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Abstract 

Most chemical stabilization guidelines for subgrade/base use unconfined compressive strength 

(UCS) of treated soils as the primary acceptance criteria for selecting optimum stabilizer in 

laboratory testing. Establishing optimal additive content to augment UCS involves a resource-

intensive trial-and-error procedure. Also, samples collected from discrete locations for 

laboratory trials may not be representative of the overall site. This study aims to minimize the 

number of laboratory trials and help strategize sampling locations by developing spatial maps of 

UCS at different treatment levels for lime and cement. These spatial maps were developed using 

machine-learning techniques, and using a database compiled from various reported studies on 

lime and cement stabilization of soils in the United States. Supervised learning methods under 

regression and classification categories were used to quantify and classify UCS values after 

treatments, respectively. Commonly available soil properties like Atterberg limits, gradation, 

and organic contents along with treatment type and amount were used as predictors and UCS 

values as the response. Median R2 for the best regression model was 0.75 for lime and 0.82 for 

cement, while the Correct Prediction Rate (CPR) for the best classification model was 92% for 

lime and 80% for cement. Results showed that satisfactory predictions could be made regarding 

stabilizer effectiveness using simple soil information commonly available. Best performing 
models for cement treatment were selected for generating the spatial maps for two counties in 

Montana. Soil samples collected from these counties were tested with different cement contents 

to verify the predictions. The results indicate that the Pearson’s correlation coefficient for the 

regression model was 0.78 and CPR for the classification model was 92%. The authors hope that 

this study and future studies like these will increase data-driven-decision-making in geotechnical 

engineering practices. 

Keywords: Machine Learning, Chemical Stabilization, Spatial Mapping, Strength Prediction, Classification, 

Regression 

1. Introduction 

Growing urbanization has led to construction of civil infrastructures on challenging and sometimes problematic 

ground. Problematic soils are often treated with chemical additives to modify and/or enhance their mechanical 

performance and make them suitable for construction. Soil properties alteration using calcium-based additives has 

been widely used in stabilization and/or modification of subgrade due to its established history of performance, wide 

range of application, ease of field mixing, and controlled alteration of soil properties to meet the specifications [1–3]. 

Substantial stabilization work for pavement subgrades has been performed using calcium-based additives such as lime 

and cement [4–7]. Standard guidelines for stabilization and/or modification of subgrade and base layers of pavement 

have been established by several agencies, such as the California Department of Transportation [8], the National Lime 

Association (NLA)[9], the Portland Cement Association (PCA) [10], the Texas Department of Transportation 
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(TxDOT)[11], the Department of the Army, the Navy, and the Air Force[12]. As per these guidelines, initial estimates 

of type and amount of stabilizers are based on Atterberg limits, soil gradation, organic contents, and soluble sulfates. 

Soil samples are prepared using the initial estimates and tested for unconfined compressive strengths (UCS). This 

process is iterated for different types and amounts of stabilizers until a target strength is achieved. For obtaining a 

single UCS value for a given type and amount of stabilizer, testing procedure generally takes 7-28 days excluding 

sample preparation time. Also, since randomly selected sampling locations are put through this process, the optimized 

stabilizer type and amount may not be representative of the entire site. As a solution to these problems, the current 

study is focused on developing machine learning models that could predict optimal stabilizer amounts using simple 
soil properties. This predicted amount can then be verified quickly in the laboratory, thereby the proposed machine 

learning based method minimizes the time and effort required for establishing optimal stabilizer amounts. Moreover, 

these models can generate spatial maps of stabilizer effectiveness that can help strategize sampling locations for 

laboratory testing. 

Machine learning methods have gained a lot of attention in recent years in geotechnical engineering, and have shown 

great potential for solving real world large scale engineering problems[13–26]. Some of the widely used supervised 

learning methods in geotechnical engineering are support vector machines (SVM), classification and regression trees 

(CART), and artificial neural networks (ANN). These methods have been used for various applications including, soil 

classification using cone penetration test (CPT) data [13], assessing landslide susceptibility [21], predicting peak shear 

strength of fiber reinforced soil [14], and predicting undrained side resistance for drilled shafts [18]. 

In this study, a database of UCS values and corresponding treatment along with associated Atterberg limits, particle 

size distribution, and organic content of the soil was compiled from various research studies. This database was 

subsequently used to train and test different supervised machine learning models. The regression models studied herein 

include multiple linear regression (MLR), generalized additive models (GAM), K-nearest neighbors (KNN), and 

support vector machine (SVM), and classification models include logistic regression (LR), discriminant analysis, 

KNN, and SVM. The regression models generate quantitative predictions (actual value of UCS), whereas the 

classification models generate categorical predictions (pass/fail for a given threshold UCS value). Model performance 

was assessed using measures such as coefficient of determination (R2), root mean square error (RMSE), and mean 

absolute error (MAE) for regression models, and true positive rate (TPR), false positive rate (FPR), correct prediction 

rate (CPR), Cohen’s Kappa (K), and area under the curve (AUC) for classification models. Both quantitative and 

categorical model responses were used to generate spatial distributions of UCS values and pass/fail potential at a 

specified threshold, respectively, for different types and amounts of treatments. Proposed models facilitate 

development of scientific sampling strategies, minimize laboratory testing, and provide insights into suitability of a 

stabilization (type and amount) without the need to collect samples in the preliminary stage. 

The paper is organized as follows: It first presents a background on the current state-of-practice with respect to 

stabilizer selection, sampling location strategies, and the use of machine learning in geotechnical engineering. This 

section is followed by a discussion on compilation of the database used for model development in this study. Later, 

the various training algorithms for regression and classification methods along with their performance metrics, model 

selection, and model evaluation are briefly described. This section is followed by a discussion on the results with 

emphasis on model selection and evaluation. Finally, quantitative and categorical responses of the best performing 

models are compared with the laboratory data for three soil samples from Montana treated with different stabilizer 

types and amounts. 

2. Background 

2.1. Current Practice for the Selection of Optimal Stabilizer Type and Amount 

Lime, cement, and fly ash, are the most common chemical stabilizers in practice [3,27]. When these stabilizers are 

mixed with soil in the presence of water, several processes like cation exchange, flocculation & agglomeration, 

cementitious hydration, and pozzolanic reactions occur [28–31], which in turn induce reduction of plasticity and 

increase in workability and compressive strength. Performance of these stabilized mixes is contingent on several 

factors such as plasticity of natural soil, type and amount of stabilizer, mixing and compaction methods, curing 

conditions, organic matter, gradation and pulverization, clay fraction, mineralogy and presence of soluble sulfates 

[30–35]. Considering these factors, several federal and state agencies have developed guidelines for improving 

engineering properties of soils[8–12,36], majority of which specify initial selection of stabilizer type based on the 

plasticity index (PI). For instance, TxDOT [11] recommends using cement as the first choice for soil with PI < 15 and 
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lime for soils with PI >=15. Similarly, Caltrans [8] recommends cement for soils with PI<15, cement or lime for 15 

=< PI <35, and lime for  PI >= 35. Initial amount of stabilizer is determined based on soil classification (in the case of 

cement) or Eades and Grim test (in the case of lime) [37]. For example, the Department of the Army, the Navy, and 

the Air Force [12] recommend initial cement content from 5% to 11% depending on the Unified Soil Classification 

System (USCS) classification of soil. A similar process is followed by other agencies like PCA[10], National 

Cooperative Highway Research Program (NCHRP) [36], and Federal Highway Administration (FHWA)[38]. After 

the initial selection, the Proctor test is conducted to determine Maximum Dry Unit Weight (MDUW) and Optimum 

Moisture Content (OMC) for the selected type and amount of stabilizer. Samples were prepared at the corresponding 
MDUW and OMC to determine UCS. If the test UCS values exceed a preset threshold, durability studies are conducted 

for this combination of treatment. Once both UCS and durability criteria are satisfied, the selected type and amount 

of stabilizer is termed as optimum. The process is repeated until the optimum values are determined for a given soil 

sample. Strength criterion in most of the guidelines is established based on UCS values. Hence, many researchers 

have used UCS as a measure of stabilization performance [30,33,39–45]. 

2.2. Current Practice in Selecting Sampling Locations for Laboratory Testing 

Selecting the right locations for in-situ testing and sampling is of utmost importance for any geotechnical investigation. 

The samples brought to the lab dictate many of the decisions made regarding the superstructure. For example, 

AASTHO (1988) reported that, for roadway and airfield pavements, subgrade conditions are critical as weak subgrades 

warrant thickened pavement section, removal, and replacement of poor subgrade, or soil stabilization/improvement. 
Therefore, identification of sampling locations must be performed carefully. These locations are typically selected by 

a preliminary desk study/literature review, during which useful information that may be present about site is gathered. 

Several studies have revealed that the common source of information for desk studies are a) historical records from 

prior site investigations, b) performance records from nearby facilities, c) geologic reports and publications, d) 

geologic maps (bedrock and surficial geology maps), soil survey maps, topographic and LiDAR maps, utility maps, 

insurance maps, etc., e) aerial photographs, satellite/remote sensing imagery, and f) review of nearby or adjacent 

projects[46–50]. Majority of geologic maps are published by United State Geological Survey (USGS), which has 

compiled information on depth of rock, location of rock outcrop, engineering properties of various soil types, geologic 

history and groundwater. Soil survey maps, which are compiled by the efforts of United States Department of 

Agriculture (USDA), provide data on physical/chemical properties and suitability/limitation for use - at each soil 

parcel of the mapped area. AASTHO (1988) reported that the soil survey data are most suitable in the preliminary 

planning of any geotechnical project. Furthermore, TxDOT’s test procedure [51] for surveying and sampling soil for 

highways establishes scope of the soil survey to determine the extent and location of each type of soil, location of 

suitable fill, base, and aggregate material, and evaluate the need for stabilization of subgrade, subbase, and base 

material. 

However, literature is sparse on including prior soils stabilization performance knowledge for reconnaissance of 

project area and delineation of sampling sites. Therefore, authors believe that a spatial map of stabilization 

performance, along with currently available spatial information, will aid in preliminary investigation process for 

projects considering stabilization of problematic soils. 

2.3. Machine Learning in Geotechnical Engineering 

The complexity of environmental phenomena along with incomplete understanding of the underlying processes in 

geotechnical engineering have resulted in favor of statistically derived empirical and semi-empirical relations in 
contrast to constitutive models[16]. Use of experimental data to derive and/or update correlation is widely practiced 

since traditional geotechnical engineering started – which is the core idea in machine learning. For instance, the studies 

by Ching and Phoon [52,53] presented an excellent example of how the existing correlations between measurement 

and design parameters can be derived or updated using a global database. Machine learning is a set of tools for 

modeling and understanding complex datasets, which has been extensively used in geotechnical engineering. For 

instance, the study by Goh [17]assessed the possibility of using artificial neural networks (ANN) to predict liquefaction 

potential by modeling its complex relationship with soil parameters, such as standard penetration test (SPT) values, 

mean grain size, equivalent dynamic shear stress, total and effective stress, along with earthquake magnitude, and 

maximum horizontal acceleration at ground surface. This study argued that the prediction results of ANN are more 

reliable than the conventional methods. Lai et al. [20]compiled a database of liquefied and non-liquefied soil after 

several earthquakes, and demonstrated the efficacy of logistic regression for evaluating the liquefaction potential using 

only cone penetration test (CPT) data. Pal [54]showed a similar performance of SVM in predicting liquefaction 
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potential. Goh and Goh [55]did a similar study on 226 field records for liquefaction potential assessments using CPT 

data through SVM modeling and reported a classification success rate of 98%. A study for automated classification 

of soil using CPT data also showed that the predictive accuracy of decision trees (DT), ANN, and SVM was high 

(83%) [13]. A study on landslide susceptibility assessment based on various geological, morphological, and 

environmental parameters showed that SVM outperformed ANN and decision trees, as well as assessments made by 

experts[21]. A study on the application of SVM in settlement prediction of shallow foundation on cohesionless soil 

argued its superiority against the existing empirical methods[56]. The above finding is consistent with the study by 

Chou et al. [14]in which accuracy of various machine learning and meta-ensemble techniques was compared with 
theoretical and empirical models for predicting shear strength of fiber-reinforced soil. The results showed that the 

machine learning models outperformed the theoretical and empirical models. 

Limited studies were done in developing statistical models that relate stabilization parameter such as UCS, MDUW, 

and OMC with soil and chemical additives. Alavi et al [57]used ANN to predict the values of MDUW and OMC of 

soil-stabilizer mix based on liquid limit (LL), plastic limit (PL), linear shrinkage (LS), % sand, % fines, lime content, 

cement content, and asphalt content by training on the dataset compiled by Burroughs[58]. The reported result showed 

a mean absolute error (MAE) of 0.38 kN/m3 (2.42 pcf) for MDUW and 0.717% for OMC. A similar study was 

conducted to predict the UCS value and MDUW of cement stabilized soil by Das et al. [19]using different classes of 

ANN and SVM based on the dataset compiled by Burroughs[58]. SVM models outperformed ANN with an RMSE of 

1.26 MPa (182.74 psi) for UCS value and 0.80 kN/m3 (5.10 pcf) for MDUW. Furthermore, Mozumder and Laskar 

[22] reported superiority of ANN over MLR in predicting UCS value of geopolymer stabilized clayey soil based on 

several predictors, including LL, plasticity index (PI), % stabilizers, molar concentration of alkali activator, ratio of 

alkali to binder, ratio of Na/Al, and ratio of Si/Al. In another study, Mozumder et al. [23] demonstrated success of 
SVM in predicting UCS value using similar parameters and data, as in [22], and reported RMSE of 0.75 MPa (108.77 

psi ) and MAPE of 4.5. In similar studies by Tinoco et al. [25,26], the applicability of various machine learning models 

in prediction of UCS value for jet grouting material was presented. Among multiple learners, SVM’s prediction was 

superior with RMSE of 1.99 MPa (288.62 psi) and R2 value of 0.51. 

Although the machine learning models discussed above give a good insight into the sensitivity of the parameters to 

the UCS values, these models have some limitations. For example, the models proposed in Das et al. [19] requires 

parameters such as OMC along with other soil properties as model inputs. Estimating OMC requires laboratory testing, 

which means field sampling is a requirement to use this model. On the other hand, other studies [22,23] use parameters 

such as sodium to aluminum ratio among others, which are specific to alkali activation studies. To the best of authors’ 

knowledge, the only study that highlighted this issue was Tinoco et al. [15]. However, in their model, they used % of 

clay and organic content as the only two input soil parameters for capturing the effect of soil in the soil-cement mix. 

Also, for most of these models, the RMSE reported in the literature ranges from 0.75 MPa (108.77 psi) to 1.99 MPa 

(288.62 psi). This value is comparatively high when dealing with subgrade modification/stabilization in which treated 

strength generally ranges from 0.34 MPa (50 psi) to 2.06 MPa (300 psi)[8,12,39]. 

3. Current Study Approach and Database Development 

This study used soil properties in publicly available databases (such as soil survey geographic database - SSURGO) 

as input parameters to predict UCS values and generate a spatial distribution of UCS values at various treatment levels. 

First, a database comprising of soil properties, stabilizer type and amount, and the corresponding UCS values were 

compiled from the published literature. This database was then used to train and test various models developed using 

machine learning algorithms. The best performing models were used to generate spatial stabilization performance for 

various treatments. Results were then verified by conducting laboratory tests on samples collected from locations 

within the spatially mapped data. A systematic pictorial representation of this approach is summarized in Fig. 1. 

3.1. Compilation of Database of Stabilized US-Soils 

The scarcity of existing database for physical and chemical properties and strength of chemically stabilized US soils 

was evident in the literature review process. Therefore, one of the primary objectives of this study was to create a 

database of various properties of chemically stabilized soils’ in the US. As shown in Fig. 1., this is the first step in the 

application of machine learning. Authors collected data from digitally available journals, thesis dissertations, and 

technical reports[39,42,43,59–63]. The major challenge faced in dataset generation was finding a consistent set of 

reported soil parameters, compaction energy for sample preparation, standard curing time and procedure, and sample 

aspect ratio. Considering all these constraints, the majority of the data in the database was from the laboratory works 
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at Iowa State University in the 1960’s. All the samples in the database are cylindrical with a height and diameter of 

50.8 mm (2 in.) and is compacted with standard proctor energy. The attributes in the collected data include name and 

location of soil, unified soil classification system (USCS), organic content, % sand, % silt, % clay, % gravel, liquid 

limit (LL), plasticity index (PI), % stabilizer (i.e. lime or cement), UCS values (7 days soaked/un-soaked and 28 days 

soaked/un-soaked). The summary statistics of each data source is presented in Table A.1 and Table A.2 in the 

appendix. Locations and number of different soil samples collected within the US is presented in Fig. A.1 (appendix). 

Graphical representation of Spearman co-relation matrix for input parameter for lime and cement treatment are shown 

in Fig. A.2 and Fig. A.3 (appendix), respectively. 

3.2. Soil Survey Geographic Database (SSURGO) 

Most of the geotechnical manuals use the soil survey data by United States Department of Agriculture (USDA) in 

desk study phase for planning the preliminary in-situ and laboratory studies. This database (SSURGO) is also 

considered among the most useful available information for highway design[46–50]. SSURGO is a database of the 

digitally produced version of soil survey data over the course of 100 years in the US. Examples of available data in 

SSURGO include a) chemical soil properties – cation exchange capacities, gypsum, etc., b) soil health properties – 

available water capacity, organic matter, etc., c) soil physical properties – water capacity, bulk density, Atterberg’s 

limits, gradation, etc., and d) soil qualities and features – USCS classification, parent material, etc. 

4. Model Development 

After the data compilation in the first stage, the second stage was to develop a predictive model using machine learning 

as shown in Fig. 1. Preprocessing of the data was conducted to select appropriate parameters and remove missing 

parameters before feeding the data for model development. Several parametric and non-parametric machine learning 

algorithms were implemented on the compiled database for regression and classification model development. The 

primary intent of the regression model is to predict the UCS of a treated soil characterized by its Atterberg limits, 

gradation, organic content, and type and amount of stabilizer. The primary goal of a classification model is to predict 

whether or not a soil, characterized by Atterberg limits, gradation, organic content, and type and amount of stabilizer, 

meets a certain threshold of strength. Implementation of the workflow was primarily performed using R language in 

RStudio[64,65]. 

4.1. Selection of Predictors 

Literature review of machine learning in stabilized soils’ UCS prediction indicated that the primary focus of most 

studies leaned towards making inferences about the parameters – i.e., understanding relationships in the data. The 

focus of this study is more inclined towards predictive modeling – i.e., focus on accurate prediction. Therefore, for 

selecting the predictors, the authors considered a) availability of the parameters in the compiled database, b) 

availability of spatial distribution of parameters in SSURGO –spatial prediction of UCS is only possible if the spatially 

distributed parameters are available, c) parameters’ effectiveness on enhancing stabilized soil strength from past 

studies[15,19,25,26,30,31], and d) multi-collinearity. Considering all these conditions, the soil parameters that 

qualified were LL, PI, % sand, % silt, % clay, organic content, and % stabilizer for UCS prediction. Separate models 

were developed for lime and cement treatments. For this particular study, 7-day soaked strength for cement treatment, 

and 28-day soaked strength for lime treatment were selected as UCS value to develop the model. Similar curing 
protocols were reported by different agencies [10,12]. The database has 167 complete examples for lime and 60 

complete examples for cement treated soils. Interested readers can further utilize the generated database to develop 

model using UCS values for different curing protocols. Model parameters used in this study are summarized in Table 

A.3 (Appendix A) and data is presented in Appendix C. 

4.2. Type of Machine Learning Models 

Several parametric – Multiple Linear Regression (MLR), Logistic Regression (LR), Discriminant Analysis (DA), 

semiparametric – Generalized Additive Model (GAM) , and non-parametric – K – Nearest Neighbor (KNN), Support 

Vector Machine (SVM), machine learning models were chosen for this study. Such a wide range of models gives 

valuable insight into the advantage of increasing model’s flexibility, at the expense of its interpretability, for improved 
predictive performance. Literature has pointed out that there is no specific algorithm which performs well for all data 

types[66–68]. A brief introduction to several machine learning algorithms used in the study for model development is 

presented in Appendix B. Details regarding these models can be found in published literatures[67–72]. 
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4.3. Prediction Accuracy of Regression Models 

The output of the regression model is quantitative. Some of the standard metrics used by authors for assessing the 

models’ accuracy are discussed in the following section. 

Root Mean Square Error (RMSE) 

RMSE is calculated by taking the square root of the mean of squared residuals as given by Eq. (1). The unit of RMSE 

is the same as the unit of predictor and the value is generally interpreted as the measure of average distance between 

the actual and model predicted values. This value is more sensitive to large errors as the square operator gives greater 

weight to large errors. 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=0

𝑛
   (1) 

where, 𝑦𝑖 = actual value of response; 𝑦�̂� = model predicted value of response; n = number of sample 

Mean Absolute Error (MAE) 

MAE is calculated by averaging the sum of absolute value of residuals as given by Eq.(2). The unit of MAE is the 
same as the unit of the predictor. The magnitude of MAE is less than or equal to RMSE and is less sensitive to large 

error. 

 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=0

𝑛
  (2) 

Coefficient of Determination (R2) 

R2 is a measure of percentage variance in the response explained by the model. This metric is the measure of the 

correlation between actual and predicted values, not the accuracy of the model. There are multiple formulations for 

R2
, but authors of the current study used the formulation in James et al [68] as given by Eq.(3). 

 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�))2 𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2 𝑛
𝑖=1

 (3) 

4.4. Prediction Accuracy for Classification Models 

Classification models output discrete classes as well as a sort of continuous probability of class association for a given 

set of test data. Although, the formulation of regression and classification models are similar, assessment of models’ 

performance is distinctly different between them. Some of the commonly used assessment metrics are discussed herein 

[69,73–76]. 

Correct Prediction Rate (CPR) 

CPR is the most straightforward representation of classifiers’ performance, as defined by the ratio of total correct 

predictions by the total number of samples given by Eq.(4). A confusion matrix is a cross-tabulation of predicted and 

actual classses for a given dataset. Sum of diagonal values of this matrix represents total correct class predictions. 

Further, computation of Cohen’s kappa (K) provides information on whether the accuracy of CPR was due to chance 

(i.e., the relative frequency of each class) or efficacy of the classification model. Cohen’s kappa is calculated by Eq. 

(5). The value of K=0 refers to accuracy by chance, whereas K= 1 represents perfect agreement between the model’s 

predictions and actual classes. 
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 𝐶𝑃𝑅 =
𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑥

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (4) 

 𝐾𝑎𝑝𝑝𝑎(𝐾) =
𝑂 − 𝐸

1 − 𝐸
 (5) 

where, O = observed accuracy (from model’s output i.e. CPR); E = expected accuracy (relative class frequency).  

Area Under Curve (AUC) 

AUC, the value of area of Receiver Operating Characteristics (ROC) curve, is a widely used measure of a classifier’s 

performance[73,77]. Its values range from 0 to 1. For useful models, AUC shall exceed 0.5. The ROC curve for binary 

classification is a 2-D plot with a False Positive Rate (FPR) in the x-axis against a True Positive Rate (TPR) in the y-

axis for every threshold. TPR and FPR are calculated, as per Eq. (6) and Eq.(7) respectively, by using the values from 

the confusion matrix. TPR represents the probability of actual true prediction when the model predicts true, which is 

also known as sensitivity. FPR represents probability of wrongly predicting the actual negative class as positive. AUC 

is particularly useful when comparing several classifiers without having to select a decision threshold. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

where, TP = True Positive – Number of correctly predicted positive results; FN = False 

Negative – Number of wrongly predicted positive results 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(7) 

where, FP = False Positive – Number of wrongly predicted negative results; TN = True 

Negative – Number of correctly predicted negative results 

4.5. Model Selection and Model Assessment 

Model selection, herein, refers to finding the best performing model for a given machine learning algorithm by 

adjusting its hyperparameters. Model assessment refers to assessing the generalized performance of the selected 

model. The model assessment result is used to compare the performance of different machine learning algorithms. 

Model selection and model evaluations are commonly done using a k-fold cross validation. This technique involves 

randomly dividing the dataset into k folds. The first fold is stored as a validation set – i.e., independent test set, and 

the rest of the fold is used for model fitting. An appropriate model evaluation metric discussed in 4.3 and 4.4 is 

computed using the data on the validation set. This procedure is repeated ‘k’ times, where a different fold is treated as 

a validation set. The average value of the evaluation metric is reported as the k-fold cross validation estimate. For this 

study the value of k = 5 is used for cross-validation, as is recommended by several studies[14,67,78]. 

For parametric models like MLR, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and 

LR, model selection is redundant since the structure of the model is already predefined and only requires calculation 

of model parameter from the training data. Unlike the parametric models, the semi-parametric and non-parametric 
models have specific parameters that have to be established prior to model assessment, called hyper-parameters or 

tuning parameters. For instance, the degree of freedom in case of splines in GAM is estimated by gradient descent in 

R using base R package [65] coupled with Latin hypercube sampling to minimize the RMSE obtained by 5-fold cross-

validation. A range of degrees of freedom was established for each parameter and Latin-hypercube sampling was done 

to choose a random combination of the degree of freedom. In the case of KNN, the value of “k” was optimized using 

a grid search algorithm. A range of “k” was selected and a performance metric was optimized using 5-fold cross-

validation. In the case of regression, the value of “k” with minimum RMSE was chosen. While for the classification, 

the value of “k” giving maximum CPR was chosen. SVM regression with 𝜖- insensitivity loss function was used for 
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this study. 𝜖 was calculated as per Eq.(8)[79], while the regularization parameter (C), degree of polynomial, and kernel 

width (𝛾) were estimated by a grid search algorithm using 5-fold cross validation. The values of the parameter that 

returned lowest RMSE was chosen for the model. In case of SVM classification, a similar grid search approach was 

followed by maximizing the correct prediction rate for calculation of model parameters. 

 𝜖 = 3𝜎 √
ln 𝑛

𝑛
  (8) 

where, 𝜎 is the square root of noise variance calculated from k-nearest neighbor regression. 

After estimating hyper-parameters of models, selected models’ generalized performance was assessed by 200 

simulations of 5-fold cross-validation. The distribution of the average value of the evaluation metric for train and test 

sets was constructed for all regression and classification models. The best model among various learning algorithms 

was chosen based on the median performance in the majority of the metrics. The result of the model selection and 

assessment are presented in sections 5.1 and 5.2, respectively. 

5. Results and Spatial Visualization 

5.1. Model Selection 

For GAM, using natural cubic splines, lack of sufficient data for fitting eight parameters resulted in a rank deficient 

matrix and results were removed from consideration. The model parameters for regression and classification are 

detailed in Tables 1 and 2, respectively. A threshold of 1.03 MPa (150 psi) for lime treated soil and 2.06 MPa (300 

psi) for cement-treated soil is considered in classification effort. 

5.2. Model Evaluation 

Summary of model evaluation results is presented in Tables A.4, A.5, and A.6 (appendix). These results are calculated 

for train and test sets by 200 random simulations of 5-fold cross validation (2-fold cross validation for cement 

classification models). Interquartile percentiles Q1, Q2, and Q3 of evaluation metrics for various regression and 

classification models are presented in Fig. 2 – Fig. 5. The error bars in these figures represent the Q1 and Q3 range, 

while the marker represents the Q2 value. A star is given to each best performing metric based on the Q2 value. The 

model with the highest number of stars is selected as the best performing model. 

Among regression models with lime treatment, the best performing model was SVM, closely followed by KNN. The 

performance of all other remaining models were identical. SVM with radial kernel had a median R2 of 0.83 (train) and 
0.75 (test), a median MAE of 0.37 MPa (train) and 0.44 MPa (test ), and a median RMSE of 0.42 MPa (train ) and 

0.50 MPa (test). In the case of regression models with cement treatment, the best performing model was MLR followed 

by GAM-SS and SVM-radial. MLR had a median R2 of 0.88 (train) and 0.82 (test), MAE of 0.36 MPa (train) and 

0.45MPa (test), and RMSE of 0.50Mpa (train) and 0.53 MPa (train). 

Similarly, for classification models with lime treatment and a cutoff strength of 1.034 MPa (150 psi), SVM with radial 

kernel had the best performance, which was closely followed by KNN and LR. SVM with radial kernel had a median 

correct prediction rate (CPR) of 0.95 (train) and 0.92 (test), a median Cohen’s Kappa of 0.66 (train) and 0.60 (test), a 

median area under curve (AUC) of 0.99 (train) and 0.98 (test), a median true positive rate (TPR) of 0.97 (train) and 

0.94 (test), and a median false positive rate (FPR) of 0.06 (train) and 0.10 (test). As for the classification model for 

cement treatment with a cutoff strength of 2.068 MPa (300 psi) LDA has the best overall stable performance, with a 

median CPR of 0.92 (train) and 0.80 (test), a median Cohen’s Kappa of 0.8 (train) and 0.52 (test), a median AUC of 

0.99 (train) and 0.90 (test), a median TPR of 0.94 (train) and 0.77 (test), and a median FPR of 0.05 (train) and 0.17 

(test). Although SVMs performed well in every other metric, AUC values of the SVMs’ showed a bi-modal 
distribution while a normal distribution was expected. The coefficients of parameters for LR became unstable and a 

lack of sufficient data hindered the execution of QDA. 
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5.3. Spatial Visualization and Comparison 

An example of application for the best performing models with their optimized hyperparameters is used for spatial 

visualization of quantitative and categorical results. For this purpose, Broadwater County in Montana was chosen. 

Soil parameters for the model were obtained from USDA’s SSURGO database. The database was accessed by ArcGIS 
using the Soil Thematic Map Tool extension from USDA. The required parameters were imported from the database 

and individually rasterized. The rasters were then imported to R and were stacked as a raster brick using the “raster” 

package [80]. Regression and classification models were then applied to the raster brick at each cell – which resulted 

in a raster with predicted UCS value and a binary response for pass/fail, respectively, for a given type and amount of 

stabilizer. For instance, the regression result for application of 6% cement for Broadwater County is shown in Fig. 6 

and classification result for the threshold of 2.06 MPa (300 psi) is shown in Fig. 7 using SVM-radial and LDA, 

respectively. For cement treatment in the laboratory, the authors also collected two samples from Broadwater County 

and one sample from Garfield County which are named NTF_LP (Location 1), NTF_HP (Location 2), and DC 

(Location 3), respectively. The treated UCS specimens in the laboratory were made using a 2:1 aspect ratio and were 

cured at 100% humidity for seven days. The predicted UCS from the model using the parameters from the SSURGO 

data at that sampling location was plotted against the laboratory strength in Fig. 8. The solid line in that figure 

represents the 45-degree line and the dotted line represents the 15% variation from the 45-degree line. Pearson’s 

correlation coefficient between the actual and predicted value was 0.78. In addition to the regression results, the CPR 

for the classification model was 92% for a total of 13 samples. 

6. Discussions 

The results for this study indicate that for an end user who is interested in preliminary quantitative predictions, the 

regression model provides a decent estimation of UCS for any given type and amount of stabilization. Moreover, if 

the end user is more concerned about a treatment scenario passing a threshold or not, a classification model provides 

an excellent alternative. The performance results of these regression and classification models strongly support the 

argument that there isn’t a single model that work best for all the datasets. Therefore, authors strongly suggest running 

a series of machine learning models before deciding on the specific model. Model performance and comparison of 

model predictions with laboratory values are discussed below. 

6.1. Model Performance 

During regression model selection, lack of sufficient data to constrain the parameters of GAM model with natural 

cubic splines raised the issue of rank deficient matrix in both lime and cement models. Therefore, this model’s results 

were excluded from further analysis. Although the development of the GAM model using smoothing splines was 

successful, its performance improvement against MLR was not significant (maximum of 6% in median values) for 

lime, and its performance was worse than MLR for cement treatment. This suggests that the residuals from MLR 

modeling are not due to its inability to model non-linear behavior and forcing non-linearity in to modeling effort – 

even with a model that has good regularization – doesn’t increase the model prediction performance. Among non-

parametric models, KNN for lime significantly outperformed MLR, i.e. a maximum of 47% increase in median 

performance. On the contrary, results for cement models using KNN was worse than MLR. Since KNN is an instance 

based learner, lack of sufficient data in case of cement treatment might have hindered its performance. Model selection 

results for SVM-linear and SVM –polynomial for lime and cement models revealed similar model performance. This 

suggests that projecting the dataset into kernel space of higher polynomial dimension wouldn’t increase the model’s 

prediction performance. The performance of SVM-linear and SVM-polynomial models for lime was similar to that of 
MLR. As expected, SVM-radial showed improvement in performance in comparison to MLR for lime models. But in 

case of the cement models, the performance of all the SVMs were worse than MLR. Although in this study, 

regularization parameter (C) and the degree of the polynomial (n) were optimized, the 𝜖 – insensitivity loss was taken 

as a constant as suggested by Cherkassky and Ma [80]. Authors believe in the development of future models, tuning 

the 𝜖 – insensitivity loss might improve the performance as SVM have been known to be very sensitive to hyper 
parameters [72,82]. Therefore, among all the regression models for lime, SVM-radial’s performance was the best with 

a median test set MAE and RMSE of 0.44 MPa and 0.50 MPa, respectively. For cement model, MLR performance 

was superior with a median test set MAE and RMSE of 0.45 MPa and 0.53 MPa, respectively. 

In the case of classification for lime with threshold of 1.03 MPa, the best performing model was SVM–radial, which 

was closely followed by KNN and LR. The “𝛾” parameter for SVM–radial model was 0.02 and performance for all 

other models were comparatively similar. This suggests the presence of a somewhat linear separating decision 
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boundary between the two class of samples. In the case of cement samples, the coefficients for LR became unstable, 

AUC values for SVMs showed a bimodal distribution, and small sample size barred the development of QDA model. 

Therefore, LDA performance was optimum for cement treatment models. The performance of best model for lime 

treatment has a median CPR of 0.95 (train) and 0.80 (test), Cohen’s kappa of 0.66 (train) and 0.61 (test), AUC of 0.99 

(train) and 0.90 (test), TPR of 0.97 (train) and 0.94 (test), and FPR of 0.06 (train) and 0.10 (test). Similarly, the best 

performing cement treatment models has a median CPR of 0.92 (train) and 0.80 (test), Cohen’s Kappa of 0.80 (train) 

and 0.52 (test), AUC of 0.99 (train) and 0.90 (test), TPR of 0.94 (train) and 0.77 (test), and FPR of 0.05 (train) and 

0.11 (test). 

The performance of regression model in this study using a limited set of parameters was comparable to those of 

previous studies, but provides a wide range of application possibility as the data needed to constrain parameters in the 

proposed model are readily available. 

6.2. Comparison of Models’ Predictions 

Prediction of stabilized strength using the parameters from SSURGO database at each of the three locations for the 

different amount of cement treatment showed good performance when compared to the laboratory data as shown in 
Fig. 8. Even though the aspect ratio for the soil in the laboratory and the aspect ratio of the sample used in the model 

development was different, most of the prediction was within/near the ± 15 % of the 45-degree line with Pearson’s 

correlation coefficient of 0.78. Moreover, the classification success rate for the threshold of 2.06 MPa (300 psi) was 

92.31%, i.e. only one sample out of the 13 samples was mispredicted. The failing sample, which was predicted as pass 

instead of fail, had a UCS of 1.91 MPa. This value is very near to the cutoff point and the difference between the 

predicted and actual strength was 0.15 MPa, which is 7.24% of the cutoff value. Therefore, the results of regression 

as well as the classification models showed good prediction performance and further supports the application of these 

models for real-world applications. 

7. Conclusion 

The purpose of this study was to assess applicability of data-driven models for prediction of UCS value for stabilized 

soils. Several models were developed using different machine learning algorithms and using only the parameter that 

are spatially available in databases like SSURGO. Such model would be very beneficial in the selection of optimum 

initial stabilizer in the laboratory works, aiding preliminary strength assessment for a given spatial location and 

delineation of laboratory sample collection, among others, without prior lab test. In addition, this model makes use of 

the vast amount of spatial soil data that is readily available. A database for the US soils was compiled and used for 

regression model (using MLR, GAM, KNN, SVMs) and classification model (using LR, DA, KNN, SVMs) 

development. The major findings from this study are: 

a. Median performance of regression models developed herein are similar or better than the performance 

reported in the literature for strength prediction of chemically stabilized soils. 

b. Performance of classification models developed was found to be satisfactory, with respect to the chosen 

threshold values. 

c. Comparison of the best performing regression and classification models’ predictions with the observed 

laboratory strength further supports the applicability of these models for the US soils. 

d. Model prediction can be used to select an optimum stabilizer content, get an overview of stabilization 

performance for any spatial area within the US, and strategize the sampling operations for chemical 
stabilization projects. 

e. Analysis of the models’ results strongly suggests that a single model cannot perform well for all data 

types. These results are in perfect agreement with research in the machine learning community. 

8. Appendices 

Appendices are attached in the upload. 
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