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ABSTRACT
The computational modeling of electrochemical interfaces and their applications in electrocatalysis has attracted great attention in recent
years. While tremendous progress has been made in this area, however, the accurate atomistic descriptions at the electrode/electrolyte inter-
faces remain a great challenge. The Computational Hydrogen Electrode (CHE) method and continuum modeling of the solvent and electrolyte
interactions form the basis for most of these methodological developments. Several posterior corrections have been added to the CHE method
to improve its accuracy and widen its applications. The most recently developed grand canonical potential approaches with the embedded
diffuse layer models have shown considerable improvement in defining interfacial interactions at electrode/electrolyte interfaces over the
state-of-the-art computational models for electrocatalysis. In this Review, we present an overview of these different computational models
developed over the years to quantitatively probe the thermodynamics and kinetics of electrochemical reactions in the presence of an electri-
fied catalyst surface under various electrochemical environments. We begin our discussion by giving a brief picture of the different continuum
solvation approaches, implemented within the ab initio method to effectively model the solvent and electrolyte interactions. Next, we present
the thermodynamic and kinetic modeling approaches to determine the activity and stability of the electrocatalysts. A few applications to these
approaches are also discussed. We conclude by giving an outlook on the different machine learning models that have been integrated with the
thermodynamic approaches to improve their efficiency and widen their applicability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165835

I. INTRODUCTION

With the rapid development of modern technologies, the world
is experiencing a significant increase in energy consumption. This
enhanced the dependence on fossil fuels and the continuous increase
in carbon dioxide (CO2) concentration in the atmosphere. Environ-
mental problems, such as rising sea levels, ozone layer depletion,
extreme weather patterns, and climate-change-related issues, have
endangered the entire ecosystem. To mitigate these issues, in the
past few decades, there has been an increase in global interest
toward shifting energy production from fossil fuels to renewable and
sustainable sources.1–6

Among alternative technologies, electrocatalysis and photo-
electrocatalysis hold great promise as a means of energy storage,

allowing to fully unlock the power of renewable energy sources,
such as wind and solar.7–9 The electrochemical reactions in the
water and carbon cycles could serve as critical processes to reduce
the dependence on fossil fuels and help reduce atmospheric carbon
dioxide emission.10–13 The electrochemical water splitting reactions
will allow the generation of a clean fuel—hydrogen (H2).14,15 On the
other hand, the electrochemical reactions in the carbon cycles could
be used to convert CO2 to value-added chemicals and fuels.12,16,17

Efficient electrocatalysts are needed to meet the industrial scale
applications of these reactions. Electrodes made of Pt-group ele-
ments are the best electrocatalysts for most of these electrochemical
reactions to date.7,18,19 While a few studies found mixed Ni–Fe
oxides as promising electrocatalysts for water electrolyzers under
alkaline conditions,20,21 however, under acidic conditions, RuO2 and
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IrO2 show the best activity.22,23 The expensive nature of most of
these materials forbids their industrial-scale applications. There-
fore, identifying materials composed of earth-abundant materials
has acquired immense research interest in the last few years.

However, understanding materials’ surface characteristics, sta-
bility, and reactivity under electrochemical conditions is challeng-
ing. With experimental techniques to probe electrified solid–liquid
interfaces still evolving, computational methods could provide an
efficient alternative to explore these interfaces’ atomistic details
and offer design strategies for better electrocatalysts.24,25 Indeed, a
systematic experimental exploration of the interfacial characteris-
tics and chemical reactivity of electrified solid/electrolyte interfaces
would be costly and time-consuming. On the other hand, com-
putational approaches could help understand materials’ properties
and reactivity in a high-throughput fashion and, therefore, guide
experiments on the best-performing candidates.

The accuracy of the computer simulations to understand the
chemical stability and reactivity of electrode materials is primarily
defined by the theoretical strategies used to model the solid surface,
adsorbates, solvated ions in the electrolyte, solvent molecules, and
the effect of external potential and pH on the electrosorption mech-
anism at the interface.26,27 First-principles density functional theory
(DFT) calculations have been widely used to accurately define most
of these interactions at the solid/electrolyte interface.27 Periodic
DFT calculations with plane-wave basis sets and pseudopotential to
model core electrons have successfully enabled the modeling of solid
surfaces and their interactions with reactive intermediates in vac-
uum in several computational electrocatalysis studies.28 However,
the accurate description of solvent molecules and electrolyte ions
brings significant complexity.29,30 An explicit description of the elec-
trolyte solution that accounts for its statistical nature, e.g., through
molecular dynamics simulations, would allow the full characteriza-
tion of the atomistic details of interfacial processes. However, the
balance between the accuracy and computational cost of such a
fully explicit model makes it only feasible for selected applications,
leaving high-throughput screenings out of reach.

A multi-scale approach to defining solvent effects on solid sur-
faces could reduce these computational challenges.31,32 Following a
hierarchical strategy, a first-principles level of theory that includes
full atomistic and electronic details is adopted for the electrode sur-
face and the catalytic adsorbates. Instead, solvent molecules and
electrolyte ions are statistically averaged and converted into classical
continuum embedding media, their interactions with the substrate
being described using empirical or theoretical models. The most
common methods in this category follow the name of continuum
solvation models and include as one of their key ingredients the
description of the solvent media as a classical polarizable dielectric,
with variations of the Polarizable Continuum Model of Tomasi and
Persico33 and the SM-X approaches of Truhlar and collaborators34

being probably the most popular in the computational chemistry
literature. At the cost of requiring some careful parameterizations
and reducing the details in the characterization of interfacial pro-
cesses, these continuum embedding models have unlocked the pos-
sibility of performing high-throughput calculations on materials
surfaces.

In addition to precise computational models to define the
simulation setup, accurate thermodynamic models are needed to
probe the electron transfer mechanism at the solid/electrolyte inter-

face. The methodological developments contributed by Reuter and
Scheffler on heterogeneous catalysis35,36 and the computational
hydrogen electrode (CHE) method37 put forward by Nørskov and
Rossmeisl represent the cornerstones of computational thermody-
namics for free energy calculations of electrochemical reactions.
The CHE method has reduced the computational efforts and com-
plexities associated with high-throughput screening of a larger set
of catalysts for several electrochemical reactions. In recent years,
additional corrections based on a Legendre transform formalism
have extended the CHE method to efficiently incorporate surface
dipole interactions and electric fields, which influence electrosorp-
tion free energy values at the electrode/electrolyte interfaces for
some electrochemical reactions.38–41

In this Review, we will present an overview of the different
computational tools and thermodynamic models developed based
upon first principles methods to probe the thermodynamics of
electrochemical reactions. In the next sections, we describe the com-
putational embedding models for solvent (Sec. III) and electrolytes
(Sec. IV) developed to characterize electrocatalytic interfaces. We
follow with an overview of ab initio methods to probe electrosorp-
tion free energy values on electrode surfaces, including the CHE
method (Sec. V) and its different a posteriori modifications aimed
at improving its accuracy and efficiency (Sec. VI). We then pro-
vide a discussion on kinetic models developed to characterize kinetic
barriers of electrochemical reactions (Sec. VII) and to connect atom-
istic results with experimental reaction rates (Sec. VIII). In Sec. XI,
we report an overview of thermodynamic models to understand the
electrochemical stability of wet electrified surfaces under applied
potential and pH. Eventually, we conclude our discussion by giving
a note on the current scenario and future methodological develop-
ments required to enhance the applicability of the computational
electrochemical methods.

II. CONTINUUM MODELS FOR SOLUTIONS
Continuum models of solvation are developed based on the

basic assumption that the solvent molecules are statistically aver-
aged and homogeneously present around the solvated system (the
quantum mechanical systems of interest).32,33,42,43 Figure 1 shows a
schematic representation of the continuum approximation as ideally
emerging from full-explicit atomistic solvent models.

For any continuum embedding approach, the definition of the
boundary between the solvated system and the surrounding envi-
ronment is the main component. This interfacial region could be
modeled in different ways depending upon the dimension of the
embedding region (for two, one, or zero-dimensional systems) and
the types of interactions between the solvent molecules and the
embedding region. A consistent picture of the interfacial region can
be derived in terms of the interface function s(r) given as follows:33,42

s(r) =
⎧⎪⎪
⎨
⎪⎪⎩

1, r ∈ system,

0, r ∉ system.

The well-known polarizable continuum model (PCM) relies on
an interface function with a sharp transition defined as the union of
spheres centered at the positions of the atoms comprising the quan-
tum mechanical region.42,44–48 In this approach, the interface func-
tion is strictly defined in terms of the van-der-Waals radii (RvdW

i )
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FIG. 1. The continuum solvation representation in comparison to the full-explicit
solvent model. The figure is reprinted with permission from O. Andreussi and G.
Fisicaro, Int. J. Quantum Chem. 119, e25725 (2019). Copyright 2019 John Wiley
and Sons, Ltd.31 Different configurations of the explicit water molecules are shown
on the GaAs surface in the left panel, wherein in the right panel, an average dis-
tribution of the solvent molecules is represented by a continuum medium based
upon the probability distribution isosurfaces of the water molecules.

of the atoms of the embedded system, which are element-dependent
parameters usually obtained from independent parameterizations.
The sharp transition between system and environment regions
allows us to recast the numerical problems connected with the cal-
culation of solute–solvent interactions onto the two-dimensional
surface of the interface, with significant computational advantages
for small isolated systems.

Another important contribution has been made by Klamt and
Schüürmann to the development of the solvent model.49,50 They
devised a conductor like solvent model (COSMO) to define the
electrostatic interaction of the solute molecule with the solvent. In
contrast to the PCM, in this model, the continuum polarization
charges due to the solute polarity is derived following a scaled-
conductor approximation. The screened surface charge on the solute
molecule is denoted by Eq. (1), where q∗ is the electric surface charge
obtained quantum mechanically,

q =
ε − 1
ε + x

q∗. (1)

The value of x varies between 0.5 and 0.0 for neutral and
charged molecules, respectively.

In addition to the parametrization of the solute surfaces, a few
solvation models are developed with the parametrization included
for the solvent properties. The SMx models developed by Cramer
and Truhlar are one of those notable solvation models,34,51–54 where
different widely available solvent descriptors are introduced to
model the solute surface interactions, solvent properties, and sur-
face non-electrostatic interactions. These models could enable the
solvation strategies of non-aqueous solvents, such as the organic
solvents.54,55

However, all these solvent approaches can lead to inconsis-
tent errors in quantum mechanical calculations for extended two-
dimensional interfaces.56,57 To build a more transferable contin-
uum solvation model suitable for periodic materials simulations, a
smooth-interface approach was introduced by Fisicaro et al.56 in
terms of the so-called soft spheres. The resulting soft-sphere con-
tinuum solvation (SSCS) model introduced additional smoothing
parameters that allow the mapping of the interface function on typ-
ical structured grids adopted in plane-wave-based first-principles
simulation packages.

Defining the interface function on ionic degrees of free-
dom neglects changes in solvation geometries linked to the elec-
tronic degrees of freedom, e.g., during charge-transfer processes.56,58

Moreover, the explicit dependence of the interface function on ionic
positions introduces additional contributions to the inter-atomic
forces. Therefore, a lack of sufficient numerical accuracy in the cal-
culation of solvent-interaction terms may propagate to the poorly
converged forces, with potential issues in geometry optimizations
and poor energy conservation in micro-canonical molecular dynam-
ics simulations. When appropriately parameterized, sharp-interface
models (such as PCM and SM-X family of approaches) or smooth-
interface models have shown similar accuracies for neutral and
charged organic molecules in solution, with the best-performing
models usually relying on additional parameters to capture specific
interactions (e.g., hydrogen bonds) usually overlooked by the con-
tinuum assumption. In particular, in models whose interface is based
on atom-centered spheres, the accuracy may be improved by accu-
rately adjusting the scaling parameters to define the solvation radii
of the different molecular functional groups and charged surfaces.
Nevertheless, accurate a priori knowledge of solvent interactions
with the individual components of the system is required in order
to accurately tune the scaling factors.56

An alternative approach to model the solvation interface is
based on the electronic density of the embedded system,

s(r) ≡ s(ρel
(r)). (2)

By introducing a formal connection between the interface func-
tion and the electronic density of the embedded system, the shape of
the continuum interface gets updated at every self-consistent field
(SCF) cycle and, therefore, automatically accounts for changes in
the electronic charge distribution.31,59–62 While this flexible adjust-
ment of the interface may appear to provide a more physical
description of solvation geometries, the approach leads to a non-
physical expansion of the interface function for the negatively
charged systems.63,64 Nonetheless, sharp-interface models (IPCM
and SCIPCM)65 and smooth-interface models (Fattebert and Gygi,
SCCS, etc.)29,43,59,62,64,66 based on the electronic density have the
main advantage of providing an interface function that is more gen-
eral and transferable as it does not require van der Waals radii and
is thus independent of the types of elements present in the simu-
lation. This can represent a key advantage when studying systems
such as materials based on transition metals, in which most of the
atoms belong to elements that are not well represented in the organic
compounds traditionally used for solvation model parameteriza-
tion. As a second minor advantage, due to the Hellmann–Feynman
theorem, continuum interfaces defined on the electronic density

J. Chem. Phys. 159, 111001 (2023); doi: 10.1063/5.0165835 159, 111001-3

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics REVIEW pubs.aip.org/aip/jcp

alone do not add explicit contributions to interatomic forces. Ide-
ally, these solvation models are more well-behaved for molecular
dynamics simulations.59 However, when the interface function is
defined in terms of the ionic positions, an additional contribution
to the interatomic forces linked to the variation of the interface with
respect to the ionic positions need to be explicitly included. In spe-
cific instances, the dependence on ionic positions can be designed
so as to not affect the energy and, correspondingly, the forces, e.g.,
when adding a fictitious core-electron density to saturate the inter-
face function on the position of the ions. However, in most cases, this
additional contribution needs to be computed explicitly, and numer-
ical inaccuracies linked to the discretization of the interface may lead
to increased errors in the forces, potentially limiting the application
of these methods to molecular dynamics simulations.

Among the different interface models based on the electronic
density, it is worth mentioning the revised definition formulated by
Andreussi and co-workers, denoted as the self-consistent continuum
solvation (SCCS), and exploiting a physically motivated definition of
the switching function, given as follows:59

s(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, ρel
(r) > ρmax,

f (ln (ρel
(r))), ρmax > ρel

(r) > ρmin,

0, ρel
(r) < ρmin,

where f (ln(ρel
(r))) is a smoothly varying function of the loga-

rithm of the electronic density. Using a piece-wise definition is
instrumental in ensuring that the polarization charge induced in the
continuum is not too close to the system’s degrees of freedom. More-
over, the use of the logarithm of the electronic density, in a region
of space where the electronic density is known to decay exponen-
tially, is crucial to ensure the numerical stability and efficiency of
the approach. The interface function depends upon two parameters,
ρmin and ρmax, corresponding to two iso-surfaces of the electron den-
sity of the embedded region. A higher value of these parameters
denotes that the interface is closer to the quantum mechanical region
and that solute–solvent interactions are stronger. Lower values push
the solvation threshold away from the quantum mechanical region,
thereby reducing solvent effects.

Figure 2 shows a comparison between two smooth-interface
continuum models based on the ionic (SSCS) or electronic (SCCS)
degrees of freedom of the system, visualized for a Pt slab with a
hydroxyl group adsorbed on the surface. For both models, the min-
imal number of model parameters, and, in particular, the cavity
parameters that control the position and the smoothness of the inter-
face with respect to the system, were determined so as to optimize
the values of solvation free energies of small organic molecules in
water as compared to the experiments. Despite the differences in the
shapes of the two interfaces, when the appropriate parameterization
is performed, both models show similar accuracy and similar effects
on the solvated systems.63,64

The calculations on a comprehensive set of neutral molecules
showed that by tuning these two parameters, the solvent interac-
tions could be effectively defined and can reproduce the results in
a similar agreement with other theoretical solvent models or the
experiments.63,64 The solvent interactions with the cationic systems
defined with these parameters are represented well, whereas the
anionic systems show significant discrepancies. In addition to the

FIG. 2. (a) The behavior of the interface functions with the SCCS and SSCS model
for a hydroxide adsorbed Pt (111) surface. The continuum-embedded interfaces of
the Pt(111) surface with a hydroxide ion adsorbed modeled using the SCCS and
SSCS models are represented in (b) and (c), respectively. The lines in panel (a)
represent the values of the SCCS and SSCS interface functions along a line ori-
ented perpendicular to the slab and passing through the oxygen atom. The specific
behavior of these functions changes significantly as one moves along the plane of
the slab. However, from the figure, it is clear that both interfaces are flat (have
zero derivative) in most of the simulation space while varying very sharply in a
small region of space at about the same distance from the atoms of the system.
The figure is taken from Andreussi, Nattino, and Georg Hörmann, Atomic-Scale
Modelling of Electrochemical Systems. Copyright 2021 John Wiley and Sons.67

molecular systems, the cavity parametrizations are also performed
for the electrochemical interfaces.68 An alternative set of electron
density parameters are found to be more suitable while studying
electrochemical interfaces with continuum solvation. These para-
meters are found to effectively represent the potential of zero charge
values and differential capacitance for the noble metal surfaces38 and
the aqueous solvent interactions of the two-dimensional surfaces.69

However, it is observed that errors in interface threshold
parametrizations can lead to unrealistic simulation results. To
assess accurate solvation effects on molecular solutes, the usage of
parametrization from molecular reference data is important. There-
fore, it could be challenging to determine electrochemical interfacial
surfaces and reaction energetics for systems without a prior research
data. The over-structure of the solvation layers, particularly for the
ionic systems, found out to be the main concerns associated with
most of the implicit solvent models.

To overcome some of these issues with the ionic solutes,
non-local interfaces depending upon both the ionic and electronic
degrees of freedom have been developed. A field-aware interface,
where scaling factor proportional to local electrostatic fields of the
system, has been introduced to model the non-local electrostatic
interactions at the solute–solvent interfaces for ionic systems.70

A second limitation that has been observed with the ionic and
electronic interfaces is the unphysical distribution of continuum sol-
vent to small regions of space inaccessible to solute molecules. This
causes serious limitations to complex systems, such as the open or
porous substances and zeolites, where interstitial spaces are present
between different solute molecules or the surface and the adsor-
bates. To address this issue, a solvent-aware definition of continuum
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interfaces is proposed, which uses convolutions with spherical func-
tions to reduce the continuum embedding within the inaccessible
regions.64 The local interface function s(r) discussed above is com-
plemented with a smooth switching function of the fraction of the
space occupied by the embedding medium within the spherical
region.

With the non-local solvent interfaces, extensive improve-
ments could be achieved in geometry minimizations and molecular
dynamics simulations; however, these embedding approaches lack
precise modeling of specific solute–solvent interactions beyond the
continuum approximation. For example, the interfacial H-bond
interactions between the protic solvents and the charged electrode
surfaces with and without the reactive intermediates could not
be extensively defined using these embedding models.71 Hybrid
approaches, where the electrochemical interfaces are modeled by
combining the implicit and explicit solvent models, are found to
hold potential advantages in providing accurate simulation results
with respect to the experiments.72–74

A simplified approach to hybrid implicit/explicit solvent mod-
eling has been developed using the quantum mechanical/molecular
mechanical (QM/MM) approach. The QM region incorporates the
solid electrode and the reaction intermediates thereon, whereas a
MM region based upon the force-fields or interatomic potentials
is defined for the liquid electrolyte. This approach offers a speedup
of simulation time along the same line with the classical dynamics.
However, the classical description of electrolyte medium is unable
to define the specific interactions (such as the H-bond interactions)
between the electrode/electrolyte interfaces, particularly when the
liquid phase actively effects the reaction mechanism. This limita-
tion can, however, be mitigated by including a quantum definition
of the liquid layer with the ab initio molecular dynamics (AIMD)
simulations to determine the solvent molecular arrangements.

While QM/MM or full QM description of the hybrid
implicit/explicit solvent model greatly simplifies the computational
modeling of liquid-medium, nevertheless accurate sampling of the
liquid medium would need rigorous molecular dynamics simu-
lations to determine the solvent configurations. To remove the
sample-space dependence on the simulation setups, a further coarse-
graining step has been introduced by averaging out the movement of
the liquid and ionic movements using a spatially equilibrium distri-
bution function employed with the reference interaction site model
(RISM) for solvation.75,76 The equilibrium structure of the solvent
molecules around the solute is defined using an analytical inte-
gral function denoted as the Ornstein–Zernike equation.77,78 The
rotationally averaged spatial functions lacks the three-dimensional
representation of the solvent molecules; therefore, central pair cor-
relation functions on a three-dimensional grid centered around the
solute molecule have been introduced. This formalism is denoted as
the 3D-RISM method.79

The spatial distribution functions in RISM approach is inte-
grated over space and yields an excess chemical potential due
to the solute–solvent interactions and solvent reorganization in
the presence of solute. The functional derivative with respect to
the electron density gives the effective potential, which could be
included into the solvent Hamiltonian to determine the electrostatic,
dispersion, and exchange interaction terms due to the solvation.
Later, Otani and co-workers combined the RISM method with the
plane-wave pseudo potentials (PW-PP) to develop the hybrid solva-

tion model to capture the electrostatic interactions at the periodic
surfaces.80,81

While the accuracy of these hybrid solvent models will be
higher than the full implicit models, the cost of these calculations
would increase as the size of the simulation setup grows.

III. CONTINUUM DIFFUSE-LAYER
ELECTROLYTE MODELS

Along with the definitions of the solvent effects, to accurately
define the electrode/electrolyte interface, the embedding framework
should also incorporate the effect of electrolyte ions present in the
solvating medium.62,82 This could be defined by using smooth func-
tions that depend upon the local concentrations of the solvated
ions at the interfacial region and the bulk solvent. Using the inter-
face function s(r) introduced earlier, the electrolyte domain can be
defined in terms of the ion-exclusion function γ(r), with

γ(r) = 1 − s(r). (3)

Classical continuum models of the electrolyte charge distribu-
tion are particularly important to characterize the electrostatic field
at the interface of charged electrode surfaces. As charge carriers
(electrons or holes) start accumulating on a material, counter-ions
from the electrolyte solution are attracted and accumulate near
the electrode–electrolyte interface. A first-order approximation to
the resulting electrostatic potential could be obtained in terms of
a planar charged layer of counter-ions placed parallel to the elec-
trode surface (Helmholtz plane),83 giving a rigid and well-confined
double-layer structure for the electrode/electrolyte interface. From
the computational point of view, such a planar counter-charge layer
can be modeled using a planar 2D-periodic charge distribution with
a Gaussian envelope given as follows:

ρions = Ae−
(x−x0)

2

Δ2 , (4)

where A is the normalization factor that ensures that the electrolyte
charge density fully compensates for the electrode charge, while
x0 and Δ denote the center and width of the electrolyte charge
distribution, respectively.

While the Helmholtz double-layer model corresponds to the
ground state solution for the charge distribution as the temper-
ature of the system goes to 0 K, it only allows accounting for
concentration and temperature effects by empirically adjusting the
position of the rigid counter-charge layer with respect to the elec-
trode surface. A more realistic model is developed following the
Gouy–Chapman model of the diffuse layer,84,85 which involves solv-
ing a Poisson–Boltzmann equation that features a continuum charge
distribution due to the electrolyte ions.40,68,86 This approach allows
us to explicitly introduce temperature and concentration effects into
the charge distribution of the electrolyte ions by complementing
the electrostatic free energy functional with the solution entropy
functional, S{Ci(r)}, defined as

S{Ci(r)} = −kB∑Ci(r) ln(
Ci(r)
γ(r)

), (5)

where Ci(r) is the concentration of the electrolyte ions in space for
each ion type i. By minimizing the total free energy functional of the
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electrolyte solution with respect to the involved degrees of freedom,
an analytical connection between the ions concentrations and the
electrostatic potential, ϕ(r)m, is obtained, which for the standard
Poisson–Boltzmann (PB) problem results in

Ci(r) = γ(r)C0
i e−

ziϕ(r)
kBT , (6)

where C0
i is the constant bulk concentration of electrolyte ions, Zi

is the ionic charge of the ith electrolyte species, kB is the Boltzmann
factor, and T is the temperature.

For electrostatic interactions much smaller than the thermal
energy, the Boltzmann factor in Eq. (6) can be simplified into
a linear dependence on the potential. This is denoted as Linear
Poisson–Boltzmann equation (LPB),

Ci(r) ≈ γ(r)C0
i (1 −

ziϕ(r)
kBT

). (7)

However, both the standard PB or LPB models can lead to the
over-crowding of the electrolyte ions near highly charged systems.
This is due to the implicit treatment of these ions as point charges
in the formulation of the Gouy–Chapman model. To overcome this
limitation, replacing the point-charge approximation of the elec-
trolyte ion distribution to account for the finite size of these ions can
provide a significant increase in model accuracy.68,87,88 Following the
derivation of Borukhov et al., an expression for the entropy density
and the local concentration of the electrolyte ions in size-modified
Poisson Boltzmann (MPBE) model is exploited,

S{Ci(r)} = −kB∑Ci(r)ln(
Ci(r)

Cmaxγ(r)
)

− kB(Cmaxγ(r) −∑Ci(r))ln(1 −∑
Ci(r)

Cmaxγ(r)
), (8)

which leads to more regular dependence of the electrolyte concen-
tration on the electrostatic potential in the system,

Ci(r) =
γ(r)C0

i e−
ziϕ(r)

kBT

1 −∑i
C0

i
Cmax
(1 − e−

ziϕ(r)
kBT )

. (9)

In this model, the additional Cmax parameters correspond to
the maximum concentration of the electrolyte ions that can accu-
mulate in a volume unit. Following simple geometrical arguments,
this value can be directly connected to the effective radius, ri, of the
electrolyte ions. In the limit of Cmax →∞ or for ri → 0, the MPBE
model reduces to the standard PB model.

In addition to introducing size effects, more detailed models
can be introduced in order to capture different interaction strengths
between the electrode and the electrolyte ions, e.g., to mimic pref-
erential absorption of anions or to capture different ion-surface
separations related to the presence of strong solvation shells on
specific electrolyte ion types.89,90

Differential capacitance curves calculated using the different
diffuse layer models for Ag (111) surface are shown in Fig. 3(c).
In the Helmholtz double-layer model, the curve is independent of
the bulk electrolyte concentration. The linearized and non-linear
PB models instead show a clear dependence on the bulk elec-
trolyte concentration. Comparing the different electrolyte models in

Fig. 3(c), the non-linear PB models show better agreement with the
experimental curves.

IV. IMPLEMENTATION OF EMBEDDING
MODELS IN DFT CALCULATIONS

Embedding effects can be incorporated into the simulation
of quantum mechanical systems by extending the energy func-
tional of the system into a free energy functional that accounts for
system–environment interactions,

Etot
[ρel
]→ Gtot

[ρel
] = T[ρel

] + Exc
[ρel
]

+Gelec
[ρel
] +Gnon−elec

[ρel
], (10)

where the kinetic energy functional, T, and exchange–correlation
term, Exc, have their standard meaning as for DFT simulations
for systems in vacuum, while the electrostatic energy functional,
Gelec, accounts for the characteristics of the embedding medium
(dielectric permittivity, electrolyte concentration, etc.), and the addi-
tional Gnon−elec term is introduced to model other non-electrostatic
system–environment interactions.

In particular, given the definitions above for the entropy of
the continuum medium as a function of electrolyte concentrations
[Eqs. (5) and (8)], the free energy of a dielectric medium with a finite
electrolyte concentration can be written as68,87

Gel
[ρel
] = ∫ (ρtot

(r)ϕ(r) −
ε(r)
8π
∣∇ϕ(r)∣2 −∑

i
μiCi(r)

− TS{Ci(r)})dr, (11)

where the total charge density of the system includes both electrons
and nuclei, ρtot

= ρel
+ ρnucl, ε(r) is the dielectric permittivity in the

simulation cell, and μi is the chemical potential of the electrolyte ions
of type i. For a system in vacuum and in the absence of an electrolyte
distribution, the formula above simplifies to give rise to the stan-
dard electrostatic interactions between the charges of the systems
(i.e., electrons–electrons, nuclei–nuclei, and electrons–nuclei). In
such a case, the electrostatic potential in space, ϕ[ρ(r)], is obtained
from ρtot

(r) by solving the standard Poisson equation, ∇2ϕ[ρtot
(r)]

= −4πρtot
(r). However, in the presence of a continuum dielectric

medium, the generalized Poisson equation needs to be solved,

∇.ε(r)∇ϕ[ρtot
(r)] = −4πρtot

(r). (12)

While in the presence of electrolyte ions, the potential becomes
the solution of the full Poisson–Boltzmann equation,

∇.ε∇ϕ[ρtot
(r)] = −4π(ρtot

(r) + ρions
(r)), (13)

with

ρions
(r) = γ(r)eNA∑

i
ZiCi(r) (14)

in terms of the concentrations Ci defined in Eqs. (6) and (7) or
Eq. (9), depending on whether a linearized and/or size-modified
model is adopted.

Several numerical approaches have been explored to solve the
above differential equations, varying depending on the underlying
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FIG. 3. (a). Dependence of interfacial capacitance of Ag (111), Cu (111), and Pt (111) for the different values of ρmin and ρmax, reproduced from Hörmann, Andreussi, and
Marzari, J. Chem. Phys. 150, 041730 (2019) with the permission of AIP Publishing (b) Differential capacitance of Ag(111) surfaces as a function of applied potential, calculated
using different diffuse-layer electrolyte models. (i) Differential capacitance values are calculated using linearized Poisson–Boltzmann (LPB) models (yellow, gray, and orange
lines for different electrolyte concentrations) and the double-layer Helmholtz model (blue line). In the double-layer Helmholtz model, the planar counter-charge plane is placed
at 5 Å from the outermost metal layer, and the spread parameter is Δ = 0.25 Å. (ii) Differential capacitance behaviors for the nonlinear Poisson–Boltzmann model (left panel
with indicated electrolyte concentration) and the size-modified Poisson–Boltzmann model (right panel with the indicated Cmax values in orange, gray, and blue with a bulk
ionic concentration, c0 of 0.1M). The yellow line corresponds to PB with Cmax =∞ M). In (b) (i) and (ii), blue-gray and light green lines with respective to 0.1 and 0.4M
experimental results, respectively,. (c) Differential capacitance curves for nonlinear size-modified Poisson–Boltzmann models with c0 = 0.1M using the SSCS [(a), upper
panel] and SCCS [(b), lower panel] solvent model. The dashed line represents the experimental data. The Cmax parameter connected to the size-modified model is set to 20M
for SSCS calculations, whereas for the SCCS simulations, a Cmax value of 2M is considered. The bulk ionic concentration is varied and indicated in the figure. This figure is
reprinted from Nattino et al., J. Chem. Phys. 150, 041722 (2019) with the permission of AIP Publishing.

DFT simulation package and its available Poisson solvers. While
multigrid solvers have been initially proposed and specifically devel-
oped for this task,43 fixed-point iterations59 and preconditioned
conjugate gradient approaches56 based on fast Fourier transforms
have shown to be sufficiently accurate and fast for linear electrostatic
problems, especially when appropriate periodic-boundary correc-
tion schemes are included.91 For the non-linear Poisson–Boltzmann
problems in Eq. (13), Newton-like algorithms were shown to provide
reasonably robust solutions to the problem for charged electrode
surfaces.60,68,92,93

In addition to the electrostatic interactions, non-electrostatic
terms are required to precisely define solvation interactions. Tradi-

tionally, these terms are split into the cavitation energy associated
with the formation of the cavity in the embedding system to host
the solute and the repulsive and dispersion energies due to the Pauli
electronic repulsion and electronic dispersion due to the non-local
correlation effects [Eq. (15)].94,95

Using a compact formulation, the SCCS59 and SSCS56 models
handle these non-electrostatic terms in terms of two functionals that
are proportional to the quantum-surface and quantum-volume of
the system,96

ΔGsol = ΔGel + ΔGcav + ΔGrep + ΔGdis (15)

= ΔGel + (α + γ)Sq + βVq. (16)
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Alternatively, the empirical approach of Grimme to van der
Waals interactions was also extended to model system-continuum
interactions.54 However, for slab interfaces, the non-electrostatic
terms are usually regarded as less important, with reaction ener-
gies being mostly affected by the electrostatic terms (ΔGel).38,69

Moreover, the intensity of these interactions, controlled by the α,
β, and γ parameters, is usually tuned so as to reproduce experi-
mental results, usually related to the solvation free energy of small
organic molecules in specific solvents. However, in the calculation
of free energies for materials surfaces under electrochemical condi-
tions, non-electrostatic terms are most often neglected due to their
associated parameterization and less general definitions. The non-
electrostatic terms are used as fitting parameters for determining
the accurate solvation energies of zero-dimensional solutes. While
adding the volume term allows us to improve the accuracy in the sol-
vation energies of small isolated systems, its meaning and use is less
evident for most materials simulations. The reason for this is the fact
that most materials simulations adopt the slab approximation for
studying the surface of a semi-infinite system. The solvation energy
of such an approximate model should not depend on the number
of layers considered, which instead affect the quantum volume of
the system. Moreover, also for materials that are a few atoms thick
and do not involve the slab approximation, as in case of the two-
dimensional systems, the inclusion of non-electrostatic terms will
only result in uniform energy shifts since the quantum-mechanical
cavities change marginally.38,69

V. COMPUTATIONAL HYDROGEN ELECTRODE (CHE)
METHOD

The CHE approach, pioneered by Nørskov and co-workers,
presents a promising way of modeling the reaction thermodynam-
ics at the electrochemical interfaces.37 It was introduced to study the
electrosorption free energy of O2 reduction reaction in fuel cells. At a
later stage, this method found to be efficiently useful for probing the
reaction thermodynamics of many other electrochemical reactions.
It takes an approximation of concerted electron and proton transfer
in every electrochemical step. We discuss this approach here in light
of one of the O2 reduction reaction (ORR) steps. Let us consider the
reaction step shown in Eq. (17). The adsorbed state of the interme-
diate on the electrode surface is denoted by OOH∗, and ∗ denotes
the reactive center,

∗ +O2 +H+ + e−→∗OOH. (17)

The reaction free energy for this step will be

ΔG = ΔE + ΔZPE − TΔS − (μH+ + μe−). (18)

Here, ΔE, ΔZPE, and TΔS denote the DFT calculated formation
energy, zero-point energy, and entropic correction terms, respec-
tively, for OOH∗ from O2.16,97,98 Estimating the chemical potentials
of the H+ and e−, μ+H and μ−e poses the greatest challenge.

Within the CHE approximation, these chemical potential val-
ues are calculated with respect to reversible hydrogen electrode
(RHE) as the reference electrode. At an applied zero potential and
1 bar pressure, H+, e−, and gaseous H2 will maintain an equilibrium

within the RHE. Therefore, the values for this reference electrode
(μref

H+ and μref
e− ) would be

μref
H+ + μref

e− = μH2/2. (19)

At an applied potential ϕRHE, the chemical potential will be low-
ered. The difference in the chemical potential at the applied potential
and the reference value (μref

H+ and μref
e− ) will be equivalent to the

applied potential,

ϕRHE = −(μe− − μref
e− )/e. (20)

Here, e is the elementary electronic charge. Using Eqs. (19) and
(20), a general expression for μ−e in Eq. (18) is obtained as

ΔG = ΔE + ΔZPE − TΔS − (μH2/2 + eϕRHE). (21)

In Fig. 4(b), the free energy diagram calculated using the CHE
approach for the ORR pathway on the Pt(111) surface is shown.
Without any applied potential, the reaction steps are exothermic;
however, at the O2 reduction equilibrium potential (1.23 V), some
of the reaction steps become uphill in energy. The OH∗ to H2O step
shows to be the potential determining step. The maximum poten-
tial at which all the reaction steps remain exothermic is 0.75 V and
should be denoted as the limiting potential. This value agrees well
with the experimental findings.99,100

VI. BEYOND THE COMPUTATIONAL HYDROGEN
ELECTRODE

The CHE method enabled detailed studies of the electrochem-
ical reaction pathways and high-throughput screening of material
databases for electrocatalysis.18,24,29 The simplistic approach and
computational efficiency of this model gave access to analyze the
surface Pourbaix stability of the materials and aqueous degradation
pathways under varied electrochemical conditions.99,101–104 How-
ever, there are several limitations associated with the CHE method.
First, in this model, the kinetic barriers for the proton-coupled
electron transfer steps are not addressed appropriately.105–107 A sur-
mountable kinetic barrier under the applied limiting potential is one
of the major assumptions in this model. This brings in the con-
ceptual equivalence between the thermodynamic-limiting step (or
potential limiting step under an applied bias) and the rate-limiting
step for all the reaction pathways. Second, decoupled proton and
electron transfer mechanisms could not be effectively probed using
the CHE approach.107,108

Third, the free energy for electrosorption under an applied
bias would be effectively estimated from CHE method when the
interfacial electric field interactions have minimal effect on the bind-
ing energies of the intermediates.29 The polar intermediates, e.g.,
adsorbed oxygenated species or CO2, show considerably higher
surface–adsorbate dipole field interactions. It has been seen that
the interfacial electric field due to electrode surface charge and the
ionic electrolyte ions tune both the binding energies and adsorption
configurations of the intermediates involving these adsorbates.

In an electrochemical setup, a charged electrode attracts
electrolyte counter ions from the solution. Several models have
been proposed to define the structure of the electrode/electrolyte
interface. A statistical distribution of the electrolyte ions at
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FIG. 4. (a) The 4-step proton-coupled electron transfer (PCET) steps for the O2 reduction reaction (ORR) proposed under the CHE framework.37 The blue and red spheres
denote the H and O atoms. (b) Free energy diagram for ORR on the Pt (111) surface at different applied electrode potentials, reproduced with permission from Kulkarni et al.,
Chem. Rev. 118, 2302–2312 (2018). Copyright 2018 American Chemical Society. The blue lines are obtained at the 0 potential, the green lines at 1.23 V, and the black line
at the limiting potential of 0.75 V.

the charged electrode/electrolyte interface, illustrated by the
Gouy–Chapmann–Stern (GCS) model, has been found to be most
precise so far.109,110 This model predicts the formation of a double-
layer structure composed of a compact and diffuse layer by the
electrolyte ions at the electrode/electrolyte interface [Fig. 5(a)]. The
excess electrons on the electrode surface generate a surface dipole,
which results in the formation of a compact layer of counter-charged
electrolyte ions near the electrode surface. This compact layer is
termed the inner Helmholtz layer. Further away from the elec-
trode surface, a diffused arrangement of the electrolyte ions is seen.
Figure 5(a) shows a schematic arrangement of the electric double
layer for a negatively charged electrode surface. An interfacial elec-
trostatic potential [as denoted by the red dotted line in Fig. 5(a)] is
formed due to the double-layer arrangement of the electrolyte ions.

To incorporate the effect of the interfacial electric field at the
electrode/electrolyte interfaces while performing the binding energy
calculations of the intermediates in an electrochemical reaction
pathway, several corrections are added to CHE method. In Secs. VI A
and VI B, we discuss a few of these simulation methods.

A. Cell and charge extrapolation methods
The cell extrapolation method is proposed by Nørskov and

co-workers to model the electric field effects at the wet-electrified
interfaces in the presence of an explicit water-bilayer.27,111 In this
model, the potential of the electrode surface is modulated by vary-
ing the coverage of dissolved H+ ions in the explicit bilayer of
water on top of the electrode surface. It is assumed that hydrogen
atoms get solvated and form a pair of electron and proton. The
proton is stabilized by the water molecules in the water bilayer,
whereas the electron moves to the material interfaces and varies
its surface charge density and work function. The electrode poten-
tial (U) could be obtained by Eq. (22) from the work function of

the electrode, ϕ, with reference to the normal hydrogen electrode
(NHE), ϕNHE,112,113

U = ϕ − ϕNHE. (22)

In a calculation setup with finite cell size, the proton concen-
tration in the water bilayer will change for an initial and final state
for a proton-coupled electron transfer reaction.111 This results in an
alteration of the electrode work function or the electrode potential
during the reaction. To remove this finite cell-size error and achieve
a constant potential simulation setup, DFT calculations should be
performed with an infinitely large unit cell. With the increase in
the cell-size, the change in surface charge density during the elec-
tron or proton transfer from initial to transition state to final state
will be minimal. However, with bigger cell-size and large number
of atoms, the computational cost will be very high as the DFT cal-
culations scale as O(N3

e ), with Ne being the number of electrons
in the simulation setup. Skúlason et al. suggested an extrapolation
scheme to overcome this issue.111 In this scheme, the calculations
are performed with varying cell sizes by keeping the proton cover-
age (or electrode potential) constant on the explicit water bilayer.
Plotting the activation and reaction-free energies as a function of
the change of potential (ΔU) between the initial and final states for
different unit-cell sizes shows a linear dependence. Extrapolation of
the best-fitted line to a zero ΔU limit will therefore correspond to
the activation and reaction free energy values at infinite cell size for
the corresponding proton coverage or applied potential. Figure 5(c)
shows the simulation setup and reaction free energy plot for the cell
extrapolation scheme used to determine the activation barrier and
reaction free energy values of the Volmer step of the HER.

While the cell extrapolation method could efficiently be used
to model the reaction energetics for different electrochemical reac-
tions, the repeated computations with varying cell sizes possess a
great extent of computational complications for multi-step reaction

J. Chem. Phys. 159, 111001 (2023); doi: 10.1063/5.0165835 159, 111001-9

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics REVIEW pubs.aip.org/aip/jcp

FIG. 5. (a) Schematic representation of the electrochemical interface for a negatively charged electrode surface. The green and red spheres represent the positively and
negatively charged electrolyte ions, respectively. The red dotted line is electrostatic potential distribution, ϕ, as a function of the distance from the electrode surface. (b) The
transition state of the Heyrovsky reaction on a 3 × 4 Pt(111) surface with adsorbed proton atoms. The charge density difference isosurfaces of the initial, transition (TS), and
final states are shown in the top panel, whereas the electronic energy in eV (red solid line) and corresponding work function in eV (blue dotted line) for the reaction path are
shown in the bottom panel (c) The cell-extrapolation method for determining the reaction energetics and activation barrier (in blue and red, respectively) for a proton transfer
reaction on the metal surface. The different cell sizes are denoted by a0, a1, and a2. a∞ corresponds to the extrapolated infinite cell size. (d) Comparison of the reaction
energetics for HER calculated using the cell-extrapolation and charge-extrapolation methods. Further details are given in the inset of figure. The figures are reproduced with
permission from Chan and Nørskov, J. Phys. Chem. Lett. 6, 2663–2668 (2015). Copyright 2015 American Chemical Society.

processes. Therefore, a computationally more effective method is
proposed later by Chan and Nørskov to address this issue. In the
revised scheme, the surface charge of the electrode is extrapolated
and involves a limited number of DFT simulations.114

The charge extrapolation method is based upon the charge
partitioning scheme, where electrosorption free energy could be
expressed as the sum of chemical (Echem) and electrostatic (Eel)

terms as follows:

E = Echem + Eel. (23)

Following a similar setup as the cell extrapolation method, the
chemical contribution could be obtained from DFT calculations of
the reaction energetics. On the other hand, the electrostatic term is
determined following a simple capacitive model, where Eel would be

expressed using the surface charge (θ ≈ q/N) and capacitance (C)
of the electrode with N atoms by (eθ)2/2C. The total reaction free
energy at a constant potential (ϕ1) between initial and final states
(1 and 2) would be obtained using

E2(ϕ1) − E1(ϕ1) = [E2(ϕ2) − E1(ϕ1)] +
(q2 − q1)(ϕ2 − ϕ1)

2
. (24)

Here, E1(ϕ1) and E2(ϕ2) correspond to the DFT calculated
free energies of the initial and final states, where the variation in
proton coverage results in modulation of the electrode potential ϕ1
and ϕ2 between the initial and final states. The charge difference
between the initial and final states (q2–q1) due to the variation of
proton numbers could be obtained from Bader analysis. For an ele-
mentary step reaction, such as HER, the reaction free energies and
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activation barrier values calculated with this scheme show a rea-
sonable agreement with values obtained from the cell extrapolation
method [Fig. 5(d)]. However, for complex electrochemical reactions,
the results could be very sensitive to the simulation parameters,
particularly related to the charge partitioning scheme. Further-
more, the specific arrangement of the water structure could imply
additional surface-dipole moments. This will affect the charge par-
titioning method and therefore would lead to unphysical tuning of
the work-function.

B. Grand canonical potential simulations
The grand canonical potential simulations give access to the

thermodynamic variables relevant to define an experimental elec-
trochemical setup by the Legendre transformation of the DFT cal-
culated free energies. Several approaches have been developed in the
literature to perform the grand canonical simulations of electrified
interfaces.38,39,41,115–117 In these approaches, to define the thermody-
namic potential of the electrochemical interface, the surface charge
or the work-function of the electrode is used as the descriptor. Here,
we give a brief overview of two simulation techniques for the grand
canonical potential method, where direct control of the electrode
potential is achieved using a charging scheme and the work function
scheme.

Using the work function (ϕ) of the electrode as the driving
force, the grand potential free energy J(ϕ, μa) of an electrochemi-
cal simulation setup comprising an electrode slab with Ns atoms,
absolute surface charge Nabs

e , and Na adsorbed ions on the surface
is described by

J(ϕ, μa) = min
(Ne ,Na)

JIP(Ns, Ne, Na). (25)

In Eq. (25), JIP(Ns, Ne, Na) is the interfacial free energy of
the electrochemical interface, which is determined by the Legendre
transformation of the DFT calculated free energy GDFT(Ns, Ne, Na)

using

JIP(Ns, Ne, Na) = GDFT(Ns, Ne, Na) −∑
Ns

μsNs

−∑
Na

μaNa + eϕNabs
e . (26)

The absolute surface charge Nabs
e corresponds to an electronic

charge of the electrode slab due to the exchange of electrons with the
external circuit, as denoted by Eq. (27). qa

e Na is the amount of charge
compensated due to the adsorption of the intermediates with qa

e
charges, whereas Nnet

e denotes the excess surface charge on the elec-
trode, which attracts counter ions of the electrolyte in the diffused
layer,

Ne =
qa

e
Na +Nnet

e . (27)

μa in Eq. (26) is the electrochemical potential of adsorbate ions
and μs is the chemical potential of the slab atoms. In general, Nsμs
refers to the free energy of bulk crystals, which serves as the atomic
reservoirs for the formation of electrode slab.

The reaction free energy ΔGads for the adsorption of ionic inter-
mediates is determined from the grand canonical free energies of

the electrode slab with and without ionic adsorbates, as shown in
Eq. (6).38,69 The interfacial free energy of the clean electrode slab
upon interpolation on the electrode potential (ϕ) followed by the
minimization with respect to the electronic charges (Ne) provides
the grand potential free energy J(ϕ) of the electrode slab with-
out the adsorbates. On the other hand, for the electrode surface
with a varying surface coverage of adsorbates, the interpolation and
minimization are performed against both the surface charges and
adsorbate coverage to calculate J(Φ, μa),

ΔGads(Φ, pH) = J(Φ, μa) − J(ϕ). (28)

The ionic electrochemical potential μa could be determined
by combining the DFT calculated free energies of the involved
species with an experimental value. For example, the electrochem-
ical potential for a proton in an aqueous medium could be defined
by the standard hydrogen electrode (SHE @ 4.44 V), as shown in
Eq. (29). In the aqueous medium, the proton is considered to be in
equilibrium with the gaseous H2 molecule (H+↔ 1

2 H2),

μH =
1
2

μH2(g) − kBT ln(10) ⋅ pH + 4.44 eV. (29)

The chemical potential μH2 for gaseous H2 is determined by
DFT calculation, and pH corresponds to the proton concentration
of the aqueous medium. Now, for a charge neutral system (Nnet

e = 0),
substituting the value for μH [Eq. (29)] in the interfacial free energy
expression in Eq. (25) and equating NH to 1, a similar expression is
obtained as shown earlier for CHE formulation in Sec. IV,

J(ϕ, μH)
CHE
= GDFT

(Ns, Ne, NH)) −Gbulk

− [
1
2

μH2(g) − kBT ln(10) ⋅ pH + 4.44 eV]. (30)

The simulations are performed at varying charge setups of the
electrode slab to interpolate the interfacial free energy values on
electrode potential ranges. Therefore, the accuracy of the calculated
grand potential free energies largely depends on the continuum elec-
trolyte definitions. Furthermore, a symmetric slab setup is essential
to reduce the potential error on the electrode work function due to
the asymmetric charge distribution of the electrolyte diffused layers.

Another point to be noted is the calculation of the forces within
the grand canonical ensemble under the constant-potential scheme.
In the atomistic simulations, the forces are important to search for
the stationary points. The minimization scheme discussed above
for the constant-potential calculations are based upon the forces
calculated as the negative gradient of the potential energy surface
(PES). However, in computational electrochemical setups, the grand
canonical potential free energy surface is critically more impor-
tant as the electron number (Ne) is the free variable controlling
the electronic chemical potential. Therefore, forces calculated by
the negative gradient of the grand canonical potential energy rather
than PES would be more appropriate for structure minimization,
saddle point calculations, or molecular dynamics simulations under
constant-potential electrochemical setups.

To illustrate the importance of grand canonical potential
energy surfaces for electrochemical calculations and relevance with
PES, in a recent study, Peterson and co-workers compared the
results of constant-charge and constant-potential DFT simulations
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on the H-adsorbed Pt surface.118 It is observed that analytical deriva-
tives at any point on both the potential energy surfaces are equiv-
alent. Hence, stationary point searches based on forces calculated
using both these methods would be equivalent. While the equiva-
lence of both the methods is evident from this study; however, to
draw a general conclusion on this and test the validity for other
surfaces, further studies are indeed needed.

Alternatively, using the surface charges as a descriptor instead
of the work function could reduce the dependence on the continuum
electrolyte parameters. The DFT calculated energy for a charged
electrode slab could be expressed by a Taylor expansion of the elec-
tronic energy of the neutral slab [EDFT

(Nnet
e = 0)]with respect to the

net electronic charge Nnet
e as follows:41,115

EDFT
(Nabs

e ) = EDFT
(Nnet

e = 0) +
∂EDFT

∂Nnet
e

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
−eϕ0

RRRRRRRRRRRRRRRRRRRRRRNnet
e =0

Nnet
e

+
1
2
∂2EDFT

∂2Nnet
e

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
e2

C

RRRRRRRRRRRRRRRRRRRRRRRRRRNnet
e =0

(Nnet
e )

2. (31)

Here, C is capacitance and ϕ0 is the potential of zero
charge (pzc) for the neutral slab. With the addition of zero-point
energy correction and entropic corrections to Eq. (31), the result-
ing energy equation will be similar to the interface free energy,
as shown in Eq. (26). The reaction free energy value could be
expressed as

ΔG = ΔGDFT
(Nnet

e = 0) + e(Nnet
e,2 −Nnet

e,1 )

× [
e(qaNa +Nabs

e )

C
− ϕ0]. (32)

qaNa is the averaged explicit charge due to the adsorbed ionic
intermediates of the initial and final states. This is denoted as
qa,2Na,2+qa,1Na,1

2 . Nabs
e is obtained from the implicit charge as imposed

during the simulation. With this expression for the grand poten-
tial free energy, the dependence on the work function of the
electrode potential is removed. However, the quantitative evalu-
ation of the term (Nnet

e,2 −Nnet
e,1 ) enhances the computational cost

of the simulation method. The net absolute charge between the
two surface states could be obtained following the cell extrapo-
lation method. For an electrochemical simulation involving min-
imal charge transfer between the initial and final states, the con-
tribution from the term (Nnet

e,2 −Nnet
e,1 ) would be minimum and

hence neglected. However, this term could be significant for sev-
eral electrochemical reactions and will bring in computational
complexities.

VII. KINETICS OF ELECTROCATALYTIC REACTIONS:
BEYOND THE THERMODYNAMIC OVERPOTENTIALS

The understanding of the multi-step electrochemical reactions
most often relies on the thermodynamic data, where the reaction free

energies of the intermediates are used to predict the performance
of the electrocatalysts. The underlying kinetics related to reaction
free energy barriers are neglected due to computational challenges
in calculating these energy values.29 The Sabatier principle estab-
lishes a general connection between the thermodynamics and the
kinetics of the reaction processes.119,120 According to this principle,
the reaction intermediates should be optimally bound to the reac-
tive sites for an active catalyst. With this principle, in addition to the
Brønsted–Evans–Polanyi (BEP) relations, it is assumed that the acti-
vation barrier scales linearly with the thermodynamics, leading to a
smaller kinetic barrier at an applied potential.121 Therefore, the scal-
ing relations of the intermediate binding energies as derived from
the thermodynamic data would preferably predict the activity of the
electrocatalysts and allow to plot a reactivity volcano to define their
performance.120

However, the thermodynamic overpotential ηTD derived at zero
applied potential depending upon an elementary step with the high-
est reaction free energy (potential determining step, pds) might not
favorably predict the rate-limiting step for all reaction pathways. In
general, for a multi-step reaction pathway, the rate-determining step
(rds) might involve more than one elementary reaction step, includ-
ing all the intermediates preceding the rds.122 A comparison of the
thermodynamic and kinetic data are needed to predict the general
activity of the electrocatalysts.

Analyzing the rate-limiting steps and thermodynamic data on
a comprehensive set of electrocatalysts for oxygen evolution reac-
tion, Over and Exner introduced a potential dependent activity
descriptor to define the performance of the electrocatalysts. This
descriptor is denoted as Gmax(η), which gives a qualitative under-
standing of both the pds and rds for a multi-step electrochemical
reaction pathway.121–123

Gmax(η) is determined from the sum of the reaction free energy
values defining the transition from step with the lowest to the highest
free energy at an applied overpotential η. For the case with rds = pds,
both the thermodynamic overpotential and the Gmax(η) are found
to be good descriptors for defining the activity of the electrocata-
lyst. However, for pds ≠ rds, at an applied overpotential, the reaction
free energies are shifted, resulting in a renumbering of the reaction
steps to account for the optimization of the reaction energy profile.
Figure 6 shows the OER free energy diagram. The reaction pathway
in Fig. 6(a) shows that at zero overpotential, pds step corresponds
to step (ii) → (iii), while based upon Gmax(η), the rds corresponds
to the reaction step (i) → (iii). The TS No. 3 has the highest activa-
tion energy. At an applied overpotential η = 0.3 V, the reaction free
energies are shifted. On renumbering the reaction steps at η = 0.3 V,
Gmax(η) approaches G#

rds.
Screening of a comprehensive set of materials for electrocat-

alyzing OER based upon Gmax(η) values shows a volcano relation
represented in Fig. 6(c), as, in general, observed using ηTD as the
descriptor. However, there is a qualitative difference with respect to
materials’ activity with these two descriptors. A correlation between
Gmax(η) and ηTD for these same set of materials does not show
a linear scaling as plotted in Fig. 6(d). At lower thermodynamic
overpotentials, for most of the data points, a strong correlation is
observed. However, a considerable deviation from the linear best-fit
line at higher overpotential values is observed. Therefore, screening
studies involving both Gmax(η) and ηTD as descriptors to quali-
tatively define the activity of the electrocatalysts might be more
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FIG. 6. The potential energy diagram for the OER mechanism and the concept of the thermodynamic overpotential (η) are addressed. In the free-energy diagram, ηTD
refers to the potential-determining step (pds), whereas rds refers to the rate-determining step. (b) Renumbering of the electron-transfer steps in the presence of an applied
electrode potential. Using this idea, ηTD approaches G#

rds. (c) Activity volcano plot using Gmax(η = 0.3 V) as the descriptors for OER. Different types of materials, such as
transition-metal oxides, porphyrins, perovskites, metal oxides, and functionalized graphitic materials, are taken into account. (d) A comparison of Gmax(η = 0.3 V) vs ηTD as
the activity descriptors. At lower ηTD, both the descriptors would give similar results; however, the results would differ at high ηTD values. The figures are reproduced with
permission from Exner, ACS Catal. 10, 12607–12617 (2020). Copyright 2020 American Chemical Society.

appropriate. ηTD allows identifying the pds, whereas Gmax(η) would
allow identifying the rds.74,122

VIII. MICROKINETIC MODELING OF REACTION
PATHWAYS

Micro-kinetic modeling is a well-known technique that is used
to correlate the atomic or elementary reaction description to the
experimental rate of reaction pathways. However, on the catalyst
surface, the reaction rate is influenced by several factors, such as the
structural, electronic, reaction thermodynamics, and activation bar-
rier.25 Therefore, due to the high dimensionality of the problem, the
complete solution of the reaction rate on the catalyst surface is very
expensive.

In recent years, comprehensive analysis of reaction energet-
ics on several catalyst surfaces has shown a correlation between
the binding energies of the intermediates and the transition bar-
rier, which has reduced the dimensionality of the parameter space
required for defining the reaction kinetics.124–127 These descriptor-
based approaches, denoted as the micro-kinetic modeling of reac-
tion pathways, have reduced the complexity of the problem and
enabled rational modeling of the reaction kinetics based upon the
thermodynamic data.

The thermodynamic energies of the reactants, intermediates,
and products form the central inputs to the microkinetic modeling.

For a simple reaction,

aA + bB→ cP + dD. (33)

The rate of the reaction (r) is expressed using the rate constant
(k), reactant concentration ([A] and [B]), and the stoichiometric
coefficient as

r = k[A]a[B]b, (34)

k = A∗e
−ΔGa
kBT . (35)

Here, A is the pre-exponential factor, ΔGa is the reaction
activation barrier, kB is the Boltzmann constant, and T is the
temperature.

For a multi-step reaction process, defining the rate of the reac-
tion would involve analyzing the rate of the intermediate steps. To
reduce the computational complexities, a few assumptions denoted
as the mean-field approximations are taken into account.25,128–130

In the mean-field modeling, the surface sites and the sur-
face species are assumed to be uniformly distributed, and the rate
is assumed to depend upon the average coverage of the reactant
species.131 Therefore, for a multi-step reaction involving several
elementary steps, the rate will be given by

r = k+Πθreact preact − k−Πθprod pprod. (36)

In this equation, + and − signs denote the forward and back-
ward reaction steps. The rate constants k+ and k− are defined by
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k+ = A∗ e
−ΔGa+

RT and k− = A∗ e
−ΔGa−

RT , respectively, where ΔGa+ and
ΔGa− are the activation barriers for the forward and the backward
reaction process. Using the transition state theory (TST), the pre-
exponential factor A becomes kBT

h (here, h is the Planck constant)
and ΔG = ΔH − TΔS.

Multi-precision root finding algorithms are used to determine
the rate of the reaction steps and coverage of the intermediates. The
rate equations are solved based upon the steady state approximation
of the intermediates, giving dθint

i
dt = 0. With the site conservation con-

straint, therefore the coverage of the reaction intermediates will be
∑ θint

i = 1.
The reaction energy barriers (ΔGa) are calculated as

ΔG = ΔHa − TΔS. ΔH and ΔS values are the activation barri-
ers and entropic factors that could be determined using the
DFT calculations.97 However, for large reaction networks,
ΔH calculations become very challenging, and therefore, the
Brønsted–Evans–Polanyi (BEP) relationships are used.132,133

According to BEP relationships, activation energies could be
expressed as the linear function of the heat of the reaction (Fig. 7)
as124,134

ΔHa = αΔHrxc + β, (37)

where α is the proximity factor taken as a value between 0 and 1 and
the intercept β is the intrinsic activation barrier.

In a few recent studies, it has been observed that α and β are
independent of catalyst material, and the variations in rate constants
could be described by the variations in the reversible potentials
for the different reaction steps.135–137 For water oxidation and O2
reduction reactions, α = 0.5 and β = 0.26 eV have been found to pre-
cisely define the reversible current density on the metal surfaces with
great accuracy as in the experiments. However, the explicit solvent
interactions could affect these values.138,139 The estimation of these

FIG. 7. The scaling relationship between the O–O coupling activation barrier for
the various transition metal rutile (110) surfaces calculated at different surface
coverages of OH and O adsorbates with respect to ΔGO – ΔGOH . Reprinted with
permission from, Rankin and Greeley, ACS Catal. 2, 2664–2672 (2012). Copyright
2012 American Chemical Society.

values could allow more accurate estimation of the reaction rates and
catalytic activity.

Using the rate of the reactions, the turnover frequency (TOF)
values could be determined to denote the activity of the catalysts.131

TOF is defined as the rate of the reactions computed per active site
of the catalyst.

While optimal binding of the reaction intermediates are
referred to have greater catalytic activity conventionally, in a recent
experimental study, the kinetic parameters are found to play criti-
cal roles in determining the reaction rates. Schlögl and co-workers
conducted an investigation of 14 d-metals and two sp-metal cata-
lysts for H2 evolution reaction activity.140 The catalytic activity of the
noble metal surfaces show a strong dependence on the kinetic para-
meter, such as the pre-exponential frequency factor, in addition to
the surface coverage of protons and reaction energetics. Studies are
still ongoing to accurately estimate the different factors influencing
the reaction kinetics. The complexities associated with the estima-
tion of electrochemical barriers have been one of the major reasons
limiting the accurate definitions of these parameters.

IX. THERMODYNAMIC EVALUATION
OF ELECTROCHEMICAL STABILITY
AND CORROSION OF MATERIALS

In addition to the lower thermodynamic overpotentials and
higher turnover frequencies, the catalytic performance of the elec-
trocatalysts is influenced by the electrochemical stability against
aqueous degradation.141 Several efforts have been devoted in the past
to characterize the materials’ stability under varied electrochemical
conditions.

Analyzing the experimental thermodynamic data for reactions
involving the pure elemental forms, aqueous ions, and oxides in the
aqueous phase, Marcel Pourbaix established the first electrochemical
phase diagrams for a set of 85 elements in the Periodic Table.142–144

These phase diagrams are denoted as the Pourbaix diagram and form
an accessible tool to understand the corrosion profile and electro-
chemical stability of the elemental solids under an applied potential
and solvent pH. However, for binary and multi-component sys-
tems, following a similar method, the formulation of aqueous phase
diagrams possesses an enormous challenge. The lack of complete
knowledge of the composition space resulted from the experimental
characterization of thermodynamic data for the involved multiple
aqueous ions and degradation products, a formidable task.

To enable a comprehensive analysis of aqueous products for
a larger set of compounds with different compositions, in recent
years, DFT simulations have been designed to capture the electro-
chemical stability of materials. In this section, we discuss a formal-
ism for the prediction of solid-aqueous equilibrium by combining
first-principles calculations with experimental aqueous states.

Following the CHE approach, a computationally rigorous
method has been proposed by Persson et al.,101 which led to ana-
lyzing the electrochemical degradation free energy values of solids
at various electrochemical conditions. In this scheme, for mapping
the aqueous phase diagram, the standard state reaction Gibbs free
energy of the redox reactions in an aqueous medium are determined
using the DFT calculations. For example, the Gibbs free energy for
each species resulting from the aqueous phase redox reactions of a
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binary system (M-X) at an applied potential and solvent pH is given
by

ΔGi(ci, pH, ϕ) = ΔGo
+ 0.059∗ log ci − nOμH2O

+ 0.059∗ (nH − 2nO)∗ pH
+ (−nH + 2nO + qi)ϕ. (38)

ci is the concentration of the species, nH and nO are the number
of H and O atoms, respectively, and μH2O is the formation energy of
water set to −2.46 eV. Here, qi is the charge of the aqueous prod-
uct, which could be positive, negative, or zero. The standard free
energies (ΔGo

) for the elemental gaseous and solid compounds are
determined from DFT. On the other hand, the reference energies for
ionic species are obtained from the experimental free energy values
of these species from the reported databases and experimental Pour-
baix data repositories.142–144 A correction scheme is introduced to
reduce the inconsistencies between the calculated values and exper-
imental data. For example, the free energy of an aqueous species is
denoted by Eq. (39), where ΔGo,exp

i (aq) is the experimental value and
ΔEcorr is energy correction,

ΔGo
i (aq) = ΔGo,exp

i (aq) + ΔEcorr. (39)

The correction term refers to the Gibbs free energy difference
between the experimental value and the DFT calculated reference
solid. To clarify this, in Eq. (39), the correction term for Li+(aq)
is shown. Li2O is chosen as the representative reference for DFT
calculations,

ΔEcorr(Li+(aq)) =
1
2
[ΔGo,DFT

Li2O − 2μref
Li − μref

O − μo,exp
Li2O ]. (40)

Here, ΔGo,DFT
Li2O and μo,exp

Li2O are the DFT calculated Gibbs free
energy and experimental formation energies of Li2O, respectively.
The reference chemical potential μref

Li and μref
O are determined from

the DFT calculated free energy of elemental Li and molecular
gaseous O2. The standard free energy of multicomponent crystalline
solids is also obtained following a similar scheme, where the correc-
tion term is added to the DFT calculated formation energy of the
crystalline solid.

The Pourbaix diagram of the well-known elemental solids
reported earlier by Marcel Pourbaix using the experimental data
shows a good agreement with the aqueous phases and stability
obtained using this theoretical formalism. In Figs. 8(a) and 8(b), a
comparative overview of the theoretical and experimental Pourbaix
diagram of Mn is shown. Most of the aqueous states and solid phases
in the theoretical Pourbaix diagram are found to be at appropriate
conditions as the experimental diagram.

Later, this formalism is expanded to evaluate the relative free
energy of metastable materials under varied pH, applied poten-
tial, temperature, and different aqueous species concentrations.145

The developed method proved to be very efficient in predicting the
electrochemical and photo-chemical stability of various bulk inter-
faces and 2D materials.69,141 Fig. 8(c) shows the Pourbaix diagram
of triclinic-FeVO4 calculated using this formalism in Ref. 145 Fur-
thermore, this approach paved the path toward determining the
automated probing of surface Pourbaix diagrams for many-element
systems.146,147

X. APPLICATIONS OF THERMODYNAMIC MODELS
FOR SIMULATIONS IN ELECTROCATALYSIS

The thermodynamic and kinetic approaches described in
Secs. V–VIII have been used to perform computational screening
of electrocatalysts for several applications. In this section, we report
two applications, where the grand canonical approach discussed
above has been incorporated into the computational workflows to
screen the two-dimensional (2D) materials for their water-splitting
efficiency and CO2 reduction activity.

In a recent study, initiating from the large databases of
2D-materials, favorable candidates are screened based on their ther-
modynamic stability, electrosorption free energies of the reaction
intermediates, and electrochemical stability under the applied pH
and the potential.74 Figure 9 shows the computational workflows
employed for identifying best 2D-electrode materials for HER, OER,
and ORR. The grand canonical simulations are performed with the
implicit solvent environment.

A five-step screening method has been employed to screen the
favorable 2D materials for HER. The initial step, the pre-screening
step, involves screening the materials’ stability based on the dynamic
stability and exfoliation energy from the bulk materials. In the fol-
lowing step, the electrosorption free energies of H+ ions onto the
materials’ surfaces are calculated to determine the electrocatalytic
efficiency for HER and the thermodynamic overpotential values.
The final steps involve band-gap calculations and electrochemical
stability under reduction potential and acidic pH. Starting from a
set of 258 initial materials from the materials cloud database,148

21 monolayers are found to have HER overpotential lower than
0.5 V, among which the 8 materials with the molecular formula
CoO2, FeS, 2H–NbS2, 1T-NbS2, 2H–NbSe2, 1T-NbSe2, 1T-MoS2,
and 1T′-MoTe2 are identified with higher electrochemical stability.

A similar screening workflow has been employed to screen
2D-transition metal dichalcogenides (TMDCs) to find good electro-
catalysts for OER and ORR.74 The activity calculations and electro-
chemical stabilities are determined under an acidic medium. Among
more than two hundred TMDC materials proposed in the recent
computational databases,148,149 the screening study enabled identi-
fying seven materials for OER, whereas for ORR, around twenty
materials are found to be active and stable.

Similar computational studies are performed to define the
activity of single and diatom catalysts for CO2 to CO reduction
reactions.150 Employing the computational grand canonical simu-
lations, the binding energies of CO2

∗ and COOH∗ intermediates
are calculated on supported single and double transition metal
atoms on defected graphene surfaces. Using these binding ener-
gies as the descriptors, kinetic models are developed to construct
activity volcano plots based on the microkinetic approach discussed
in Sec. VIII. Comparing their activity with the noble metal (211)
surfaces, several single and diatom catalysts are identified with com-
parable activity as bulk Ag and Au (211) surfaces, as shown in
Fig. 10(b).

XI. SUMMARY AND FUTURE PERSPECTIVES
In the previous sections, several theoretical developments are

discussed, which enabled us to understand the characteristics and
properties of solid–liquid interfaces. Most of these theoretical tools
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FIG. 8. (a) and (b) Mn Pourbaix diagrams at 25 ○C with aqueous species at a concentration of 10−6 M. The diagram in (a) is obtained using the formalism developed by
Persson et al.,101 and (b) the experimental data from Ref. 142. (c) Fe–V–O–H metastable system Pourbaix diagram reported in Ref. 145. The color bar shows the free energy
of dissolution, ΔGpbx , of the metastable triclinic-FeVO4 phase relative to the Pourbaix stable phases. Potentials of 0 V vs RHE and 1.23 V vs RHE are indicated by the red
dashed lines. The respective aqueous and solid products are given in the figure. The figures (a) and (b) are reproduced with permission from Persson et al., Phys. Rev. B 85,
235438 (2012). Copyright 2012 American Physical Society, and figure (c) is reproduced with permission from Singh et al., Chem. Mater. 29, 10159–10167 (2017). Copyright
2012 American Chemical Society.

use the implicit solvent environment or reduced water configu-
rations (while using hybrid explicit/implicit solvation). However,
considering the real electrode–electrolyte interfaces, the operating
environment is entirely different. Ab initio molecular dynamics sim-
ulations with a full explicit model for water molecules could enable
studying these solid–liquid interfaces with great precision. Never-
theless, ab initio methods could be applicable only with a limited
number of atoms.

In recent years, machine learning methods (ML) have been
employed to probe the characteristics of these interfaces and
their reactivity under various electrochemical reactions.151–155

Various machine learning potentials have been developed to
define the atomic interactions and electron densities for dif-
ferent solid–liquid interfaces, such as the metal/water and
metal–oxide/water interfaces.156–158 The machine learning poten-
tials enable combining the principles from quantum mechanics
with simple empirical atomic potentials to increase the accuracy of
the simulation results.159–162 With such setups, it has been possi-
ble to gain information about the geometry, electronic structure,
and several properties of the solid/electrolyte interfaces, such as
the polarizabilities,163 electrostatic multipole moments,164 atomic
charges,165–168 and electronic wavefunctions.169 Furthermore, with

the ML potentials, molecular dynamics simulations are performed
with high accuracy as that of ab initio methods and as fast as that of
classical force field methods.

Among a few of the ML models, kernel and artificial neu-
ral network (NN) based models are the ones found with most
applications.170,171 Kernel methods are computationally expensive,
whereas in neural network methods, relatively greater size of the
training data set is needed for benchmarking the models and
improving their accuracy.

To mention a few, Behler–Parrinello Neural Network Poten-
tials (NNPs) have been applied to simulate several electrochem-
ical interfaces.172 Mikkelsen and co-workers173,174 took Pt metal
(111)/water interface and created around 50000 structural databases
[containing 32 water molecules on 3 × 4 Pt (111) slab] with dif-
ferent water arrangements to train the ML potentials for Pt metal
(111)/water interfaces. MD simulations are then performed with
these ML potentials, enabling the authors to characterize the water
configurations at room temperature with accuracy as great as the
AIMD simulation results. In another study, the high dimensional
NNPs are used by Natarajan and Behler175,176 to determine the struc-
tural properties and surface defect formations on the Cu/water inter-
face. Performing MD simulations employing ML potentials with
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FIG. 9. (a) The computational workflow used to screen the best two-dimensional materials as electrocatalysts for HER, reproduced from Karmodak and Andreussi, ACS
Energy Lett. 5, 885–891 (2020). Copyright 2020 American Chemical Society. The criterion used to screen the materials has been shown in the bottom inset of each step, and
the numbers shown in the circular inset correspond to materials screened in each step. (b) The transition metal dichalcogenide (TMDCs) structures considered for screening
electrocatalysts for OER and ORR in Ref. 74 (c) The computational screening workflow used to screen the TMDCs for their activity and stability for OER and ORR in Ref. 74.
The figure is reprinted with permission from Karmodak, Bursi, and Andreussi, J. Phys. Chem. Lett. 13, 58–65 (2021). Copyright 2021 American Chemical Society.

around 2000 atoms for extended time scales (∼50–80 ps), hydro-
gen bonding configurations, density profiles, and residence times
of water molecules are effectively visualized. In addition to metal
surfaces, the metal oxide/water interface is also simulated using
the committee Neural Network Potential (c-NNPs) developed from
Behler–Parrinello NNPs.177,178

Besides the neural network potentials, the Gaussian approx-
imation potentials (GAPs) has been used as an efficient tool to
model the inter-atomic interactions.179 In this framework, the sys-
tem energy and forces of the atoms interacting with each other
is learned as a function of the atomic positions, determined from
the pre-computed training dataset using the DFT calculations. A
non-parametric kernel regression of the potential energy surface is
performed to estimate the local energy using the local atomic envi-
ronment as the descriptors. In comparison to the NN potentials,
GAP could produce more accurate results as these potentials are
not constrained to specific mathematical forms and flexibly read-
justed to the training data.180–182 Therefore, these potentials would
be very efficient in reproducing different chemical environment
and simulations for bond-making and breaking processes. How-
ever, studies with the electrochemical computations with GAP has
not been performed extensively. This is particularly because of the
complex nature of the electrochemical interfaces, and diverse sam-
ple space of solvent molecules at the interfaces lead to large data set
for accurate performance. The effective modeling of electrochemical

interfaces with GAP is an area with several new questions and great
research opportunity.

Figure 11 summarizes the current challenges in electrochem-
ical simulations and efforts made in recent years with ML and
AI to address these issues. It is indeed evident that ML poten-
tials have enabled studying an extended number of systems for
larger timescales and great variations in the structural configura-
tions. However, ML potentials show a few limitations. One of the
major limitations is the ineffective modeling of the electrostatic
effects at the electrified electrode/solvent interfaces and defining the
pH or electrode potential dependence on the reaction thermody-
namics.152 These effects are important for polarized systems and
electrochemical activity determination. Since most of the ML meth-
ods discussed earlier rely on the inter-atomic interactions with fixed
cut-off radius, the long-range physical effects are neglected.183 To
this extent, the smooth overlap atomic positions (SOAP) descriptors
have been used to capture the non-local interactions between water
and charged electrode surfaces.184

In the traditional ML framework, the descriptors used for defin-
ing the potential energy surfaces are bound to two-body, three-body,
or a hand-full of descriptors, such as the bond lengths, bond angles,
and dihedral angle. Developing ML potentials with transferable
applicability, particularly for electrochemical simulations, the many-
body descriptor-based ML framework would be optimum.185 Within
the SOAP approach, the atomic environments are encoded using
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FIG. 10. The computational screening of single and diatom catalysts for CO2 to CO reduction reactions. (a) shows the single (SAC) and di-atom catalyst structures considered
for the study. The SAC is modeled by doping a single metal atom on di-atom carbon vacancy sites on a defected nitrogenated graphene sheet. The di-atom catalyst structures
are obtained by doping two metal atoms on different vacancy sites varying from two to six carbon atoms. (b) The unified activity volcano plots for CO2 to CO reduction reactions.
The black dotted lines show the scaling lines for metal (211) surfaces. The different binding motifs for CO2 are shown in the figure inset. The figures are reproduced with
permission from Karmodak, ACS Catal. 12, 4818–4824 (2022). Copyright 2022 American Chemical Society.

the rotationally invariant representations that use smoothed out
atomic position vectors, mapped into coefficients of orthonormal
basis functions.186 These many-body descriptors enable measuring
the similarity between atomic environments and allow mapping the
local atomic environment very accurately. SOAP descriptors com-
bined with different ML potentials could enable defining both the
long-range and short-range interactions. In combination with GAP
formulations, SOAP has allowed performing cohesive energy calcu-
lations of bulk systems, molecular dynamics simulations of large and
complex systems, etc.185

A few kernel methods combined with the SOAP descriptors
have been used to improve the accuracy and efficiency of simulations
of electrochemical interfaces. A notable one corresponds to combin-
ing SOAP descriptors with long-distance equivariant representation
(LODE) to enable defining the non-local dielectric responses at the
electrochemical interfaces.184 An atom density function is intro-
duced, which depends upon the atomic positions both in the vicinity
and far-off. Unlike the analytical force field methods, SOAP-based
GAPs are computationally expensive.152 LODE + SOAP is found
to be more efficient and less expensive than the SOAP approach
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FIG. 11. The orange nodes denote the current challenges in electrochemical simulations; calculation of electrochemical barriers, defining solvent, and electrolyte interactions
at the electrochemical interfaces and capturing the dipolar interactions in adsorbate energetics. The green nodes provide a possible way out employing the machine learning
methods. Exploring ML potentials and benchmarking with the existing theoretical and experimental data might allow us to address a few or all of these challenges.

when used for evaluating the liquid water dielectric responses. How-
ever, the SOAP + LODE combination is found to be unsuitable for
calculating dielectric responses at the electrified periodic boundaries.

Recently studies are ongoing to overcome the limitations of the
SOAP descriptors for periodic systems and predict better ML models
to capture the dipolar interactions at the electrochemical interfaces.
Furthermore, calculations of the electrochemical barriers have been
one of the greatest challenging tasks. The ML methods could be
very handful for electrochemical barrier calculations; however, it
would require a large number of training datasets. Combining the
thermodynamic simulation schemes discussed earlier along with the
scaling relationships (between the electrochemical thermodynamic
free energies and kinetic barrier) might open up an effective way
to develop ML methods to characterize the electrochemical barriers.
Alternatively, benchmarking the ML potentials and artificial intelli-
gence techniques with experimental data could give a solution to this
and help in enhancing the accuracy and efficiency of these ML-based
computational methods.
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