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SUMMARY

We present a new computational method by extending the Immersed Boundary (IB) method with a geometric model based on
parametric Radial Basis Function (RBF) interpolation of the Lagrangian structures. Our specific motivation is the modeling
of platelets in hemodynamic flows, though we anticipate that our method will be useful in other applications involving surface
elasticity. The efficacy of our new RBF-IB method is shown through a series of numerical experiments. Specifically, we test
the convergence of our method and compare our method with the traditional IB method in terms of computational cost,
maximum stable time-step size and volume loss. We conclude that the RBF-IB method has advantages over the traditional
Immersed Boundary method, and is well-suited for modeling of platelets in hemodynamic flows. Copyright c© 0000 John
Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

The Immersed Boundary (IB) Method was introduced by Charles Peskin in the early 1970’s to solve the coupled
equations of motion of a viscous, incompressible fluid and one or more massless, elastic surfaces or objects
immersed in the fluid [1]. The IB method was originally developed to model blood flow in the heart and through
heart valves [1–3], but has since been used in a wide variety of other applications, particularly in biofluid
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dynamics problems where complex geometries and immersed elastic membranes or structures are present and
make traditional computational approaches difficult. Examples include swimming of organisms [4, 5], biofilm
processes [6], mechanical properties of cells [7], cochlear dynamics [8], and insect flight [9, 10]. In this work,
we are motivated by the application of the IB method to platelet aggregation in blood clotting, but expect our
method to be useful in other applications as well.

Intravascular blood clots (thrombi) are initiated by damage to the endothelial cell lining of a blood vessel and
involve the formation on the damaged surface of clumps of cells intermixed with a fibrous protein gel. The cells
involved in this process are platelets, and the subject of this paper is a new approach to modeling platelets in order
to simulate their adhesion to the injured vascular wall and cohesion with one another during the formation of a
thrombus. The IB method is used to describe the mechanical interactions among a collection of discrete platelets,
the background fluid, and the vessel wall. However, we now model our platelets with Radial basis functions (RBFs)
in order to achieve more accurate and less costly simulations.

In this introduction, we briefly describe the relevant biology, describe how the IB method has been used in our
previous platelet aggregation simulations, and give an overview of how use of the new method changes this
description.

1.1. Modeling the mechanics of platelet aggregation

Disruption of the endothelial cell lining exposes collagen and adsorbed von Willebrand factor (vWF) molecules in
the subendothelial matrix to the blood. Platelets adhere to both molecules via specific receptor molecules on the
platelets’ surfaces. In addition to slowing or stopping platelet motion over the subendothelium, this binding triggers
intracellular signaling pathways that lead to platelet activation [11,12].

Our platelet aggregation models [4, 13–16] track the motion and behavior of a collection of individual platelets
as they interact with the suspending fluid, one another, and the vessel walls. We also track fluid concentrations
of platelet activating chemicals, cell-cell and cell-surface forces, fluid motion, and the local fluid forces on the
growing thrombus. In our models, nonactivated platelets are activated by proximity to reactive sites on the injured
wall, or through exposure to a sufficiently high concentration of activator in the fluid. Activation enables a platelet
to cohere with other activated platelets and to secrete additional activator. The platelets and the secreted chemical
move by advection with the fluid and diffusion relative to it. Each platelet is represented as an IB object, i.e., as a
collection of elastically-linked Lagrangian points that each move at the local fluid velocity. New elastic links are
created dynamically to model the adhesion of a platelet to the injured wall or the cohesion of activated platelets to
one another. Multiple links can form between a pair of activated model platelets or between a model platelet and
the injured wall, and these links collectively represent the ensemble of molecular bridges binding real platelets to
one another or to the damaged vessel. The links exert forces on the surrounding fluid to resist motions which would
otherwise separate the linked entities. Links may break if subject to sufficiently high stress. Model variables are
fully coupled: the fluid carries the activator and platelets, while the interplatelet forces, potentiated by chemically-
induced activation of the platelets, determine the local flow. In this paper, we focus on mechanical interactions,
not the activation process, and so we specify the conditions under which a platelet becomes activated and able to
cohere with other activated platelets.
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1.2. Motivation for the RBF-IB method

We model platelets as closed curves of interconnected IB points in 2D. A platelet’s area or volume is determined by
the region enclosed by the curve or surface and is preserved because of the incompressibility of the fluid. Inactive
platelets are approximately elliptical in 2D models, while activated platelets are approximately circular. Piecewise
linear approximations of platelets are currently used in IB methods applied to the simulation of platelet aggregation
(e.g. [4,13,14]).

In previous work [17], we found that interpolation with radial basis functions restricted to the circle (or sphere in
3D) offered accuracy and computational cost comparable to that offered by Fourier-based methods in modeling an
infinitely smooth target shape, its normals and tension forces computed on its surface. Furthermore, interpolation
with radial basis functions resulted in better convergence (often an order more) than that offered by both Fourier-
based methods when the target shape had only one or two underlying derivatives. In general, use of radial basis
functions led to a computational cost comparable to that of Fourier-based methods and orders of magnitude lower
(for the same accuracy) than that of the standard combination of techniques (piecewise quadratic interpolation and
finite differences) used in many IB methods. This RBF based geometric model has since been used in a variety
of applications [18–20]. It is currently being extended to the representation of open elastic curves immersed in a
purely viscous fluid for use within the method of Regularized Stokeslets [21].

We now turn our attention to exploring the consequences of using this parametric RBF geometric model within
the full IB method, with platelet aggregation as our target application. We seek to determine if the advantages
inherent in the RBF interpolation of static shapes carries over to full-fledged IB simulations, and also if the RBF
interpolation can give us benefits that are apparent only in full-fledged IB simulations. In this work, we propose a
new immersed boundary algorithm that utilizes the features afforded by our RBF geometric model.

The paper is organized as follows. In Section 2 we briefly discuss the traditional Immersed Boundary Method for
simulating fluid-structure interaction. In Section 3 we review the piecewise linear and RBF geometric modeling
strategies and review the components necessary for handling immersed elastic structures in the IB method. In
Section 4 we provide details of the spatial and temporal discretizations of both versions of the IB method. In
Section 5 we present our comparison of the RBF-IB method with the traditional IB method in terms of convergence,
accuracy, area loss and time-step size. We also provide energy estimates for RBF-IB simulations. We then present
results from a large platelet aggregation simulation in 2D. Section 6 contains a summary of our findings and a
discussion of future research directions.

Notation: We denote vectors with as many components as the spatial dimension in bold. We denote vectors with as
many components as the number of data sites (Nd) or sample sites (Ns) by underlining. We indicate matrices with
(Nd) or (Ns) rows and two columns in bold with underlining.
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2. REVIEW OF THE IMMERSED BOUNDARY METHOD

To review the IB method, we focus on a simple two-dimensional model problem in which a single fluid-filled
closed elastic membrane is immersed in a viscous fluid. The physics of the model problem is that an elastic
membrane is under tension and exerts forces on the adjacent fluid. These forces may cause the fluid to move
and, correspondingly, cause points on the membrane to move along with the fluid. In the IB method, the fluid is
described in the Eulerian frame through a velocity field u(x, t) and pressure field p(x, t) defined at every point x
in the physical domain Ω. The elastic membrane is described in the Lagrangian frame. Let the elastic membrane
be parameterized by q ∈ Γ, and denote by X(q, t) the spatial coordinates at time t of the membrane point labeled
by q. The IB equations are the following coupled equations of motion for the fluid variables u(x, t) and p(x, t) and
the membrane configuration X(q, t).

ρ(ut + u · ∇u) = −∇p+ μ∇2u+ f , ∇ · u = 0, (1)

F (q, t) = F

(
X(q, t),

∂

∂q
X(q, t)

)
, (2)

f(x, t) =

∫
Γ

F (q, t) δ(x−X(q, t)) dq, (3)

∂X

∂t
(q, t) =

∫
Ω

u(x, t) δ(x−X(q, t))dx. (4)

Equations (1) are the Navier Stokes equations which describe the dynamics of a viscous incompressible fluid, of
constant density ρ and constant viscosity μ, driven by a force density f which here arises because of the elastic
deformation of the immersed membrane. Equation (2) specifies the elastic force (per unit q) at each point of
the immersed boundary object. The functional dependence of this force on the state of the boundary is specified
appropriately to the material being modeled. Equation (3) defines the fluid force density f (x, t) in terms of the
immersed boundary elastic force density F . Equation (4) specifies that the velocity of each immersed boundary
point equals the fluid velocity at the same location, a formulation of the no-slip boundary condition for viscous
flows. In the model problem and the platelet applications, we assume that the IB objects are neutrally buoyant; the
IB membrane itself carries no mass and each object’s mass is attributed to the fluid in which it sits. For more on
the IB method, see [22].

3. GEOMETRIC MODELING OF PLATELETS

In this section, we review the two geometric modeling strategies to be compared in the context of the Immersed
Boundary method applied to platelet aggregation. For a full description of these strategies, see [17].
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3.1. Piecewise linear model

In the traditional IB method, the surfaces of platelets are represented by a collection of Immersed Boundary
points. We henceforth refer to the IB points in the traditional IB method as sample sites, and denote them by
Xs(t) = X(q, t) for each discrete q ∈ Γ and at a particular time t. The surface elastic forces of the platelets are
spread from these sample sites into the neighboring fluid. Both tension and bending forces are computed using a
finite difference discretization of force models at sample sites. An explicit piecewise linear interpolant of the surface
is not formed. If other information (such as normal vectors) is needed at the sample points, an approximation to
the surface represented by the sample sites may be formed by a piecewise quadratic interpolation of the sample
sites (e.g., [23]). After the incompressible Navier Stokes equations are solved, velocities from the portions of the
Eulerian grid surrounding the sample sites are interpolated to the sample sites using a discretization of Equation 4
and used to move the platelets.

3.2. Parametric RBF model

The RBF method is a popular tool for approximating multidimensional scattered data. For an overview of the
theory and application of this method, see the books by Fasshauer [24] and Wendland [25]. The restriction of the
RBF method to interpolation on a circle and/or sphere is discussed by Fasshauer and Schumaker [26, §6]. When
restricted to these domains, the RBF method is referred to as the spherical basis function (SBF) method [25, Ch.
17]. Several studies have provided error estimates for RBF interpolation on circles and spheres; in fact, these
interpolants can provide spectral accuracy provided the underlying target function is sufficiently smooth [27, 28].
The RBF method has also been used successfully for numerically solving partial differential equations on the
surface of the sphere [29,30], as well as more general surfaces [20,31].

Here, we present the RBF model developed in our earlier work [17]. It is based on explicit parametric
representations of the objects. Since our target objects are platelets, which in 2D models are nearly elliptical or
circular, we choose a polar parameterization. We use our model to define operators necessary for the computation
of geometric and mechanical quantities required by the IB method.

We represent a platelet surface at any time t parametrically by

X(λ, t) = (X(λ, t), Y (λ, t)) (5)

where 0 ≤ λ ≤ 2π is the parametric variable and X(0, t) = X(2π, t). We explicitly track a finite set of Nd points
Xd

1(t), . . . ,X
d
Nd

(t), which we refer to as data sites. Here Xd
j (t) := X(λd

j , t), j = 1, . . . , Nd, and we refer to the
parametric coordinates λd

1 , . . . , λ
d
Nd

as the data site nodes (or simply nodes). We construct each component of X
by using a smooth RBF interpolant of the data sites in parameter space as discussed in detail below. We also make
use of derivatives of the interpolant at the data sites and we use the interpolant and its derivatives at another set of
prescribed sample points or sample sites, which correspond to Ns parameter values: λs

1, ..., λ
s
Ns

.

We first explain how to construct an RBF interpolant to the X component of X using the data
(λd

1 , X
d
1 (t)), ..., (λ

d
Nd

, Xd
Nd

(t)); the construction of the Y component follows in a similar manner. Let φ(r) be a
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scalar-valued radial kernel, whose choice we discuss below. Define X(λ, t) by

X(λ, t) =

Nd∑
k=1

cXk φ

(√
2− 2 cos(λ − λd

k)

)
. (6)

Note that the square root term in Equation (6) is the Euclidean distance between the points on the unit circle whose
angular coordinates are λ and λd

k. We have found that the distance argument r =
√

2− 2 cos(λ− λd
k) is far more

accurate for the geometric of modeling static closed curves and surfaces than, say, r = |λ− λd
k|. In addition, recent

work has shown that the periodic distance argument gives results identical to those given by the non-periodic
distance argument for the modeling of both static and dynamic open curves [21]. While other distance arguments
could be considered (for example, using geodesic distance in place of Euclidean distance), Fuselier and Wright
have shown that RBF interpolation can produce favorable error estimates in the interpolation of functions on
submanifolds of Rn even when no knowledge of the surface metric is used [32]. For these reasons, we restrict
our attention to the periodic distance argument in (6). For this paper, we use the multiquadric (MQ) radial kernel
function, given by

MQ: φ(r) =
√

1 + (εr)2, (7)

where ε is called the shape parameter. The choice of ε is discussed in Section 5. To have X(λ, t) interpolate the
given data, we require that the coefficients cXk , k = 1, ..., Nd satisfy the following system of equations:

⎡
⎢⎢⎢⎢⎣

φ (r1,1) · · · φ (r1,Nd
)

φ (r2,1) · · · φ (r2,Nd
)

...
. . .

...
φ (rNd,1) · · · φ (rNd,Nd

)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎣
cX1

cX2
...

cXNd

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
cXd

=

⎡
⎢⎢⎢⎢⎣
Xd

1 (t)

Xd
2 (t)
...

Xd
Nd

(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Xd(t)

, (8)

where rj,k =
√

2− 2 cos(λd
j − λd

k). Since rj,k = rk,j , the matrix A in this system is symmetric. More importantly,
for the MQ kernels, A is non-singular, with the global support and infinite smoothness of φ(r) lending itself to
spectral accuracy and convergence on smooth problems [24, 25]. One could alternatively use any of the other
infinitely-smooth kernels like the Gaussian (GA) or the Inverse Multiquadric (IMQ) in place of the MQ kernel.

In our application, we want to be able to evaluate X(λ, t) at sample sites corresponding to parameter values
λs
1, ..., λ

s
Ns

, that stay fixed over time. While we could use Equation (6) to do this, it is much more convenient from
a notational and computational perspective to construct an evaluation matrix that combines the linear operations of
constructing the interpolant to Xd(t) = [Xd(t), Y d(t)], for any t, and evaluating it at λs

1, ..., λ
s
Ns

. The evaluation
matrix can be constructed by first noting that Equation (6) can be written as

X(λ, t) =
[
φ
(√

2− 2 cos(λ− λd
1)
)

· · · φ
(√

2− 2 cos(λ− λd
Nd

)
)]

︸ ︷︷ ︸
b(λ)T

cXd . (9)
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Since cXd = A−1Xd(t), we can write Equation (6) as X(λ, t) = b(λ)TA−1Xd(t). The evaluation of X(λ, t) at
λs
1, ..., λ

s
Ns

can then be obtained as follows:

⎡
⎢⎢⎣
X(λs

1, t)
...

X(λs
Ns

, t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Xs(t)

=

⎡
⎢⎢⎣
b(λs

1)
T

...
b(λs

Ns
)T

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

A−1Xd(t) = BA−1︸ ︷︷ ︸
Es

Xd(t). (10)

So, given the data sites Xd(t) at any time t, we can interpolate their coordinates with an RBF expansion and
evaluate the interpolant at the sample site nodes λs

1, ..., λ
s
Ns

to get Xs(t) by the matrix-vector product EsXd(t). In
fact, this same procedure can be used to give values at sample site nodes for any quantity whose values we have at
data site nodes and which we represent using an RBF expansion (e.g., Y d(t) = [Y d

1 (t) · · ·Y
d
Nd

(t)]T ). Furthermore,
the evaluation matrix Es can be precomputed once at t = 0 and used for all subsequent times.

We also need to compute geometric quantities such as tangent vectors, and mechanical quantities such as forces at
data sites and/or sample sites. These quantities require computing derivatives with respect to λ of the platelet surface
coordinates (X(λ, t), Y (λ, t)). We use the RBF-based representation of the surface to compute these derivatives,
and we will express derivatives of the RBF interpolant in matrix-vector form. Toward this end, we use similar
notation to Equation (9) and define the vector

bnλ(λ̃) :=
∂n

∂λn
b(λ)

∣∣∣∣
λ=λ̃

=

[
∂n

∂λn
φ
(√

2− 2 cos(λ− λd
1)
)∣∣∣∣

λ=λ̃

· · ·
∂n

∂λn
φ
(√

2− 2 cos(λ − λd
Nd

)
)∣∣∣∣

λ=λ̃

]T
,

for any 0 ≤ λ̃ ≤ 2π. Just as b(λ̃)TA−1Xd(t) gives the value of X(λ̃, t), we can use bnλ(λ̃) to obtain the nth derivative
of X(λ, t) with respect to λ as

∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λ̃

= bnλ(λ̃)
TA−1Xd(t).

The evaluation of the nth derivative of X(λ, t) at the data site nodes λd
1 , . . . , λ

d
Nd

can then be obtained as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λd

1

...
∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λd

N
d

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
bnλ(λ

d
1)

T

...
bnλ(λ

d
Nd

)T

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bn

λd

A−1Xd(t) = Bn
λdA

−1︸ ︷︷ ︸
Dn

λd

Xd(t). (11)
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In a similar manner, the evaluation of the nth derivative of X(λ, t) at the sample site nodes λs
1, . . . , λ

s
Ns

can be
obtained by

⎡
⎢⎢⎢⎢⎢⎢⎣

∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λs

1

...
∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λs

Ns

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
bnλ(λ

s
1)

T

...
bnλ(λ

s
Ns

)T

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bn

λs

A−1Xd(t) = Bn
λsA−1︸ ︷︷ ︸
Dn

λs

Xd(t). (12)

For given data sites Xd(t) at any time t, we can interpolate these values with an RBF expansion and evaluate the
nth derivative of the interpolant at the data site nodes by the matrix-vector product Dn

λdXd(t) and at the sample site
nodes by Dn

λsXd(t). We refer to the Nd ×Nd matrices Dn
λd and the Ns ×Nd matrices Dn

λs as RBF differentiation
matrices.

The matrices Dn
λd and Dn

λs can be used to give values at respective data site or sample site nodes of the nth

derivative of the RBF interpolant of any quantity whose values we have at the data site nodes (e.g., Y d(t) =

[Y d
1 (t) · · ·Y

d
Nd

(t)]T ). These matrices can also be precomputed once at t = 0 and used for all subsequent times.

Having defined the operators to compute derivatives of the RBF interpolant, we define the quantity

τ :=
∂

∂λ
X(λ, t) =

(
∂

∂λ
X(λ, t),

∂

∂λ
Y (λ, t)

)
= (τX , τY ). (13)

The unit tangent vector to X(λ, t) is then given by

τ̂ : =
τ

‖τ‖
= (τ̂X , τ̂Y ). (14)

In our experiments, we assume that the Lagrangian force at a point on a platelet is the sum of a tension force, a
bending-resistant force and possibly a force due to a bond between that point and a point on another platelet or the
vessel wall. For the tension force, we use the fiber model defined in [22], according to which the elastic tension
force density at X(λi, tk) is given by

FT(λi, tk) =
∂

∂λ
(T τ̂ )

∣∣∣∣
λi,tk

, (15)

where T = kt(‖τ‖ − l0) is the fiber tension and kt > 0 is constant. We set l0,i = ‖τ‖|λi,t0
, where t0 is the initial

time of the simulation. For a bending-resistant force, we use a linear variant of the force defined in [33] and define
the elastic force density at X(λi, tk) due to how much the platelet surface there is bent to be

FB(λi, tk) = − kb

(
∂4X

∂λ4
−

∂4X0

∂λ4

)∣∣∣∣
λi,tk

. (16)

Here X0 = X(λi, t0) is the initial configuration of the platelet and kb > 0 is constant. Ideally, the constants kt

and kb would be chosen to reflect values determined from experiments involving real platelets. In our work, we
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choose kt and kb that keep isolated platelets in simple shear flows approximately rigid, and scale them as we refine
the background Eulerian grid; this scaling ensures that the mechanical properties of the elastic material converge
as the background grid is refined [34]. Despite this approximate rigidity of isolated platelets, these platelets may
deform significantly due to interactions (binding and unbinding) with other platelets, and in other models, as a
consequence of platelet activation also.

We defer discussion of how we compute the forces given by Equations (15) and (16) to the next section (and the
Appendix), since the implementation is different for the RBF and piecewise-linear representations of the platelet
boundary. However, the force acting on a platelet due to other platelets (and/or walls) is common to both methods.
We use the spring force defined in [14]: let p1, p2, ..., pNp

be the indices corresponding to the platelets in the domain.
Let p1 and p2 be the indices of two platelets which are linked at sample sites Xp1

(λs
i1
) and Xp2

(λs
i2
). The force at

Xp1
(λs

i1
) is then given by:

FC
p1
(λs

i1 , tk) = KC(||Xp2
(λs

i2)−Xp1
(λs

i1 )|| − l0,C)
Xp2

(λs
i2
)−Xp1

(λs
i1
)

||Xp2
(λs

i2
)−Xp1

(λs
i1
)||

, (17)

where KC and l0,C are the interplatelet cohesion spring stiffness and the resting length, respectively; we also set
FC

p2
(λs

i2
, tk) = −FC

p1
(λs

i1
, tk). The formulation for platelet-wall links is similar.

4. NUMERICAL DISCRETIZATION

In this section we present the implementation details for both IB methods. For each method, we briefly describe the
spatial discretization for both the Lagrangian and Eulerian quantities. We then describe the time-stepping scheme
for each method.

4.1. The Piecewise-Linear IB method

Traditionally, finite-difference approximations of Equations (15) and (16) are used in conjunction with piecewise
linear methods in 2D (e.g. [33]). We use a second-order central difference involving sets of sample sites or IB
points to discretize the derivatives involved in the computation of both the tension and bending forces (including
tangent lengths). It is useful to think of these finite difference approximations to the constitutive model as Hookean
springs connecting pairs of IB points. Note that these differences are only second-order assuming a near-uniform
sampling. This is one of the sources of error for the IB method.

For the Eulerian spatial discretization, we use a second-order centered finite-difference approximation to the
Laplacian on a staggered MAC grid [35]. We discretize the advection term (in conservative form ∇ · (uuT ) using
second-order centered differences, averaging quantities to cell edges or nodes as required. For the approximate
δ-function, we use the “cosine” form described by Peskin [22] which ensures that the entire IB force is transmitted
to the grid, that the force density on the grid is a continuous function of the IB point locations, and that the
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communication between grid and IB points is very localized. We note that one could also use other discrete δ-
functions designed to satisfy specific properties, if required [36]. To prevent leakage, the tension stiffness kt is set
sufficiently high so that the IB point spacing on the surface is approximately 0.5h (or less), where h is the Eulerian
grid cell width. After each update of the IB point locations, new links are formed and existing ones are broken
using the model’s rules for these types of events.

We use the formally second-order Runge-Kutta time-stepping scheme outlined in [37]. This time-stepping scheme
demonstrates second-order convergence in time for a smooth forcing function, or for an elastic material that fills the
whole domain, as demonstrated in [37]. This scheme exhibits only first-order convergence in time in the presence
of a sharp interface between the fluid and the elastic material, as is typical of IB methods. The full scheme is
presented in Appendix B.

4.2. The RBF-IB method

In order to construct the operators utilized by our algorithm, we must first choose an appropriate node set. We use
Nd equally-spaced values on the interval (0, 2π] as the data site node set {λd

k}
Nd

k=1. This gives a uniform sampling
in the parametric space. We also use Ns > Nd (typically, Ns = 4Nd or Ns = 8Nd) equally-spaced points in the
interval (0, 2π] as the set of sample site nodes {λs

j}
Ns

j=1 since this results in a set of sample sites that are well
distributed over the object. As in the traditional IB method, we make sure to start simulations with a sample site
spacing of less than 0.5h (again enforced approximately using the tension stiffness), though the data site spacing
can be much greater. In the results section, we explore the ramifications of this choice.

We have formulated our operators to ensure that operations like evaluation of the interpolant and computing
derivatives (and therefore the constitutive model) do not require solving a linear system for any time step of the
platelet simulation except the initial step. This is possible because, though the data sites and sample sites move over
the course of the simulation, their values in parameter space do not change. For the RBF model of the platelets,
the evaluation matrix Es in Equation (10) and differentiation matrices Dn

λd and Dn
λs in Equations (11) and (12),

respectively can be computed using the FFT as discussed in our previous work [17]. This is possible since the
data site nodes {λd

k}
Nd

k=1 are equally-spaced, which results in the A matrix defined Equation (8) having a circulant
matrix structure. The costs and accuracy of the RBF models are elaborated upon in the discussion of the results.
The algorithm to compute forces on platelets using these operators is presented in the Appendix A.

The RBF-IB method uses the same time-stepping scheme and Eulerian discretization as the piecewise linear IB
method, with one important difference. When computing the forces at time level n+ 1/2, we advance the data
sites to time level n+ 1/2, generate a set of sample sites at that time level, and compute forces at the sample sites.
Similarly, we use the mid-step approximation to the velocity field to advance the data sites to time level n+ 1. We
thus generate only a single set of sample sites every time-step, since the sample sites are only needed when the
data sites are advanced to time level n+ 1/2. It is clear that if the number of data sites is fewer than the number of
sample sites, this results in improved computational efficiency over the piecewise linear IB method. However, it is
important to explore the effect of our changes on the convergence of the algorithm. We explore these questions in
the results section. For a more complete description of the RBF-IB time-stepping scheme, see Appendix C.
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5. RESULTS

In this section, we first compare the convergence of the RBF-IB method on a canonical test problem. We also use
this test problem to explore the relationship between the number of data sites (Nd) and the Eulerian grid spacing
(h). We then compare the area loss in an elastic object simulated by each method on the same problem, and discuss
the time-step sizes allowed by both methods. We follow with a discussion of the change in energy over time in the
RBF-IB method. We then provide timings for platelet simulations and discuss both foreseen and unforeseen results
of using the RBF model within the IB method. Finally, we present the results of platelet aggregation simulations
conducted using the RBF-IB method.

Description of our standard fluid-structure interaction problem:

Figure 1. A visualization of the fluid-structure interaction test. The dashed lines show the initial ellipse, while the filled line
indicates the near-circular object at the final time t = 2.0. The small arrows indicate the velocity field at the final time. The

maximum velocity is very close to zero at this time as the object is almost at rest.

We describe a standard fluid-structure interaction problem on which we test both versions of the IB method. This
problem is commonly used in the IB literature (e.g., [38]). The problem involves placing an elliptical object with
its center of mass at the center of the [0, 1]2 physical domain. The elliptical object has a circle of the same area as
its rest configuration, and attempts to attain the rest configuration subject to a combination of tension and bending
forces. The physical domain is filled with a fluid that is initially at rest, with periodic boundary conditions in the
x-direction and no-slip Dirichlet boundary conditions in the y-direction. We set the radius of the target circle to
be r = 0.1 units, with the ellipse initially having a major axis of a = 2r and a minor axis of b = 0.5r. This test is
visualized in Figure 1.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International
Journal for Numerical Methods in Fluids, published by Wiley. Copyright restrictions may apply. doi: 10.1002/fld.4061



12

5.1. Convergence studies

In previous work [17], we compared the accuracy and convergence of both RBF and traditional IB geometric
modeling strategies for static platelet-like shapes. We now compare the accuracy and convergence of the full RBF-
IB and PL-IB methods, both for the velocity field and for the immersed elastic structure.

For the fluid, on each grid with cell width h, we define the quantity uc,h, the coarsened discrete velocity field
from the 256× 256 grid. This coarsened velocity is obtained using a spline interpolation of each component of
the velocity on the finest grid, and evaluating it at the edges on the coarser grid. For each grid point i on a grid
with cell width h, we compute the quantity fh

i = ||uh
i − u

c,h
i ||. We define the l2 error in the velocity field as

e2(h) =

√∑
i (f

h
i h)

2, and the l∞ error in the velocity field to be e∞(h) = maxi f
h
i . The convergence rate for

errors e(2h) and e(h) is measured as pu = log2

(
e(2h)
e(h)

)
.

We note that convergence rates of numerical solutions can be computed in an alternate manner to the one outlined
above. Solutions on three grids u4h, u2h and uh are chosen; the errors e(2h) and e(h) are computed by comparing
the 4h grid to the 2h grid, and the 2h grid to the h grid respectively. The rate of convergence is then once again
estimated as pu = log2

(
e(2h)
e(h)

)
. While the results shown in this section do not employ this method, we have verified

that the orders of convergence computed using this method match those presented in this section.

For the Lagrangian markers (sample sites or IB points), we adopt the following procedure:

1. Given the number of sample sites Ns and the radius of the target circle r, we define θ = 2π
Ns

, the angle
subtended at the center of the circle if the points were evenly-spaced.

2. We define the quantity C = 2r sin(0.5θ), the chord length between any two points in a set of evenly-spaced
points on an ideal circle. We also define Cexact to be the ideal chord length for Ns = 400.

3. We compute the actual distances di between the sample sites (or IB points) for a simulation computed
on the 256× 256 grid with Ns = 400. We then compute the quantities s∞ = maxi |di − Cexact| and s2 =

(1/Ns)
√∑

i |di − Cexact|2.

4. We compute sNs

∞
and sNs

2 for Ns = 50, 100, 200. We then define the l2 error to be e2(Ns) = |sNs

2 − s2| and
the l∞ error to be e∞(Ns) = |sNs

∞
− s∞|.

We define the convergence rate for errors e(Ns) and e(2Ns) to be pX = log2

(
e(Ns)
e(2Ns)

)
.

By defining the Lagrangian errors in this fashion, we circumvent the fact that the ‘correct’ sample site spacing is
unknown; our definitions above measure ‘errors’ against equally-spaced points on the circle. However, as can be
seen in the following text, these errors converge at a first-order rate (asymptotically). For full transparency, we also
record the deviations of the sample sites from an equispaced set of IB points on the finest Lagrangian ‘grid’; these
are given by the quantities s∞ and s2.
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Grid Size Ns Δt L2 error Order of convergence L∞ error Order of convergence
32× 32 50 2× 10−4 1.7666e-04 8.8682e-04
64× 64 100 1× 10−4 1.5097e-04 0.23 5.4255e-04 0.71

128× 128 200 5× 10−5 8.4247e-05 0.84 3.0738e-04 0.82
Table I. Results of a refinement study with the RBF-IB method with Nd = 25 data sites. We show the convergence of the
velocity field, with errors measured against the velocity field of a simulation on a 256 × 256 grid with Ns = 400 sample

sites, Nd = 100 data sites and Δt = 2.5× 10−5.

Ns Grid Size Δt L2 error Order of convergence L∞ error Order of convergence
50 32× 32 2× 10−4 3.1188e-06 2.3238e-05
100 64× 64 1× 10−4 3.5898e-07 3.12 3.0048e-06 2.95
200 128× 128 5× 10−5 1.5310e-07 1.23 1.7905e-06 0.75

Table II. Results of a refinement study with the RBF-IB method with Nd = 25 data sites. We show the convergence in
the sample site positions, with errors measured against the sample site positions of a simulation on a 256× 256 grid with

Ns = 400 sample sites, Nd = 100 data sites and Δt = 2.5× 10−5.

5.1.1. Convergence of the RBF-IB method for Nd = 25: Here, we test the convergence of the RBF-IB method on
the fluid-structure interaction problem described above. We compare the velocity field and sample site positions
to those computed for the same test problem on a 256× 256 grid with Ns = 400 sample sites and Nd = 100 data
sites. Tables I and II show the results obtained with Nd = 25 data sites for the fluid and the object respectively.

Table I shows that the errors produced in the RBF-IB method. We see that the RBF-IB method for Nd = 25 shows
first-order convergence asymptotically. Table II shows results for the errors on the object. The errors on the coarsest
grid are high, leading to a higher-than-expected convergence rate in both norms when we measure the errors on a
64× 64 grid. Once again, the convergence rate remains close to first-order, as expected. For completion, we note
that s2 = 4.3694e− 08 and s∞ = 1.1113e− 06 for the structure on the 256× 256 grid for Nd = 25 data sites.

Grid Size Ns Δt L2 error Order of convergence L∞ error Order of convergence
32× 32 50 2× 10−4 5.5617e-03 3.7404e-02
64× 64 100 1× 10−4 2.2436e-04 4.63 1.2403e-03 4.91

128× 128 200 5× 10−5 7.8934e-05 1.51 2.8859e-04 2.10
Table III. Results of a refinement study with the RBF-IB method with Nd = 50 data sites. We show the convergence of the
velocity field, with errors measured against the velocity field of a simulation on a 256 × 256 grid with Ns = 400 sample

sites, Nd = 100 data sites and Δt = 2.5× 10−5.

Ns Grid Size Δt L2 error Order of convergence L∞ error Order of convergence
50 32× 32 2× 10−4 3.6212e-05 5.2794e-04
100 64× 64 1× 10−4 3.8824e-07 6.54 7.8472e-06 6.07
200 128× 128 5× 10−5 1.7236e-07 1.17 2.0636e-06 1.93

Table IV. Results of a refinement study with the RBF-IB method with Nd = 50 data sites. We show the convergence in
the sample site positions, with errors measured against the sample site positions of a simulation on a 256× 256 grid with

Ns = 400 sample sites, Nd = 100 data sites and Δt = 2.5× 10−5.

5.1.2. Convergence of the RBF-IB method for Nd = 50: We repeat the above test problem with Nd = 50 data sites.
As before, we compare the velocity field and sample site positions to those computed for the same test problem on
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a 256× 256 grid with Ns = 400 sample sites and Nd = 100 data sites. Tables III and IV show the results for the
fluid and the object respectively.

Examining Table III, we see that when moving to the finest grid, we have once again recovered first-order
convergence. The errors on the 128× 128 grid for Nd = 50 with the RBF-IB method are close to those on the same
grid with Nd = 25. Table IV shows errors similar to those seen in Table II, albeit with less erratic convergence.
Indeed, we recover first-order convergence in the l2 norm and close to second-order convergence in the l∞ norm.

We note that using Nd = 50 data sites does not result in significantly better convergence on the structure than
Nd = 25. There are two possible explanations. The first is that the function representing the shape of the object is
of limited smoothness (as seen in our previous work [17]), with higher values of Nd causing the interpolation error
to saturate or even increase. The alternate (and more likely) explanation is that, since our RBFs are parametrized
on the circle, Nd = 25 would already have a very high accuracy when the object becomes a circle, considering the
spectral accuracy of RBF interpolation on the circle; in such a scenario, using Nd = 50 data sites would only serve
to increase the rounding errors in the representation of the structure. The values of s2 and s∞for the structure on
the 256× 256 grid for Nd = 50 data sites are the same as those for Nd = 25 data sites.

Grid Size Ns Δt L2 error Order of convergence L∞ error Order of convergence
32× 32 50 2× 10−4 4.7909e-04 2.4700e-03
64× 64 100 1× 10−4 1.5097e-04 1.67 5.4255e-04 2.19

128× 128 200 5× 10−5 9.0802e-05 0.73 3.3020e-04 0.72
Table V. Results of a refinement study with the RBF-IB method with Nd = 0.25Ns data sites. We show the convergence of
the velocity field, with errors measured against the velocity field of a simulation on a 256× 256 grid with Ns = 400 sample

sites, Nd = 100 data sites and Δt = 2.5× 10−5.

Ns Grid Size Δt L2 error Order of convergence L∞ error Order of convergence
50 32× 32 2× 10−4 9.7439e-06 7.0459e-05
100 64× 64 1× 10−4 3.5898e-07 4.76 3.0048e-06 4.55
200 128× 128 5× 10−5 1.2694e-07 1.50 1.4362e-06 1.07

Table VI. Results of a refinement study with the RBF-IB method. We show the convergence in the sample site positions, with
errors measured against the sample site positions of a simulation on a 256× 256 grid with Ns = 400 sample sites, Nd = 100

data sites and Δt = 2.5× 10−5.

5.1.3. Convergence of the RBF-IB method for Nd = 0.25Ns: In the traditional IB method, the number of IB points
depends on the grid spacing h. Typically, the number of IB points is chosen so that the distance between any two
sample sites is always less that 0.5h. In all the tests above, we have maintained that relationship for the sample sites
in the RBF-IB method. In the RBF-IB method, we always use fewer data sites than sample sites, i.e., Nd < Ns,
with the choice of Nd being justified by the results in previous work [17]. Furthermore, in the tests above, we fix
Nd even as we refine the fluid grid. For Nd = 25, this means that as we refine Ns the distance between data sites
increases from 0.8h to 3.2h (at the start of the simulation).

In order to gain intuition on the relationship between Nd and h, we now perform a convergence study (using the
same test problem given above) with increasing values of Nd as h is reduced. To accomplish this, we use values
of Nd = 12, 25, 50, 100 for Ns = 50, 100, 200, 400, i.e., we enforce Nd = 0.25Ns. We use the solution computed
with Nd = 100 and Ns = 400 on a 256× 256 grid as our gold standard, just as we have in all the other tests. Table
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V shows the results for the fluid. Clearly, the errors are higher and the convergence more erratic than for the fixed
Nd = 50 tests previously presented, but varying Nd certainly seems to give better convergence than fixing it to
Nd = 25. However, the convergence in the structure is comparable, with lower errors being achieved than both
Nd = 25 and Nd = 50. This can be seen in Table VI. Unfortunately, the advantages of varying Nd with Ns are
not clear. Using Nd = 50 yields the lowest errors in the fluid on the finest grid level, and reasonably low errors on
the structure for all grid levels. Given the similarity of the errors achieved with Nd = 50 to those achieved with
increasing Nd, we choose the simpler strategy of using a fixed value of Nd = 50 for our tests, though we present
timings with Nd = 25 as well.

5.1.4. Effect of the shape parameter ε: In previous work [17], we found that the RBF shape parameter ε > 0 had
to be selected carefully to achieve spectral accuracy in the representation of the elastic structure. In that work, we
found that small values of ε were ideal for interpolating smooth target shapes and larger ones for rougher target
shapes. In our tests, we found that the errors depended on ε even in the case of fluid-structure interaction, with
smaller values of ε giving the lowest values of se2 and se

∞
on the 256× 256 grid. However, as we mentioned in

our previous work, lower values of ε can make the RBF interpolation matrix more ill-conditioned. While methods
(such as RBF-QR and RBF-RA) have been developed to overcome this poor conditioning [39], they are much
more expensive than forming and inverting the standard RBF interpolation matrix. We thus choose a small value
of ε = 1.2 for all our tests. When using Nd = 100, we use ε = 2.0 (which was verified on a static test case to be
accurate to 12 digits). These are the smallest values we were able to pick without the interpolation matrix becoming
ill-conditioned, a strategy consistent with the one used in our previous work [17].

5.2. Area loss and time-step size in the RBF-IB method:

In this section, we study the area loss in the RBF-IB method in a refinement study. We then explore the maximum
stable time-step size afforded by each IB method.

Ns Grid Size Δt % area loss (Nd = 25) % area loss (Nd = 50) % area loss (Nd = Ns/4)
50 32× 32 2× 10−4 0.0680 0.3081 0.0450
100 64× 64 1× 10−4 0.0047 0.0049 0.0047
200 128× 128 5× 10−5 0.0023 0.0025 0.0025
400 256× 256 2.5× 10−5 0.0015 0.0015 0.0015

Table VII. Percentage area loss in the RBF-IB method as a function of grid size, the number of sample sites Ns and the time
step Δt. The PL-IB method gives area losses similar to the Nd = 50 case, except on the coarsest grid, where the percentage

area loss is three times that of the RBF-IB method.

The PL-IB method generally attempts to maintain an IB point separation distance of 0.5h in order to reduce area
loss over the coarse of the simulation. In the RBF-IB method, while the sample site spacing is initially set at 0.5h,
we initialize the structure with a much coarser data site discretization, with the data site separation being almost
3.2h in some cases. In addition, we use the same strategy for interpolating velocities that we do in the PL-IB
method, i.e., we interpolate velocities to data sites from a 4× 4 patch of fluid around each data site. While this can
result in significant computational savings, it is important to explore the area loss in our discretization. We turn
once again to our standard fluid-structure interaction problem. We run that simulation on successively finer grids
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until time t = 2. For both the RBF-IB method and the PL-IB method, we measure the initial area of the object for
the same initial configuration of points. We then measure the area at time t = 2 and compute the percentage change
in area.

In order to get an accurate estimate of the area in both methods, we fit an RBF interpolant to each object’s
Lagrangian markers (data sites for the RBF-IB method and all the IB points for the PL-IB method). We then
sample that interpolant at a fixed number of points (400 points), and use the trapezoidal rule to compute the area.
As was mentioned earlier, we ensure that the initial ellipse has the same area as the target circle by picking its radii
to be a = 2r and b = 0.5r, where r = 0.1 is the radius of the target circle. The exact area is then π

100 . Our approach
of sampling each object and computing the area with the trapezoidal rule gives an area estimate that agrees with
this value up to 7 digits at t = 0. We record the results of our refinement study in Table VII.

From the table, it is clear that the area loss for fixed Nd = 25, 50 and Nd = 0.25Ns are all close to each other. On
the coarsest grid, it appears that smaller values of Nd result in lower area loss. The area losses for Nd = 50 match
with those given by the PL-IB method (results not shown), except in the case of the coarsest grid, where the PL-IB
method gives almost a 1% area loss. The convergence is initially second-order but quickly saturates. This saturation
is likely due to two sources of error: the first is the interpolation of velocities to the Lagrangian markers, which
does not preserve the divergence-free nature of the fluid velocity; the second is the fact that the time-integration
itself is not specifically designed to preserve area. Nevertheless, it is clear from this study that the RBF-IB method
produces similar area losses to the PL-IB method despite using a smaller number of Lagrangian markers to move
the structure through the fluid.

Another measure of interest is the maximum stable time-step size afforded by each method. We measure this by
increasing the time-step size in small increments and observing the forces produced on the structure in the fluid-
structure interaction test. Using a time-step that is too large can result in the forces blowing up and the simulation
halting. We immediately note that the PL-IB method allows a maximum time-step size of Δt = 2× 10−4 on the
32× 32 grid when Ns = 50 IB points are used, and a maximum time-step size of Δt = 10−4 on the 64× 64 grid
when Ns = 100 IB points are used. We use these values of Δt as the starting point when testing for the time-step
sizes allowed by the RBF-IB method, and increase the value of Δt in increments of 10−4. We found that on the
32× 32 grid, the RBF-IB method allows us to take time-steps that are 3× larger than the time-steps allowed by
the traditional IB method; on the 64× 64 grid, the RBF-IB method can use time-steps that are 1.5× larger than the
time-steps allowed by the traditional IB method. This pattern holds both when Nd = 25 and Nd = 50 data sites are
used.

In simulations involving platelet-like shapes (ellipses that attempt to maintain their elliptical configuration), we
found that the RBF-IB method allows time-step sizes that are 6× larger than those allowed by the PL-IB method
on a 32× 32 grid, and 3× larger than those allowed by the PL-IB method on a 64× 64 grid. This is likely due
to the fact that platelet simulations involve smaller deformations than those seen in the standard fluid-structure
interaction test.
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Figure 2. Change in energy per time-step as a function of time in the RBF-IB method. The figure on the top left shows the
change in energy over a time-step as a function of time for the standard fluid-structure interaction test on a 32× 32 grid. The
figure on the top right shows the same quantity on a 64× 64 grid. We use Nd = 50 data sites for both grid sizes. The inset
plots show the initial spikes corresponding to the change from an ellipse to a circle which are difficult to see in the main

plots.

5.3. Energy Estimates

In this section, we compute energy estimates for the RBF-IB method in the context of our standard fluid-structure
interaction problem. We run our simulation out to time t = 2.0 on two grid sizes, 32× 32 and 64× 64, with time-
step sizes Δt = 2× 10−4 and Δt = 10−4 respectively. We use Nd = 50 data sites.

In this test, one expects the changes in energy to be mainly due to the deformation of the stiff elastic object.
Eventually, the energy of the system must damp out as the elastic object reaches its target configuration. We
compute the change in energy to demonstrate that the energy is bounded within the RBF-IB simulation. The energy
change in a time-step is computed as the sum of the difference in kinetic energy of the fluid over the time-step and
the change in potential energy of the elastic object. This can be written as

ΔE =
∑
fluid

ρun+1 · un+1 −
∑
fluid

ρun · un +Δt
∑
X

F n+1/2 ·
∂X

∂t

n+1/2

(18)

Here, the Lagrangian force F is computed at time level n+ 1/2 at the sample sites. The ∂X
∂t term is computed by

applying the evaluation matrix Es to the velocities obtained at the data sites. This gives us sample site velocities,
allowing us to compute dot products with the F terms.

The results of this test are shown in Figure 2. Both plots show the change in energy of the system for the fluid-
structure interaction problem on a 32× 32 grid (left) and a 64× 64 grid (right). Here, the fluid starts off stationary,
so the initial kinetic energy is zero. However, the elliptical elastic object starts off under tension, since its target
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configuration is a circle. This means that the initial elastic potential energy of the system is high (though negative by
convention). As the elastic object attempts to minimize its elastic potential energy, its deformation drives a change
in the kinetic energy of the fluid, causing the kinetic energy of the fluid to increase from its initial value of zero
to some maximum. However, the elastic object soon attains something close to its reference configuration, causing
the kinetic energy of the fluid to drop sharply. The spikes in both the left and right sides of Figure 2 correspond to
that rise and fall in kinetic energy and the trending of the potential energy to zero on both grids, and can be seen
more clearly in the inset plots. The viscosity of the fluid causes the kinetic energy to eventually damp out almost
completely, with minor perturbations due to possible deformations of the elastic object. The energy of the system
continues to decrease as the object becomes more and more circular. In fact, our estimates show that the change
in energy is negative, indicating that our method is dissipative. The results are similar for Nd = 25 (not shown),
though using more data sites appears to make our method less dissipative on this particular test problem.

5.4. Timings for Platelet simulations

We now present timings of simulations involving platelet-like shapes. The setup here is different from the standard
fluid-structure interaction test. We place ellipses (r = 0.05, a = 2r, b = 0.5r) at the left end of a [0, 2]× [0, 1]

domain that resembles a channel. These ellipses represent platelets, and they attempt to maintain their elliptical
shapes, i.e., their configuration at time t = 0 is their preferred configuration. We apply a background force
that would result in parabolic velocity field in the absence of the platelets, with a density ρ = 1.0 and a non-
dimensionalized viscosity of μ = 8.0. The field has a maximum velocity value of umax = 5.0, with no-slip
boundary conditions on the top and bottom of the domain and periodic boundary conditions at the left and right
ends. A platelet is removed from the domain if its center of mass crosses the location x = 1.9.

Figure 3 shows timings for three grid sizes for each method as a function of the number of platelets (Np) being
simulated. The number of sample sites was fixed at Ns = 100 for both methods and the number of data sites for the
RBF-IB method was set to Nd = 25 for one set of tests and then to Nd = 50 for the next set. We plot the average
time per time-step as a function of the number of platelets; this was computed by running simulations on each grid
for 105 time-steps, and dividing the total wall-clock time by the number of time-steps. We average this over three
runs of each simulation.

While the cost of platelet operations always increases as we increase the number of platelets, the increase in cost
is slower (and the absolute cost) for the RBF-IB method due to the RBF representation. For example, for Np = 60,
the PL-IB method directly spreads forces from, interpolates to, and moves a total of 6000 IB points (twice per
time-step due to the RK2 scheme) while the RBF-IB method with Nd = 25 data sites computes forces at 6000
points, and interpolates velocities to (and moves) only 1620 points twice per time-step. If the number of platelets is
doubled to Np = 120, the PL-IB method now computes forces at, spreads from, interpolates to, and moves 12000
points twice per time-step, whereas the RBF-IB method computes forces at 12000 points, but interpolates velocities
to and moves only 3240 points twice per time-step. The cost of the RBF-IB method shows better than linear scaling
with respect to the number of platelets on all the tested grid sizes for these reasons. Furthermore, it is clear that
there is not much of a difference in computational cost between using Nd = 25 data sites and Nd = 50 data sites.
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Figure 3. Average time per time-step for 105 time-steps of each simulation method as a function of the number of platelets.
In the first row, the figure on the left shows timings on a 64× 32 grid and the figure on the right on a 128 × 64 grid. The
figure below shows timings on a 256 × 128 grid. The time-step was set to Δt = 10−4 for the figures on the top row, and was

set to Δt = 10−5 for the figure on the bottom.

5.4.1. Effect of the RBF representation on the fluid solver In previous work [17], we showed that using an RBF
interpolant for geometric modeling is more computationally efficient (for a given accuracy) than using piecewise
quadratics and finite differences. However, that benefit alone does not explain the computational efficiency of the
RBF-IB method over the PL-IB method that we see in Figure 3.

To fully understand the speedup seen with the RBF-IB method, it is important to understand how the costs are
distributed between the different operations (platelet operations and fluid solves) in both IB methods. We show the
results for Np = 60 platelets in Table VIII. Clearly, as h is reduced, both IB codes spend more time in the fluid
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solver than on platelet operations. However, the RBF-IB method clearly spends less time in the fluid solver than
the PL-IB method does as we refine the background Eulerian grid.

Indeed, this unexpected result is what gives the RBF-IB method an edge even when the cost of fluid solves
dominates the cost of platelet operations. We hypothesize that this may be caused by the RBF representation
producing smoother Lagrangian forces than the finite difference model used in the PL-IB method. Our experiments
show that the RBF-IB code needs fewer iterations in the linear solver used in the pressure projection– anywhere
from 10− 30% fewer than the identical fluid solver used in the PL-IB method, depending on the time-step size and
the grid resolution, with larger savings on finer grids and smaller time-step sizes.

Grid Size % time in fluid solver (RBF-IB) % time in fluid solver (PL-IB)
64× 32 33.7 32.1
128× 64 56.2 58.0
256× 128 65.4 79.3

Table VIII. Percentage of time per time-step spent in fluid solver as a function of grid size by both methods for Np = 60
platelets. The percentages for the RBF-IB method are the same for both Nd = 25 and Nd = 50 data sites, with the total time

for the latter being larger. All results use Ns = 100 sample sites (or IB points in the PL-IB method) per platelet.

5.5. Platelet Aggregation

We now present the results of a platelet aggregation simulation with the RBF-IB simulation. We used the same
boundary conditions, domain size, fluid properties and Poisseuille flow as in the previous subsection, but allow
platelets to form links with other platelets and a portion of the chamber wall (x = 0.4 to x = 0.7) at the sample
sites (Ns = 100 per platelet). We used Nd = 50 data sites per platelet, making the data sites a subset of the sample
sites for convenience of visualization, and then visualize the data sites and the links between sample sites. We
allowed each platelet to form up to 10 links in total, either with the wall or with a neighbor; we allow links to cross
each other for the purpose of simplicity, though this is usually prohibited in a platelet simulation. The simulation
was run on a 128× 64 grid with a time-step of Δt = 10−4.

Each platelet is initially an ellipse with radii a = 0.06 and b = 0.015. We initialize the platelets so that their centers
of masses are at locations (0.5, 0.02), (0.64, 0.02), (0.78, 0.02), (0.55, 0.07), (0.68, 0.07), (0.4, 0.045), (0.23, 0.045)
and (0.65, 0.14). We chose these locations to ensure that three platelets lay on the wall, with three close enough
to bind to the three bound to the wall, and two slightly further away. Each platelet attempts to maintain its initial
elliptical shape. We then started the simulation and ran it to time t = 2.4. The results are shown in Figure 4. The
figure shows both the velocity field and the platelet aggregate for a portion of [0, 2]× [0, 1] domain, the data sites
on each platelet and the links between the sample sites corresponding to those particular data sites on the platelet.

There are two interesting features in Figure 4. The first is that the fluid flow gets diverted around the growing
aggregate, a consequence of the size of the aggregate and the dynamics of the problem that mimics what one
would hope to see in a realistic platelet aggregation simulation. The second feature is that some platelets are quite
deformed, e.g., the platelet with center of mass approximately at (0.5, 0.02), or its neighbor above and to its left.
This is a consequence (and function) of the stiffness of each platelet, the shear rate of the flow and the number
of links we allow each platelet to form. Higher platelet stiffness, lower shear rates and/or fewer (or weaker) links
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Figure 4. Results of a platelet aggregation simulations with the RBF-IB method. The figure shows a zoomed-in snapshot
of a platelet aggregation simulation achieved with the RBF-IB method with a time-step of Δt = 10−4. The snapshot was
taken at simulation time t = 2.4. The simulation was run on a 128× 64 grid on a [0, 2]× [0, 1] domain. The arrows show the

magnitude and direction of the velocity field.

would lead to less deformation. The breaking model for inter-platelet and platelet-wall links can also affect the
mechanics of aggregation. We note that our RBF model did not run into any instabilities in this simulation even
when we ran it out to a time at which all the platelets (except the three closest to the wall) had left the domain.

6. SUMMARY

The IB method, as a numerical methodology for applications involving fluid structure interactions, naturally
lends itself to our problem of interest: simulating platelet aggregation during blood clotting. In this application,
platelets are modeled as immersed elastic structures whose shapes change dynamically in response to blood flow
and chemistry. In previous work [17], we discussed several geometric representations for platelets and compared
them to the representation used within the traditional IB method. We concluded that an RBF geometric model for
platelets would prove advantageous in several ways.

In this work, we explored the ramifications of using the RBF geometric model within the IB method, and compared
the behavior of this new RBF-IB method against that of the traditional IB method. We discussed the issue of
selecting an appropriate shape parameter for the RBF-IB method. We then presented a series of convergence studies
for measuring errors and convergence both in the velocity field and in the representation of the immersed elastic
structure. We went on to compare the computational costs incurred by both methods in the context of platelet
simulations. We then compared the area conservation properties of both methods and also the time-step restrictions
on both. We also remarked on the energy properties of our method.

We conclude the following:
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• The RBF-IB method demonstrates first-order convergence, similar to that shown by the traditional IB method.
• The RBF-IB method can be safely used both with a fixed number of data sites and with an increasing number

of data sites as the background Cartesian grid is refined; the correct strategy is likely problem-specific;
• Through the use of a global interpolant and the dual representation (data sites and sample sites), the RBF-IB

method allows for a decoupling of accuracy in geometric modeling from accuracy in the full fluid solve,
allowing coarse Lagrangian representations when sufficient.

• The RBF-IB method is more computationally efficient than the traditional IB method, both due to the
utilization of a small number of data sites and due to smoother forces being spread into the fluid resulting in
a faster convergence from the fluid solver; and

• The RBF-IB allows for larger time-step sizes than those allowed in the traditional IB method for a given grid
size.

In previous work [38], a sufficient condition for unconditional stability of an implicit IB method was established.
The proof relied on the assumption that the set of points from which IB forces are spread is the same as that to which
grid velocities are interpolated to update IB point positions. The RBF-IB method does not meet that condition, and
it remains to be seen how this would impact an implict version of our method. Finally, an issue with the RBF-IB
method is that it is dependent on the parametrization of the immersed elastic objects. For objects that are not easily
parameterized in terms of circles and ellipses, the use of the RBF model as presented in our work (wherein the
RBFs are restricted to the circle) may not be ideal. In the future, we thus hope to explore the use of RBFs in a
meshfree variational form within the IB method so as to be able to easily evaluate constitutive models on arbitrary
shapes.

Acknowledgments: We would like to acknowledge useful discussions concerning this work within the CLOT
group at the University of Utah, with Professor Boyce Griffith of New York University and with Professor Robert
Guy of the University of California, Davis. The first, third and fourth authors were funded under NIGMS grant
R01-GM090203. The second author acknowledges funding support under NSF-DMS grant 0540779 and NSF-
DMS grant 0934581.

A. ALGORITHM FOR COMPUTING PLATELET FORCES WITH RBFS

We now describe the implementation of the constitutive models outlined in Section 3. We present algorithms for
computing platelet forces in 2D.

Notation: In the description of the algorithms below we use standard matrix-vector operations such as
multiplication as well as non-standard operations like element-by-element multiplication of matrices and vectors
(sometimes called the Hadamard product). We denote this latter operation with the ◦ operator. For example, if J
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and L are Nd × 2 matrices and R is a vector of length Nd then the ith row of J ◦L and R ◦ J are given by

(J ◦L)i,1:2 = [(J)i,1(L)i,1, (J)i,2(L)i,2]

(R ◦L)i,1:2 = [(R)i(L)i,1, (R)i(L)i,2]

where i = 1, . . . , Nd.

We define τ d = D1
λdXd(t), the Nd × 2 matrix of tangent vectors at the data sites at time t and ‖τd‖, the Nd vector

containing the two-norm of each row of τd. The algorithm for computing platelet elasticity is as follows:

1. Initialization (t = t0): After creating and storing the RBF evaluation matrix as in Equation (10) and
differentiation matrices as in Equations (11) and (12), compute for each platelet:

(a) The rest lengths for the tension force at the data sites: l0 = τ d = D1
λdXd(t0).

(b) The bending-resistant force term for the platelet’s initial configuration at the data sites, D4
λsXd(t0).

2. For each time step (t = tk, k ≥ 1), compute for each platelet:

(a) The length of the tangent vectors τ d = D1
λdXd(tk) at the data sites: ‖τd‖; and the unit tangents at the

data sites: τ̂d.

(b) The tension at the data sites, using the constitutive model: T d = kt(‖τd‖ − l0).

(c) The tension force at sample sites: FT
s = D1

λsZd, where Zd = T d ◦ τ̂ d.

(d) The bending force at sample sites: FB
s = −kb

(
D4

λsXd(tk)−D4
λsXd(t0)

)
.

(e) The interplatelet cohesion force from Equation (17) at the sample sites: FC
s .

(f) The total Lagrangian force at the sample sites: F s = FT
s + FB

s + FC
s .

B. TIME-STEPPING FOR THE PL-IB METHOD

Here, we present the steps of the traditional Immersed Boundary algorithm when used with the RK2 time-stepping
scheme from [37].

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International
Journal for Numerical Methods in Fluids, published by Wiley. Copyright restrictions may apply. doi: 10.1002/fld.4061



24

1. Advance the structure to time level tn+1/2 using the current velocity field on the grid un
g . This is done by

updating each IB point Xq (for each q) using the equation

Xn+1/2
q = Xn

q +
Δt

2
Un

q ≡ Xn
q +

Δt

2

∑
g

un
g δh(xg −Xn

q )h
2, (19)

where h is the fluid grid spacing and δh is a discrete approximation to a two-dimensional δ-function. Here,
xg and Xn+1/2

q are the coordinates of grid point g and IB point q, respectively

2. The resultant F n+1/2
q of all of the force contributions that act on an IB point Xn+1/2

q is calculated for each
q.

3. These forces are distributed to the Eulerian grid used for the fluid dynamics equations using a discrete version
of Equation (3):

fn+1/2
g ≡ fn+1/2(xg) =

∑
q

F n+1/2
q δh(xg −Xn+1/2

q )dq. (20)

Here, F n+1/2
q is the Lagrangian force (per unit q) on the IB point, dq is the increment in parameter q between

consecutive discrete sample sites, and δh is the same approximate δ-function as used in Equation 19.

4. With the fluid force density fn+1/2
g now known at each grid point, the fluid velocity is updated taking a

half step (Δt/2) with a discrete Navier-Stokes solver. As in [37], we use a fractional-step projection method.
First, a backward Euler discretization of the momentum equations is used. The pressure that enforces discrete
incompressibility is determined [40]. This gives us the velocity field u

n+1/2
g , the mid-step approximation

required in an RK2 method.

5. Using the mid-step fluid velocity u
n+1/2
g and the mid-step IB point positions Xn+1/2

q , update the IB points
Xn

q for each q to the time level tn+1 using

Xn+1
q = Xn

q +ΔtUn+1/2
q ≡ Xn

q +Δt
∑
g

un+1/2
g δh(xg −Xn+1/2

q )h2, (21)

where δh is the same approximate δ-function we have used throughout.

6. Update the velocity un
g to time-level tn+1 using the mid-step velocity u

n+1/2
g and the force f

n+1/2
g . The

mid-step velocities are advected, while a Crank-Nicolson scheme is used for time-stepping the momentum
equations. The pressure projection gives us the discretely-incompressible velocity field un+1

g . Note that this
step could have been performed as soon as un+1/2

g was computed. It is independent of step (5).

C. TIME-STEPPING FOR THE RBF-IB METHOD

The RBF-IB method is time-stepped using the same RK2 method as above, with a few changes to incorporate data
sites and sample sites.
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1. Advance the structure to time level tn+1/2 using the current velocity field un. This is done by updating the
data sites (Xd)

n
j by a discrete analog of Equation (4)

(Xd)
n+1/2
j = (Xd)

n
j +

Δt

2
(Ud)

n
j ≡ (Xd)

n
j +

Δt

2

∑
g

un
g δh(xg − (Xd)

n
j )h

2. (22)

2. Generate a new set of sample sites Xs(tn+1/2) by applying the RBF evaluation operator to the data sites
X

n+1/2
d := Xd(tn+1/2), i.e.,

Xs(tn+1/2) = EsXd(tnew). (23)

3. The total force at the sample sites F n+1/2
s is calculated using the algorithm from Appendix A.

4. These forces are distributed to the Eulerian grid used for the fluid dynamics equations using a discrete version
of Equation (3):

f
n+1/2
g ≡ f

n+1/2(xg) =
∑
q

F n+1/2
q δh(xg − (Xs)

n+1/2
q )dq. (24)

Here, xg and (Xs)
n+1/2
q are the coordinates of grid point g and sample site q, respectively, F n+1/2

q is the
Lagrangian force (per unit q) on the sample site, dq is the increment in parameter q between consecutive
discrete sample sites, and δh is the same approximate δ-function as used in Equation 22.

5. With the fluid force density fn+1/2
g now known at each grid point, the fluid velocity is updated taking a half

step (Δt/2) with a discrete Navier-Stokes solver. Again, we use a fractional-step projection method, with
a backward Euler discretization of the momentum equation, and a projection to determine the pressure that
enforce incompressibility [40]. This gives us the velocity field u

n+1/2
g , the mid-step approximation required

in an RK2 method.

6. Using the mid-step fluid velocity u
n+1/2
g and the mid-step data site positions (Xd)

n+1/2
j , update the data

sites (Xd)
n+1/2
j for each j to the time level tn+1 using

(Xd)
n+1
j = (Xd)

n
j +Δt(Ud)

n+1/2
j ≡ (Xd)

n
j +Δt

∑
g

un+1/2
g δh(xg − (Xd)

n+1/2
j )h2, (25)

where δh is the same approximate δ-function we have used throughout.

7. Update the velocity un
g to time-level tn+1 using the mid-step velocity u

n+1/2
g and the force f

n+1/2
g . The

mid-step velocities are advected, while a Crank-Nicolson scheme is used for time-stepping the momentum
equations. The pressure projection gives us the discretely-incompressible velocity field un+1

g .

Observe that the data sites are updated twice per time-step in the RK2 scheme, but the sample sites are only
generated once. Since the data sites are typically a fraction of the number of IB points from the PL-IB method, the
computational cost is significantly lower for the RBF-IB method, even factoring in the interpolation and the sample
site generation.
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