distance-

weighting algorithms, and the optimal interpolation

(OI) method to obtain the CPC gauge-based daily pre-

cipitation analyses. The study shows that all three

methods are capable of generating useful daily pre-

cipitation analyses with biases of generally less than 1%.

The results also show that the OI method consistently

performs the best among the three techniques for almost

all situations.

The CPC U.S. Unified gauge-based analysis product

that is used in this study covers the CONUS on a daily

scale at a 0.258 3 0.258 spatial resolution and is quanti-

tatively consistent with that covering the global land

on a coarser resolution (i.e., 0.58). Three data sources,

including 1) NOAA’s National Climatic Data Center

(NCDC), 2) River Forecast Centers (RFCs), and

3) daily accumulation from hourly precipitation data,

are used in generating the CPC precipitation. Further

detailed information regarding the interpolation algo-

rithm and evaluation processes for generating the CPC

product are described in Xie et al. (2007), Xie et al.

(2010), and Chen et al. (2008a,b). In this study, the CPC

gridded data are considered as the reference gauge-

based dataset for comparing the performance of

MERRA inmodeling extreme precipitation events. The

quality of the gridded CPC product depends on the

density of stations’ network; however, as noted in Chen

et al. (2008a), the OI technique that is used to generate

CPC U.S. Unified precipitation product shows stable

performance statistics even over regions with sparse

gauges. The CPC gridded dataset does not have any

missing data.

b. The MERRA precipitation product

NASA’s MERRA product is designed to support

NASA’s Earth science research interests by producing a

global long-term dataset for the satellite era from 1979

to present (Rienecker et al. 2011). Scientists at the

Global Modeling and Assimilation Office (GMAO) at

the Goddard Space Flight Center (GSFC) use the

Goddard Earth Observing System Model, version 5

(GEOS-5), and data assimilation techniques to generate

the MERRA product at a spatial resolution of 1/28
latitude 3 2/38 longitude with 72 model vertical levels

(Rienecker et al. 2008; Lucchesi 2012). By using an in-

cremental analysis update that minimizes the spindown

effects of the water vapor analysis, and also by providing

an extensive number of variables at a relatively high

spatial resolution, MERRA has shown improvements in

representing large-scale global precipitation, particu-

larly in the tropical regions (Bosilovich et al. 2011;

Bloom et al. 1996). However, continental-scale pre-

cipitation remains a challenge for all global reanalyses,

including MERRA, when compared to the Global

Precipitation Climatology Project (GPCP). Bosilovich

(2013) analyzed summer seasonal precipitation in recent

reanalyses to show that MERRA was not able to pro-

duce highs and lows in the summer seasonal time series,

especially in the midwestern United States.

3. Methodology

Practical explanations and documentations about

EVT are presented in Coles (2001) and Castillo et al.

(2005). Our extreme daily precipitation study uses the

two most well-adopted extreme value analysis ap-

proaches. In the first approach, known as the block

maxima approach, the maximum daily precipitation of

each year during 1979–2010 in the CPC and MERRA is

used to generate an extreme sample of the parent dis-

tribution of all precipitation events. In the second ap-

proach, known as the peaks over threshold (POT)

method, a certain threshold is set, and all of the rainfall

values greater than or equal to that threshold are used to

generate the extreme sample. Details of fitting distri-

butions to these extreme samples are discussed below.

MATLAB (MathWorks 2011) and R (R Core Team

2013) environments are used for computer coding and

building the statistical models.

a. Block maxima approach

In this method, a ‘‘block’’ is defined as 1 year, and the

maximum daily precipitation in each year is considered as
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the blockmaxima. This variable is hereafter called annual

maximum daily precipitation (AMDP). For each 0.58
pixel of the CONUS, we assume that the sequence (in-

dicated by curly brackets) of AMDP {Xt}, extracted from

each of the CPC andMERRAdatasets, is independent in

time. Because the block size (365, or 366 days in the case

of leap years) is large enough, according to the Fisher–

Tippett theorem (Fisher and Tippett 1928), the marginal

cumulative distribution function for AMDP {X} can be

well approximated by the GEV distribution:

G(x;m,s, j)5P(X# x)5 exp
n
2
h
11 j

�x2m

s

�i21/jo

(1)

for x with 11 j[(x2m)/s]. 0, where G(�) is the cumu-

lative distribution function for the GEV distribution at

an arbitrary value x, P denotes the probability, G is the

gamma function, and m, s, and j are unknown location,

scale, and shape parameters of G(�), respectively. If

j, 1, the mean (expected) value of X is

E(X)5m1
s

j
[G(12 j)2 1] . (2)

To examine possible changes in the distribution of the

AMDP events over time, we may further parameterize

the location parameter in Eqs. (1) and (2) as a linearly

time-variant parameter inside the GEV distribution

function, relaxing the requirement that the PDF be

stationary in time:

m
t
5b

0
1b

1
t , (3)

where b0 and b1 are the unknown location and slope

parameters, respectively. We interpret b1 as the linear

trend in extreme precipitation as the expected change in

Xt from time t to t 1 1 is

E(X
t11

)2E(X
t
)5m

t11
2m

t
5b

1
. (4)

The maximum likelihood (ML) method is used to find

the estimates of the unknown parameters in the GEV

distribution function. For this, we numerically find the

values of the parameters that maximize the GEV like-

lihood function:

L(b
0
,b

1
,s, j; x

1
, . . . , x

n
)5P

t

f (x
t
;b

0
,b

1
,s, j) , (5)

where f (x;b0, b1, s, j)5 (d/dx)G(x;b0, b1, s, j) is the

probability density function of the GEV distribution.

The standard errors for the ML estimates are obtained

from the information matrix of the likelihood fit. These

standard errors will be used for significance tests for the

estimated linear trends in the AMDP events. These

methods are applied to each pixel of the CONUS for the

CPC and MERRA datasets. In this study, we consider

both time-invariant and time-variant GEV models.

b. POT approach

Acaveat pertinent to the first approach is the possibility

of wasting useful data, because theGEVdistribution only

considers the maximum precipitation of each year (Coles

2001; Zolina et al. 2013). To overcome this drawback, we

first define significant daily precipitation as those rainfall

data being at least 1mmday21 and then use the top 1%

heavy (99th percentile) rainfall of these significant pre-

cipitation data at each pixel as the threshold for our POT

method.We then consider only the precipitation amounts

that are greater than the 99th percentile threshold in our

POT extreme precipitation modeling procedure. This

variable is called annual extreme daily precipitation

(AEDP). We also applied a declustered scheme to the

AEDPvariables by clustering the peaks that belong to the

same cluster and only choosing the maximum peak as

the representative of the cluster, so that the Poisson as-

sumption is better maintained (Coles 2001). In POT, the

generalized Pareto (GP) distribution is considered as an

appropriate limiting probability distribution to model

these threshold declustered exceedances.We assume that

the precipitation exceedance Y 5 X 2 u conditioned on

that X . u has the following GP distribution:

H(y; ~s, j)5P(X# y1 u jX. u)5 12

�
11

jy

~s

�21/j

(6)

for y. 0 and 11 jy/~s. 0, whereH(y) is the cumulative

distribution function for the GP distribution at an arbi-

trary value y, ~s is the scale parameter for the GP dis-

tribution, and u is the threshold. It is noteworthy that

~s5s1 j(u2m). Like the GEV method, maximizing

the likelihood function

L(~s, j; y
1
, . . . , y

n
)5P

t

d

dy
t

H(y
t
; ~s, j) (7)

produces the ML estimates for ~s and j. We fit this GP

model to every pixel of the CONUS for the CPC and

MERRA datasets. In this study, we only consider time-

invariant GP models.

4. Results

a. Annual maximum daily precipitation

1) TIME-INVARIANT CONDITION

Before addressing the extreme value distributions,

the climatology of AMDP, number of wet days, and
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intensity (scaled to the number of wet days) of pre-

cipitation extremes over the study period must be

evaluated. This analysis was done at seasonal and annual

time scales and selected results for the annual and June–

August (JJA) climatology and extremes can be seen in

Figs. 1 and 2. Similar continental-scale patterns in the

AMDP are seen in the CPC observations and MERRA,

but MERRA underestimates the magnitude of the

maximum precipitation, especially in JJA. This under-

estimation of the maximum precipitation primarily

occurs to the east of the Rocky Mountains and is par-

ticularly evident over the Gulf Coast region. In addition

to the mean and maximum daily precipitation, the av-

erage number of wet days that exceed the 99th percen-

tile [Fig. 1 (middle) and Fig. 2 (middle)] and the average

precipitation intensities exceeding the 99th percentile

[Fig. 1 (bottom) and Fig. 2 (bottom)] were also exam-

ined. MERRA tends to overestimate the frequency

at which the 99th percentile is exceeded in connec-

tion with the underestimation in the maximum daily

FIG. 1. (top) Long-term climatology of AMDP, (middle) average number of days when precipitation exceeded the 99th percentile, and

(bottom) average precipitation intensities exceeding the 99th percentile.
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precipitation. The value representing the 99th percentile

of precipitation is lower in MERRA compared to the

observations and is apparent in the underestimation in

the intensity of precipitation on days that exceeded the

99th percentile. As a result, there is a great likelihood

that the precipitation on a given day will exceed the 99th

percentile in MERRA compared to the observations.

This feature is dominant during the summer months and

is observed to a lesser extent in the transition months.

The number of days that exceed the 99th percentile and

the intensity of the precipitation on those days were very

similar between the CPC observations and MERRA

during the December–February (DJF) season. The

seasonality in the differences between extreme pre-

cipitation events in MERRA and the observations hints

at the difficulty in simulating precipitation, especially at

the extremes and when it is convective in nature.

In addition to the above analysis, it is worth exploring

potential linear trends in the AMDP time series. A lin-

ear trend model is fitted to each 0.58 3 0.58 grid box, and

FIG. 2. (top) Long-term climatology of JJA max daily precipitation events, (middle) average number of days in JJA when precipitation

exceeded the 99th percentile, and (bottom) average precipitation intensities in JJA exceeding the 99th percentile.
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the resulting trend patterns, as well as the statistically

significant ones, are identified. Figure 3 (left) shows the

linear trend in the CPC (Fig. 3, top) and MERRA

(Fig. 3, bottom) AMDP time series. In general, the

pattern of changes identified in MERRA seems to rea-

sonably mirror the observed pattern of changes in CPC.

This is an interesting result, particularly in view of the

difficulty in constraining precipitation in reanalysis

products. The spurious negative trend inMERRA in the

central United States over Kansas and Nebraska—

opposite of the observed trend in the CPC—is certainly

cause for questioning and will be discussed in section 5a.

To identify the regions where the trends in AMDP

events are statistically significant, a two-sided signifi-

cance test was performed at the 5% significance level for

every grid point. The results are shown in Fig. 3 (right).

As shown, both CPC and MERRA exhibit an overall

positive trend across the easternUnited States, although

some discrepancies exist location-wise. According to the

CPC results, in the southwestern United States, AMDP

shows significantly increasing trends in a few pixels,

while MERRA underestimates the trend in this region.

As discussed in the previous section, AMDP sequences

follow theGEVdistribution. The time-invariant location,

scale, and shape parameters of theGEV distribution [Eq.

(1)] at each pixel for the two data products are estimated

and displayed in Fig. 4. As shown, MERRA was able to

reproduce similar spatial patterns for location and scale

parameters, as observation data depict, while under-

estimating both parameters.Most of this underestimation

happens to be in and around the Gulf Coast states and

relatively over the East and West Coasts.

The scatterplots of theGEVparameters fromMERRA

AMDP compared against the respective parameters from

the CPC AMDP as well as different statistics [correlation

coefficient, root-mean-square error (RMSE), and bias]

are also presented in Fig. 4. As shown, the underestima-

tion of MERRA is clear. Furthermore, the relatively high

correlation between the MERRA and CPC parameters

(0.79 for the location parameter and 0.74 for the scale

parameter) reaffirms the capability of MERRA to re-

produce patterns similar to those of CPC. Spatial patterns

of the shape parameter estimates are similar forMERRA

and CPC. However, it is difficult to make a robust state-

ment about the accuracy of the shape parameter estimates

(Fig. 4, right) because the discrepancies between the

j patterns in the reanalysis and CPC are large and the

correlation is very weak.

FIG. 3. (left) Trend (mmday21 yr21) in AMDP from (top) CPC and (bottom) MERRA during 1979–2010. (right) The regions where the

trend in AMDP is statistically significant at a 5% significance level.
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To test the GEV distribution goodness of fit, we used

the Kolmogorov–Smirnov (KS) test (Massey 1951). For

both of the rainfall products, the empirical and theo-

retical GEV cumulative distribution functions (CDF) at

each pixel were built and considered for this purpose.

We tested the null hypothesis to determine whether or

not the AMDP data are from their theoretical GEV

distribution. The KS test results showed that the null

hypothesis was not rejected, thereby reaffirming that the

GEV distribution is indeed the right fit for the AMDP

data. We also examined the goodness-of-fit by Q–Q

plots of several randomly selected pixels. TheQ–Q plots

also verified that theGEVdistribution is appropriate for

the AMDP series.

2) TIME-VARIANT CONDITION

So far, the parameters of the GEV distribution were

considered constant and not changing over time; however,

because of the impacts of climate change, the GEV distri-

bution might have been changing over time. To investigate

thepossibility of the existenceof such changes,we consider a

time-variant GEV distribution model. Specifically, we as-

sume that theGEV locationparameter changes over timeas

modeled in Eq. (3), implying that the climate change

induces a change in theprecipitationmean.The time-variant

GEVmodel given in Eq. (1), withm parameterized asmt via

Eq. (3), is fitted to each pixel in CPC andMERRA, and the

four parameters b0, b1, s, and j are estimated.

To evaluate the statistical significance of the esti-

mated GEV trends, we calculate and test the z scores of

the trend estimates. The z score shows how many stan-

dard errors the estimated trend differs from zero. For a

5% significance test (two sided), a statistically significant

trend is the one whose respective z score is beyond the

2.5th and 97.5th percentile range (61.96) of the standard

normal distribution. Figure 5 displays the statistically

significant trend (at the 5% significance level) in the

location parameter of the time-variant GEV distribu-

tion of AMDP events (b1). As shown, increasing trends

in AMDP are more apparent in the eastern United

FIG. 4. (left) Location, (center) scale, and (right) shape parameters of the time-invariant GEVdistributions of AMDPevents from (top)

CPC and (middle) MERRA during 1979–2010. (bottom) The respective scatterplots and quantitative statistics between the GEV pa-

rameters from the CPC and MERRA.

700 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



States than in the western United States. MERRA

shows decreasing AMDP trends in the central United

States. In addition, MERRA depicts more increasing

trends for the southern United States, following a path

from eastern Texas to Maryland.

The estimated scale parameters in the time-variant

condition for both MERRA and CPC (Fig. 6) depict

similar patterns as those observed and reported in the

time-invariant condition. As can be seen in the spatial

distribution maps of the scale parameter, MERRA re-

produces the spatial patterns of the scale parameter of

the time-variant GEV distribution reasonably well. How-

ever, MERRA again suffers from the underestimation of

the magnitude of the scale parameter, particularly over the

SierraNevada in the west, theGulf Coast region, and along

the East Coast up to the Northeast. The scatterplot and the

statistics presented in Fig. 6 (bottom) show the same results.

Comparing the scatterplots and derived statistics from

the CPC and MERRA estimated scale parameters in

1) time-invariant (Fig. 4, bottom) and 2) time-variant

conditions (Fig. 6, bottom), we could see that while the

RMSE and bias in the time-variant and time-invariant

conditions are almost the same, the correlation coeffi-

cient in the time-variant condition is slightly higher than

that of the time-invariant condition.

To better understand the difference of the GEV pa-

rameter estimates for CPC and MERRA as a whole, we

compare the estimates of extreme quantiles in CPC and

MERRA. Specifically, we calculate the return level for

annual maximum precipitation using the time-variant

GEV parameter estimates of CPC and MERRA (Coles

2001; Cooley 2013). Figure 7 shows the 25- (Fig. 7, top)

and 50-yr (Fig. 7, bottom) return levels for CPC (Fig. 7,

left) and MERRA (Fig. 7, right). The 25-yr return level

is the amount of annual maximum precipitation that we

expect to exceed once in the next 25 years. The 50-yr

return (i.e., a 1-in-50 chance) level is interpreted in a

similar manner. This figure shows that MERRA overall

underestimates these return levels, noticeably in the

East and the West Coast regions.

b. Annual extreme daily precipitation

Unlike the AMDP data, the linear trend in the

declustered peaks above the 99th percentile (i.e., AEDP

data) is not easily practicable because the temporal

difference among these events is not a constant value

over time. Instead, we looked at the number of AEDP

events in each year and investigated potential statisti-

cally significant trends in the number of such events. As

shown in Fig. 8 (left), the number of AEDP events in-

creased for the eastern and northeastern United States,

specifically for the states of Maine, New York, Penn-

sylvania,WestVirginia, Indiana, andGeorgia.Although

MERRA shows an increasing trend in the eastern

United States, location-wise discrepancies exist. The

interesting point, however, is that, for both the AMDP

and AEDP cases, the trend results are aligned with the

results provided in the fourth National Climate As-

sessment (NCA) report for different regions over the

United States. Based on the NCA report, ‘‘the Northeast

has experienced a greater recent increase in extreme

precipitation than any other region in the United States.’’

Moreover, the report states that ‘‘the Northeast sawmore

than a 70% increase in the amount of precipitation falling

in very heavy events (defined as the heaviest 1% of all

daily events)’’ (Horton et al. 2014, p. 373).

As seen in the case of modeling the AMDP time

series, MERRA depicts a spurious negative trend in

Nebraska and Kansas. Potential reasons for this dis-

agreement with the observations will be investigated in

detail in section 5a. However, in addition to this, the

increasing trends in the number of AEDP events over

the Gulf Coast states (e.g., Texas and Louisiana) and

farther inland (e.g., Arkansas), as well as along the East

Coast (as is clear in Fig. 8), seem to be correlated with

rainfall systems (mainly hurricanes and tropical cy-

clones) in this area of the CONUS. Going back to

Figs. 3 and 5, similar patterns of increasing trends can

FIG. 5. Statistically significant trend (mmday21 yr21) in the

location parameter of the time-variant GEV distribution of

AMDP events in (top) CPC and (bottom) MERRA at a 5%

significance level.
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be seen as well. The CPC does not show such trends in

those regions. To investigate the potential reasons and

explanations for such behavior, a detailed investigation

in the seasonal scale is conducted, the results of which

are presented in section 5b.

As discussed in section 3b, the GP distribution is

fitted to the AEDP sequences. The estimated scale pa-

rameters for MERRA, as shown in Fig. 9 (left), depict

similar patterns to the CPC; however, like AMDP,

MERRA underestimates the CPC scale parameter. Sig-

nificant discrepancies and underestimations are identified

in the Gulf Coast regions and the western United States.

As for the shape parameter, while the continental-scale

patterns for MERRA and CPC are reasonably similar,

large discrepancies in the eastern United States and the

Gulf Coast states are identified. Similar to the block

maxima approach, a goodness-of-fit test was performed

using the KS test. The null hypothesis was defined as to

whether or not the declustered AEDP data in the em-

pirical and theoretical CDFs belong to the same distri-

bution. Using the empirical CDF and the theoretical GP

CDF in the KS test, we determined that the GP distri-

bution is, indeed, a good fit to the AEDP data.

5. Discussion

As discussed in sections 4a and 4b, MERRA un-

derestimates the location and scale parameters of the

GEV and GP distributions. The result of this is that

MERRA produces lower-magnitude extreme precipi-

tation events when compared to the CPC dataset. One

point worth mentioning here is that, although the CPC is

derived from ground-based observation data, the quality

of its estimates depends highly on station density and

station distribution within each grid box. The interpo-

lation methods that are used for producing gridded data-

sets from point and sparse gauge measurements can

introduce a considerable level of uncertainty into the

gridded dataset, particularly in the mountainous and re-

mote regions, where a sufficient number of rain gauge

stations are usually not available. Hence, observational

and interpolation uncertainties in the CPC gridded

dataset also contribute to the observed differences be-

tween CPC and MERRA.

The two major trend discrepancies that were identi-

fied in MERRA will be discussed in detail in the next

two subsections.

a. Negative trend in MERRA over Nebraska–Kansas

A feature that has been repeatedly identified in

MERRA (Figs. 3, 5, 8) is a negative trend over Nebraska

and Kansas, which is the opposite of what observations

show. We looked at the time series of annual maximum

daily precipitation for MERRA and CPC over this re-

gion and the respective GEV trends there. As shown in

Fig. 10 (top), while CPC shows an increasing trend

(10.17 6 0.097mmday21 yr21), MERRA shows a de-

creasing trend (20.26 6 0.073mmday21 yr21). To test

FIG. 6. Estimated scale parameter of the time-variant GEV

distribution for (top) CPC and (middle) MERRA. (bottom) The

respective scatterplot and quantitative statistics between the GEV

scale parameter from CPC and MERRA.
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whether or not the estimated trends are different from

zero, the respective z scores are calculated and tested at

the 5% significance level. The resulting z scores for the

CPC trend (11.69) and the MERRA trend (23.58) in-

dicate that the negative trend inMERRA’sGEV trend is,

indeed, statistically significant at the 5% significance level.

There are a number of factors in the construction

process of MERRA that can contribute to such spurious

trends and to not correctly replicating the observations.

Among them are boundary layer parameterization,

land–atmosphere interactions, and/or convective pre-

cipitation parameterization. Robertson et al. (2011)

studied the effects of the two observing system epoch

changes: the Advanced Microwave Sounding Unit-A

(AMSU-A) series in late 1998 and the Special Sensor

Microwave Imager (SSM/I) in late 1987. The results

show that precipitation is very sensitive to the changing

observing system. In addition, Bosilovich (2013) found

that the range of seasonal precipitation over the central

United States decreases relative to the observation,

identifying that to be related to a deficiency in themodel

land–atmosphere interactions. In addition, a negative

correlation between the analysis increment and pre-

cipitation in the annual mean time series was identified

in this region; however, it is not yet completely un-

derstood if such a correlation is causal or not. In another

study, Trenberth et al. (2011) showed that the mean

atmosphere moisture divergence (expressed as evapo-

ration minus precipitation) extracted from MERRA

data in this region (over land) is positive, which is un-

realistic. This triggered a study by Bosilovich et al.

(2015), where the observational influences on regional

water budgets in different reanalyses were evaluated.

The study shows that there has been an effect of the

changing observations on the central U.S. water cycle. A

satellite instrument on the Advanced Television and

Infrared Observation Satellite (TIROS) Operational

Vertical Sounder (ATOVS) changed the water vapor

analysis at 0600 and 1800 UTC when no radiosondes are

available to anchor the analysis. This has apparently

affected the water vapor analysis and, consequently, the

local water cycle in the central United States, more so

than in other regions. It is, however, noteworthy that

some of the interannual variability seems well repre-

sented in MERRA, as shown in Fig. 10 (bottom). Ob-

vious structural discontinuities in precipitation mean do

not appear in the CPC and MERRA AMDP series

during 1979–2010.

FIG. 7. The (top) 25- and (bottom) 50-yr return levels from time-variant GEV distributions for (left) CPC and (right) MERRA.
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In addition to the above explanations, an alternative

explanation or contributing factor could be the changes

in the available stations used to create the CPC dataset.

In this regard, we calculated the average number of

stations over the Kansas–Nebraska region. We found

that there is a jump around 1991–92 and a drop around

2004 in the number of stations used in CPC. This is

consistent with the results reported inChen et al. (2008b).

However, looking at the time series analysis presented in

Figs. 10 and 12 (Fig. 12 is described in greater detail be-

low), the precipitation and anomalies do not seem to

significantly change at the times of the above changes in

the number of stations. It is also noteworthy that scaling

issue (Zolina et al. 2014; Wehner et al. 2014) could be

another contributing factor as well. The upscaling pre-

processing that was initially performed on both datasets

to bring them all into the 0.58 would decrease this effect.

b. Gulf Coast and East Coast positive trends

By observing Figs. 3, 5, and 8, it seems there are

possibilities for biases in the maximum daily precipita-

tion over the Gulf Coast and East Coast regions toward

the tropical cyclones in these regions (Rauber et al.

2008) that hit the southeastern and eastern areas of the

United States. This raises the possibility of an existing

bias in the MERRA model land–atmosphere interac-

tions toward these cyclones.

To further investigate this issue, we studied the sea-

sonality of the extreme precipitation events. In addition

to DJF, March–May (MAM), JJA, and September–

November (SON) seasons, because the MERRA posi-

tive trend tracks displayed in Fig. 9 show high correlation

with the Gulf Coast and East Coast cyclones, we also

looked at the hurricane season (HUR). Based on the

definition of the National Hurricane Center (NHC),

the HUR starts from the beginning of June and ends at

the end of November. The time series of seasonal

maximum daily rainfall for each of the above five sea-

sons were constructed, and statistically significant trends

in seasonal maxima were investigated. Figure 11 shows

the significant trends (mmday21 yr21) at the 5% sig-

nificance level in seasonal (DJF, MAM, JJA, SON,

and HUR) maximum daily precipitation in CPC and

MERRA during 1979–2010. As shown, both datasets

generally show increasing trends in seasonal extreme

rainfall in all of the seasons in the eastern part of the

country; the largest increasing trends occur in SON, as

well as during the HUR season.

Discrepancies between the CPC and MERRA pre-

cipitation trends over the Gulf Coast region are clear

FIG. 8. (left) Trend in the number of AEDP events (yr21) in the (top) CPC and (bottom)MERRA. (right) The regions where the trend is

statistically significant at a 5% significance level.
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in the DJF (Fig. 11) season where, unlike the CPC,

MERRA shows a statistically significant positive trend

over this region. For further investigation, we looked at

the time series of each season’s maximum precipitation

and respective GEV trend over the southeastern United

States (covering 308–388N, 858–958W). The results are

presented in Fig. 12. As shown, MERRA replicates the

trends in the MAM, JJA, SON, and HUR seasons rel-

atively well. Moreover, looking at the seasonal pre-

cipitation anomalies in Fig. 12 (left), MERRA shows

good performance in mirroring the interannual pre-

cipitation anomalies similar to observation, particularly

for more recent years after 1999, where the AMSU-A

data were added into the observational dataset.

FIG. 9. Estimated (left) scale and (right) shape parameters of the GP distribution of AEDP for (top) CPC and (middle) MERRA during

1979–2010. (bottom) The respective scatterplots and quantitative statistics between the GP parameters from the CPC and MERRA.
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For the DJF season, the spurious positive trend in

MERRA is identified. This increasing trend in DJF helps

to reinforce the increasing annual trend in the MERRA

AMDP; however, in the CPC, the decreasing trend in

DJF works against the SON, making the annual trend in

the CPC AMDP weaker. For the years where only a few

tropical cyclones occurred over theGulf Coast region, the

DJF trends contribute a much stronger signal to the an-

nual trend, especially in weak spots in MERRA.

Also worth mentioning is that, in the southwestern

United States, a significant decreasing trend in extreme

rainfall was identified in the MAM and JJA seasons.

These results are consistent with the trend results in

seasonal maximum 5-day precipitation totals presented

by Alexander et al. (2006).

With respect to the spurious negative trend in the

central United States in MERRA, as shown in Fig. 11,

the MAM season is the main season in which a major

portion of this trend occurs. The HUR, JJA, and SON

seasons also partly show the negative trend in this region.

6. Conclusions

In summary, we evaluated the performance ofMERRA

in capturing the trend and reproducing the distribution

of historical precipitation extremes over the CONUS

during 1979–2010. We started with the analysis of the

climatology, number of wet days, and intensity (scaled

to the number of wet days) of annual and seasonal

precipitation extremes. The results show that MERRA

reasonably mirrors the continental-scale patterns of

change as observed by CPC while underestimating the

magnitude of extremes, particularly over the Gulf Coast

regions. MERRA overestimates the frequency at which

the 99th percentile is exceeded. The value representing

the 99th percentile of precipitation in MERRA is lower

compared to CPC and is apparent in the underestima-

tion in the intensity of precipitation on days that ex-

ceeded the 99th percentile. This feature is dominant in

the JJA (summer) season and is observed to a lesser

extent in the other seasons. Using the extreme value

theory (EVT), we modeled two categories of extremes

using two approaches: 1) block maxima and 2) peaks

over threshold. The resulting categories are termed an-

nual maximum daily precipitation (AMDP) and annual

extreme daily precipitation (AEDP; representing the

top 1% heavy rainfall events), respectively. For com-

parison purposes, the CPC U.S. Unified gridded precip-

itation data product was used as the gridded observation

dataset. Based on the observations, the eastern and, in

particular, the northeastern parts of the United States are

experiencing positive trends in the AMDP intensity. In

the western parts of the country, a mix of both negative

and positive trends is identified. In addition, looking at

the trend in the number of AEDP events over time, we

find that the northern, northeastern, and central United

States have experienced increasing trends from 1979 to

2010. This trend is negative for the western, southwest-

ern, and northwestern United States.

The results showed that, in general, MERRA can

reasonably mirror the continental patterns of changes

and trends as seen in the observational data. This result

was not expected before, particularly given the level of

difficulty in constraining the rainfall in reanalyses

products.

We built time-invariant GEV and GP models to in-

vestigate how well MERRA can reproduce the distri-

bution of extreme precipitation events. Moreover, in

order to account for the possible effects of climate

change, a time-variant GEV model was also con-

structed, in which its location parameter was relaxed to

change over time. The results show that MERRA tends

to underestimate the location and scale parameters of

the GEV distributions, particularly over the Gulf Coast

states, as well as along the East andWest Coasts. Similar

behaviors are identified in the case of POT modeling

using GP distribution.

We found two issues with MERRA’s precipitation

product. One is a spurious negative trend in the central

United States, mainly over Nebraska and Kansas. We

discuss that such spurious trends have most likely orig-

inated from a change in the observing system over time

in and around the central United States, which has ap-

parently affected the local water cycle in this region. In

FIG. 10. (top) Time series and GEV trends in AMDP over

Kansas and Nebraska, along with (bottom) the respective anom-

alies for CPC (solid line) and MERRA (dashed line) during 1979–

2010.
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FIG. 11. Statistically significant trends (mmday21 yr21) in seasonal (from top to bottom: DJF, MAM, JJA, SON,

and HUR) max daily precipitation for (left) CPC and (right) MERRA during 1979–2010.
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FIG. 12. (left) Time series andGEV trends in seasonal (from top to bottom:DJF,MAM, JJA, SON, andHUR)max daily precipitation over

the Southeast, along with (right) the respective anomalies for CPC (solid line) and MERRA (dashed line) during 1979–2010.

708 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



addition, the changes in the number of stations used in

constructing CPC gridded data could be another con-

tributing factor as well. In addition, a decrease in the

range of seasonal precipitation over the central United

States has been identified, most likely related to limita-

tions in land–atmosphere interactions (Bosilovich 2013).

The second issue is related to the positive trend pat-

terns over the Gulf Coast states and along the East

Coast. The trend patterns in these regions seem corre-

lated with the tracks that the Gulf Coast and East Coast

cyclones usually take when making landfall over the

CONUS. To further look into this issue, we investigated

the potential trends in the seasonal maximum daily

precipitation events. The results show that the SON and

HUR seasons are the ones that are contributing to a

major portion of the positive trend in this region.

Moreover, an increasing trend in DJF over this region,

unlike what the CPC data show, enhances the annual

positive trend signal. This can be particularly important

in years where few tropical cyclones make landfall. A

detailed investigation into GEOS-5 and the assimilation

techniques used in the MERRA product is required to

enable the community to makemore detailed inferences

about the reasons for such patterns.

In addition to the above results, this study also shows

that the family of the GEV distributions are, indeed, the

right distributions for modeling the behavior of extreme

precipitation events.

An important point to take into account, while inter-

preting the results, is that CPC is derived from point

ground-based measurements. Rain gauge stations can

be very dense in some regions, while too sparse in some

other regions. Utilization of interpolation techniques to

create gridded products, on the one hand, and the

sparseness of the gauge measurements, on the other

hand, can and do introduce uncertainties into the final

gridded product. Thus, when we attempt to evaluate the

performance of the MERRA and the observed discrep-

ancies against the CPC gridded dataset, we need to con-

sider the fact that the CPC estimates can be also far from

perfect. Therefore, in short, the reported discrepancies in

this study can originate both from inadequacies in the

observations and in the reanalysis product. Hence, our

focus on this work has beenmainly on large-scale patterns.

The next step is to expand our study to include other

reanalyses, such as the ERA-Interim and the NCEP Cli-

mate Forecast System Reanalysis (CFSR), as well as a

newly developed, satellite-based, long-term precipitation

dataset called Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks Cli-

mateDataRecord (PERSIANN-CDR;Ashouri et al. 2015;

Miao et al. 2015), which provides rainfall estimates over the

period 1983–2014 (present) at 0.258 and daily frequencies.
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