
Boise State University Boise State University

ScholarWorks ScholarWorks

Computer Science Faculty Publications and
Presentations Department of Computer Science

2018

Secure Similar Sequence Query on Outsourced Genomic Data Secure Similar Sequence Query on Outsourced Genomic Data

Ke Cheng
Boise State University

Yantian Hou
Boise State University

Liangmin Wang
Jiangsu University

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can
be found online at ASIACCS '18: Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, published by Association for Computing Machinery. Copyright restrictions may apply. doi: 10.1145/
3196494.3196535

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.1145/3196494.3196535
https://doi.org/10.1145/3196494.3196535

Secure Similar SequenceQuery on Outsourced Genomic Data

Ke Cheng*
Boise State University
Boise, Idaho, USA

kecheng@boisestate.edu

Yantian Hou
Boise State University
Boise, Idaho, USA

yantianhou@boisestate.edu

Liangmin Wang
Jiangsu University

Zhenjiang, Jiangsu, China
wanglm@ujs.edu.cn

ABSTRACT

The growing availability of genomic data is unlocking research

potentials on genomic-data analysis. It is of great importance to

outsource the genomic-analysis tasks onto clouds to leverage their

powerful computational resources over the large-scale genomic se-

quences. However, the remote placement of the data raises personal-

privacy concerns, and it is challenging to evaluate data-analysis

functions on outsourced genomic data securely and efficiently. In

this work, we study the secure similar-sequence-query (SSQ) prob-

lem over outsourced genomic data, which has not been fully in-

vestigated. To address the challenges of security and efficiency,

we propose two protocols in the mixed form, which combine two-

party secure secret sharing, garbled circuit, and partial homomor-

phic encryptions together and use them to jointly fulfill the secure

SSQ function. In addition, our protocols support multi-user queries

over a joint genomic data set collected from multiple data owners,

making our solution scalable. We formally prove the security of

protocols under the semi-honest adversary model, and theoreti-

cally analyze the performance. We use extensive experiments over

real-world dataset on a commercial cloud platform to validate the

efficacy of our proposed solution, and demonstrate the performance

improvements compared with state-of-the-art works.

CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols; Se-

curity protocols; Privacy protections;

KEYWORDS

Secure similar sequence query, genomic data outsourcing, mixed

protocols

ACM Reference Format:

Ke Cheng*, Yantian Hou, and Liangmin Wang. 2018. Secure Similar Se-

quence Query on Outsourced Genomic Data. In ASIA CCS’18: 2018 ACM

Asia Conference on Computer and Communications Security, June 4–8, 2018,

Incheon, Republic of Korea. ACM, New York, NY, USA, 17 pages. https:

//doi.org/10.1145/3196494.3196535

*Ke Cheng is also a member of Department of Computer Science at Anhui University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS’18, June 4–8, 2018, Incheon, Republic of Korea

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196535

1 INTRODUCTION

The rapid advance of the gene-sequencing technique is generating

a huge amount of genomic data which holds the key to the under-

standing of many diseases. The cost of sequencing a human genome

is about $1,000 today and is estimated to drop to only $100 in near

future with the aid of next-generation sequencing techniques [1].

The growing availability of genomic data is unlocking research po-

tentials on genome-data query and analysis [21] in medical domain.

Similar Sequence Query (SSQ) on genomic data has been utilized

as a cornerstone in many gene therapies to identify individuals

with close genomic data. Among the indicators of genomic simi-

larity, edit distance is regarded as one of the most important and

frequently-used metrics for biomedical research [29].

However, genomic information is highly sensitive, thusmalicious

analysis over genomic data could lead to terrifying privacy leakage.

It has been reported that researchers could identify a patient by

analyzing his/her genome sequence [32], or infer the close relatives

given a target person’s gene sequence [19]. To address the privacy

issues, several works have been proposed to securely perform SSQ

operations on genomic data. Researchers used the secure multi-

party computation model (SMC) to perform a query operation

over the genomic data set without revealing the query information

[2, 3, 35, 36]. However, these works produce a large amount of user-

side computations and communications, which are too unwieldy

to be practical.

To free users from these burdens, another paradigm that is based

on secure computing outsourcing is investigated. In this paradigm,

the data owner securely outsources data to the cloud server, which

will then process user’s queries by searching within the data set in

a privacy-preserving manner. Several privacy-preserving protocols

[5, 9, 14] are proposed to compute the edit distance between two

sequences based on homomorphic encryptions. Though correct-

ness demonstrated, these approaches raise performance concerns

primarily due to the length of genomic sequences.

To address this issue, in a recent piece of work [23], Kim et

al. developed a secure approximate edit distance scheme aiming

at reducing the computation overhead on cloud based on the set-

difference metric, which enables parallel processing in computation.

However, the query user still suffers from heavy overhead. In ad-

dition, all these works heavily rely on homomorphic encryption

primitives, which are costly to make these schemes scalable to

support multiple data owners and users.

In this work, we study the secure similar sequence query prob-

lem over outsourced genomic data. Our goal is to develop a secure

SSQ solution that is efficient over large-volume genomic data. To

this end, we propose two protocols in the mixed form [12], which

combine two-party secret sharing, garbled circuit, and partial ho-

momorphic encryptions together and use them to jointly fulfill the

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

secure SSQ function. Our protocols could perform k-nearest se-
quence queries securely by guaranteeing the privacy of outsourced

data and queries. To improve our protocols’ performance, we em-

ploy the lightweight additive secret sharing method to evaluate

the majority of secure-computation functions, while reducing the

usage of homomorphic encryptions to the minimum. The computa-

tional overhead on query users is negligible and the communication

overhead is only one-time. In addition, our protocols support mul-

tiple query-generating users and data owners, yielding a scalable

solution in advancing secure SSQ in practice.

Challenges.We observe that finding the minimum and selecting

the branch are key operations in the process of edit distance com-

putation. During these processes, the information regarding the

index of the result should not be revealed, because some confi-

dential information, such as the access patterns could be leaked

with indices disclosed. Although there are some works tackling

these problems, their performance is not satisfactory, since multiple

costly encryptions, decryptions, and evaluations on ciphertexts are

needed [10, 13]. Also, their schemes didn’t consider the scalability

issue in multi-user scenarios.

In addition, our mixed protocols utilize different types of sub-

protocols, which use different message spaces. For example, in the

offline phase of our secure shuffling protocol, a conversion from

message space of additive secret sharing to that of Paillier encryp-

tion is needed. Though straightforward to convert the message

space while guaranteeing the correctness of protocols in evaluating

corresponding functions, it is challenging to guarantee security

during this process.

Our Contribution. By addressing the aforementioned challenges,

we propose two protocols that could securely and efficiently com-

pute k nearest sequences given queries from multiple users. Specif-

ically, our contributions are:

• In combination with multiple secure computation methods

including secret sharing, garbled circuits, and homomorphic

encryption, we present a set of secure hybrid sub-protocols,

which can be used as building blocks for secure similar se-

quence query.

• Based on our building blocks, we implement two secure SSQ

protocols with exact edit distance (SSQ-I) and approximate

edit distance (SSQ-II). Our protocols allow secure multi-user

SSQ on a joint genomic database collected from different data

sources. By shifting a large portion of computational work-

load including the homomorphic encryptions to the offline

phase, we could remarkably improve the query performance.

• We formally prove that our protocols are secure under semi-

honest adversaries model. We present an extensive experi-

mental evaluation of the proposed protocols that are imple-

mented on a commercial cloud platform, showing that the

proposed methods scale well for large data sets, and clearly

outperform state-of-the-art works.

The rest of the paper is organized as follows. Section 2 reviews

edit distance computation and some secure computation primitives.

Section 3 gives an overview of our system framework. A set of

privacy-preserving sub-protocols and their implementations are

provided in Section 4. In Section 5, the two proposed SSQ protocols

are explained in detail. We analyze the computational complexity

and the security of the proposed protocols in Section 6. The pro-

posed protocols are evaluated through extensive simulations in

Section 7. We make a discussion and review some related work in

Section 8 and Section 9, and make a conclusion in Section 10.

2 PRELIMINARIES

2.1 Edit Distance Protocol for Genomic
Sequences

Edit distance is a measure to quantify how dissimilar two strings of

characters are to one another by counting the minimum number of

edits required to transform one string into the other. Wagner-Fisher

algorithm is a common method for computing edit distance based

on dynamic programming, we refer the reader to Appendix A for

details.

However, the overhead for computing the exact genome edit

distance in a privacy-preserving manner is too large because of

large datasets and long sequences. There is a unique feature in

human genome sequences that two average human individuals

are extremely similar at the genetic level (about 99.5%) [36]. So

researchers, in recent years, have developed a series of approximate

edit distance protocols based on this observation [3, 23, 36]. Next,

we briefly describe an advanced approximate algorithm1 [3].

First, the algorithm converts the edit-distance function (ED)

into a block-wise approximation. Each sequence Si in the data-

base and query Q are broken into t short length (less than 15)

blocks (Si,1, . . . , Si,t) and (Q1, . . . ,Qt). Then the approximate edit-

distance between Si and Q can be computed as follows:

ApproxED(Q, Si) ≈
t∑
l=1

ED(Ql , Si,l). (1)

For genomic data, since each block has only a few distinct values, the

size of the set of values Tl = {Si,l : i = 1, . . . ,m} is much smaller

thanm. Furthermore, there is a high probability that the blockQl is

in the set Tl . Let v =max(|Tl | : l = 1, . . . , t), Tl = {ul,1, . . . ,ul,v },
define a bit variable χl, j ← (ul, j == Ql ?1 : 0) to indicate whether

ul, j is equal to Ql . In the case where Ql � Tl , χl, j = 0 will bring

the error. However, [3] verified that the error rate is minor on real

genomic data. Thus, we have

ED(Ql , Si,l) ≈
v∑
j=1

χl, j · ED(ul, j , Si,l), (2)

then

ApproxED(Q, Si) ≈
t∑
l=1

v∑
j=1

χl, j · ED(ul, j , Si,l). (3)

Note that ED(ul, j , Si,l) is not relevant to the query Q , so it can be

pre-computed.

2.2 Secure Computation

2.2.1 Additive Secret Sharing and Multiplication Triplets. For the

additive secret sharing [12], an �-bit value x is shared additively

in the ring Z2� as the sum of two values. For an �-bit additive

secret sharing 〈x〉 of x , we have 〈x〉A + 〈x〉B ≡ x (mod 2�) where

〈x〉A , 〈x〉B ∈ Z2� and 〈x〉
α is only known by partyα (α ∈ {A,B}).

We denote a shared value x as 〈x〉. To recover (Rec(·, ·)) the value

1This work won the 1st place for accuracy and speed in the recent iDASH competition
(http://www.humangenomeprivacy.org/2016/).

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

x , party A (B) sends 〈x〉A (〈x〉B) to party B (A) who computes

x = 〈x〉A + 〈x〉B . The basic operation on additive secret sharing

values can be defined as follows:

Addition. To compute the sum of two shared values 〈x〉 and
〈y〉, 〈z〉 = 〈x + y〉 = 〈x〉 + 〈y〉 can be defined as: party α locally

computes 〈z〉α = 〈x〉α + 〈y〉α . To compute the sum of a shared

values 〈x〉 and a public constant c , 〈z〉 = 〈x + c〉 = 〈x〉 + c can be

defined as: party A locally computes 〈z〉A = 〈x〉A + c , party B

locally computes 〈z〉B = 〈x〉B .
Multiplication. 〈z〉 = 〈x〉 · 〈y〉: In order to perform multipli-

cation, we take advantage of pre-computed multiplication triplets

[4, 12] of the form 〈c〉 = 〈a〉 · 〈b〉: party α locally computes 〈e〉α =

〈x〉α − 〈a〉α and 〈f 〉α = 〈y〉α − 〈b〉α . Both parties run e=Rec(〈e〉A ,

〈e〉B) and f =Rec(〈f 〉A ,〈f 〉B), then partyA sets 〈z〉A = f · 〈a〉A+

e · 〈b〉A + 〈c〉A and B sets 〈z〉B = e · f + f · 〈a〉B +e · 〈b〉B + 〈c〉B .
In the remainder of this paper, the additive secret sharing is

abbreviated as secret sharing or sharing for brevity.

2.2.2 Yao’s Garbled Circuits. Yao’s garbled circuits allow two

parties holding inputs x and y, respectively, to evaluate an arbitrary

function f (x ,y)without leaking any information about their inputs

beyond what is implied by the function output [25]. Three simple

circuits will be used in this paper to construct secure protocols. An

ADD circuit takes two integers x and y as inputs and outputs an

integer z, such that z = x +y. A CMP circuit takes x and y as input,

and outputs 1 if x > y and 0 otherwise. An EQ circuit takes x and

y as input, and outputs 1 if x == y and 0 otherwise.

2.2.3 Paillier Cryptosystem with Distributed Decryption. Paillier

cryptosystem was first proposed by [31], which is an additive ho-

momorphic encryption scheme. Hazay et al. adapted the Paillier

cryptosystem to separate private key sk into two shares sk(1), sk(2)

to support distributed decryption [17]. Let Epk (·) and Dsk (·) be the

encryption and decryption function, where public key pk is given

by (N ,д) and N is a product of two large primes and д is in Z∗
N 2 .

Also, let PDecsk (1) (·), PDecsk (2) (·) be the partial decryption function

with partial private key sk(1), sk(2). Given a,b ∈ ZN , the Paillier

cryptosystem with distributed decryption exhibits the following

properties:

Distributed Decryption2: a′ ← PDecsk (1) (Epk (a)) and a ←

PDecsk (2) (a′).

HomomorphicAddition:Dsk (Epk (a)·Epk (b) mod N 2)= (a+

b) mod N , Dsk (Epk (a)
b mod N 2) = a · b mod N .

3 PROBLEM OVERVIEW

In this section, we formalize the system model, outline the prob-

lem statement, and describe the security model. For references, a

summary of notations is given in Table 1.

3.1 System Model

As shown in Figure 1, our systemmodel involves two non-colluding

servers, multiple data owners and a set of query users.

(1) Two-Servers:We consider the existence of two non-colluding

cloud servers, denoted by Server A and Server B. Both

servers have the ability to maintain a database contributed by

2The original work presents this process in a different and general form.

Table 1: The Summary of Notations

Notations Definitions

〈x〉
a pair of secret shares of the value x

i.e., (〈x〉A , 〈x〉B)

〈x〉A /〈x〉B the share of x stored in A or B

pk public key in Paillier

sk(1)/sk(2) partial private keys in Paillier

[x]pk Encrypted data x under pk

PDecsk (i) (·) Partial decryption with sk(i), i = 1/2

Figure 1: System Model.

multiple data owners. The two servers cooperate to answer

queries from multiple query users in a privacy-preserving

manner.

(2) Data owners: Data are generated or collected by multiple

data owners, they would upload the secret sharing data to

Server A and Server B.

(3) Query users: The goal of query users is to request the two-

servers to perform some queries over the secret sharing

data. After the queries has been performed, the result can

be obtained by the requesting users.

Note that we use the two-server architecture which has been widely

used in recent works [11, 13, 26, 28]. We don’t use the single-server

model due to its difficulty in fulfilling various computation opera-

tions in our system while achieving good efficiency and security

performances simultaneously.

3.2 Problem Statement

In this part, we first describe how to encode the genomic sequence

in our system and then present the problem statement.

Since genomic sequences are represented by the four letter al-

phabet of nucleotides {A, C, G, T}, each letter can be represented

as an integer and each genomic sequence can be represented as

an integer vector. For instance, we can use the integers 0,1,2,3 to

represent A,C,G,T, then the sequence "ATCGC" can be expressed

as [0,3,1,2,1]. Actually, in our scheme, any arbitrary integer works

without influencing the correctness of the result, but thereafter we

will use the above encoding scheme for uniformity and the genomic

sequences in the remainder of this paper refer to encoded genomic

sequences.

We consider w data owners DO1, · · · ,DOw (e.g. hospitals, re-

search institutions) who agree to construct a joint genomic database

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

D based on the sequences they possess. For reasons of privacy, each

sequence Si is divided into two shares 〈Si 〉
A and 〈Si 〉

B locally

using additive secret sharing, and then each data owner sends the

two shares to serverA and server B, respectively. Consider a query

user (e.g. physician) who wants to query the top-k similar genomic

sequences corresponding to query Q . Refer to [3, 36], we use edit

distance as the metric to measure the similarity between different

genomic sequences. In order to preserve the query privacy, the user

uses additive secret sharing to partition the queryQ into two shares

〈Q〉A and 〈Q〉B , then send them to two servers. After receiving

the query request, the two servers run a series of secure protocols

to compute the edit distances and return the indices of top-k results

(i.e., the indices of k-nearest sequences) I = {Ij : 1 ≤ j ≤ k} to the

user without revealing any private information about the genomic

database D and the query Q .

3.3 Security Model

Adversary Model. We consider the problem of secure similar

sequence query under the semi-honest adversary model. That is, we

assume that parties are semi-honest (also referred to as honest-but-

curious) ones who correctly follow the protocol specification, yet

attempt to learn additional information by analyzing the transcript

of messages received during the execution. In addition, our work

also assumes that the two servers do not collude.

Desired Privacy Properties. Recall that our protocols aim to

securely compute edit distance and return the indices of k nearest

neighbors to query users. Our protocols should be secure under the

semi-honest adversaries model. Our query schemes should protect

data privacy, query privacy, and data access patterns. Specially, A

and B should know nothing about the exact data of D except the

database size and sequence length. In addition, A and B should

know nothing about the queryQ except the sequence length. Access

patterns to the data, such as the indices of the top-k query results,

should not be revealed toA andB to prevent any inference attacks.

4 BUILDING BLOCKS

In this section, we present a set of generic sub-protocols that will

be used in constructing our proposed protocols in Section 5. Specif-

ically, we realize the following five functions on secret sharing data:

1) secure shuffling; 2) secure branching; 3) secure minimum com-

puting; 4) secure exact edit distance computing; 5) secure sequence

comparing. These sub-protocols could also be used in other types

of secure computing protocols, e.g., secure k-NN query [13] and

trajectory similarity computing [26]. Recall that we assume the

existence of two semi-honest servers A and B such that the Pail-

lier’s partial private key (introduced in Section 2.2.3) sk(1) is known

only to server A and sk(2) only to server B whereas pk = (N ,д)
is treated as public. In the following protocols, unless explicitly

stated, we assume all operations to be performed are on the ring

Z2� . In the following, we first detail the secure shuffling protocol,

then realize other functions one-by-one.

4.1 Secure Shuffling (SSF) Protocol

Consider an original sequence x=[x1, . . . ,xn] is additively secret-

shared into two shares 〈x〉A = [〈x1〉
A , . . . , 〈xn〉

A] and 〈x〉B =

[〈x1〉
B , . . . , 〈xn〉

B]. Secure Shuffling (SSF) protocol is to realize

the function that permutes the original sequences 〈x〉A and 〈x〉B

into the new sequences 〈x′〉A and 〈x′〉B . During this protocol, no

information regarding x is revealed to A and B. Inspired by the

previous work [26], we permute the original sequences 〈x〉A =

[〈x1〉
A , . . . , 〈xn〉

A] and 〈x〉B = [〈x1〉
B , . . . , 〈xn〉

B] into the new

sequences 〈x′〉A = [
〈
xπ (π ′(1))

〉A
, . . . ,

〈
xπ (π ′(n))

〉A
] and 〈x′〉B =

[
〈
xπ (π ′(1))

〉B
, . . . ,

〈
xπ (π ′(n))

〉B
] by two random permutation func-

tions π (only hold by A) and π ′ (only hold by B). As long as A

and B do not know each other’s permutation function, neither of

them could recover the original indices of 〈x〉. In consideration of

performance, SSF protocol is divided into two phases: offline and

online. The offline phase generates some common assistant values

which are independent of the input of protocol, while online phase

can achieve the shuffle in a single interaction between A and B

with the help of the assistant values.

Algorithm 1 shows the main steps in the offline phase. Note

that in this phase, the operations are performed on the group ZN .

At the beginning of this protocol, Server A chooses n random

integers u1, . . . ,un ∈ Z2� to form a vector u and chooses n random

integers r1, . . . , rn ∈ {0 · 2� , · · · , (K − 2) · 2�}(K =
⌊
N /2�

⌋
) to form

a vector r. In this step, we make a conversion frommessage space of

additive secret sharing to that of Paillier encryption by introducing a

group of random values of ri . Then,A constructs a sequence L0 ←
[Epk (u1+r1), . . . ,Epk (un+rn)]whereui +ri is encrypted under the
public keypk , and send it toB. Thanks to the property of distributed

decryption in the improved Paillier cryptosystem [17], B is unable

to decrypt L0 without the help ofA. Upon receiving L0,B generates

a random vector v= [v1, . . . ,vn](vi ∈ Z2�) and randomizes L0 by
v for obtaining L1 ← [Epk (u1 + v1 + r1), . . . ,Epk (un + vn + rn)].
After that, B permutes L1 using a random permutation function

π ′ and send it to A. Similarly, a random permutation function

π is selected by A to permute L1. Then, A uses partial private

key sk(1) to partially decrypt L1 and sends the partial ciphertext

L2 to B. Finally, B decrypts L2 by sk(2) to get L3 = [uπ (π ′(1)) +

vπ (π ′(1)) + rπ (π ′(1)), . . . ,uπ (π ′(n)) +vπ (π ′(n)) + rπ (π ′(n))], and then

eliminates rπ (π ′(i)) bymodulus operations for getting 〈x′〉B = −(L3

mod 2�) = [−uπ (π ′(1)) −vπ (π ′(1)), . . . ,−uπ (π ′(n)) −vπ (π ′(n))].

Next, we describe how to implement the online phase of SSF

protocol in the Algorithm 2. The input in this phase is a secret

sharing sequence 〈x〉 i.e., A inputs 〈x〉A = [〈x1〉
A , · · · , 〈xn〉

A]

and B inputs 〈x〉B = [〈x1〉
B , · · · , 〈xn〉

B]. Note that at this point,

A holds π , u and B holds π ′, v, where u, v are the assistant val-

ues. To start with, A additively masks each 〈xi 〉
A with ui and

assembles them in the sequence L4, such that L4 ← [〈x1〉
A +

u1, . . . , 〈xn〉
A + un]. This prevents B from learning 〈xi 〉

A . Af-

ter receiving L4, B accumulates L4, 〈x〉
B , v in an element-wise

manner to get L5 = [x1 + u1 + v1, . . . ,xn + un + vn]. Then, L5 is
permuted by π ′ and sent back toA. Finally,A uses π to permutate

L5 again. So the protocol ends withA holding 〈x′〉A = [xπ (π ′(1))+

uπ (π ′(1))+vπ (π ′(1)), . . . ,xπ (π ′(n))+uπ (π ′(n))+vπ (π ′(n))] andB hold-

ing 〈x′〉B = [−uπ (π ′(1)) −vπ (π ′(1)), . . . , −uπ (π ′(n)) −vπ (π ′(n))], i.e.,

the permuted sequence 〈x′〉.

We should note that the performance of our protocol in the offline

phase can be improved by a universal data packing technology, we

refer the reader to [6] for details. As for the online part, our protocol

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

Algorithm 1 The Offline Phase of Secure Shuffling Protocol

Input: None (A holds pk, sk(1); B holds pk, sk(2))

Output: B outputs 〈x′〉B = [
〈
x ′1
〉B
, · · · ,

〈
x ′n

〉B
]

1: A:
2: Pick n random integers u1, . . . , un ∈ Z2� , u =[u1, . . . , un]

3: Pick n random integers r1, . . . , rn ∈ {0 · 2�, 1 · 2�, · · · ,

(K − 2) · 2� }(K =
⌊
N /2�

⌋
), r =[r1, . . . , rn]

4: L0 ← [Epk (u1 + r1), . . . , Epk (un + rn)]

5: Send L0 to B

6: B:

7: Receive L0 from A

8: Pick n random integers v1, . . . , vn ∈ Z2�
9: v =[v1, . . . , vn]

10: L1 ← [Epk (u1 + r1) · Epk (v1), . . . , Epk (un + rn) · Epk (vn)]

= [Epk (u1 + v1 + r1), . . . , Epk (un + vn + rn)]

11: Generate a random π ′, then permute L1 by π
′:

L1 ← [Epk (uπ ′(1) + vπ ′(1) + rπ ′(1)), . . . ,

Epk (uπ ′(n) + vπ ′(n) + rπ ′(n))]

12: Send L1 to A

13: A:

14: Receive L1 from B

15: Generate a random π , then permute L1 by π :

L1 ← [Epk (uπ (π ′(1)) + vπ (π ′(1)) + rπ (π ′(1))), . . . ,

Epk (uπ (π ′(n)) + vπ (π ′(n)) + rπ (π ′(n)))]

16: Partial decrypt L1 with PDecsk (1) (·) to obtain L2
17: Send L2 to B

18: B:

19: Receive L2 from A

20: Decrypt L2 with PDecsk (2) (·) to obtain:

L3 ← [uπ (π ′(1)) + vπ (π ′(1)) + rπ (π ′(1)), · · · , uπ (π ′(n))+

vπ (π ′(n)) + rπ (π ′(n))]

21: 〈x′ 〉B ← [
〈
x ′1

〉B
, · · · ,

〈
x ′n

〉B
] = −(L3 mod 2�)

= [−uπ (π ′(1)) − vπ (π ′(1)), . . . , −uπ (π ′(n)) − vπ (π ′(n))]

enjoys excellent performance since it only requires one interaction

and involves no cryptographic operation.

4.2 Secure Branching (SBC) Protocol

We assume that A inputs a set of shared values 〈x1〉
A , 〈x2〉

A ,

〈y1〉
A , 〈y2〉

A and B inputs another part 〈x1〉
B , 〈x2〉

B , 〈y1〉
B ,

〈y2〉
B . Secure Branching (SBC) protocol is to realize the function

that securely executes the following conditional statement on secret

sharing data:

if(x1 > x2) then y ← y1 else y ← y2.
The output of the protocol is in the form of secret sharing, i.e.,

A outputs 〈y〉A and B outputs 〈y〉B . During this process, no

information regarding x1,x2,y1, and y2 is revealed to Server A

and Server B. Here, we construct an efficient mixed SBC proto-

col based on the SSF protocol. The main steps involved in SBC

protocol are shown in Algorithm 3. By the SSF protocol, Server

A and Server B jointly use the permutation function π (π ′(·))

to shuffle the secret sharing sequences [〈x1〉 , 〈x2〉] to get a new

one [
〈
xπ (π ′(1))

〉
,
〈
xπ (π ′(2))

〉
]. Then, the same permutation func-

tion π (π ′(·)) is applied to [〈y1〉 , 〈y2〉] for obtaining [
〈
yπ (π ′(1))

〉
,〈

yπ (π ′(2))

〉
]. After shuffling, a ADD-CMP circuit is used to com-

pare
〈
xπ (π ′(1))

〉
and

〈
xπ (π ′(2))

〉
. As depicted in Figure 2(a), the

anatomy of ADD-CMP is very simple as it only consists of two ADD

Algorithm 2 The Online Phase of Secure Shuffling Protocol

Input: A inputs 〈x〉A = [〈x1〉
A , · · · , 〈xn〉

A](A holds π , u)

B inputs 〈x〉B = [〈x1〉
B , · · · , 〈xn〉

B] (B holds π ′, v)

Output: A outputs 〈x′〉A = [
〈
x ′1
〉A
, · · · ,

〈
x ′n

〉A
]

1: A:

2: L4 ← [〈x1〉
A , . . . , 〈xn〉

A]

3: Mask L4 by u to get:

L4 ← [〈x1〉
A + u1, . . . , 〈xn〉

A + un]
4: Send L4 to B

5: B:

6: Receive L4 from A

7: Compute L5 ← L4 + 〈x〉B + v to get

L5 = [x1 + u1 +v1, . . . ,xn + un +vn]
8: Permute L5 by π ′:

L5 ← [xπ ′(1) + uπ ′(1) + vπ ′(1), . . . , xπ ′(n) + uπ ′(n) + vπ ′(n)]

9: Send L5 to A

10: A:

11: Receive L5 from B

12: Permute L5 by π to obtain

〈x′〉A = [
〈
x ′1
〉A
, · · · ,

〈
x ′n

〉A
] = [xπ (π ′(1)) + uπ (π ′(1)) +

vπ (π ′(1)), . . . ,xπ (π ′(n)) + uπ (π ′(n)) +vπ (π ′(n))]

circuits and a CMP circuit. One ADD circuit takes
〈
xπ (π ′(1))

〉A
and

〈
xπ (π ′(1))

〉B
as inputs while the other takes

〈
xπ (π ′(2))

〉A
and〈

xπ (π ′(2))

〉B
as inputs, then the two outputs serve as the inputs of

the CMP circuit. In this way, ADD-CMP outputs 1 if xπ (π ′(1)) >

xπ (π ′(2)) and 0 otherwise. Specifically, the circuit evaluator runs

oblivious transfer (OT) protocol with the circuit constructor to obliv-

iously obtain the garbled input corresponding to its private input,

then evaluates the garbled circuit to get the final result. If the result

is public, the evaluator directly sends it to the constructor. Note

that in this protocol,A or B can be either the circuit constructor or

the circuit evaluator and the output θ is public to A and B. Finally,

based on the output of theADD-CMP circuit, ServerA and ServerB

separately determine the final values 〈y〉A and 〈y〉B , i.e., if θ == 1

then 〈y〉α ←
〈
yπ (π ′(1))

〉α
else 〈y〉α ←

〈
yπ (π ′(2))

〉α
(α ∈ {A,B}).

(a) ADD-CMP (b) EQ-ADD

Figure 2: The structure of circuits

4.3 Secure Minimum Selection (SMS) Protocol

Let us assume that A inputs 〈x〉A = [〈x1〉
A , . . . , 〈xn〉

A] and

B inputs 〈x〉B = [〈x1〉
B , . . . , 〈xn〉

B]. Secure Minimum Selection

(SMS) protocol is to realize the function that A outputs 〈xmin〉
A

and B outputs 〈xmin〉
B , where xmin = min(x1, · · · ,xn). In the

process, no information regarding the values of x = [x1, · · · ,xn] is
revealed to A and B. Here, we construct an efficient mixed SMS

protocol based on the SSF protocol. The main steps involved in the

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

Algorithm 3 Secure Branching Protocol

Input: A inputs [〈x1〉
A , 〈x2〉

A], [〈y1〉
A , 〈y2〉

A];

B inputs [〈x1〉
B , 〈x2〉

B], [〈y1〉
B , 〈y2〉

B];

Output: A outputs 〈y〉A ; B outputs 〈y〉B

1: A and B:

2: [
〈
xπ (π ′(1))

〉
,
〈
xπ (π ′(2))

〉
] ← SSF([〈x1〉 , 〈x2〉])

3: [
〈
yπ (π ′(1))

〉
,
〈
yπ (π ′(2))

〉
] ← SSF([〈y1〉 , 〈y2〉])

4: θ ← ADD-CMP(
〈
xπ (π ′(1))

〉
,
〈
xπ (π ′(2))

〉
)

5: if θ == 1 then

6: A: 〈y〉A ←
〈
yπ (π ′(1))

〉A
; B: 〈y〉B ←

〈
yπ (π ′(1))

〉B
7: else

8: A: 〈y〉A ←
〈
yπ (π ′(2))

〉A
; B: 〈y〉B ←

〈
yπ (π ′(2))

〉B

Algorithm 4 Secure Minimum Selection Protocol

Input: A inputs 〈x〉A= [〈x1〉
A , · · · , 〈xn〉

A]

B inputs 〈x〉B= [〈x1〉
B , · · · , 〈xn〉

B]

Output: A outputs 〈xmin〉
A ; B outputs 〈xmin〉

B

1: A and B:

2: 〈x′〉 ← SSF(〈x〉) = [
〈
xπ (π ′(1))

〉
, · · · ,

〈
xπ (π ′(n))

〉
]

3: A: 〈xδ 〉
A ←

〈
xπ (π ′(1))

〉A
4: B: 〈xδ 〉

B ←
〈
xπ (π ′(1))

〉B
5: for 1 ≤ i ≤ n − 1 do

6: A and B: θ ← ADD-CMP(〈xδ 〉 ,
〈
xπ (π ′(i+1))

〉
)

7: if θ == 1 then

8: A: 〈xδ 〉
A ←

〈
xπ (π ′(i+1))

〉A
9: B: 〈xδ 〉

B ←
〈
xπ (π ′(i+1))

〉B
10: A: 〈xmin〉

A ← 〈xδ 〉
A

11: B: 〈xmin〉
B ← 〈xδ 〉

B

SMS protocol are shown in Algorithm 4. Initially, we utilize SSF

protocol to permutate the original sequence to get the new one 〈x′〉.

After shuffling, A or B prepares a garbled circuit ADD-CMP for

comparing two additively secret sharing values, e.g. 〈x1〉 and 〈x2〉.
Clearly, the ADD-CMP circuit outputs 1 if x1 > x2 and 0 otherwise.

Same as above, the output of this circuit is public in this protocol.

By calling ADD-CMP n − 1 times, we are able to get the minimum

〈xδ 〉. At the end, the output of SMS is 〈xmin〉
A ← 〈xδ 〉

A and

〈xmin〉
B ← 〈xδ 〉

B . In this protocol, the index δ does not reveal

any information regarding the position of the minimum in the

original sequence to A and B as the sequence has been shuffled

securely.

4.4 Secure Exact Edit Distance Computation
(SEED) Protocol

We assume that A and B input two secret sharing sequences

〈x〉 = [〈x1〉 , · · · ,
〈
xn1

〉
] and 〈y〉 = [〈y1〉 , · · · ,

〈
yn2

〉
], i.e., A in-

puts 〈x〉A and 〈y〉A while B inputs 〈x〉B and 〈y〉B . Secure Exact

Edit Distance (SEED) protocol is to realize the function that com-

putes exact edit distance 〈dED 〉 (in the secret sharing form) between

x and ywithout revealing any private information about them. Now,

we explain how to run Wagner-Fisher algorithm (see Algorithm

9) for edit distance computation in a privacy-preserving manner.

Algorithm 5 Secure Exact Edit Distance Protocol

Input: A inputs 〈x〉A= [〈x1〉
A , · · · ,

〈
xn1

〉A
] and

〈y〉A=[〈y1〉
A , · · · ,

〈
yn2

〉A
]

B inputs 〈x〉B= [〈x1〉
B , · · · ,

〈
xn1

〉B
] and

〈y〉B=[〈y1〉
B , · · · ,

〈
yn2

〉B
]

Output: A outputs 〈dED 〉
A ; B outputs 〈dED 〉

B

1: for 0 ≤ i ≤ n1 do

2: A:
〈
di,0

〉A
← i; B:

〈
di,0

〉B
← 0

3: for 0 ≤ j ≤ n2 do

4: A:
〈
d0, j

〉A
← j; B:

〈
d0, j

〉B
← 0

5: A:

6: 〈cdel 〉
A ← 1, 〈cins 〉

A ← 1, 〈z0〉
A ← 0, 〈z1〉

A ← 1

7: B:

8: 〈cdel 〉
B ← 0, 〈cins 〉

B ← 0, 〈z0〉
B ← 0, 〈z1〉

B ← 0

9: for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 do
10: A: 〈t1〉

A ← 〈yi 〉
A + 1, 〈t2〉

A ← 〈yi 〉
A − 1

11: B: 〈t1〉
B ← 〈yi 〉

B , 〈t2〉
B ← 〈yi 〉

B

12: A and B:

13: 〈t3〉 ← SBC(〈t1〉 , 〈xi 〉 , 〈z0〉 , 〈z1〉)
14: 〈csub 〉 ← SBC(〈xi 〉 , 〈t2〉 , 〈t3〉 , 〈z1〉)
15:

〈
di, j

〉
← SMS(

〈
di−1, j

〉
+ 〈cdel 〉 ,

〈
di, j−1

〉
+

〈cins 〉 ,
〈
di−1, j−1

〉
+ 〈csub 〉)

16: A: 〈dED 〉
A ←

〈
dn1,n2

〉A
17: B: 〈dED 〉

B ←
〈
dn1,n2

〉B

The main steps are shown in Algorithm 5. To start with, server

A and server B initialize
〈
di,0

〉
(0 ≤ i ≤ n1),

〈
d0, j

〉
(0 ≤ j ≤ n2),

〈cins 〉 and 〈cdel 〉 corresponding to line 1 − 8 in Algorithm 5. Then,

we begin to calculate di, j (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) through itera-

tive computing. Note that 2� should be larger than max(n1,n2) to
guarantee the correctness of edit distance computation while � is

the bit length of data. In each iteration, 〈csub 〉 is assigned to 0 or 1

according to whether xi is equal to yj , i.e., csub ← (xi == yj)?0 : 1.
In order to have an assignment of 〈csub 〉 without revealing in-

formation regarding xi and yj , we first convert “==” operator to
“>”operator as follows:

csub ← (xi == yj)?0 : 1 ⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1 ← yj + 1

t2 ← yj − 1

t3 ← (t1 > xi)?0 : 1

csub ← (xi > t2)?t3 : 1
then utilize SBC protocol to perform a secure assignment that cor-

responds to line 12 − 15 in Algorithm 5. Note that, the addition in

line 15 of Algorithm 5 refers to the addition in the form of additive

secret sharing as described in Section 2.2. At the end of each itera-

tion,
〈
di, j

〉
can be calculated by SMS protocol. With n1n2 iterations,

SEED protocol would return the final edit distance
〈
dn1,n2

〉
.

4.5 Secure Approximate Genomic Sequence
Comparison (SAGSC) Protocol

Assume that A and B input two secret sharing genomic sequences

〈x〉 = [〈x1〉 , · · · , 〈xn〉] and 〈y〉 = [〈y1〉 , · · · , 〈yn〉], i.e., A inputs

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

Algorithm 6 Secure Approximate Genomic Sequence Comparison

Protocol

Input: A inputs 〈x〉A= [〈x1〉
A , · · · , 〈xn〉

A] and

〈y〉A=[〈y1〉
A , · · · , 〈yn〉

A]

B inputs 〈x〉B= [〈x1〉
B , · · · , 〈xn〉

B] and

〈y〉B=[〈y1〉
B , · · · , 〈yn〉

B]

Output: A outputs 〈χ〉A ; B outputs 〈χ〉B

1: A:

2: 〈Sumx 〉
A ← 〈x1〉

A + · · · + 〈xn〉
A

3:
〈
Sumy

〉A
← 〈y1〉

A + · · · + 〈yn〉
A

4: 〈T 〉A ← 〈Sumx 〉
A −

〈
Sumy

〉A
5: Select a random integer r ∈ Z2� , set 〈χ〉

A ← r
6: B:

7: 〈Sumx 〉
B ← 〈x1〉

B + · · · + 〈xn〉
B

8:
〈
Sumy

〉B
← 〈y1〉

B + · · · + 〈yn〉
B

9: 〈T 〉B ←
〈
Sumy

〉B
− 〈Sumx 〉

B

10: A and B:

11: 〈χ〉B ← EQ-ADD(〈T 〉A , 〈T 〉B ,−r)

〈x〉A and 〈y〉A while B inputs 〈x〉B and 〈y〉B . Secure Approxi-

mate Genomic Sequence Comparison (SAGSC) protocol is to realize

the function that outputs an indicator 〈χ〉 where χ = 1 if x is al-

most the same as y and χ = 0 otherwise. During this process, no

information regarding x and y is revealed to A and B. A naive

method of sequence comparison is to do bit-by-bit comparisons,

but generates too much time overhead since a large number of

comparison operations are needed for the long genomic sequences.

This led us to explore an approximate solution for better efficiency.

In this work, we use different specified integers (i.e., 0, 1, 2, 3) to

encode four nucleotides (i.e., A, C, G, T), and we observed that indi-

vidual differences in the human genome sequences are very small.

So we conclude that if the sums of the encodings of genomic se-

quences are equal, they can be regarded as approximately identical

sequences. That is, if the equation
∑n
i=1 xi ==

∑n
i=1 yi holds, then

two sequences 〈x〉 and 〈y〉 are treated as the same. In the secret

sharing form, the above equation can be converted to
n∑
i=1

〈xi 〉
A −

n∑
i=1

〈yi 〉
B ==

n∑
i=1

〈yi 〉
A −

n∑
i=1

〈xi 〉
B .

The overall steps in SAGSC protocol are shown in Algorithm 6.

We achieve the comparison and secret sharing of the result by the

circuit EQ-ADD (as shown in Figure 2(b)) in which A is the circuit

constructor and the output 〈χ〉B is only given to B. We will show

the error rate of our approximate protocol over a real-world dataset

is very small in Section 7.2, and discuss how to further reduce the

error rate in Section 8.1.

5 SECURE SIMILAR SEQUENCE QUERY ON
GENOMIC DATA

With the above building blocks, we are ready to present the detailed

scheme for secure similar sequence query on genomic data. We

first propose a secure scheme based on exact edit distance (denoted

by SSQ-I), and then present our second scheme, a more efficient

solution with the approximate edit distance (denoted by SSQ-II).

5.1 SSQ-I (with the Exact Edit Distance)

Our scheme consists of the following four stages: genomic data

outsourcing, query request issuing, secure query executing and

result recovering.

5.1.1 Stage 1: Genomic Data Outsourcing. In the genomic data

outsourcing stage, multiple data owners first divide the genomic

sequences locally by additive secret sharing, and then upload the

shares to the two servers for constructing a joint databaseD. Specif-
ically, for a sequence S = [S[1], . . . , S[n]] (n denotes the length

of each sequence), a set of random numbers ri ∈ Z2� are chosen,

and then the data owner sets 〈S〉A = [r1, . . . , rn] and computes

〈S〉B = [S[1] − r1, . . . , S[n] − rn]. After that, one share 〈S〉A is

uploaded to ServerA and another share 〈S〉B is uploaded to Server

B. We assume that the above shares are sent over secure chan-

nels. When genomic data outsourcing of multiple owners are com-

pleted, A and B maintain a joint genomic database D in the secret

sharing form. We assume there are a total of m sequences, then

D = (〈S1〉 , · · · , 〈Sm〉).

5.1.2 Stage 2: Query request issuing. Once the joint database D
is set up, similar sequence queries can be issued frommultiple users.

To protect privacy, the user uses additive secret sharing to partition

the queryQ = [Q[1], · · · ,Q[n]] into two shares denoted by 〈Q〉A =

[〈Q[1]〉A , · · · , 〈Q[n]〉A] and 〈Q〉B = [〈Q[1]〉B , · · · , 〈Q[n]〉B],

then send 〈Q〉A and 〈Q〉B to Server A and Server B, respectively.

5.1.3 Stage 3: SecureQuery Executing. When two servers receive

the request from the user, secure query protocol can be executed

between A and B. The goal of the proposed protocol is to retrieve

the indices of the top k (k ≤ m) genomic sequences that are closest

to the user query in a secure manner. The main steps involved in

the secure query protocol are given in Algorithm 7.

First, we use SEED protocol (described in 4.4) directly to compute

exact edit distance between 〈Q〉 and 〈Si 〉 (1 ≤ i ≤ m) without

revealing any private information about the genomic database D
and the query Q . Clearly, by running SEED protocol m times, a

set of exact edit distance 〈di 〉 = SEED(〈Q〉 , 〈Si 〉) (1 ≤ i ≤ m) are

available. Note that 〈di 〉 is in the secret sharing form.

Next, the two servers need to compute the k most similar ge-

nomic sequences depending on the 〈di 〉. During this process, the
values of di and the index i should not be revealed to the servers.

To protect the confidentiality of the index, we adopt shuffle-then-

compare strategy. After the secure shuffling, the link between the

old sequence and the new one can be cut off. To this end, we first

transform the index i to the secret sharing form. Specifically, A

sets 〈i〉A = i while B sets 〈i〉B = 0. Now that A and B hold a

set of key-value pairs [〈i〉 , 〈di 〉](1 ≤ i ≤ m). Next we apply SSF

protocol to these key-value pairs directly, i.e., the same random

integers and permutation functions are applied to the shuffle of 〈i〉
and 〈di 〉 simultaneously, for getting a set of permuted key-value

pairs [〈π (π ′(i))〉 ,
〈
dπ (π ′(i))

〉
](1 ≤ i ≤ m). Note the security of the

permuted key-value pairs is guaranteed by the randomization in

SSF protocol. Similar to SMS protocol, we utilize ADD-CMP circuit

to realize bubble sort for getting the top-k results (correspond-

ing to line 10-13), denoted by [
〈
δj,0

〉
,
〈
δj,1

〉
](1 ≤ j ≤ k). Finally,

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

Algorithm 7 Secure Query Protocol in SSQ-I

Input: A inputs 〈Q〉A=[〈Q[1]〉A , · · · , 〈Q[n]〉A] and

〈Si 〉
A=[〈Si [1]〉

A , · · · , 〈Si [n]〉
A](1 ≤ i ≤ m);

B inputs 〈Q〉B=[〈Q[1]〉B , · · · , 〈Q[n]〉B] and

〈Si 〉
B=[〈Si [1]〉

B , · · · , 〈Si [n]〉
B](1 ≤ i ≤ m)

Output: A obtains
〈
Ij
〉A

(1 ≤ j ≤ k);

B obtains
〈
Ij
〉B

(1 ≤ j ≤ k)

1: for 1 ≤ i ≤ m do

2: A and B: 〈di 〉 ← SEED(〈Q〉 , 〈Si 〉)

3: for 1 ≤ i ≤ m do

4: A: 〈i〉A ← i; B: 〈i〉B ← 0

5: A and B:

6: L1 ← [(〈1〉 , 〈d1〉), · · · , (〈m〉 , 〈dm〉)]

7: L2 ← SSF(L1) = [(〈π (π ′(1))〉 ,
〈
dπ (π ′(1))

〉
), · · · ,

(〈π (π ′(m))〉 ,
〈
dπ (π ′(m))

〉
)]

8: for 1 ≤ i ≤ m do

9: A and B:
〈
δi,0

〉
← 〈π (π ′(i))〉 ,

〈
δi,1

〉
←

〈
dπ (π ′(i))

〉
10: for (i = 1; i ≤ k ; i++) do
11: for (j =m; j ≥ i; j– –) do

12: if ADD-CMP(
〈
δj,1

〉
,
〈
δj−1,1

〉
)==0 then

13: A and B: swap(
〈
δj,0

〉
,
〈
δj−1,0

〉
),

swap(
〈
δj,1

〉
,
〈
δj−1,1

〉
)

14: for 1 ≤ j ≤ k do

15: A:
〈
Ij
〉A

←
〈
δj,0

〉A
16: B:

〈
Ij
〉B

←
〈
δj,0

〉B

A outputs the final indices
〈
Ij
〉A

←
〈
δj,0

〉A
while B outputs〈

Ij
〉B

←
〈
δj,0

〉B
(1 ≤ j ≤ k).

5.1.4 Stage 4: Result Recovering. After A and B return
〈
Ij
〉A

and
〈
Ij
〉B

(1 ≤ j ≤ k) to the query user, the user can recover the

index Ij by additions locally. Note that the query user can retrieve

the sequence SIj from two servers by a k-out-of-n OT protocol,

which can prevent the servers from inferring the query results by

monitoring the memory access.

5.2 SSQ-II (with the Approximate Edit
Distance)

The above SEED protocol is an iterative process, which is hard to

boost the performance. In SSQ-II, we leverage the approximate edit

distance computation [3] (described in section 2.1) to improve the

performance of SSQ-I. For brevity, we just present the changed

parts.

5.2.1 Stage 1: Genomic data outsourcing. We assume there are

ω data owners DO1, · · · ,DOw . For DO1, given a set of genomic

sequences D1 = (S1, · · · , Sm1), he/she proceeds as follows:

(1) Use BreakToBlocks3 algorithm to break each sequence into t
blocks. For the set D1, DO1 sets the sequence Si = (Si,1, · · · ,
Si,t) = BreakToBlocks(Si) for all i = 1, · · · ,m1.

3It is a partition algorithm for genomic data over plaintext, we refer the reader to [3]
for details.

Algorithm 8 Secure Query Protocol in SSQ-II

Input: A and B hold D,T ,L and 〈Q〉

Output: A obtains
〈
Ij
〉A

(1 ≤ j ≤ k);

B obtains
〈
Ij
〉B

(1 ≤ j ≤ k)

1: for Si ∈ D1 do

2: for 1 ≤ l ≤ t1, 1 ≤ j ≤ v1 do
3: A and B:

〈
χl, j

〉
← SAGSC(〈Ql 〉 ,

〈
ul, j

〉
)

4: A and B: 〈di 〉 ←
∑t1
l=1

∑v1
j=1

〈
χl, j

〉
·
〈
ED(ul, j , Si,l)

〉
5: for Si ∈ {D2, · · · ,Dω } do

6: A and B do the same as line 1-4.

7: A and B hold 〈di 〉 (1 ≤ i ≤ m), the remaining steps are the

same as line 3-17 in Algorithm 7.

(2) For each block location l = 1, · · · , t , DO1 gathers the set

T1[l] = {Si,l : i = 1, · · · ,m1} = {ul,1, · · · ,ul,v1
} of all the

possible sequence values for the lth block, where v1 is the
upper bound of the total number of values for each block.

DO1 pads all sets T1[l](1 ≤ l ≤ t) to the same size v1 with
dummy values. DO1 constructs a sequence values set T1, in
which the element T1[l , j] = ul, j (1 ≤ l ≤ t , 1 ≤ j ≤ v1).

(3) For every block location l = 1, · · · , t , every sequence Si , i =
1, · · · ,m1, and every value ul, j ∈ Tl , j = 1, · · · , v1, DO1

computes the exact edit distance between ul, j and Si,l . D1

constructs a distance set L1, in which the element L1[l , j, i] =
ED(ul, j , Si,l)(1 ≤ l ≤ t , 1 ≤ j ≤ v1, 1 ≤ i ≤ m).

After that, DO1 partitions all elements in D1,T1, and L1 using the
genomic sequence secret sharing method shown in Section 5.1.1,

and then uploads them to the servers.

DO2, · · · ,DOw do the same as DO1. Note that we assume all the

sequences are of the same length, and the numbers of partitions

for all sequences are t . After all data owners outsource their data,
A and B aggregate these for maintaining a genomic database D
jointly as follows:

D = (〈D1〉 , · · · , 〈Dw 〉) = (〈S1〉 , · · · , 〈Sm〉),

wherem =
∑ω
i=1mi . In addition, A and B also hold

T = (〈T1〉 , · · · , 〈Tw 〉),L = (〈L1〉 , · · · , 〈Lw 〉).

In this stage, all computations of data owners are a one-time cost,

that is, the elements in D,T ,L could be reused for multiple query

processes.

5.2.2 Stage 2: Query request issuing. The query user breaks the

query sequence Q into t blocks to get Q = (Q1, · · · ,Qt) by Break-

ToBlocks algorithm, then partitions Q to obtain 〈Q〉 = (〈Q1〉 , · · · ,

〈Qt 〉). After that, the user sends 〈Q〉 to servers.

5.2.3 Stage 3: Secure Query Executing. Recall that χl, j indicates
whether or not ul, j == Ql . When two servers receive the request

from the user, we compute the shares of the indicator bits
〈
χl, j

〉
by

SAGSC protocol. For Si ∈ D1, according to Equation 3, A and B

can easily compute approximate edit distance 〈di 〉 between Q and

Si (1 ≤ i ≤ m1) as follows:

〈di 〉 ≈

t1∑
l=1

v1∑
j=1

〈
χl, j

〉
·
〈
ED(ul, j , Si,l)

〉
,

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

where
〈
ED(ul, j , Si,l)

〉
is pre-computed by the data owner and sent

to the servers for store. For Si ∈ {D2, · · · ,Dw }, A and B do the

same. After that, A and B hold 〈di 〉 (1 ≤ i ≤ m), the remaining

steps are the same as that in SSQ-I. We describe this secure query

in Algorithm 8.

5.2.4 Stage 4: Result Recovering. This stage is the same as that

in SSQ-I.

6 THEORETICAL ANALYSIS

In this section, we first analyze the security of the sub-protocols

and our two SSQ protocols, and then present their computational

complexity.

6.1 Security Analysis

The security of secure query protocols in SSQ-I and SSQ-II is assured

by the following theorems:

Theorem 6.1. If SSF, SEED protocols, and ADD-CMP are secure

under the semi-honest adversaries model, then secure query protocol

in SSQ-I is secure under the semi-honest adversaries model.

Theorem 6.2. If SSF, SAGSC protocols and ADD-CMP are secure

under the semi-honest adversaries model, then secure query protocol

in SSQ-II is secure under the semi-honest adversaries model.

In order to prove the above theorems, we first give security

proofs of our sub-protocols including SSF, SBC, SMS, SEED and

SAGSC protocols, and then employ composition theory [15]. The

detailed proofs and discussions can be found in Appendix B.

6.2 Performance Analysis

We analyze the computational complexity of our protocols and

show the analysis results in the Table 2. The detailed analysis can

be found in Appendix C.

Table 2: Computational Complexity of Existing Solutions

and Ours (σ is the statistical security parameter in [26])

Solutions Enc Dec Mul non-XOR gates

SSF/[26] 2n/4n 2n/n n/2n −

SBC/[26] 8/16 8/4 4/8 3�/3� + 3σ + 1

SMS/[26] 2n/3n 2n/n n/3n
3�(n − 1)/

(3� + 3σ + 1)(n − 1)

SEED 22n1n2 22n1n2 11n1n2 12�n1n2
SAGSC − − − 2� − 1

SSQ-I O(mn2) O(mn2) O(mn2) O(m�(n2 + k))

SSQ-II O(n) O(n) O(n) O(m�(tv + k))

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our protocols. As

there is no full implementation for secure SSQ on outsourced ge-

nomic data so far, we conduct two sets of experiments: in the first,

we compare our sub-protocols with the state-of-the-art protocols,

and in the second we implement our two SSQ schemes based on

our sub-protocols and report the performance of SSQ-I and SSQ-II.

(a) SSF (b) SBC (c) SMS

(d) SEED (e) SAGSC

Figure 3: The performance of the protocols.

We implemented our protocols in Java, specifically, Paillier cryp-

tosystem with distributed decryption was achieved by BigInteger

Class and Yao’s garbled circuits are constructed by FastGC [18],

which applies the free-XOR technique [24] and oblivious-transfer

extension [20] for optimizations. Our experiments are conducted

on two Amazon EC2 t2.large machines (as serverA andB) running

Ubuntu 16.04, with 8GB of RAM each, and a laptop (as the data

owner and user) running Linux 16.04, with 1.70-GHz Intel i5-3317U

CPU and 4 GB of memory. The communication bandwidth between

the two machines for LAN setting is set to 1 GB/s and the average

network latency is 0.037 ms. In our experiment, we used Homo

SapiensMitochondrion Complete Genome dataset [30] that consists

of 1,046 genomic sequences and the length of each one is 16568.

We report the results for both the offline and online time. The

offline phase includes all computation and communication that

are independent of the input (e.g. The generation of multiplication

triplets, the construction of garbled circuits and offline part in SSF

protocol), while online phase consists of all input-dependent steps.

7.1 Our Protocols vs. Previous Protocols

We compare our protocols with the ones in a previous work [26]

over the real-world dataset. Recall that this work, which focuses on

the secure similarity computation upon trajectory data, achieves

the same functions as part of our protocols with a similar security

level. For a fair comparison, we implement SSF protocol without

data packing technology [6]. We also set public-key security pa-

rameter (i.e., the length of N) φ = 2048, and the symmetric security

parameter κ = 128 for garbled circuits.

We first compare SSF protocol with the previous protocol in [26]

for varying length of the sequences (i.e., n from 200 to 1000). As

shown in Figure 3(a), the time cost in our protocol and previous pro-

tocol [26] increases linearly with the length of sequences n, which
is consistent with our complexity analysis. There is a little gap

between the offline time in SSF protocol and the time in previous

protocol, but the online time in our protocol has remarkable ad-

vantages, as it does not involve any time-consuming cryptographic

operation.

Figure 3(b) presents the time cost in SBC protocol and the previ-

ous protocol [26] as the bit length of data (�) increases. The time cost

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

in previous protocol and ours grows linearly with �, but only small

increases for both. That is, the performance impact of � is limited.

The reason is that � only affects the number of the non-XOR gates

while the single-gate average computing time is very short. We can

also see that the online time cost is quite little. This is because that

SBC protocol mainly calls SSF protocol and ADD-CMP circuit, in

which the online cost is a small portion of the overall cost. We test

the impact of � because it has the effect on the security of SSF proto-

col. To guarantee the security, our goal is to make the masked value

ui + ri (in line 4 of Algorithm 1) distribute in the interval [0,N)

uniformly, and the smaller � would make (N −K · 2�)/N decreases,

i.e., make the values distribute more uniformly. In general, given

a fixed N , the smaller � is, the stronger the security is. Because of

this, we set a smaller � = 10 in all other tests.

Figure 3(c) shows the time cost in SMS protocol and the previous

protocol [26] increases at a linear speed as the number of data (n)
increases. For the same reasons explained above, SMS protocol can

also be divided into two phases and the online time is much less

than that in the previous work.

We compare our SEED protocol with the advanced protocol in

[9]. This work presents a homomorphic computation of exact edit

distance based on somewhat homomorphic encryption scheme. In

addition, we also implement another secure exact edit distance

computing protocol using the protocols in [26] as a comparison.

Figure 3(d) shows the time cost for these protocols. When the

length of the sequences n (n1 = n2 = n) increases, the cost of all
protocols grows as O(n2), since exact edit distance computing is

a two-dimension iteration algorithm. Even so, the performance of

SEED protocol still has advantages over the other two. Specially,

SEED has about 50% performance improvement compared with the

protocol in [9]. For example, when n = 50, the online time is 740

seconds in SEED protocol and 1885 seconds in [9].

For SAGSC protocol, Figure 3(e) shows that the online time is

far less than the offline time, since the major operation in SAGSC is

the computation of EQ-ADD circuit and a single circuit runtime is

much less than the circuit construction time. We also observe the

impact of the sequence length (n) to SAGSC protocol is limited. It is

because that the increase of n only increases the number of modular

addition operations, which has a very small impact on the online

time compared with time cost of EQ-ADD circuit computation.

7.2 The Performance of SSQ-I and SSQ-II

In our two schemes, the query executing stage includes the edit

distance computation and top-k results retrieve. We use the SEED

protocol to compute the exact edit distance in SSQ-I. In SSQ-II, an

approximate edit distance computation method is employed for

efficiency. We customize genomic sequences of different length

(n from 10 to 50) based on the real-world data as test dataset and

set block number t from 2 to 10 in SSQ-II, then report single edit

distance computation time for two schemes in Table 3. We only

show the online time in this subsection. Clearly, if the length of

genomic sequences is large, SEED used by SSQ-I generates a large

amount of computing overhead (e.g., it takes 740.3s when n = 50).

Next, we evaluate the performance of SSQ-II in the online phase.

We assume there are 500 genomic sequences with length as 500,

which are outsourced by two data owners and the data size of each

Table 3: The edit distance computation time in SSQ-I and

SSQ-II

n 10 20 30 40 50

SSQ-I 29.6s 118.4s 266.4s 473.6s 740.3s

SSQ-II 1.2s 2.2s 3.4s 4.7s 6.0s

(a) n = 500, k = 10 (query) (b) n = 500,m = 100 (query)

(c) n = 500, k = 10 (comm.) (d) n = 500,m = 100 (comm.)

Figure 4: The performance of SSQ-II protocol.

owner is the same. We test SSQ-II over this dataset with different

scales (m from 100 to 500) while fixing the number of blocks in

each sequence t = 20. Figure 4(a) shows the query time for SSQ-II

as m increases (while fixing k = 10 and k is the number of the

results). The query time grows linearly withm, which coincides

with the theoretical analysis in Section 6.2. We can also conclude

that the time for computing edit distance makes up a greater share

of the total time compared with the time for top-k results retrieve.

For example, it takes 124 minutes for distance computation and

12.5 minutes for top-k computation when m = 500. Figure 4(b)

shows the time cost in SSQ-II increases as k increases (while fixing

m = 100), since there is a positive correlation between the time for

top-k computation and the value of k , although k has no effect on

the time for distance computation. We also collect communication

cost between the two servers during the above tests, similar varying

tendencies are shown in Figure 4(c) and 4(d). The underlying reason

is that the increase of sequence length (m) and the result number

(k) will undoubtedly raise the cost of communication. However, the

communication cost between the client and the servers is negligible,

which is one round including only one query request and k result

indices.

During the query stage, data owners and users needn’t partici-

pate in any computation. During the outsourcing stage, data owners

perform all of the operations in plaintext forms. The data owner

only takes about 3 minutes to create a database in whichm = 500,

n = 500 and t = 20. For arbitrary query users, the task is just

partitioning queries and recovering the secret sharing results by

modular addition operations. This means the overhead to users is

lightweight, which further makes our schemes scalable.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

Table 4: Accuracy of SSQ-II for various choice of k and t
whenm = 500 and n = 500

Number of blocks Number of results Accuracy

t = 10 k = 1/5/10 80%/76%/76%

t = 15 k = 1/5/10 90%/84%/87%

t = 20 k = 1/5/10 100%/94%/92%

t = 25 k = 1/5/10 100%/98%/95%

t = 30 k = 1/5/10 100%/100%/96%

Recall from Section 5.2 that SSQ-II yields approximate results,

computing edit distance through partitioning method and SAGSC

protocol could introduce error. To assess the effects of SAGSC

protocol, we run this protocol multiple times and count the number

of false-positive results. As the SAGSC protocol is used to compare

the sequences in the same location from the sequence values set

Ti with the query block Qi , we collect all sequence values in Ti
from above experiments and then launch pairwise comparison for

these sequences in the same location by SAGSC protocol. We made

a total of 486 comparisons and the number of false-positive results

is 4, the error rate is only about 0.82%. As for the error caused by

partitioning method, we refer the reader to [3] for details.

The accuracy results of SSQ-II are summarized in Table 4. Note

that we do the tests over the above real-world dataset (m = 500,n =
500) and repeat the experiment 10 times for random choice of the

queries. From the table, we find that when the number of blocks is

no fewer than 20, the accuracies of all cases (k = 1, 5, 10) are over

90%. Consider the query performance and accuracy together, so we

set t = 20 whenm = 500,n = 500 in the above experiments.

8 DISCUSSION

8.1 Reducing Error Rate

Here we theoretically analyze how to further reduce the error rate

of SAGSC protocol by a well-designed encoding scheme. Consider

two genomic sequences in which at least one nucleotide’s amount

is different, and for each nucleotide, when the number of its po-

sitions at which the corresponding symbols are different is below

a (a is a integer), we can deterministically detect if the two se-

quences are different by an encoding scheme in a base. For example,

”ATAGCG“ and ”CTACCG“ are represented asx = [0, 3, 0, 2, 1, 2] and

y = [1, 3, 0, 1, 1, 2] under existing encoding scheme, the equation∑6
i=1 xi ==

∑6
i=1 yi holds, it makes a false-positive result when us-

ing SAGSC protocol. If we use a decimal encoding scheme (i.e., a=10,
we use 0, 10, 100, 1000 to represent four nucleotides A,C,G,T), the

same sequences can be denoted as x = [0, 1000, 0, 100, 10, 100] and

y = [10, 1000, 0, 10, 10, 100], and the equation
∑6
i=1 xi ==

∑6
i=1 yi

does not hold, i.e., we can detect the two sequences are different.

8.2 Improving Query Efficiency

In the process of query, we compute edit distances in multiple

datasets uploaded by different data owners. In fact, these datasets

may contain duplicate records, we can decrease the size of genomic

data by deduplication, so the query algorithm is in high efficiency.

In addition, the online query cost can be greatly reduced by parallel

computing, the reason is that the computations of
〈
χl, j

〉
and 〈di 〉

(i.e., Stage 3 in SSQ-II) are independent of others. We consider the

multi-source genomic data fusion and the parallelization of the

query program as a future work.

9 RELATEDWORK

Privacy-preserving query and analysis over genetic data have re-

ceived much attention recently. Existing works [7, 11, 16, 33, 34, 37]

deal with genome variant query, pattern matching, range query,

count query and statistic information computation over genomic

data in a privacy-preserving manner. Secure similar sequence query

on genomic data, which is the focus of our research, is a special case

of secure query processing on genomic data. Secure SSQ on genetic

data is usually considered under two different system models. The

first model is secure multi-party computation setting. The second

model is the secure outsourcing of computation model. We review

the related works under each system model respectively.

9.1 SSQ in Multi-party Computation Model

Jha et al. proposed a privacy-preserving protocol to compute the edit

distance between two genomic sequences based on dynamic pro-

gramming [22]. For performance reasons, the authors showed three

methods to replicate the original edit distance algorithm over Gar-

bled Circuits. Further, Zhu et al. [38] customized a secure garbling

scheme to compute edit distance by leveraging publicly exploitable

traits of target computations, which is significantly more efficient

than traditional garbled circuits. Yet, the computation and the com-

munication overhead of the above schemes are considerable, since

these protocols are all iterative and the number of iterations is the

product of the lengths of two input sequences. To exploit the high

similarity between human genomic sequences, Wang et al. [36] re-

sorted to the approximate edit distance computing. Their scheme is

efficient as the edit distance computation problem is transformed to

the relatively simple set-intersection-size-approximation problem.

Inspired by this approach, a series of query protocols [2, 3] based on

approximate edit distance are proposed. In the most advanced solu-

tion [3], the authors partitioned the sequences into smaller blocks

and then pre-computed the edit distance within the blocks. In this

way, a lot of computational overhead is transferred to a preprocess-

ing stage. These works, however, are all in the SMC model (data is

distributed between two parties who collaboratively compute the

results without revealing to each other their private data), which

are not suitable to our problem since we aim at reducing user-side

overhead to the minimum.

9.2 SSQ in Outsourcing Computation Model

So far there has been no full implementation for secure SSQ on

outsourced genomic data. The following related works focused on

edit distance computation. Atallah and Li [5] initially studied the

secure outsourced protocol for edit-distance sequence comparisons.

Emiliano et al. [10] and Cheon et al. [9] discussed how to calculate

edit distance based on homomorphic encryption (HE). However,

in the above schemes, the exact edit distance is computed in a re-

cursive way, so computational overhead and communication costs

are too large. For example, the scheme in [9] takes 27 seconds to

compute an 8 × 8 block by dynamic programming. A further work

in [23] presented a secure approximate edit distance protocol based

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

on the comparison binary circuit in [9]. However, the query user

has a massive overhead. A recent work [27] took a step back to

study secure similar genomic sequence query based on Hamming

distance instead of edit distance. But this simple indicator of simi-

larity is not suitable for genomic data as single-gene insertion or

deletion would have much impact on the similarity. Another simi-

lar work [26] focuses on the similarity computation on encrypted

trajectories data. Compared with it, our mixed protocols achieve

higher performance and support a richer retrieve function. More

importantly, all above works are not scalable in supporting multiple

users and data owners, which is a big gap that our work aims to fill.

10 CONCLUSION

We have presented two novel schemes SSQ-I and SSQ-II towards

secure similar-sequence-query on outsourced genomic data. At

the core of our schemes, we have designed a set of mixed secure

protocols based on secret sharing, garbled circuit, and partial homo-

morphic encryptions to achieve security, efficiency, and scalability

simultaneously. Formal security analysis demonstrated all proto-

cols are secure under the semi-honest adversary model. Finally,

we show the efficacy and efficiency of our solutions through ex-

tensive experiments conducted over a real genomic dataset on a

commercial cloud platform. For the future work, we will continue

to improve SSQ performance over a larger dataset.

ACKNOWLEDGMENTS

We thank the shepherd and reviewers for the valuable suggestions.

This work is funded in part by National Science Foundation of

China under number U1736216.

REFERENCES
[1] 2017. Illumina wants to sequence your whole genome for 100. (2017).

https://techcrunch.com/2017/01/10/illumina-wants-to-sequence-your-whole-
genome-for-100.

[2] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. 2017. Secure
approximation of edit distance on genomic data. BMC medical genomics 10, 2
(2017), 41.

[3] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2017. Privacy-
Preserving Search of Similar Patients in Genomic Data. IACR Cryptology ePrint
Archive 2017 (2017), 144.

[4] Mikhail Atallah, Marina Bykova, Jiangtao Li, Keith Frikken, and Mercan Topkara.
2004. Private collaborative forecasting and benchmarking. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society. ACM, 103–114.

[5] Mikhail J Atallah and Jiangtao Li. 2005. Secure outsourcing of sequence compar-
isons. International Journal of Information Security 4, 4 (2005), 277–287.

[6] Tiziano Bianchi, Alessandro Piva, and Mauro Barni. 2010. Composite signal
representation for fast and storage-efficient processing of encrypted signals. IEEE
Transactions on Information Forensics and Security 5, 1 (2010), 180–187.

[7] Feng Chen, Chenghong Wang, Wenrui Dai, Xiaoqian Jiang, Noman Mohammed,
MdMomin Al Aziz, Md Nazmus Sadat, Cenk Sahinalp, Kristin Lauter, and Shuang
Wang. 2017. PRESAGE: PRivacy-preserving gEnetic testing via SoftwAre Guard
Extension. BMC medical genomics 10, 2 (2017), 48.

[8] Ke Cheng, Yantian Hou, and Liangmin Wang. 2018. Secure Similar Sequence
Query on Outsourced Genomic Data. (2018). http://cs.boisestate.edu/~yhou/
gene_search_tech_report.pdf

[9] Jung Hee Cheon, Miran Kim, and Kristin Lauter. 2015. Homomorphic computa-
tion of edit distance. In International Conference on Financial Cryptography and
Data Security. Springer, 194–212.

[10] Emiliano De Cristofaro, Kaitai Liang, and Yuruo Zhang. 2016. Privacy-Preserving
Genetic Relatedness Test. arXiv preprint arXiv:1611.03006 (2016).

[11] Daniel Demmler, Kay Hamacher, Thomas Schneider, and Sebastian Stammler.
2017. Privacy-Preserving Whole-Genome Variant Queries. In 16. International
Conference on Cryptology And Network Security (CANS’17) (LNCS). Springer.
http://thomaschneider.de/papers/DHSS17.pdf To appear.

[12] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.

[13] Yousef Elmehdwi, Bharath K Samanthula, and Wei Jiang. 2014. Secure k-nearest
neighbor query over encrypted data in outsourced environments. In Data Engi-
neering (ICDE), 2014 IEEE 30th International Conference on. IEEE, 664–675.

[14] De Cristofaro Emiliano, Liang Kaitai, and Zhang Yuruo. 2016. Privacy-Preserving
Genetic Relatedness Test. In GenoPri’16: 3rd International Workshop on Genome
Privacy and Security. Chicago, IL, USA.

[15] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[16] Mohammad Zahidul Hasan, Md Safiur Rahman Mahdi, and Noman Mohammed.
2017. Secure Count Query on Encrypted Genomic Data. arXiv preprint
arXiv:1703.01534 (2017).

[17] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. 2012. Efficient
RSA Key Generation and Threshold Paillier in the Two-Party Setting. In CT-RSA.
Springer, 313–331.

[18] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure
Two-Party Computation Using Garbled Circuits.. In USENIX Security Symposium,
Vol. 201.

[19] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2013.
Addressing the concerns of the lacks family: quantification of kin genomic privacy.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 1141–1152.

[20] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers Efficiently.. In Crypto, Vol. 2729. Springer, 145–161.

[21] Neda Jahanshad, Priya Rajagopalan, Xue Hua, Derrek P Hibar, Talia M Nir,
Arthur W Toga, Clifford R Jack, Andrew J Saykin, Robert C Green, Michael W
Weiner, et al. 2013. Genome-wide scan of healthy human connectome discovers
SPON1 gene variant influencing dementia severity. Proceedings of the National
Academy of Sciences 110, 12 (2013), 4768–4773.

[22] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards practical privacy
for genomic computation. In Security and Privacy, 2008. SP 2008. IEEE Symposium
on. IEEE, 216–230.

[23] Miran Kim and Kristin Lauter. 2015. Private genome analysis through homomor-
phic encryption. BMC medical informatics and decision making 15, 5 (2015).

[24] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit:
Free XOR gates and applications. Automata, Languages and Programming (2008),
486–498.

[25] Yehuda Lindell and Benny Pinkas. 2009. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology 22, 2 (2009), 161–188.

[26] An Liu, Kai Zhengy, Lu Liz, Guanfeng Liu, Lei Zhao, and Xiaofang Zhou. 2015.
Efficient secure similarity computation on encrypted trajectory data. In Data
Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE, 66–77.

[27] Md Safiur Rahman Mahdi, Mohammad Zahidul Hasan, and Noman Mohammed.
2017. Secure Sequence Similarity Search on Encrypted Genomic Data. In Con-
nected Health: Applications, Systems and Engineering Technologies (CHASE), 2017
IEEE/ACM International Conference on. IEEE, 205–213.

[28] P. Mohassel and Y. Zhang. 2017. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy
(SP). 19–38. https://doi.org/10.1109/SP.2017.12

[29] Cancer Genome Atlas Network et al. 2012. Comprehensive molecular portraits
of human breast tumours. Nature 490, 7418 (2012), 61–70.

[30] Anna Olivieri, Carlo Sidore, and et al. 2017. Mitogenome diversity in Sardinians:
a genetic window onto an island’s past. Molecular biology and evolution 34, 5
(2017), 1230–1239.

[31] Pascal Paillier et al. 1999. Public-key cryptosystems based on composite degree
residuosity classes. In Eurocrypt, Vol. 99. Springer, 223–238.

[32] Suyash S Shringarpure and Carlos D Bustamante. 2015. Privacy risks from
genomic data-sharing beacons. The American Journal of Human Genetics 97, 5
(2015), 631–646.

[33] Wenhai Sun, Ning Zhang, Wenjing Lou, and Y Thomas Hou. 2017. When gene
meets cloud: Enabling scalable and efficient range query on encrypted genomic
data. In INFOCOM 2017. IEEE, 1–9.

[34] BingWang,Wei Song,Wenjing Lou, and Y Thomas Hou. 2017. Privacy-preserving
pattern matching over encrypted genetic data in cloud computing. In INFOCOM
2017-IEEE Conference on Computer Communications, IEEE. IEEE, 1–9.

[35] Shuang Wang, Xiaoqian Jiang, Haixu Tang, Xiaofeng Wang, Diyue Bu, Knox
Carey, Stephanie OM Dyke, Dov Fox, Chao Jiang, Kristin Lauter, et al. 2017. A
community effort to protect genomic data sharing, collaboration and outsourcing.
npj Genomic Medicine 2, 1 (2017), 33.

[36] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and
Diyue Bu. 2015. Efficient genome-wide, privacy-preserving similar patient query
based on private edit distance. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 492–503.

[37] Jun Zhou, Zhenfu Cao, and Xiaolei Dong. 2016. PPOPM: more efficient privacy
preserving outsourced pattern matching. In European Symposium on Research in
Computer Security. Springer, 135–153.

[38] Ruiyu Zhu and Yan Huang. 2017. Efficient privacy-preserving general edit distance
and beyond. Technical Report. Cryptology ePrint Archive, Report 2017/683, 2017.
http://eprint. iacr. org/2017/683 10 April 2017, date last accessed.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

A WAGNER-FISHER ALGORITHM

Algorithm 9 shows how to compute edit distance by Wagner-Fisher

algorithm. The edit distance between two strings X = [a1,a2, . . . ,
an1] and Y = [b1,b2, . . . ,bn2] is given by dn1,n2 , calculated by the

following recurrence:

di, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if i == 0 or j == 0

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di−1, j + cdel

di, j−1 + cins

di−1, j−1 + csub

otherwise
(4)

where cins , cdel , csub correspond to the cost of single-character

insert, delete, and substitute. For the edit distance, cins ← 1, cdel ←
1, csub ← (ai == bj)?0 : 1. It is clear from Equation 4 that the edit

distance calculation is transformed into the process of filling an

(n1 + 1) × (n2 + 1) table with each element di, j . The full dynamic

programming table can be constructed in O(n1n2) time. Once the

table is filled, it is easy to trace on the optimal path. That is, the index

in Algorithm 9 reveals optimal conversion path from an original

sequence to a new one. Figure 5 shows an example of edit distance

computation. The lower-right element d4,5=2 is the final result and
the dotted line represents one of the optimal paths.

Figure 5: Example of edit distance computation (The lower-

right element d4,5 = 2 is the final result and the dotted line

represents one of the optimal paths).

Algorithm 9 Edit Distance Computation

Input: X = {a1,a2, . . . ,an1 } and Y = {b1,b2, . . . ,bn2 }

Output: dn1,n2

1: for 0 ≤ i ≤ n1 do
2: di,0 ← i .

3: for 0 ≤ j ≤ n2 do
4: d0, j ← j.

5: cdel ← 1, cins ← 1.

6: for 1 ≤ i ≤ n1,1 ≤ j ≤ n2 do
7: csub ← (ai == bj)?0 : 1.
8: di, j = min(di−1, j + cdel ,di, j−1 + cins ,di−1, j−1 + csub).

9: return dn1,n2

B THE SECURITY ANALYSIS

Suppose that a two-party protocol P asks A to compute the func-

tion fA(x ,y), and asks B to compute fB(x ,y), where x ,y are the

inputs ofA and B, respectively. The view ofA (resp. B) during an

execution of P on (x ,y), denoted viewA(x ,y) (resp. viewB(x ,y)),
is (x , rA ,m1, · · · ,mt) (resp. (y, rB ,m1, · · · ,mt)), where rA (resp.

rB) represents randomness of A (resp. B) andmi represents the

i-th message passed between the parties. Also let OA(x ,y) and
OB(x ,y) denote A’s (resp. B’s) output. We say that protocol P is

secure against semi-honest adversaries if there exist probabilistic

polynomial time (PPT) simulators S1 and S2 such that:

(S1(x , fA(x ,y)), f (x ,y))
c
≡ (viewA(x ,y),O(x ,y)) (5)

(S2(y, fB(x ,y)), f (x ,y))
c
≡ (viewB(x ,y),O(x ,y)) (6)

where
c
≡ denotes computational indistinguishability. More details

can be found in [15].

We assume that the secure computation primitives (described in

Section 2.2) involved in our protocols are secure under semi-honest

model [15], and Paillier cryptosystem with distributed decryption

is semantically secure. The formal security proofs of them can be

found in [4, 17]. In addition, we note that ADD-CMP and EQ-ADD

are direct applications of Yao’s garbled circuits, whose security

proof can be found in [25]. Next, we prove the following theorem

under the above security assumptions.

B.1 Security Analysis of Sub-protocols

We first prove the security of all our sub-protocols. Then we will

employ composition theory to prove that our SSQ-I and SSQ-II are

secure.

Theorem B.1. If Paillier cryptosystem with distributed decryption

(short as PCDD) [17] is semantically secure, then the offline phase

of secure shuffling (short as SSF_off) protocol is secure under the

semi-honest adversaries model.

Proof. The correctness is easy to see, just by inspecting the

output result is shuffled from [−u1 − v1, · · · ,−un − vn] by the

permutation function π (π ′(·)). Recall that the function of SSF_off

is thatA selects a set of random integersu1, · · · ,un , B selects a set

of random integers v1, · · · ,vn and then B outputs a set of shuffled

values [−uπ (π ′(1)) − vπ (π ′(1)), . . . ,−uπ (π ′(n)) − vπ (π ′(n))]. As for

security, we construct simulators in two distinct cases as SSF_off

protocol is asymmetric for two parties. Case 1: A is corrupted by

an adversary. We construct a simulator S1 to simulate A’s view.

ForA receives L1 = [Epk (uπ ′(1) +vπ ′(1) +rπ ′(1)), . . . , Epk (uπ ′(n) +

vπ ′(n) + rπ ′(n))] from B in the real world, S1 randomly picks a set

of integers α1, · · · ,αn from ZN and encrypts them by PCDD to

get L′1 = [Epk (α1), · · · ,Epk (αn)]. Then, any PPT adversary cannot

distinguish the simulator’s encryption of the random integers (L′1)
from B’s encryption of the correct computation (L1) due to the

semantical security of PCDD. For the output of this protocol in the

real world [−uπ (π ′(1)) − vπ (π ′(1)), . . . ,−uπ (π ′(n)) − vπ (π ′(n))], it is

clearly computational indistinguishable from the output of SSF_off ’

function. In addition, all the values in L1 and the real output are

irrelevant, and all the values in L′1 and the function output are

also irrelevant, so these values are computational indistinguishable.

Therefore, Equation 5 clearly holds. Case 2: B is corrupted by an

adversary. We construct a simulator S2 to simulate the message

sent by A. For B receives L0 = [Epk (u1 + r1), . . . ,Epk (un + rn)]
from A, S2 randomly picks a set of integers β1, · · · , βn from ZN
and encrypts them by PCDD to get L′0 = [Epk (β1), · · · , Epk (βn)].
For B receives L2 from A, S2 randomly picks a set of integers

γ1, · · · ,γn from ZN , then encrypts them by PCDD to get L′2. Any
PPT adversary who can distinguish between interaction with A

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

(i.e., L0,L2) and interaction with S2 (i.e., L
′
0,L

′
2) can be used to break

the semantical security of PCDD. In addition, all the above values

are selected independently. Thus, no such adversary exists, which

means Equation 6 holds. Putting the above results together, we

can claim that SSF_off is secure under the semi-honest adversary

model. �

TheoremB.2. The online phase of secure shuffling (short as SSF_on)

protocol is secure under the semi-honest adversaries model.

Proof. The proof of Theorem B.2 is similar to that of Theorem

B.1. Due to space limitation, we only describe the outline of our

proof: the function of SSF_on is thatA and B input a secret sharing

sequence 〈x〉, thenA outputs a share of the shuffled sequence 〈x′〉.

The exchanged messages L4 = [〈x1〉
A +u1, . . . , 〈xn〉

A +un] can be
simulated by randomly choosing L′4 = [β1, · · · , βn] from Z2� and
L5 = [xπ ′(1) + uπ ′(1) + vπ ′(1), . . . ,xπ ′(n) + uπ ′(n) + vπ ′(n)] can be

simulated by randomly choosing L′5 = [r1, · · · , rn] from Z2� . So we
can claim that SSF_on is secure under the semi-honest adversaries

model. Please see the technical report [8] for the detailed proof. �

Theorem B.3. If SSF protocol and ADD-CMP are secure under the

semi-honest adversaries model, then SBC protocol is secure under the

semi-honest adversaries model.

Proof. The correctness is easy to see by inspecting the out-

put 〈y〉 is actually assigned according to the relationship between

x1 and x2. As for security, we present the security proof in a hy-

brid model [15] where A and B have access to a trusted party

(TP) which can realize the function of SSF protocol and ADD-

CMP. A and B call TP to run the function of SSF protocol with

input [〈x1〉 , 〈x2〉] for outputting the random permutation result

[
〈
xπ (π ′(1))

〉A
,
〈
xπ (π ′(2))

〉A
] toA and [

〈
xπ (π ′(1))

〉B
,
〈
xπ (π ′(2))

〉B
]

to B. These values are all random according to the function of SSF

protocol, therefore, in the case of a corrupted A, the simulator S1
just chooses two integers α1,α2 from Z2� uniformly at random to

simulate
〈
xπ (π ′(1))

〉A
,
〈
xπ (π ′(2))

〉A
, and in the case of a corrupted

B, the simulator S2 just do the same as S1 to simulate
〈
xπ (π ′(1))

〉B
,〈

xπ (π ′(2))

〉B
uniformly at random. A and B call TP to run the

function of SSF protocol with input [〈y1〉 , 〈y2〉] for outputting the

random permutation result [
〈
yπ (π ′(1))

〉A
,
〈
yπ (π ′(2))

〉A
] to A and

[
〈
yπ (π ′(1))

〉B
,
〈
yπ (π ′(2))

〉B
] to B. Clearly, S1 and S2 can do the

same as above for simulation. A and B call TP to run the function

of ADD-CMP with input
〈
xπ (π ′(1))

〉
,
〈
xπ (π ′(2))

〉
for outputting θ

to A and B. The case in which θ is assigned to 0 or 1 is randomly

given, as π (π ′(·)) is randomly selected. Thus, in the case of a cor-

rupted A or a corrupted B, the simulator just chooses a random

integer from {0, 1} to simulate θ . According to the composition

theory [15], combining the above analysis and the security of SSF

protocol and ADD-CMP, we can claim that SBC protocol is secure

under the semi-honest adversaries model. �

Theorem B.4. If SSF protocol and ADD-CMP are secure under the

semi-honest adversaries model, then SMS protocol is secure under the

semi-honest adversaries model.

Proof. The proof of Theorem B.4 is similar to that of Theorem

B.3. Due to space limitation, we only describe the outline of our

proof. We assume A and B have access to a trusted party (TP)

which can realize the function of SSF protocol and ADD-CMP. The

exchanged messages
〈
xπ (π ′(i))

〉A
(1 ≤ i ≤ n) can be simulated

by randomly choosing the values αi (1 ≤ i ≤ n) at random from

Z2� and θ can be simulated by choosing a random integer from

{0, 1}. So we can claim that SMS protocol is secure under the semi-

honest adversaries model. Please see the technical report [8] for

the detailed proof. �

Theorem B.5. If SBC and SMS protocols are secure under the semi-

honest adversaries model, then SEED protocol is secure under the

semi-honest adversaries model.

Proof. The correctness is easy to see by recover dED from the

output 〈dED 〉 and then inspecting it is actually equal to the edit dis-

tance between x and y. As for security, we present the security proof

in a hybrid model whereA andB have access to a trusted party (TP)

which can realize the function of SBC and SMS protocols. A and B

call TP to run the function of SBC with input 〈t1〉 , 〈xi 〉 , 〈z0〉 , 〈z1〉

for outputting 〈t3〉
A to A and 〈t3〉

B to B. 〈t3〉
A and 〈t3〉

B are

both random according to the function of SBC protocol (the output

is in the secret sharing form), therefore, in the case of a corrupted

A, the simulator S1 just chooses a integers α from Z2l uniformly

at random to simulate 〈t3〉
A . In the case of a corrupted B, the

simulator S2 do the same as S1 to simulate 〈t3〉
B . A and B call TP

to run the function of SBC with input 〈xi 〉 , 〈t2〉 , 〈t3〉 , 〈z1〉. Clearly,
S1 and S2 can do the same as above for simulation. A and B call

TP to run the function of SMS, the outputs of this function
〈
di, j

〉A
and

〈
di, j

〉B
are both random according to the function of SMS

protocol (the output is in the secret-sharing form), therefore, in

the case of a corrupted A or a corrupted B, S1 or S2 can do the

same as above for simulation. According to the composition theory,

combining the above analysis and the security of SBC and SMS

protocols, we can claim that SEED protocol is secure under the

semi-honest adversaries model. �

Theorem B.6. If EQ-ADD is secure under the semi-honest adver-

saries model, then SAGSC protocol is secure under the semi-honest

adversaries model.

Proof. The proof of Theorem B.6 is similar to that of Theorem

B.3. Due to space limitation, we only describe the outline of our

proof.We assumeA andB have access to a trusted party (TP) which

can realize the function of EQ-ADD. The messages 〈χ〉B can be

simulated by choosing a random integer from Z2� . So we can claim

that SAGSC protocol is secure under the semi-honest adversaries

model. Please see the technical report [8] for the detailed proof. �

B.2 Security Analysis of SSQ-I and SSQ-II

Now, we prove Theorem 6.1 and Theorem 6.2 based on the above

theorems.

Proof. (Theorem 6.1) The correctness is easy to see by recover

Ij from the output
〈
Ij
〉
and then inspecting it does actually belong

to the index set of top-k results closed to query. As for security,

we present the security proof in a hybrid model where A and B

have access to a trusted party (TP) which can realize the function

of SSF, SEED protocols and ADD-CMP. A and B call TP to run the

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

function of SEED with input 〈Q〉 and 〈Si 〉 for outputting 〈di 〉
A to

A and 〈di 〉
B to B. 〈di 〉

A and 〈di 〉
B are both random according to

the function of SEED protocol (the output is in the secret sharing

form), therefore, in the case of a corrupted A, the simulator S1 just
chooses a integers α from Z2� uniformly at random to simulate

〈di 〉
A . In the case of a corrupted B, the simulator S2 do the same

as S1 to simulate 〈di 〉
B . A and B call TP to run the function of

SSF with input L1 for outputting the random permutation result

〈L2〉
A to A and 〈L2〉

B to B. The values in 〈L2〉
A and 〈L2〉

B are

all random according to the function of SSF protocol, therefore,

in the case of a corrupted A, the simulator S1 just chooses the

values αi (1 ≤ i ≤ 2m) at random from Z2� to simulate the values

in 〈L2〉
A , and in the case of a corrupted B, the simulator S2 just

do the same as S1 to simulate the values in 〈L2〉
B . A and B call

TP to run the function of ADD-CMP with input
〈
δj,1

〉
,
〈
δj−1,1

〉
for outputting the result public to A and B. The case in which the

result is assigned to 0 or 1 is randomly given, as π (π ′(·)) is randomly

selected. Thus, in the case of a corrupted A or a corrupted B, the

simulator just chooses a random integer from {0, 1} to simulate this

result. According to the composition theory, combining the above

analysis and the security of SSF, SEED protocols and ADD-CMP,

we can claim that secure query protocol in SSQ-I is secure under

the semi-honest adversaries model. �

Proof. (Theorem 6.2) Similar to secure query protocol in SSQ-

II, the correctness is easy to see. As for security, we present the

security proof in a hybrid model where A and B have access to a

trusted party (TP) which can realize the function of SSF, SAGSC

protocols and ADD-CMP. A and B call TP to run the function of

SAGSC with input 〈Ql 〉 ,
〈
ul, j

〉
for outputting to

〈
χl, j

〉A
to A and〈

χl, j
〉B

to B. The two values are both random according to the

function of SAGSC protocol, therefore, in the case of a corruptedA

or B, the simulator just chooses a value α at random from Z2� to

simulate
〈
χl, j

〉A
or

〈
χl, j

〉B
. The remaining security proof is same

as that in SSQ-I shown in the proof the Theorem 6.1. �

Next, we demonstrate that SSQ-I can meet the desired privacy

requirements, which is trivially guaranteed by the security of our

protocols. (1) Data privacy: First of all, we recall that data owners

divide the data Si into two shares by additional secret sharing locally
before outsourcing them to the cloud servers. Since the secure query

protocol in SSQ-I is secure under semi-honest adversaries model, no

information is revealed to A and B, data privacy can be preserved.

(2) Query privacy: The query Q is the secret shared by the user

before sending to the cloud servers, and the secure query protocol is

secure under the semi-honest model. Therefore,A and B obtain no

information aboutQ expect the sequence length, the query privacy

is preserved. (3) Hiding data access patterns: In the stage of top-k
result return, the key-value pairs [〈i〉 , 〈di 〉] are in secret sharing

form and permuted by SSF protocol, no one knows
〈
Ij
〉
’ position

in the original database. Therefore, A and B do not know which

data record belongs to the result. Thus, data access patterns are

protected from both A and B. In a similar fashion, we can prove

that the desired privacy properties can be achieved in SSQ-II.

C PERFORMANCE ANALYSIS

We first analyze the computational complexity of our five sub-

protocols and compare them with existing solutions [26], in which

the protocols are same as part of our protocols with a similar secu-

rity level, and then present the computation complexity of secure

query protocol in SSQ-I and SSQ-II. Refer to performance analysis

in [26], we only consider the expensive cryptographic primitives

including non-XOR gates computation, encryption, decryption, and

multiplication in Paillier cryptosystem. The detailed analysis is as

following:

SSF Protocol: In Algorithm 1, considering the encryptions per-

formed in line 4 and line 10, the decryptions performed in line 16

and line 20 and the multiplications performed in line 10, SSF_offline

totally requires 2n encryptions, 2n decryptions and n multiplica-

tions. In the online phase of SSF protocol, there is no expensive

cryptographic primitive.

SBC Protocol: In Algorithm 3, SSF is used twice to permute

a sequence with two elements in line 2 and line 3, which incurs

8 encryptions, 8 decryptions, and 4 multiplications. In line 4, an

ADD-CMP circuit is used to compare two values. It is important

to note that we apply free-XOR [24] technique for garbled circuits

optimization. Consequently, one ADD circuit contains � non-XOR

gates, one CMP circuit contains � non-XOR gates, so 3� non-XOR

gates computation is required in our approach.

SMS Protocol: Based on the permuted sequence generated by

calling SSF protocol one time, an ADD-CMP circuit executed n −

1 times to get the minimum. Therefore, SMS totally requires 2n
encryptions, 2n decryptions n multiplications, and 3�(n − 1) non-

XOR gates.

SEED Protocol: As shown in Algorithm 5, SBC is used twice to

select the branch and SMS is used once to compute minimum at

each iteration and the number of iterations isn1n2. Therefore, SEED
totally requires 22n1n2 encryptions, 22n1n2 decryptions 11n1n2
multiplications, and 12�n1n2 non-XOR gates computation.

SAGSC Protocol: As we can see from Algorithm 6, the expen-

sive cryptographic primitive in SAGSC protocol is just an execution

of EQ-ADD circuit. As one EQ circuit contains �− 1 non-XOR gates,

only 2� − 1 non-XOR gates computation is required in SAGSC

protocol.

Secure Query Protocol in SSQ-I and SSQ-II: The computa-

tion complexity of secure query protocol in SSQ-I is bounded by

O(m) instantiations of SEED, O(1) instantiations of SSF and O(km)

instantiations of ADD-CMP. Therefore, the total computation com-

plexity is bounded by O(mn2) encryptions, decryptions, multiplica-

tions, and O(m�(n2 + k)) non-XOR gates computation. The compu-

tation complexity of Secure Query Protocol in SSQ-II is bounded

by O(mtv) instantiations of SAGSC, O(1) instantiations of SSF, and

O(km) instantiations of ADD-CMP. Therefore, the total compu-

tation complexity is bounded by O(n) encryptions, decryptions,
multiplications, and O(m�(tv + k)) non-XOR gates computation.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at ASIACCS '18:
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, published by Association for Computing Machinery. Copyright
restrictions may apply. doi: 10.1145/3196494.3196535

	Secure Similar Sequence Query on Outsourced Genomic Data
	Secure Similar Sequence Query on Outsourced Genomic Data

