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ABSTRACT
Continuum solvation models are becoming increasingly relevant in condensed matter simulations, allowing to characterize materials inter-
faces in the presence of wet electrified environments at a reduced computational cost with respect to all atomistic simulations. However,
some challenges with the implementation of these models in plane-wave simulation packages still persists, especially when the goal is to
simulate complex and heterogeneous environments. Among these challenges is the computational cost associated with large heterogeneous
environments, which in plane-wave simulations has a direct effect on the basis-set size and, as a result, on the cost of the electronic structure
calculation. Moreover, the use of periodic simulation cells is not well-suited for modeling systems embedded in semi-infinite media, which
is often the case in continuum solvation models. To address these challenges, we present the implementation of a double-cell formalism, in
which the simulation cell used for the continuum environment is uncoupled from the one used for the electronic-structure simulation of the
quantum-mechanical system. This allows for a larger simulation cell to be used for the environment, without significantly increasing com-
putational time. In this work, we show how the double-cell formalism can be used as an effective periodic boundary conditions correction
scheme for nonperiodic and partially periodic systems. The accuracy of the double-cell formalism is tested using representative examples with
different dimensionalities, both in vacuum and in a homogeneous continuum dielectric environment. Fast convergence and good speedups
are observed for all the simulation setups, provided the quantum-mechanical simulation cell is chosen to completely fit the electronic density
of the system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150298

I. INTRODUCTION
Materials simulations have seen an incredible growth in recent

years, thanks to the increasing power of computer hardware and
simulation software, together with the development of new compu-
tational infrastructures to handle high-throughput simulations.1–5

Unbiased first-principles simulations based on density functional
theory (DFT) represent the workhorse of most computational
approaches to materials design,6 with many research groups pushing
to improve the accuracy of computational predictions and extend
the scope of first-principles simulations to more challenging systems
and properties.

Traditional DFT simulations of materials focus on bulk peri-
odic crystalline structures. For this reason, most condensed matter

and materials simulation packages rely on basis sets composed of
periodic functions (e.g., plane-waves, PW) uniformly occupying the
simulation cell. This approach provides a systematically improv-
able basis set, whose accuracy can be tuned with a single parameter,
usually associated with the kinetic energy of the corresponding
plane-wave. PWs also provide easy access to the solution of the core
electrostatic equations involved in first-principles simulations, with
the Poisson equation in vacuum being readily solved in reciprocal
space. Fast Fourier transforms (FFTs)7 have proven instrumental to
the widespread success and fast scaling of PW-based DFT packages,
by providing real to reciprocal space mapping, and vice versa, at
a cost proportional to Npw log(Npw), with Npw being the number
of PWs in the simulation. However, what is advantageous for bulk
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crystalline materials can be a source of artifacts when nonperiodic
or partially periodic systems need to be characterized. Tradition-
ally, materials interfaces are simulated using the slab approach, in
which a few-atoms thick slab of the material is described in a three-
dimensional periodically repeated simulation cell. By increasing the
thickness of the slab and by increasing the cell size in the direction
orthogonal to the material interface, the periodic replicas of the slab
are effectively uncoupled from each other and the results are con-
sidered to be representative of the surface of a semi-infinite bulk
material. A similar strategy can be devised for systems that are only
periodic in one dimension, such as nano-wires or nanotubes, or sys-
tems that are nonperiodic. While adjusting the cell size can provide
an easy solution to periodic boundary conditions (PBCs) artifacts,
the number of PWs grows linearly with the cell volume, leading to
a polynomial increase in the cost of the corresponding DFT calcu-
lation. For this reason, multiple alternative strategies to correct for
PBC artifacts have been proposed in the past years, including real-
space and reciprocal-space approaches. Most of these strategies are
focused on simulations of two-dimensional and zero-dimensional
(isolated) systems, while one-dimensional correction schemes are
usually less widespread.

Unfortunately, as the typical scaling of DFT simulations varies
as N3, where N is the number of electrons in the system, com-
plex and large systems with more than a few hundreds of electrons
are still out of reach for systematic DFT studies. To overcome this
limitation, a variety of hierarchical approaches8,9 and/or divide and
conquer10–12 strategies have been developed in the literature. With-
out sacrificing the important atomistic characteristics of the relevant
part of the process under investigation (the system), these methods
take advantage of different, possibly simplified, models to handle
the more macroscopic or complex part of the process (the environ-
ment), thus allowing a significant reduction of the computational
cost.

In particular, implicit solvation models based on continuum
embedding media have proven to provide a reasonable qualita-
tive accuracy while significantly reducing the need for statistical
sampling of disordered configurations.13–16 Indeed, removing the
atomistic details of solvent molecules not only reduces the num-
ber of electrons involved in the DFT simulation but allows to avoid
the use of molecular dynamics (MD) to sample the configurations
of the molecules of the liquid. Continuum methods in computa-
tional chemistry usually involve more or less empirical definitions
of the different contributions to solvation free energy, which are
then parameterized on experimental databases generated from sol-
ubility data. Methods such as the Polarizable Continuum Model
(PCM)15 of Tomasi and co-workers have shown good success in
predicting ground state and response properties of molecules in
solution. More recently, similar approaches have been translated
into condensed matter simulation packages in order to study wet,
possibly electrified, interfaces of materials.8 When compared to
the more widespread continuum solvation models in the computa-
tional chemistry community, the models implemented in periodic
PW-based simulation packages rely on a smoothly varying bound-
ary between the quantum-mechanical system and the continuum
environment, instead of a sharp two-dimensional interface. Dif-
ferent definitions of the interface, based off the electronic density
of the solute17 or its atomic positions,18 have been developed and
show similar accuracy, when properly parameterized. While com-

putationally more demanding, the use of smooth interfaces allows
continuum models in condensed matter to more seamlessly intro-
duce nonlocal corrections19,20 to avoid some of the typical artifacts
of these solvation methods.

Beyond the use of continuum solvation to model bulk neu-
tral solutions, extensions to handle liquid crystals and diluted ionic
solutions were implemented exploiting the integral equation for-
malism (IEF) of PCM.21 Still following the same strategy, PCM
was extended to the study of a single two-dimensional interface
between different dielectric media (liquid–air, liquid–liquid).22 The
authors of the work of Corni et al. extended the use of the polar-
izable dielectric model to handle the electrostatic effects of metal
surfaces and nanoparticles on nearby molecular dyes, thus allowing
a more quantum-mechanical characterization of surface-enhanced
spectroscopies.23–25

Similar to the PCM literature, more complex and heteroge-
neous environments can be introduced in condensed matter sim-
ulations. In particular, a significant focus has been devoted to
study electrolyte solutions,22,26–35 so as to unlock the use of these
models for simulations of electrified interfaces. Going beyond neu-
tral solutions and electrolyte distributions, Campbell and Dabo36,37

exploited a continuum approach to model charge reorganization in
a semiconductor substrate.

As the definition of the continuum environment in smooth-
interface solvation models follows a function defined everywhere in
the simulation cell, it is relatively straightforward to introduce more
complex and heterogeneous environments, e.g., by introducing mul-
tiple continuum media, each with its own boundaries and physical
properties (e.g., dielectric constant or surface tension). These media
can be used to model substrate effects on the properties of overlay-
ing materials or molecular compounds. Following this idea, Bononi
and co-workers38,39 exploited the possibility to introduce flat two-
dimensional dielectric regions in the simulation cell in order to
characterize in a computationally inexpensive way the effect of an
ice substrate on the absorption properties and photodegradation of
molecular dyes.

Despite the flexibility of continuum embedding approaches in
condensed matter environments, PW-based simulations can pose
significant challenges to these class of multiscale methods. The use
of periodic simulation cells is intrinsically unfit to model systems
that are embedded in a semi-infinite medium, i.e., most solvated
systems would typically require nonperiodic simulation cells in
the directions where the continuum solvent resides. Moreover, the
fact that the simulation cell size is directly related to the basis-set
size Npw makes simulating large heterogeneous environments com-
putationally more challenging. Extensions of both real-space and
reciprocal-space PBC correction schemes have been developed to
account for continuum dielectric media in simulations of isolated
(0D) and slab (2D) systems.40 In both continuum electrolyte and
semiconductor models, long-range charge reorganizations are han-
dled implicitly, by relying on analytical solutions to the electrostatic
problems and/or appropriate boundary conditions. However, sim-
ulating the effects of nano-sized environments, such as plasmonic
nanoparticles, micelles, liquid nanodroplets, would require the use
of simulations cells, and thus basis sets, that are beyond reach of
standard computational resources.

The straightforward solution to the aforementioned problem
is to uncouple the simulation cell exploited for the continuum
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environment from the one used for the DFT simulation of the
quantum-mechanical system. The use of a large simulation cell
for the environment would not cause significant limitations to the
simulation time: The time-consuming part of the continuum envi-
ronment calculation is related to computing the electrostatic poten-
tials, by solving modified and generalized forms of the Poisson or
Poisson–Boltzmann equations. Most of the algorithms implemented
rely on iterative strategies in which each iteration involves the solu-
tion of a simple Poisson equation, which can be performed via FFTs
in a time almost linear in cell size. By keeping the simulation cell
of the DFT calculation small, the largest overhead in computational
time is avoided. While ideal in theory, in practice this double-cell
formalism requires full uncoupling of the two simulation methods
and careful design of the mapping between the two simulation cells.

While designed to account for large heterogeneous environ-
ments, the double-cell formalism can also be used for nonperiodic
and partially periodic systems as an effective PBC correction scheme.
By increasing the length of the lattice vectors going along the non-
periodic directions in the environment cell, electrostatics can be
fully converged without affecting the basis-set size and cost of
the quantum-mechanical calculation. This general strategy works
equally well for isolated (0D), slab (2D), but also one-dimensional
(1D) systems. In this work, the details of the double-cell method-
ology are presented and the approach is tested as a PBC correction
scheme for some representative examples with different dimension-
alities, both in vacuum and in a continuum dielectric environment.
Along with this new methodology and in order to test the accuracy
and the speedup of the double-cell formalism for PBC corrections,
the auxiliary-function countercharge corrections library (LIBAFCC)
of Li and Dabo41 was coupled to the continuum embedding software,
giving access to an alternative exact correction scheme for all types
of partially periodic systems.

The paper is organized as follows: In Sec. II, we review the
main details of the implementation of the double-cell formalism, as
well as the coupling of the auxiliary-function countercharge correc-
tions library (LIBAFCC);41 in Sec. III, the computational details of
the DFT calculations as well as how the double-cell calculations are
reported. Eventually, in Sec. IV we report a detailed benchmark of
the accuracy and performance of the double-cell approach for mod-
eling partially periodic systems, including 0D, 1D, and 2D systems,
in vacuum and in a uniform dielectric medium.

II. METHODS
A. Double-cell formalism

The design of a double-cell algorithm is strongly dependent on
the numerical details that are associated with the calling program
(e.g., the PW DFT simulation package), the continuum embedding
library, and with their coupling. In particular, the key aspects that
affect the implementation are

1. which scalar fields need to be passed from one cell to the other,
2. how the scalar fields are stored and parallelized in the two cells,

and
3. the way the grid points of the two cells are aligned.

In the following, we will refer to the specific implementation
involving Quantum Espresso as the DFT driver and Environ as the

FIG. 1. A schematic view of the double-cell formalism with an isolated water
molecule. The green cell is the system cell where all the PWs are introduced while
the blue cell is the environment cell used for PBC correction.

continuum embedding library. A schematic representation of the
steps involved in the algorithm is visualized in Fig. 1, while a more
detailed example in a simplified two-dimensional orthorhombic cell
is reported in Fig. 2. In order to generate the continuum boundary in
Environ, information on the electronic density of the system and/or
its atomic positions is required. The same information is also needed
for the calculation of the electrostatic potential, i.e., the position and
valence of the ions as well as the full electronic density of the sys-
tem are required inputs for an Environ calculation. In alternative
polarizable dielectric models, such as PCM, the electrostatic poten-
tial of the system in vacuum is passed to the continuum embedding
module, to be used to solve for the polarization charge on the envi-
ronment. However, passing the full information of the charge of the
solute allows us to have a consistent definition of the electrostatic
potential, e.g., when smeared ionic charges are used to account for
core-electrons. In the case of the double-cell formalism, passing the
full charge density of the solute also allows us to seamlessly adapt
the calculation to a different simulation cell. In the presented imple-
mentation, the key scalar quantity that needs to be passed from the
system cell into the environment cell is thus the electronic density of
the system.

The results of the continuum embedding calculations are usu-
ally reported in terms of corrections to the corresponding quantities
computed in vacuum and periodic boundary conditions by the host
DFT program. In particular, corrections to the total energy, inter-
atomic forces, and Kohn–Sham potential are the key outputs of
Environ calculations. Of these quantities, only the latter needs to be
mapped from the environment cell into the system cell.

Scalar fields in a 3D simulation cell are discretized in PW
simulation packages in terms of their values on a 3D structured
grid, whose spacing is inversely related to the PW cutoff specified
in the simulation input. However, the values on the 3D grid are
stored by Quantum Espresso as one-dimensional arrays, by scan-
ning grid points sequentially along the three cell axis. As part of the
hierarchy of parallelization schemes adopted by Quantum-Espresso,
parallelization on the real-space simulation cell is implemented by
dividing it into slices along the third axis or into sticks along the
second and third axes, depending on the total number of available
processors. This allows us to perform operations that only depend
on local values of the scalar field in a fully parallelized way while still
requiring gathering and scattering of the whole simulation data for
real to reciprocal space transformations (FFTs and inverse FFTs).
Owing to the origin of Environ as an internal plugin of Quantum
Espresso, the same strategies and the same numerical libraries are
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FIG. 2. Visualization of the mapping algorithm in a simplified two-dimensional rectangular grid. Left panels: A single water molecule and its electronic density (dark green
circle) are mapped on a periodically repeated system cell (black rectangle), with a grid size of ten times seven points along the horizontal (x) and vertical (y) axes, respectively.
A generic grid point (the pink diamond) can be identified by its pair of indices (ix and iy) or by a combined single index (i). A scalar field in the cell is thus represented as a
one-dimensional array with index i ranging from 1 to nx × ny. Central panels: A re-centering of the system cell on the center of mass of the system is required to ensure that
the electronic density of the system is fully connected when the cell is expanded into the environment cell. The position of the center of mass with respect to the center of the
system cell (black arrow) is used to determine the shift (green arrow) of the origin of the re-centered cell (green rectangle). To ensure that grid points of the two cells are at the
same physical positions, integer operations (NINT and FLOOR) are adopted in the algorithm, resulting in an origin shift that may be slightly different from the real-valued shift
of the center of mass of the system: The green and black arrows are meant to be different. While the number of grid points in the centered cell is the same as the system cell,
their indices will be different, possibly including the fact that a grid point from a periodic image of the system cell needs to be selected. In the example, the original diamond
is now replaced by one of its periodic images, its new ix and iy indices give rise to a new global index i, with the result that each entry in the original scalar field array is now
mapped to a different entry of the re-centered array in a one-to-one fashion. Right panels: The centered cell is expanded in the two directions by one replica per side, for a
total environment cell nine times larger than the original system cell. The new grid point indices need to account for the additional grid points in the replicas and the global
grid point index is computed using the expanded grid size. While each grid point index in the system cell has a corresponding location in the environment cell, the contrary is
not true, as most of the grid points in the environment cell are not meant to be mapped back to the system cell.

exploited by Environ for its internal calculations. For sake of simplic-
ity in the equations, the following discussion will only focus on the
serial algorithm, but the developed strategy is seamlessly extended to
parallel implementations.

In practice, given a simulation cell with cell axes
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and a corresponding cell matrix
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the choice of the density cutoff in the simulation input determines
the number of grid points along the three axes, ns

= (ns
1, ns

2, ns
3). A

generic scalar property (e.g., the electronic density or the electro-
static potential) in the simulation cell, s(r⃗), is thus discretized into
an array, s(is
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where the integer grid point indices is
1−3 range from 0 to ns

1−3 − 1.
A one-dimensional version of the array, with is

= 0, . . . , ns
1ns

2
ns

3 − 1, is obtained by combining the three indices, e.g., by using the
expression

is
= 1 + is

1 + is
2ns

1 + is
3ns

1ns
2, (4)
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which assumes that the scanning of grid points follows the order of
the axes, i.e., faster along the first axis, than along the second, and
slower on the third. Vice versa, given the global index is of a grid
point, its three-dimensional indices can be reconstructed as

is
3 =

is
− 1

ns
1ns

2
, (5)

is
2 =

is
− 1 − is

3ns
1ns

2

ns
1

, (6)

is
1 = is

− 1 − is
3ns

1ns
2 − is

2ns
1, (7)

where the fractions are intended to represent integer division
operations.

In designing the coupling between system and environment
simulation cell, it is crucial to realize that the quantum-mechanical
system lives in a fully periodic simulation cell: In the DFT calcula-
tion, the system energy and properties are not affected by arbitrary
translations of the system’s degrees of freedom. In particular, it
is possible for a system to have some of its atoms or part of its
electronic density on opposite sides of the simulation cell (e.g., as
schematized in the left panel of Fig. 2), as the minimum image con-
vention would still give rise to a well-defined fully connected system.
However, when expanding the system cell into the environment cell,
care must be taken to ensure that a fully connected system is passed
to the continuum embedding module and that the environment is
properly defined with respect to a meaningful center of the system.
Thus, for the mapping of scalar fields between the two simulation
cells, a two-step process was implemented as visualized in Figs. 1
and 2: first a centering of the system and second an expansion of the
environment cell along the designated axes.

The first step is accomplished by computing the center of
mass, r⃗cm, of the system within its original simulation cell, using
the minimum image convention to account for potential splits in
neighboring cells. We then introduce a new cell with the same cell
parameters and the same grid spacing as the system cell, but with an
origin shifted from the Cartesian origin by a vector o⃗, so as to place
the system’s center of mass near its central grid point. In practice,
we set the indices of a central grid point as c = NINT(ns

/2), with
the NINT() operation selecting the nearest integer to the result of
the division, in case of grids with odd numbers of grid points along
an axis. We then select a grid point near the center of mass of the
system as

m = NINT(ĥ−1
⋅ r⃗cm ⋅ ns

). (8)

The integer shift between the indices of the center of mass and the
indices of the center of the cell, d = c −m, provides the origin vector
for the new re-centered cell,

o⃗ = −ĥ ⋅ (d/ns
) = −
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⎟
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⎠

, (9)

as well as the shift used to remap the integer grid point indices, ic
i−3,

needed to compute the single-index representation in Eq. (4). How-
ever, in applying the shift to the grid point indices, we need to make

sure that grid points in periodic images are mapped to the corre-
sponding points in the re-centered cell (e.g., as visualized by the pink
star in the central panel of Fig. 2). In the algorithm, this is enforced
as follows:

ic
1−3 = (i

s
1−3 + d1−3) − FLOOR((is

1−3 + d1−3)/ns
1−3) × ns

1−3, (10)

where the FLOOR() integer operation returns the greatest integer
less than or equal to the argument. As defined above, the re-
centering of the cell corresponds to a one-to-one mapping of grid
points, which is univocally defined by the position of the center of
mass and the grid dimensions. Such a mapping does not involve any
interpolation and can be computed on the fly without loss of infor-
mation and without affecting the real-space parallelization scheme.
In particular, given an initial grid point in the system cell with global
index is, its corresponding one-dimensional index in the re-centered
cell is given by

ic
= 1 + ic

1 + ic
2ns

1 + ic
3ns

1ns
2, (11)

where ic
1−3 are computed by applying Eq. (10) to the indices obtained

from Eq. (5).
The second step of the double-cell algorithm involves expan-

sion of the system cell in different directions in order to generate a
larger environment cell. While arbitrary expansions could in prin-
ciple be considered, they would usually result in an environment
grid spacing and grid point positions that would not match the
initial ones on the system cell. This numerical mismatch could be
easily addressed by interpolation algorithms, which would add an
additional layer in the mapping between the two cells. However, in
order to keep the process as simple and robust as possible, the cur-
rent implementation of the double-cell formalism restricts the cell
expansion to integer multiples of the initial cell. An expansion vector
n = (n1, n2, n3) is defined in the input of the environment module,
with ni representing the number of fictitious replicas added on both
sides of the re-centered system cell along its ith axis. The combi-
nation of these two steps creates the desired environment cell, with
lattice vectors 2n + 1 times as large as the system cell, with the center
of mass of the system located near its central grid point. In practice,
the grid point indices in the environment cell, ie

1−3, need to account
for the additional replicas added before the cell,

ie
1−3 = ic

1−3 + n1−3ns
1−3. (12)

The corresponding global grid point index can thus be computed as

ie
= 1 + ie

1 + ie
2ne

1 + ie
3ne

1ne
2, (13)

with ne
1−3 = 2(n1−3 + 1)ns

1−3.
It is important to stress that in the above algorithm, each

grid point of the system cell has a corresponding grid point of the
environment cell at the same position: The system-to-environment
mapping of a smooth charge density only involves a re-indexing of
the entries of the array in the system cell and a zeroing of the ele-
ments of the environment cell that lie outside of the system cell.
Vice versa, the environment-to-system mapping of the electrostatic
potential involves re-indexing of the entries of the array in the envi-
ronment cell that only correspond to grid points of the system
cell, while the information stored in the other grid points is dis-
carded. This corresponds to a mapped electrostatic potential that,
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in general, will not possess the periodicity of the system cell and
will likely present discontinuities at the cell borders correspond-
ing to the axes that were expanded in the environment cell. This
is consistent with other real-space PBC correction schemes, such
as the parabolic/dipole correction for isolated and slab systems.40

The presence of such a discontinuity will not affect the energy and
convergence of the simulated system, provided that the atomic and
electronic charges of the system are not present at the borders of the
cell. While the re-centering step of the algorithm enforces that the
borders are as far as possible from the system’s center of mass, for
small system cells it is possible that part of the charges of the system
still overlaps or gets close to the borders of the cell. Convergence
of the double-cell algorithm with system cell size can provide the
necessary validation of the approach, as shown in Sec. IV.

B. Auxiliary-function correction
The long-range nature of Coulomb interactions leads to a

non-convergent or ill-convergent result for charged or dipolar sys-
tems, when summing over all the periodic replicas of an infinite
3D periodic system.42 The slow non-integrable behavior of the
Coulomb potential at long distances has a mirror counterpart in
its singularity at vanishing distances, which affects the calculation
of electron interactions and exact exchange terms in periodic DFT
simulations.43,44 These singularities occur when the reciprocal-space
vectors approach the Brillouin zone boundaries of partially periodic
systems or when the interaction potentials exhibit rapid variations.
Most simulation software set these divergences to zero, introduc-
ing negligible errors that approach zero as the size of the com-
putational supercell increases.42 Meanwhile others employ special
techniques to mitigate these divergences, such as implementations
of real-space countercharge corrections schemes.45–50 Even though
the countercharge correction schemes were created as a method for
charged systems, they can still be used with neutral systems for a
more comprehensive treatment of long-range electrostatic interac-
tions. Example calculations, both neutral and charged, can be found
in Ref. 50. As an alternative, real-space electrostatic corrections
have been introduced that can remove these singularities although
they can become costly due to these corrections requiring different
interaction potentials per self-consistent iteration.

Because of this additional computational cost, reciprocal-
space countercharge corrections have been studied in the form of
auxiliary-function techniques that are the basis of the LIBAFCC41

library. These corrections involve adding the auxiliary-function to
the point-charge electrostatic kernel allowing for efficient removal
of the singularities associated with the plane-wave representation.
The LIBAFCC library implements exact point-charge reciprocal-
space auxiliary functions for all types of partially periodic sys-
tems with the 0D correction giving the same formulas as the
Martyna–Tuckerman51 (MT) correction scheme.

Following an approach similar to the MT implementation, we
coupled the library of Li and Dabo to a development version of Env-
iron. The point-charge correction, as computed by the library, is
mapped in the real-space grid, centered on the origin. Fast Fourier
transforms allow to convert the correction to reciprocal space and to
store it, so that it can be used to complement the standard vacuum
FFT Poisson solver at no extra cost. More detailed information can
be found in the LIBAFCC41 reference.

III. COMPUTATIONAL DETAILS
All calculations were performed using Quantum Espresso (QE)

v7.152,53 compiled with the Environ library for continuum embed-
ding effects.17,52,54 While the double-cell implementation has been
officially released in Environ 3.0, for the results reported in the
following we used a local development version of the library that
includes coupling with the AFCC library for periodic boundary
corrections.

All reported benchmarks, in vacuum and in dielectric envi-
ronments, involve a single self-consistent field (SCF) optimization
of the electronic density, starting from a random initial guess. In
an effort to keep benchmarks as consistent as possible, we did not
include geometry optimization calculations in our results. However,
convergence of the interatomic forces with the newly implemented
algorithms was thoroughly tested, showing an accuracy consis-
tent with fully periodic simulations and with other PBC correction
schemes.

The 0D and 2D simulations are based off the Environ’s exam-
ples distributed with the library. In particular, the isolated system
considered in this study is an acetamine cation, while a thin Pt (111)
slab with an adsorbed carbon monoxide molecule was used for test-
ing 2D systems. A boron nitride (BN) nanoribbon was chosen as
benchmark for the 1D systems. The selected systems are known to
display more pronounced PBC artifacts. However, it is important
to stress that the reported analysis is meant to focus on the consis-
tency of the results with alternative PBC correction schemes and on
the overall computational performance. For this reason, the physi-
cal approximations and the simulation details that are not relevant
for the convergence of the electrostatic energy have been selected
according to the most widespread choices in the literature. All
the calculations were performed using the Perdue–Burke–Ernzerhof
generalized gradient approximation (GGA) density functional.55 For
the 0D and 2D systems, the standard ultrasoft pseudopotentials
distributed on the QE website were adopted. For the 1D system,
the pseudopotentials from the Standard solid-state pseudopoten-
tials (SSSP) efficiency library were selected.56,57 The simulations
were performed by only sampling the gamma point sampling of the
Brillouin zone.

A dielectric embedding environment was modeled using the
self-consistent interface function presented in the work of Andreussi
et al.17 A homogeneous static dielectric permittivity of 100 was
selected for the bulk of the environment. The preconditioned con-
jugate gradient (PCG) approach presented in the work of Fisicaro
et al.58 was used for the convergence of the generalized Poisson equa-
tion, with a convergence threshold on the computed electrostatic
potential of 5.0e − 13 Ry.17,52

For the acetamine cation (0D system), the wave function cutoff
and density cutoff were chosen to be 30 and 300 Ry, respectively,
with an estimated convergence threshold on the total energy of
5.0e − 6 Ry. A simple cubic simulation cell was adopted, in order
to allow the use of a parabolic correction to PBCs.40,50 For this iso-
lated system, reference simulations were also performed using the
Martyna–Tuckerman reciprocal-space correction,51 both in vacuum
and in the dielectric medium.

For the 2D system, an orthorhombic cell was used with the
cell parameter in the z direction being varied to evaluate the
interaction with periodic replicas. The wave function cutoff and
density cutoff were set to 35 and 300 Ry, respectively, with an
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FIG. 3. Graphic representation of the two sets of calculations adopted to investi-
gate convergence of the developed formalism. The double-cell calculations involve
a small system cell (green box) embedded in an expanded environment cell (blue
box). Reference calculations adopt the same expanded cell for both the system
(DFT) and the environment (continuum electrostatic) calculations.

estimated convergence threshold on the total energy of 1.0e − 6 Ry.
Marzari–Vanderbilt59 smearing of the band occupations was
adopted with a spread value of 0.03 Ry. A parabolic correction
scheme, as implemented in the Environ library, was adopted for
simulations in vacuum and in the dielectric medium.

Finally, for the 1D system, an ideal boron nitride (BN) 2D sur-
face, as obtained from the aflowlib4 repository, was used to create a
1D ribbon. The wave function and density cutoffs were set to 60 and

FIG. 4. The acetamine cation used for testing the double-cell formalism in isolated
systems.

480 Ry, respectively, with an estimated convergence threshold on the
total energy of 1.0e − 7 Ry. A Gaussian smearing with a spread value
of 0.02 Ry was adopted, together with a local Thomas–Fermi mixing
and a mixing parameter of 0.7. Although the parabolic correction
scheme implemented in Environ is only compatible with 0D and 2D
systems, a 2D correction with a large simulation cell in the direction
along the plane of the ribbon was also exploited as reference for the
1D system.

In order to demonstrate the accuracy and performance of the
double-cell formalism, two DFT calculations were done for each

FIG. 5. Plots (a) and (b) show the energy difference, in Ry, between an SCF calculation using the double-cell formalism and the corresponding reference calculation (as
visualized in Fig. 2). For plots (c) and (d), the convergence of different PBC schemes as a function of DFT system cell size is reported. Plots (e) and (f) show the time speedup
between these simulations. All reported tests were performed for systems in vacuum (left column) and in a continuum dielectric medium (right column).
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unit cell size, as schematized in Fig. 3. The first calculation is per-
formed using the double-cell approach, i.e., having the environment
cell defined as an integer expansion of the system cell in at least
one direction. A reference calculation is then performed by impos-
ing the system and environment cells to be of the same size and to
match the environment cell of the first calculation. As an example,
for a simulation of an isolated (0D) system with a cubic cell of size
10 bohrs, a double-cell calculation with one replica in every direc-
tion, n = (1, 1, 1), would involve a cubic environment cell with a
30 bohrs side length. The reference calculation would be performed
with identical system and environment cells, both set to a size of
30 bohrs. In Sec. IV, the energy difference between the double-cell
calculation and the reference are reported together with the speedup
in calculation time.

IV. RESULTS
A. Isolated systems (0D)

As discussed above, one of the uses of the double-cell formalism
is to reduce PBC artifacts in isolated systems, thus overcoming one of
the main sources of artifacts of plane-wave based codes. The system
selected for testing the accuracy and performance of the double-cell
strategy is an acetamine cation, visualized in Fig. 4. To simplify the
handling of PBC artifacts and to allow the use of the parabolic point-
counter-charge correction, a cubic cell is used to study this system.

In the top panels of Fig. 5, the changes in total energy with
respect to the reference are reported, for both simulations in vac-
uum and in a dielectric environment. The considered molecule has
overall size of about 8.0 bohrs. However, from the convergence of
the double-cell calculations with respect to the reference, it is clear
that system cells smaller than 15 bohrs present artifacts with respect
to the same calculation in the reference cell. As the electrostatic cal-
culations in the double cell and the reference are the same, these
small differences must be due to the fact that the double-cell map-
ping is affecting the DFT convergence. In fact, inspection of the
density of the molecule reveals that the difference is due to non-
negligible spilling of the electronic density of the molecule beyond
the cell boundaries. While in a periodic cell this still corresponds
to a connected smooth density, the mapping step of the double-cell
formalism breaks the spilling density apart. This result suggests a
general rule for the identification of the minimal system cell in a
double-cell calculation, which needs to be about 10.0 bohrs larger
than the system size.

When looking at the behavior of the double-cell energy as a
function of system size, we notice that the results are within 0.1 Ry
from the fully converged energy for all simulation cells larger than
the identified minimum size. As the simulated system is a molecule
with a nonzero total net charge, its electrostatic energy in PBC is
expected to vary as 1/L with respect to the cubic simulation cell
size, L (red curves in Fig. 5). With the parabolic correction scheme,
such a dependence is corrected into a 1/L5, with energies virtu-
ally converged for cell sizes as large as 15 bohrs. Reciprocal-space
corrections fully correct such a cell-size dependence, provided cell
sizes twice as large as the system size are chosen. In the double-cell
algorithm, the 1/L behavior is instead still present, although signif-
icantly smaller than the small-cell counterpart, as it corresponds to
significantly larger periodic cell sizes. The same behavior is less evi-
dent for the simulations in a dielectric environment, as a significant

fraction of the monopole–monopole interaction between periodic
cells is screened by the embedding medium. In the bottom panels of
Fig. 5, we report the speedup per SCF cycle of the double-cell formal-
ism when compared with the reference calculations. This speedup
accounts for the relative weight of the FFT-based electrostatic calcu-
lation and the cost of inverting the DFT Hamiltonian in a single SCF
step. The reported results show an average fivefold decrease in com-
putational time when the system cell is allowed to be smaller than
the environment cell. In the dielectric embedding, the electrostatic
problem needs to be solved iteratively (either using a fixed-point
method17 or using a preconditioned conjugate gradient approach58)
where each iteration requires to solve a Poisson equation in vacuum.
Given the multiple number of times the Poisson equation needs to
be solved at each SCF step, the overhead in mapping and remapping
scalar fields may become more evident in dielectric environments.
In addition, given the fact that the dielectric medium is defined on
the electronic density, for small simulation sizes, the convergence of
the dielectric medium effects may suffer for the truncation of the
electronic density at the cell boundaries.

While the results in this section aim to provide a compari-
son between alternative PBC schemes, it is important to stress that
the double-cell formalism can also be used in combination with
any other PBC corrections scheme reported above: The electro-
static calculation in the expanded environment cell can be corrected
with a real-space term (parabolic correction) or with any reciprocal-
space scheme (Martyna–Tuckerman or AFC) already implemented
in Environ. Those results are not reported in this section because
the simulations are already fully converged without the need for
additional corrections.

B. Slab (2D) system
To study 2D systems, systems that should be periodic in two

dimensions, we used a bilayer of platinum atoms in the (111) ori-
entation and in the presence a CO molecule in the atop position,
as visualized in Fig. 6. For this system, the slab is included in an
orthorhombic cell, oriented in the x-y plane and with the nonpe-
riodic axis along third direction. For the double-cell calculations,
the system cell is expanded only in the z direction, while the sys-
tem and environment cells are the same in the in-plane directions.
Convergence tests are reported in Fig. 7 as a function of the size of
the system cell along the z direction.

The considered system has an extension along the verti-
cal axis of about 11.0 bohrs. When looking at the difference in

FIG. 6. Visualization of the system used for testing the double-cell algorithm in two
dimensions: a Pt (111) surface with two layers of Pt atoms in the presence of a CO
molecule adsorbed in the atop position.
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FIG. 7. Plots (a) and (b) show the energy difference, in Ry, between an SCF calculation using the double-cell formalism and the corresponding reference calculation (as
visualized in Fig. 2). For plots (c) and (d), the convergence of different PBC schemes as a function of DFT system cell size is reported. Plots (e) and (f) show the time speedup
between these simulations. All reported tests were performed for systems in vacuum (left column) and in a continuum dielectric medium (right column).

energy between the double-cell and the reference calculations, it
appears that minimal artifacts are present at the smallest cell sizes
(22–23 bohrs). This suggests that no significant spills in the elec-
tronic density are present for these DFT cells, consistent with our
previous observations for the isolated system. As observed in the 0D
case, double-cell energies are fully converged with respect to the DFT
system cell already for the smallest cells considered. The results are
in line with the convergence observed for a parabolic (also known
as point-counter-charge or dipole correction) scheme, while AFC90
shows a slower convergence, with exact results for cells larger than
35 bohrs.

Eventually, in the bottom panels of Fig. 7, we report the compu-
tational speedup of using a double-cell approach, compared to using
the same expanded cell for both electrostatic and DFT simulations.
The relative weight of the electrostatic calculation and inverting
the DFT Hamiltonian for this small system provide a speedup of
about 2.5–2.8 in vacuum, which drops to about 1.5 in a dielectric
medium. While the scaling of the FFT-based electrostatic simula-
tion is expected to be better than the DFT one as a function of the
cell size, speedups appear to be independent of cell size for the con-
sidered system. This is probably due to the relatively small number
of electrons in the system and to the other computational overheads
associated with larger FFT grids.

C. Wire (1D) system
For the 1D systems, we studied the boron nitride (BN) nanorib-

bon, as shown in Fig. 8. An orthorhombic cell is adopted, with the
ribbon oriented along the x-axis, making the y and z axes the two

nonperiodic directions. Moreover, in this case, only these two direc-
tions will be considered in the expansion of the system cell into
the environment cell, while the system and environment cells have
the same size along the x direction. For the sake of simplifying the

FIG. 8. Visualization of the BN nanoribbon (boron atoms in pink, nitrogen atoms in
blue) investigated to test the double-cell formalism for one-dimensional systems.
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FIG. 9. Plots (a) and (b) show the energy difference, in Ry, between an SCF calculation using the double-cell formalism and the corresponding reference calculation (as
visualized in Fig. 2). For plots (c) and (d), the convergence of different PBC schemes as a function of DFT system cell size is reported. Plots (e) and (f) show the time speedup
between these simulations. All reported tests were performed for systems in vacuum (left column) and in a continuum dielectric medium (right column).

discussion, the sizes of the cell axes in the nonperiodic directions
are kept identical, allowing to focus our analysis on a single para-
meter. Convergence tests are reported in Fig. 9 as a function of such
a parameter.

The BN nanoribbon has a width along the y direction of
13 bohrs, with a one-atom thickness of less than 1 bohr in the
z direction. Convergence of the double-cell calculations with respect
to the reference setup shows minor artifact at the smallest cells con-
sidered (10 bohrs). This is consistent with our understanding of
these small-cell artifacts reported for the 0D case and with the size
of the studied system. While a small drift in convergence is observed
at larger cell sizes, the associated errors are within the convergence
threshold of the performed SCF calculations.

Similar to the results reported for 2D systems, double-cell
energies appear to be well converged at all the considered system
cell sizes. AFC90 results show a slightly slower convergence, with
some fluctuations for cell sizes smaller than 20 bohrs. While the
parabolic (point-counter-charge) correction is not implemented for
1D systems, in Fig. 9 we report the results of using a 2D scheme
applied considering the y axis as the only nonperiodic direction
of the system. As the system is very homogeneous along the z
direction, we expect this scheme to capture most of the interaction
energy between periodic replicas of the nanoribbon. Indeed, our

simulations show that this parabolic correction is close to the
double-cell results, although some small deviations are still present
for cell sizes as large as 20 bohrs.

For this application, more substantial computational speedups
are observed in using the double-cell formalism. Moreover, a linear
increase in speedup is observed as a function of the cell size, consis-
tent with the expected difference in computational scaling between
the electrostatic and DFT components of the calculations. As for
the 0D and 2D cases, the speedup is significantly reduced for the
simulations in a dielectric medium, as the iterations involved in the
solution of the more complex generalized Poisson problem increase
the weight of the electrostatic calculation.

V. CONCLUSION
We report the development and implementation of a double-

cell numerical algorithm to decouple electrostatic calculations and
environment effects from the underlying DFT simulation. The pro-
posed formalism was tested as a tool to remove PBC artifacts for
partially periodic and nonperiodic systems. By comparing double-
cell calculations with a benchmark reference, we identified a source
of potential artifacts for very small system cell sizes. Indeed, if the
DFT cell is so small that the electronic density of the system spills
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across the cell boundaries, the mapping of the DFT cell into an
expanded environment cell introduces artificial cuts in the elec-
tronic density, thus forbidding the use of the double cell for minimal
DFT cell sizes. However, the presented results should show full
convergence with cell size for most simulation setups and system
dimensionalities. This fast convergence can be further improved by
the additional use of PBC corrections on the environment cell. While
a general speedup in simulation is observed by allowing the DFT cell
to be smaller than the environment cell, the most impressive result
was observed for the 1D system, with speedups of up to 30 times
with respect to corresponding single-cell simulations. The effective-
ness and accuracy of the presented approach give us confidence in
the future use of this formalism for simulations with heterogeneous
and nano-scaled continuum environments.

SUPPLEMENTARY MATERIAL

The supplementary material includes information on the effect
of the spread value when using LIBAFCC for different system
dimensionalities as well as how the double-cell formalism affects the
calculated forces.
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