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Abstract 

We propose a probabilistic framework rooted in multivariate and copula theory to assess heavy 

metal hazard associated with contaminated sediment in freshwater rivers that provide crucial 

ecosystem services such as municipal water source, eco-tourism, and agricultural irrigation. 

Exploiting the dependence structure between suspended sediment concentration (SSC) and 

different heavy metals, we estimate the hazard probability associated with each heavy metal at 
different SSC levels. We derive these relationships for warm (spring-summer) and cold (fall-

winter) seasons, as well as stormflow condition, to unpack their nonlinear associations under 

different environmental conditions. To demonstrate its efficacy, we apply our proposed generic 

framework to Fountain Creek, CO, and show heavy metal concentration in warm season and 

under stormflow condition bears a higher hazard likelihood compared to the cold season. Under 

both warm season and stormflow conditions, probability of exceeding maximum allowable 

threshold for all studied heavy metals (Cu, Zn, and Pb, in recoverable form)  at a standard 

hardness of 100 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3 and at a high level of SSC (95th percentile) is consistently more 

than 80% in our study site. Moreover, a longitudinal study along the Fountain Creek 

demonstrates that urban and agricultural land use considerably increase likelihoods of violating 

water quality standards compared to natural land cover. The novelty of this study lies in 
introducing a probabilistic hazard assessment framework that enables robust risk assessment 

with important policy implications about the likelihood of different heavy metals violating water 

quality standards under various SSC levels. 

Keywords: contaminated sediment; heavy metals; probabilistic hazard assessment; copula; conditional marginal 

distribution 

Introduction 

Sediment is a major physical and chemical pollutant in rivers, lakes, and estuaries (Newcombe and MacDonald, 1991). 

From a physical perspective, sediment disperses in the column of water and limits penetration of sunlight, which could 

lead to depleting dissolved oxygen by aquatic vegetation (Garcia, 2007). From a chemical viewpoint, sediment acts 

as a medium that can transport heavy metals, nutrients, and Polychlorinated Biphenyls (PCBs) (Ongley, 1996). 
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Sediments that carry various pollutants, referred to as contaminated sediments (Cui et al., 2008), have historically 

posed an important environmental management challenge in the US (Armitage, 2018). Remediation of contaminated 

sediments in various bodies of water in the US has imposed a cumulative cost of $33 billion since the Superfund Act 

in 1980 (Reible, 2014; Spellman, 2017). 

Various indices, including degree of contamination (DC) (e.g. Abrahim and Parker, 2007), contamination factor (CF) 

(e.g. Varol, 2011), enrichment factor (EF) (Kumari et al., 2008), geoaccumulation index (Igeo) (Çevik et al., 2009; 

Ali et al., 2018) and sediment quality guideline-quotient (SQG-Q) (Caeiro et al., 2005) have been developed to assess 

and classify the degree of pollution due to contaminated sediments with reference to the corresponding guidelines and 

regulations. For example, Zhang et al. (2009) used geoaccumulation index and showed Cd, Cr and Ni enrichment in 

Yangtze River, China, is widespread, whereas Cu, Mn, Pb, and Zn are localized or non-existent. Geoaccumulation 

index is also used to determine the contamination level in the Tigris River, Turkey (Varol and Şen 2012), Korotoa 

River, Bangladesh (Saiful et al. 2015), Yellow River, China (Ma et al. 2016) and River Po, Hungary (Farkas et al. 

2007), among others. Another example is Sakan et al. (2009) that used enrichment factor to evaluate various heavy 

metals pollution levels in Tisza River, Serbia. The authors also employed a modified Tessier method to analyze 

binding mechanisms of various heavy metals to sediments and thereby determined the source of pollutants. Other 

studies used a suite of different indices, including enrichment factor, contamination factor, pollution load index and 

geoaccumulation index, for assessment of heavy metal contamination in sediments (Varol, 2011). 

Multivariate methods and clustering analysis are used to model the interrelation among pollutants and identify the 
driving variables of heavy metal pollution (Soares, 1999; Yongming et al., 2006; Chen et al., 2014). Yalchin et al. 

(2008), for example, used correlation and dendrogram hierarchical cluster analysis, and showed heavy metals that 

have high strong positive relations generally share the same source. A rather similar approach was adopted by Qu and 

Kelderman (2001) to determine the sources of pollution in Rhine River and Delft City canals in the Netherlands. This 

study gathers sediment samples along the Rhine river and from various canals, and uses factor analysis to analyze 

various characteristics of the studied pollutants. The authors showed Rhine River is an external source for micro-

pollutants in the Delft City canals. Another example is the study of Liu et al. (2016) that used bivariate relationships 

between heavy metals and sediment to determine the anthropogenic and natural sources of heavy metals in Nanling, 

China. They first preprocessed observed data using centered log ratio and k-means clustering to minimize potentially 

spurious correlation among variables, and then employed factor analysis and compositional data analysis for this 

purpose. 

Principal Component Analysis (PCA) is employed in the literature to detect the source of pollutants by reducing 

insignificant variables and follow the pollution information along the course of the river (Micó et al., 2006; Varol and 
Şen, 2012). For example, Wang et al. (2014) used a PCA analysis and showed that Zn, Pb, As, Hg, and Cd originate 

from industrial wastewater and domestic sewage, Cu, Co, and Fe are sourced from natural weathering and erosion, 

and Cr and Ni originate from agricultural and municipal areas along the Yangtze River China. Similarly, Passos et al. 

(2010) used PCA to cluster various heavy metals in Poxim river estuary, Brazil, and analyze the source location for 

each contaminant group. While majority of the contaminated sediment literature are focused on estuaries and lakes 

(Zoumis et al., 2001; Pignotti et al., 2018), hazard assessment of contaminated sediments and heavy metals in rivers 

has received increasing attention in the recent decade (Pejman et al., 2015; Wojtkowska et al, 2016; Patel et al., 2018; 

Pandey et al., 2019). 

This paper presents a probabilistic framework for multivariate hazard assessment of contaminated sediment. This 

approach employs multivariate analysis with copulas to model the correlation structure between different heavy metal 

pollutants (in recoverable form) and suspended sediment concentration (SSC) to assess the probability of pollutant 

agents exceeding the EPA allowable thresholds at different SSC levels. We narrow down our analysis to warm and 

cold seasons, in addition to stormflow condition, in order to examine the interdependency between SSC and heavy 
metals under different ambient conditions. The seasonal analysis also allows us to investigate the effects of different 

parameters such as pH, temperature and specific conductance on SSC-heavy metal correlation structure. Finally, we 

evaluate the land use and land cover effects on the concentration of pollutants and SSC along example stream sections, 

showing that urban and agricultural land uses significantly increase heavy metal pollutant concentrations. Novelty of 

this study lies in the introduction of a robust probabilistic heavy metal hazard assessment framework with roots in 

multivariate and copula theory that provides significant risk-based insights to inform optimal management of 

contaminated sediments. Results can help ensure sustained ecosystem services, secure stakeholders’ benefits, and 

avoid costly remediation efforts. 
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Materials and Methods 

Probabilistic Hazard Assessment Framework 

We first analyze the dependence between SSC and each pollutant using Pearson correlation coefficient. Note that 

other metrics such as mutual information (e.g. Khorshidi et al. 2018) or rank correlation coefficients can also be used 

for this purpose. When existence of statistically significant correlation (95% confidence level) between different 

variables is established (see Table S1, in Supplementary Information, SI), we model the marginal distributions of SSC 

and heavy metals using the 17 continuous distribution functions from Sadegh et al. (2018b). The best marginal 

distributions are selected according to Bayesian Information Criterion (BIC, Schwarz, 1978; Fig. 1 B1-B2). BIC is a 

statistical measure to select the best statistical model from a finite set of models: 

BIC = 𝑘 ln(𝑛) − 2ln⁡(𝐿̂) (1) 

in which, 𝑘 represents model complexity (number of model parameters), 𝑛 signifies number of observations (length 

of data), and 𝐿̂ symbolizes maximum likelihood. Likelihood indicates the probability that a set of observations belong 

to different sets of model parameters. Lower values of BIC associate with more desirable models. For more details 

about likelihood functions refer to Sadegh et al. (2017). 

Marginal distributions are in turn used to construct copula models to represent the joint distribution of SSC and various 

pollutants. Copulas can explain the joint cumulative distribution of two (or more) time-independent random variables 

(Sklar’s theorem; Sklar, 1959, Joe, 2015) regardless of their marginal distribution forms (De Michele et al., 2004; 

Nelsen, 2006): 

𝐻(𝑥, 𝑦) = 𝑃(𝑥 ≤ 𝑋, 𝑦 ≤ 𝑌) = 𝐶(𝑢1, 𝑢2),⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝑦 ∈ 𝑅, (2) 

in which⁡⁡𝐻(𝑥, 𝑦) is joint distribution, 𝑢1 = 𝐹(𝑥) = 𝑃(𝑥 ≤ 𝑋) and 𝑢2 = 𝐺(𝑦) = 𝑃(𝑦 ≤ 𝑌) are marginal distributions 

of SSC and each heavy metal, respectively. Copula function, 𝐶, then maps 𝐼 × 𝐼⁡(𝐼 ∈ [0,1]) space to 𝐼. For example, 

Joe copula (Joe, 2005) is defined as: 

𝐶(𝑢1, 𝑢2) = 1 − [(1 − 𝑢1)
𝜃 + (1− 𝑢2)

𝜃 − (1 − 𝑢1)
𝜃(1 − 𝑢2)

𝜃]
1

𝜃,⁡⁡⁡⁡⁡⁡𝜃 ∈ [1,∞), (3) 

in which, 𝜃 is a parameter to be tuned through an optimization algorithm (e.g. Naeini et al., 2018). We use the 25 

built-in copula functions in the Multivariate Copula Analysis Toolbox (MvCAT; see Table 1 in Sadegh et al. (2017)), 

which is publicly available at http://amir.eng.uci.edu/MvCAT.php. The best copula model to describe the nonlinear 

dependence structure of SSC and each heavy metal is also selected based on BIC (Fig. 1C). 

The dependence structure between SSC and heavy metals provides the basis for developing the probabilistic hazard 

assessment framework. This approach uses Bayesian networks and probability theory to derive the conditional 

marginal distribution of heavy metal depending on SSC using 

𝑓(𝑢2|𝑢1) =
𝑓(𝑢1 , 𝑢2)

𝑓(𝑢1)
 (4) 
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𝑓(𝑢2|𝑢1) represents conditional probability density function of variable 𝑢2 depending on 𝑢1, whereas 𝑓(𝑢1, 𝑢2) and 

𝑓(𝑢1) signifies joint probability density of 𝑢1 and 𝑢2, and marginal probability density function of 𝑢1, respectively 

(Madadgar and Moradkhani, 2013). The joint probability density function is defined as (Shojaeezadeh et al., 2018): 

𝑓(𝑢1 , 𝑢2) = 𝑐(𝑢1, 𝑢2)𝑓(𝑢1)𝑓(𝑢2) (5) 

in which, 𝑐(𝑢1, 𝑢2) =
𝜕2𝐶(𝑢1,𝑢2)

𝜕𝑢1𝜕𝑢2
 (𝐶 representing copula joint cumulative distribution; Sadegh et al., 2018b). This 

transforms equation 4 to: 

𝑓(𝑢2|𝑢1) =
𝑓(𝑢1, 𝑢2)

𝑓(𝑢1)
=
𝑐(𝑢1, 𝑢2)𝑓(𝑢1)𝑓(𝑢2)

𝑓(𝑢1)
= 𝑐(𝑢1, 𝑢2)𝑓(𝑢2) (6) 

This conditional marginal distribution can then be used to estimate the likelihood of heavy metal concentrations (𝑢2) 

exceeding the EPA maximum allowable threshold given a certain level of SSC (𝑢1). In other words, this approach 

conditions the copula function on a specific level of SSC and multiplies the conditioned copula function (Fig. 1C, 

yellow surface) by the marginal distribution of the pollutant (Fig1. B2) to estimate the conditional marginal 

distribution of heavy metal given a certain level of SSC (Fig. 1D). The area under the curve of the conditional marginal 

distribution of the heavy metal above the maximum allowable threshold gives the likelihood of the hazard (red region 

in Fig. 1D). 

Hazard and Maximum Allowable Pollutant Level 

We define hazard as heavy metal (or any pollutant) concentration exceeding maximum allowable threshold. We use 

the criterion maximum concentration (CMC) threshold, which is defined by EPA as maximum allowable level for 

point observation analysis. EPA also defines criterion continuous concentration (CCC) for chronic response to water 
pollution, which is not suited for this study due to the nature of available data (see Data section) (Santore et al., 2001; 

USEPA, 2007). The EPA maximum allowable thresholds for recoverable heavy metals are formulated based on the 

hardness of water (see Table S2 in SI). 

Data 

We parameterize the proposed probabilistic model using suspended sediment concentration (SSC) and heavy metal 

concentration data obtained from the US Geological Survey (USGS) water quality portal 

(https://www.waterqualitydata.us/). Observations of SSC and heavy metal concentration are provided on a bi-weekly 

to monthly basis between 2000 to 2018 for active sites. The pollutant observations are classified into four categories: 

1. Dissolved: solved in water, 2. Recoverable: adsorbed to sediment particles, 3. Suspended: in suspension form in the 
column of water, and 4. Total: sum of pollutants in all these categories. We set a threshold of availability of at least 

35 concurrent observations of SSC and heavy metal concentration for selecting study sites to ensure capturing the 

variability of the system, and robustly parameterizing marginal and joint distributions (see Fig. S1 and refer to Ross 

(2009) for more details). We randomly select 77 USGS stations across the US that satisfy the selection criterion, and 

use Pearson correlation analysis to investigate the linear relationship between SSC and multiple heavy metal pollutants 

in dissolved, recoverable and total forms. The correlation structure between SSC and various heavy metals in these 

sites attest to the applicability of the proposed hazard assessment framework in different regions across the US and 

elsewhere. EPA regulates seven heavy metals, namely cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel 

(Ni), silver (Ag) and zinc (Zn) in recoverable form (Armitage, 2018), which are analyzed herein. Table S1 presents 

the Pearson correlation coefficients between heavy metal concentration and SSC level for each studied station. 
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Heavy metal pollutants in recoverable form, expectedly, show positive correlation with SSC (displayed with light 

green), implying that increase in SSC level is associated with heightened pollutant level. Pearson correlation 

coefficients show that heavy metal concentrations in both recoverable and total forms have significantly higher 

positive correlations with SSC, as compared to the pollutants in the dissolved form. The close proximity of the Pearson 

correlation coefficients of pollutants in the total and recoverable forms with SSC implies that a great portion of the 

total pollutants is in the recoverable form. It is also interesting that dissolved lead and copper show statistically 

significant level of correlation with SSC, while interdependency for zinc in the dissolved form is weak across the 77 

stations considered in this study. It is noteworthy that pollutant and SSC levels are observed at certain times (point 
measurement with bi-weekly to monthly frequency), and hence potential temporal lags between dissolved pollutants 

and SSC are not captured in the data we study herein. This might explain some of the negative correlation coefficients 

between dissolved pollutants and SSC. Desorption of pollutants from sediment and sorption into water, and vice versa, 

are influenced by flow conditions, pH and temperature, among others (Li et al., 2013). The  temporal frequency of 

observations is not a cause for concern in a probabilistic modeling framework, i.e. static modeling, as long as the data 

constitute an adequate representation of the underlying marginal and joint distributions. 

In this study, we investigate recoverable parameters to quantify the contaminated sediment hazard, since the nature of 

observed data (point observation) only warrants robust correlation structure between SSC and pollutants in recoverable 

form. Moreover, recoverable pollutants can be physically removed along with sediment at the source using Best 

Management Practices (BMPs) and various sediment trapping methods, which aligns with the purpose of the proposed 

methodology to provide risk-based information about contaminated sediment hazard to help decision-makers develop 

management plans. The methodology is generic and can also be effectively used for assessing hazards of dissolved 

heavy metals upon framing the correct underlying correlation structure. 

Case Study: Fountain Creek Watershed 

We focus on the Fountain Creek at Colorado Springs, CO, as an example case and apply the proposed framework for 

probabilistic hazard assessment of contaminated sediments at USGS station 07105500. Particle size distribution (Fig. 

S2) shows that more than 60% of particles in this stretch of the river consists of silt and clay (grain size less than 

0.0625 mm) with a high capacity for sorption of pollutants (Krishna and Mohan, 2013). Field observation of copper, 

lead, manganese, nickel and zinc concentrations as well as SSC are available for this station between 2000 and 2018, 

with a sampling gap between 2013 and 2015 (Fig. S3). Arsenic and mercury are two other major heavy metals, 

however, the data record does not provide enough observations for these pollutants in the recoverable form to be 

included in this analysis. Our investigation shows that Fountain Creek at Colorado Springs, CO, does not experience 

violation of water quality for manganese and nickel, and hence we merely focus on copper, zinc and lead in this paper. 

The proposed framework is generic and can be applied to all pollutant agents at any site. 

We then extend our analysis to assess the impacts of land use and land cover on the hazard as this river flows from 

forest and barren land in its headwaters to downstream urban and agricultural lands. Multiple USGS stations along 

the Fountain Creek provide long-term observations of the required data enabling us to conduct this longitudinal 

analysis. We discuss the impacts of land use/cover on the SSC levels along this river, and investigate the hazards 

associated with different heavy metal violations. 

Finally, we categorize the observed data into warm and cold seasons and stormflow condition to investigate the 

seasonal impacts and extreme event effects. Cold season consists of fall and winter, and warm season includes spring 

and summer. Stormflow condition is defined as streamflow exceeding 70th percentile of the observed flows 

(Shojaeezadeh et al., 2018). 

Results and Discussion 

Probabilistic Heavy Metal Hazard Assessment for Fountain Creek at Colorado Springs, CO 

We first briefly discuss the impacts of various environmental parameters on the sorption and desorption of heavy 

metals to/from sediment particles, and present the statistics of each factor in the Fountain Creek at Colorado Springs, 

CO (USGS station 07105500). Fig. 2 presents observed ranges of zinc, copper, lead, discharge, pH, temperature, 
hardness and specific conductance for this station in warm and cold seasons as well as stormflow condition. pH values 

are consistently above 7 (alkali) with relatively small variation, with higher values in the cold season compared to the 

warm season, which is in turn greater than that of the stormflow condition. It is also noteworthy that variation of pH 
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in the cold season is considerably lower than the warm season and stormflow condition. Several studies show that 

leachability of heavy metals from sediment particles is highly dependent on pH values (Eggleton and Thomas, 2004), 

however, weak acid and alkaline conditions, as observed in this station, leave minimal effects on sorption and 

desorption of heavy metals to/from sediment particles (Wang et al. 2016). Another effective parameter on pollutant 

sorption to sediment particle is temperature (Li et al., 2013). Temperature in this reach of the Fountain Creek varies 

widely between 0℃ to 25℃ throughout the year, which may bear contrasting effects on leachability of heavy metals 

from sediment particles (Echeverría et al., 2005). 

Specific conductance and hardness are generally larger in the cold season compared to the warm season and stormflow 

condition. High value of specific conductance can facilitate desorption of pollution from sediment particles (Zhiming 

et al., 2013). Higher hardness values increase the maximum allowable thresholds for pollutant concentrations, i.e. 

promote higher tolerance for pollutants (Table S2). Fig. 2 also shows that concentrations of copper, zinc, and lead are 

higher for stormflow condition in comparison to warm season, which is in turn higher than that of the cold season. 

Variation of heavy metal concentrations is relatively small for stormflow condition and cold season, as opposed to the 

warm season that shows a large variability range. Finally, discharge values are higher for the stormflow condition, as 

expected, followed by warm and cold seasons, respectively. Higher discharges hold the required energy to transport 

suspended sediments, resuspend sediment particles from river bed, and wash river banks (Shajeezadeh et al., 2018). 

We now evaluate the dependence level between SSC and various pollutants in the Fountain Creek at Colorado Springs, 

CO, which will be used to draw probabilistic inferences about the probability of hazard at different SSC levels. Fig. 3 

shows Pearson correlation coefficients between SSC versus zinc, manganese, nickel, copper, lead, calcium, and 

magnesium concentrations in dissolved and recoverable form (based on the availability of observations) and other 

environmental factors such as discharge, hardness and specific conductance. While specific conductance, hardness 

and dissolved pollutants show a negative correlation with SSC, recoverable pollutants and streamflow portray positive 

correlation values with sediment (see Data section for a brief discussion on the causes). This is expected given that 

60% of sediments in this reach of the Fountain Creek consist of small particles of clay and silt (Fig. S2) with high 

potential for sorption of heavy metals in recoverable form. Positive correlation between recoverable heavy metal 

concentrations and SSC implies higher levels of SSC bear higher potential for violating the maximum allowable limits 

for heavy metals, and hence posing a hazard. 

We then use the proposed copula-based probabilistic framework to infer conditional marginal distribution of each 

heavy metal given various SSC levels (5th, 10th, …, 95th percentiles) to estimate the exceedance probability of the 

pollutant with reference to the EPA threshold. This involves fitting marginal and joint probability distributions, as 

described in the Methods section. Details of selected marginal and copula distributions for each case (based on BIC) 

are summarized in Table S3. Probability of copper, lead, and zinc concentrations exceeding EPA water quality 

standards are shown in Figs. 4-6, respectively. Each figure provides hazard assessment for one pollutant under cold 

season (A), warm season (B) and stormflow condition (C), which are referred to as environmental conditions, 

hereafter. For each environmental condition, we consider four hardness scenarios: (i) average, (ii) maximum, and (iii) 

minimum observed hardness levels, as well as (iv) hardness of 100 ⁡⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3 (commonly used by EPA). We 

consider these four scenarios as maximum allowable threshold depends on water hardness (Table S2). Each figure 

lists all hardness values and associated maximum allowable thresholds for each heavy metal and each environmental 

condition. Each section of the figure includes several bins that represent the probability of pollutant concentrations 

exceeding the EPA threshold under 5th, 10th, 15th, …, 95th percentiles of SSC levels. The SSC level associated with 

percentiles, obviously, differ between environmental conditions. Fig. S7 in SI presents the SSC values associated with 

different percentiles under each environmental condition for this reach of the Fountain Creek, CO. 

Fig. 4 displays probabilities of hazard associated with copper under different environmental conditions and the four 

hardness scenarios. Copper in low concentration is an essential nutrient, but can be toxic to aquatic life in elevated 

concentrations (Borkow and Gabbay, 2005). Chronic exposure to copper can affect growth and reproduction of aquatic 

life and impair brain function, blood chemistry and metabolism in humans (Ahmad et al., 2010). Fig. 4A displays the 

probability of copper concentrations exceeding EPA thresholds in the cold season. Minimum (107 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3), 

average (243.1 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3), and maximum (354 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3) hardness levels in this station in the cold season are 

associated with maximum allowable recoverable copper thresholds of 14.92 𝜇𝑔/𝑙, 32.33 𝜇𝑔/𝑙, and 46.06 𝜇𝑔/𝑙, 
respectively, whereas the copper threshold for hardness of 100 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3⁡is 13.99 𝜇𝑔/𝑙. Only with extreme SSC 

level (95th percentile) and under minimum hardness (107⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3, most stringent threshold) is there a small 
probability (~20%) to violate the water quality standards. Thus, cold season will not pose a significant hazard 
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associated with copper for this river section. Under warm season and stormflow condition, however, the hazard has a 

much higher likelihood of occurrence. While the likelihood of recoverable copper posing a water quality hazard under 

low SSC levels (5th-15th percentiles) for all hardness scenarios is minimal for the warm season (~0-5% likelihood), 

this increases to 40-90% likelihood under the stormflow condition (Figs. 4B-C) for a similar percentile range of SSC. 

Similarly, under medium range SSC levels (45th-55th percentiles) the likelihood of violating the water quality standards 

is lower for the warm season (10-60%) in comparison to the stormflow condition (80-90%). However, the likelihood 

of such hazard under higher levels of SSC (85th-95th percentiles) increases to 80-90% for both the warm season and 

streamflow conditions, except for the maximum hardness level (least stringent threshold for copper) in the warm 
season that is associated with a likelihood of 65%. See Fig. S7 in SI for the SSC levels associated with different 

percentiles under various environmental conditions. 

Fig. 5 presents probabilistic hazard assessment of lead under different environmental conditions and various SSC 

levels. Lead is harmful to humans even under low concentrations, and can impair kidney function and induce 

hypertension, among several other long and short-term negative impacts (Jaishankar et al., 2014). Controlling lead is 

a high priority for EPA, especially after the high-profile incident of lead exposure through water distribution system 

between 2014-2015 in Flint, MI (Zahran et al., 2018). Lead, in the cold season in our study station, poses low risk of 

water quality violation, given lower levels of lead concentration in this season as well as higher hardness levels that 

promote less stringent thresholds (Fig. 5A). Indeed, for average hardness levels under different environmental 

conditions (243.1 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3, 162.1⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3 and 93.06⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3 for cold and warm seasons and stormflow 

condition, respectively), maximum allowable threshold for lead concentration is 252.9 μg/l in cold season, as 

compared to 151.0 𝜇𝑔/𝑙 and 74.5 𝜇𝑔/𝑙 for warm season and stormflow conditions. Lead hazard is more pronounced 

under stormflow condition as compared to warm season due to higher lead concentrations and more stringent 

maximum allowable thresholds. Under low SSC levels (5th-35th percentile) in the warm season, likelihood of 

exceeding the lead maximum allowable threshold is between ~0% to ~7%, whereas this elevates to ~5% to ~60% for 

stormflow condition due to more stringent thresholds and higher lead concentrations (Fig. 5B-C). We can, however, 

compare the lead hazard under various environmental conditions with a common hardness of 100⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3, and 

hence a common maximum allowable threshold. In this case, cold season poses no hazard, even under high SSC levels, 

in terms of violating maximum allowable threshold for lead, but the likelihood of lead concentrations exceeding the 

threshold for warm season and stormflow condition exceeds 40% under median SSC levels (45 th - 50th percentile), 

and increases to 75-85% under higher SSC values (85th-95th percentiles). Under minimum and constant (100 𝑚𝑔/𝑙 
𝐶𝑎𝐶𝑜3) hardness levels and for high SSC intensities, both warm season and stormflow conditions pose a very high 

likelihood of hazard (>80%). 

We now move to hazard assessment for zinc in this reach of the Fountain Creek in Colorado. Zinc is an essential 

element for human and aquatic organisms’ health in low concentrations (Santore et al., 2001; Naddy et al., 2015;). 

However, high concentrations of zinc can be very toxic and leave grave and sometimes irreversible effects on human 

health, such as stomach cramps, skin irritations and pancreas damage (Cooper et al., 2009; Fallah et al., 2018). Fig. 6 

presents probabilistic assessment of zinc hazard under different environmental conditions. Similar to lead and copper, 

zinc does not pose a significant hazard in the cold season, while in the warm season and under stormflow condition, 

zinc hazard can be significant. Note, however, that lead and copper both show a gradual increase in the probability of 

exceeding maximum allowable threshold in response to rise in the SSC level in the warm season (Figs. 5B, 4B), 

whereas zinc hazard shows an abrupt rise when going from median (~55th percentile) to high (~75th to 95th percentiles) 

SSC levels (Fig. 6B). For example, under average hardness level in the warm season (Fig. 6B), probability of zinc 

posing a hazard is nearly zero for the 65th percentile SSC level, which escalates to ~60% for the SSC level of 75th 

percentile. Similar behavior can be observed under different hardness scenarios in the warm season. There are two 

potential explanations for this behavior: (i) a small number of extreme events are driving the zinc violations. Therefore, 

associated SSC levels are culpable for exceeding the maximum allowable threshold (Fig S3), and (ii) the uncertainty 

in fitting marginal distributions and copulas can be translated into hazard assessment uncertainties (Sadegh et al., 

2018a,b). Indeed, more extreme environmental conditions are associated with higher modeling uncertainties (Sadegh 

et al. 2018b). While uncertainty assessment is beyond the scope of this study, future users of the proposed methodology 
should be aware of the potential underlying uncertainties (see Sadegh et al. 2018a for example). Moreover, this 

framework bears an assumption of stationarity in the underlying processes, which can be violated by the impacts of 

watershed regulations and climate change (Sadegh et al., 2015; 2019). Our visual inspection as well as Mann-Kendall 

non-parametric trend analysis does not show any statistically significant trend in the data (Mallakpour et al. 2018; 

2019). 
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Impacts of Land Use and Land Cover on Heavy Metal Hazard in the Fountain Creek Watershed, CO 

We conduct a longitudinal study along the Fountain Creek in Colorado to investigate the impacts of land use and land 

cover on the probability of hazard. Land use and land cover map of this watershed is shown in Fig. 7. Forest and 

woodland are dominant land cover in the upper reach of the river (middle fork) that mixes with semi desert and barren 
land before the first station of this analysis (A: USGS-07103700). Progressing downstream, majority of land cover 

evolves into developed and other urban human use (stations B: USGS-07103707, C: USGS-07105500, D: USGS-

07105530). Further down the stream, agriculture becomes the dominant land use (E: USGS-07105800). Fig. 8 

demonstrates SSC ranges obtained from the five USGS stations in this watershed under warm and cold seasons, as 

well as stormflow condition. From upstream to downstream, SSC levels increase, which is consistent with the impact 

of urban and agricultural land cover (Wang et al., 2007), with an exception of progressing from station A to B (Fig. 

8). Comparing stations A and B, median SSC is generally higher for the downstream gauge, but the SSC range is 

generally wider for the upstream station; which could be attributed to the impact of deserted and barren land as well 

as the wildfires in the forests of the upstream of the river (Bartley et al., 2010; Miller and Stogner  Robert, 2017). The 

SSC response follows a more consistent increasing trend as we proceed downstream from gauge B. Fig. 8 also shows 

the SSC range for warm season becomes more constrained from upstream to downstream, whereas this range increases 

for the cold season and stormflow conditions. Tighter ranges of SSC for the warm season is rather expected given 

limited precipitation events during summer with majority of the river flow being released from the upstream dams 

(Schwartz and Betancourt, 2013). The cold season and stormflow conditions, on the other hand, are associated with 

higher stochasticity in SSC concentrations as high intensity precipitation events in these periods introduce huge wash 

loads to the river (Shojaeezadeh et al., 2018). 

We apply our probabilistic framework to quantify heavy metal hazard along the Fountain Creek, CO. For brevity, we 

present the hazard assessment results for copper in the warm season here, as Fountain Creek frequently observes 

copper violations in the warm season (also see Edelmann, 1990). Results for copper hazard assessment in the cold 

season and stormflow condition, as well as lead and zinc hazard assessment under various environmental conditions, 

are provided in the SI (Figs. S10 to S17). Fig. 9 shows hazard levels associated with copper for all five stations of the 

Fountain Creek in the warm season. As discussed previously, SSC levels increase from upstream to downstream, and 

given the positive association between SSC and heavy metals, pollution also increases along the river. This translates 

to generally higher probabilities of hazard, advancing from upstream to downstream (Fig. 9) due to additional copper 

contaminated sediment discharged into the river from urban and agricultural land. Hardness of water determines the 

maximum allowable threshold, and since hardness level changes between different stations, the associated threshold 

changes accordingly. These thresholds should be considered for cross comparison purposes. At a constant water 

hardness of 100 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3, we observe that for the upstream stations (Fig. 9A-B), the hazard is only likely for high 

SSC levels (associated with flood, Shojaeezadeh et al., 2018). As we move into the urban and agricultural land (Fig. 

9C-E), however, the probability of hazard increases for both low and high SSC levels. For example, under 5 th-55th 

percentile SSC levels for the upstream stations (A-B), the likelihood of copper concentrations exceeding the EPA 

threshold (at a hardness of 100⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3) is almost zero, which increases to about 5-60% in the downstream 

stations (C-E). This is in line with the findings in the literature that show a higher quantity of heavy metals are released 

from urban and agricultural areas to the river systems compared to that from the natural environment (Lubowski et 

al., 2016). Finally, this approach can pinpoint the pollution hot spots along the river using a risk-based approach. For 
example, stations C and D, corresponding to urban land use, bear a considerably higher hazard associated with lead 

(Fig. S12), compared to the upstream stations of A and B (natural land cover) and even the downstream station E 

(agricultural land use), for all SSC levels. 

Final Remarks 

This analysis calls for proper sediment control and management for the warm season and stormflow condition, 

especially for high SSC levels. The hazard associated with heavy metal contaminated sediment is negligible in the 

cold season. The highest hazard level for copper, lead, and zinc in Fountain Creek at Colorado Springs, CO (USGS 

station 07105500) is expected under stormflow condition. Indeed, under stormflow condition, there is a high likelihood 

(~40-90%) of exceeding EPA maximum allowable threshold for copper and zinc, even at low SSC levels. This, 

however, is less extreme for lead, for which lower SSC levels are associated with significantly lower probabilities of 
water quality violations, i.e. ~0-20% (Fig. 5C). Lead poses a graver threat to human and animal health compared to 

copper and zinc (Jan et al. 2015). This hazard assessment approach should be used in the general risk framework, 

which takes into account exposure, vulnerability and hazard (Cardona et al. 2012). A 20% chance of violating water 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Science 

of the Total Environment, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/j.scitotenv.2019.134875 



9 

quality standard for lead, for example, might be associated with more treacherous consequences as compared to a 40% 

chance of violating the copper threshold. The proposed methodology enables probabilistic hazard assessment, making 

it useful for risk quantification by the decision-makers. 

Finally, analysis of the impacts of land use and land cover shows that agricultural and urban land use are culpable for 
releasing high quantities of heavy metals to the Fountain Creek, substantially increasing the probability of hazard 

associated with heavy metal contaminated sediment. Our analysis of the hazard associated with copper, for example, 

shows that while probability of exceeding EPA thresholds for recoverable copper given lower than median SSC levels 

in the upper reaches of the Fountain Creek (forest and barren land cover) is negligible, it increases significantly as the 

river flows through urban and agricultural land cover. The proposed framework, hence, can also be used for 

longitudinal studies, and can inform risk-based feasibility and profitability assessments of potential Best Management 

Practices (BMPs). 

Conclusions 

One major source of pollution in the rivers across the US is contaminated sediment. We propose a probabilistic 

framework rooted in multivariate theory that exploits the interrelation structure between sediment and heavy metals, 
and provides a robust assessment of contaminated sediment hazard. This approach models the marginal distribution 

of heavy metals and suspended sediment concentration (SSC), as well as joint distribution of the two variables using 

copulas. The copula function is then conditioned on a specific level of SSC, and multiplied by the marginal distribution 

of the pollutant, which returns conditional marginal distribution of the pollutant given the specified SSC level. The 

conditional marginal distribution of the pollutant is subsequently used to quantify the probability of pollutant 

concentration exceeding the EPA threshold level. Hazard is defined as violation of water quality standards, the 

likelihood of which is estimated by our proposed methodology. 

We show in this paper that the proposed approach could be used to quantify the hazard level under different 

environmental conditions. It can also be used in longitudinal studies along the course of a river to identify pollution 

hot spots. This hazard assessment framework provides insights to where and when, and at what likelihood, potential 

hazards can occur. The probabilistic nature of this approach accommodates risk assessment studies, rendering it a 

valuable tool for watershed managers. Our results show there is a significant positive correlation between SSC and 

different heavy metals (including copper, lead and zinc) for multiple USGS stations. Hence, as SSC levels increase, 

hazard probability for different heavy metals elevates accordingly. 

Our analysis also reveals that during warm season (spring and summer) and under stormflow condition, the probability 

of violating water quality standards is significantly higher than the cold season (fall and winter). For example, while 

the probability of violating maximum allowable threshold (under hardness of 100 ⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3) for recoverable 

copper in Fountain Creek, CO (USGS station 07105500) associated with high SSC level (95th percentile) is less than 

20% for cold season, it increases to more than 90% under both warm season and stormflow condition. One explanation 

for this observation is that 95th SSC level in the summer season and stormflow condition is significantly higher than 
that of winter (Fig. S7), and hardness in winter is higher than that of the warm season and stormflow condition, which 

in turn relaxes the EPA standard thresholds. Similar observations are made for zinc and lead. Moreover, our 

longitudinal analysis shows that while the probability of exceeding maximum allowable threshold for recoverable 

copper in the upstream stations of the Fountain Creek in Colorado (forest and woodland land cover) given median 

SSC level (50th percentile) is negligible, it surges to above 80%-90% in the downstream stations as the river passes 

through agricultural and urban areas. Finally, our framework provides risk-based information to watershed managers 

as they prioritize their efforts to curb water quality violations. 
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Abbreviations and Acronyms 

As Arsenic 

BIC Bayesian Information Criterion 

BMPs Best Management Practices 
Ca Calcium 

CaCo3 Calcium Carbonate 

CCC Criterion Continuous Concentration 

Cd Cadmium 

CF Contamination Factor 

CMC Criterion Maximum Concentration 

Co Cobalt 

Cr Chromium 

Cu Copper 

DC Degree of Contamination 

EF Enrichment Factor 

EPA Environmental Pollution Agency 

Fe Iron 

Hg Mercury 

Igeo Geoaccumulation index 

Mg Magnesium 

Mn Manganese 
Ni Nickel 

Pb Lead 

PCA Principal Component Analysis 

PCBs Polychlorinated Biphenyls 

SQG-Q Sediment Quality Guideline-Quotient 

SSC Suspended Sediment Concentration 

USGS US Geological Survey 

Zn Zinc 
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Figure 1. Probabilistic hazard assessment framework for contaminated sediment: A: scatterplot of SSC and heavy 

metal observations, B1-2: marginal distributions of SSC and heavy metal, respectively, C: joint distribution of SSC 

and heavy metal, with yellow surface conditioning the joint distribution on a certain SSC level, D: conditional 

marginal distribution of heavy metal at a certain SSC level. Red area in plot D shows the probability of heavy metal 

concentrations exceeding a certain threshold. 
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Figure 2. Range of heavy metals and various ambient river parameters for Fountain Creek at Colorado Springs, CO 

(USGS-07105500) under warm (spring-summer) and cold (fall-winter) seasons and stormflow condition. Blue line is 

the EPA threshold for hardness equal to 100⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3. 
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Figure 3. Pearson correlation coefficient between suspended sediment concentrations and different heavy metal 

concentrations, as well as other ambient variables for Fountain Creek in Colorado (USGS station 07105500). Length 

of each radial bar shows the Pearson correlation coefficient value (between 0-1). Correlation is statistically 

significant at the 5% level. 
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Figure 4. Likelihood of hazard posed by copper concentration exceeding EPA maximum allowable threshold under 

different suspended sediment concentrations in cold season (A), warm season (B), and stormflow condition (C). Each 

plot includes four scenarios: average, minimum, and maximum observed hardness, as well as a constant hardness 

level of 100⁡𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3, and their associated maximum allowable pollutant level. Each bin in each scenario is 

associated with one SSC level (percentile), the length of which represents probability of hazard. Bins are color-coded 

from yellow (low SSC level) to red (high SSC level). 
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Figure 5. Likelihood of hazard posed by lead concentration exceeding EPA maximum allowable threshold under 

different suspended sediment concentrations in cold season (A), warm season (B), and stormflow condition (C). Each 

plot includes four scenarios: average, minimum, and maximum observed hardness, as well as a constant hardness 

level of 100 /𝑙 𝐶𝑎𝐶𝑜3, and their associated maximum allowable pollutant level. Each bin in each scenario is 

associated with one SSC level (percentile), the length of which represents probability of hazard. Bins are color-coded 

from yellow (low SSC level) to red (high SSC level). 
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Figure 6. Likelihood of hazard posed by zinc concentration exceeding EPA maximum allowable threshold under 

different suspended sediment concentrations in cold season (A), warm season (B), and stormflow condition (C). Each 

plot includes four scenarios: average, minimum, and maximum observed hardness, as well as a constant hardness 

level of 100 /𝑙 𝐶𝑎𝐶𝑜3, and their associated maximum allowable pollutant level. Each bin in each scenario is 

associated with one SSC level (percentile), the length of which represents probability of hazard. Bins are color-coded 

from yellow (low SSC level) to red (high SSC level). 
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Figure 7. Land use and land cover of the Fountain Creek watershed in Colorado monitored at several stations: (A) 

USGS-077103700, (B) USGS-07103707, (C) USGS-07105500, (D) USGS-07105530 and (E) USGS-07105800 
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Figure 8. Range of suspended sediment concentration under cold and warm seasons and stormflow condition for the 

monitoring stations on Fountain Creek: (A) USGS-077103700, (B) USGS-07103707, (C) USGS-07105500, (D) 

USGS-07105530 and (E) USGS-07105800 
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Figure 9. Likelihood of hazard posed by copper concentration exceeding EPA maximum allowable threshold under 

warm season for different stations on Fountain Creek: (A) USGS-077103700, (B) USGS-07103707, (C) USGS-

07105500, (D) USGS-07105530 and (D) USGS-07105800. Each plot includes four scenarios: average, minimum, and 

maximum observed hardness, as well as a constant hardness level of 100 𝑚𝑔/𝑙 𝐶𝑎𝐶𝑜3 , and their associated maximum 

allowable pollutant level. Each bin in each scenario is associated with one SSC level (percentile), the length of which 

represents probability of hazard. Bins are color-coded from yellow (low SSC level) to red (high SSC level). 
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