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Abstract 

Despite the vast applications of transformable ceramics, such as zirconia-based ceramics, in 
different areas from biomedical to aerospace, the fundamental knowledge about their mechanical 
degradation procedure is limited. The interaction of the phase transformation and crack growth 
is crucial as the essential underlying mechanism in fracture of these transformable ceramics, also 

known as shape memory ceramics. This study develops a three-dimensional (3D) multiphysics 
model that couples the variational formulation of brittle crack growth to the Ginzburg-Landau 
equations of martensitic transformation. We parameterized the model for the 3D single crystal 
zirconia, which experienced stress- and thermal-induced tetragonal to monoclinic 
transformation. The developed 3D model considers all 12 monoclinic variants, making it 
possible to acquire realistic microstructures. Surface uplifting, self-accommodated martensite 

pairs formation, and transformed zone fragmentation were observed by the model, which agrees 
with the experimental observations. The influence of the crystal lattice orientation is investigated 
in this study, which reveals its profound effects on the transformation toughening and crack 

propagation path. 

Keywords: shape memory ceramics, three-dimensional modeling, crack growth, phase field modeling, martensitic 

transformation, zirconia 

1.  Introduction 

Shape memory ceramics (SMCs) are excellent choices for actuators, especially in high temperature and corrosive 

applications. In particular, the zirconia-based ceramics with the combination of superior qualities like high strength 
and low thermal conductivity are promising choices among the other shape memory ceramics for a vast range of 

applications from biomedical implants to thermal barrier coatings on turbine blades in jet engines [1]. 

Garvie et al. [2] were the first who showed that it is possible to gain a significant increase in zirconia strength by 
making the tetragonal phase stable at room temperature. Tetragonal stabilization is feasible by adding oxide dopants 
or reducing the grain sizes. Both techniques reduce the tetragonal to monoclinic transformation temperature by 

decreasing the transformation deriving force. 

The stabilized zirconia is resistant to crack propagation, as the stress concentration at the crack tip excites the 

tetragonal to monoclinic (𝑡 → 𝑚) transformation. This transformation results in a considerable shear (0.16) and 
volume expansion (0.04) that will create a domain with large compressive stresses leading to crack tip closure and 

preventing the crack growth, which enhances the toughening property of zirconia [3]. 

Despite the superior properties of zirconia, such as applicability for a wider range of temperatures and higher energy 
absorption, compared to the metallic shape memory materials [4], their widespread application is limited due to their 
brittleness and low fatigue life. While recent studies [4] have shown that increasing the fatigue life is possible by 
reducing the sample size, we still lack the fundamental knowledge of how martensitic transformation (MT) and crack 

interact concurrently, in particular in three-dimensional (3D) domains. 
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Fracture of zirconia has been the subject of numerous experimental studies [5–10]. Some of the two-dimensional (2D) 
experimental studies such as X-ray diffraction [11], transmission electron microscopy [12], optical microscopy [13], 
scanning electron microscopy, and neutron powder diffraction [14] have revealed fundamental knowledge on the crack 
and MT interaction. However, some information is missed in 2D. Fortunately, 3D observation of crack formation and 

propagation in shape memory ceramics has become possible by using Atomic Force Microscopy (AFM). Deville et 
al. [15] showed that AFM could successfully be used to observe ceria-stabilized zirconia transformation toughening 

and how the stress in the field around the propagating cracks leads to 𝑡 → 𝑚 transformation. Deville et al. [15] used a 
high resolution AFM to examine the development of self-accommodated martensite pairs around the crack zones at 
the surface of the samples. However, while AFM provides some 3D information for the transformation toughening in 
zirconia, there are some limitations associated with the AFM technique, for example, AFM only gives the in-surface 

information and we are missing in-bulk information. 

Alongside with the experimental studies, theoretical studies and simulations can also advance the fundamental 
knowledge of crack growth interaction with the MT. Fracture and transformation toughening mechanisms in 
transformable brittle materials was investigated at macroscale by numerous studies in the past years [16–21]. To find 
the features and mechanisms involved in transformation toughening in transformable brittle materials, Evans and 

Cannon [22] provided an inclusive study that reveals the effect of microstructure and materials chemistry on 
transformation toughening. A comprehensive review on this subject has been conducted by Hannink et al. [3] and 
Kelly and Rose [23]. In early studies, two strategies were used to calculate the amount of toughening caused by the 
transformation. The first one used the concept of linear elastic fracture mechanics to estimate the phase 
transformation's shielding effect [16], while the other one determined the fracture energy that was originating from 

the phase transformation associated with a growing crack [17]. 

Although classical models and studies revealed some underlying features and mechanisms regarding the 
transformation toughening, they could not consider the dynamic interaction of crack propagation and MT 

simultaneously. Moreover, the classical models were not capable of considering microstructure discontinuities such 
as grain boundaries, inclusions, second phases, etc., and microstructure features like grain size, which influence the 
SMCs properties and impact the MT effectiveness [24]. In brief, the classical models lacked in considering several 
mechanisms such as crack deflection, crack bridging, microcracks formation, different conditions like environment, 

or stress state, which have intense effects on the fracture of SMCs [24]. 

Some models have been developed to predict the role of transformation toughening and reverse transformation on 
crack propagation in shape memory materials [25–28]. While important insight has been gained, these efforts have 
been restricted to discrete numerical methods, such as cohesive zone formulations. Discrete numerical methods for 
fracture are limited when dealing with the complex conditions of practical applications and, consequently, important 

challenges remain unaddressed (crack nucleation, mixed-mode, interacting cracks, etc.). Moreover, to the best of the 
authors’ knowledge, a modeling framework capable of explicitly predicting crack growth behavior in shape memory 
materials considering the microstructure evolution such as the competition between the different martensite variants 

has not been presented yet. 

Toward the concurrent modeling of MT and crack growth, some recent works have been primarily limited in 2D. Zhao 
et al. [29] and Zhu and Luo [30] have investigated the crack growth in zirconia by employing the phase field (PF) 

model of Mamivand et al. [31–33] for 𝑡 → 𝑚 transformation accompanied by the Ginzburg-Landau formalism for the 
crack propagation [34–39]. Their studies lacked predicting the experimentally observed crack deflection and 
intergranular crack growth, which is common in doped zirconia [40]. We have recently developed 2D PF models for 
fracture in single crystal and polycrystalline zirconia [41–43]. In these studies, we proposed an anisotropic PF model 

that couples the Ginzburg Landau formulation of 𝑡→𝑚 transformation to the Griffith's variational framework of 

fracture. The models successfully predicted the crack nucleation, propagation, and branching behavior and explained 
the experimentally observed abnormal crack growth patterns in both single crystal and polycrystalline zirconia. 
However, all these models are limited to 2D and consider only 2 variants of the monoclinic phase, while in 3D, the 

monoclinic phase can have 12 variants. 
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To surpass the deficiency of the classical and 2D fracture models for SMCs and enhance the current knowledge of 
SMCs degradation, in this work, for the first time, we present a 3D model that captures the concurrent co-evolution 
of crack and MT in the transformable materials. This model is based on the PF method, which has proven to be a 
robust technique for modeling moving boundary problems. We couple two separate physics, i.e., MT and crack 

growth, via two well-established and validated PF models. 

Regarding the phase transformation part, the PF method has become a trustworthy technique for the solid-state phase 

transformations [44,45]. The PF technique can consider all aspects of the phase transformation, including 
crystallography, thermodynamics, and kinetics [46]. Studies have shown the phase field method's capabilities in 
modeling different phase transformation problems, such as solidification [47,48] and solid-state phase transformation 
[49–52]. Specifically, the PF modeling of MT was fundamentally driven by Khachaturyan, Wang, and Chen [53,54], 
and it was initially based on Khachaturyan’s microelasticity theory and time dependent Ginzburg–Landau kinetic 
formalism. Mamivand et al. [55] provided a comprehensive review for various types of PF models for MT. The phase 

field was used to model different forms of MT, like cubic to tetragonal [56,57], hexagonal to orthorhombic [58–60], 

cubic to monoclinic [61], and tetragonal to monoclinic [23,62–64] transformations. 

For the crack side of the problem, several studies [65–69] have used the PF method for crack growth modeling due to 
its robust performance and timely implementation. The smooth transition from the cracked to the intact domain in the 
PF method is feasible using a scalar field called the PF variable. Using the PF variable, the crack is no longer a 
discontinuity, which provides a diffuse interface for the crack that enables predicting the crack nucleation, growth, 
and branching efficiently in complex geometries. Moreover, the straight coupling of fracture framework to other 

physics like MT is a plus for the PF modeling of crack growth. 

In this paper, we present an elastically anisotropic and inhomogeneous 3D PF model for co-evolution of 𝑡 → 𝑚 
transformation and crack propagation in zirconia. Unlike the 2D models, the 3D formalism empowers us to consider 

all possible monoclinic variants, and consequently, obtain more realistic results. 

The paper outline is as follows. In section 2, we provide a brief description of the crystallography of 𝑡 → 𝑚 
transformation in zirconia and then explain the PF equations for MT and fracture and their coupling. In section 3, we 

validate the model by comparing the results with the experimental observations. Then we elaborate the temporal and 
spatial evolution of simultaneous fracture and MT in 3D and study the influence of lattice orientation on the fracture, 

crack pattern, and toughening in 3D zirconia single crystal. Finally, the key findings are summarized in section 4. 

2.  Method 

2.1.  Phase Field Modeling of 𝒕 →𝒎 Transformation in Zirconia 

In this study, the PF model of MT is based on the experimentally validated model developed originally by Mamivand 
et al. [32,33,64,70]. In the PF modeling of MT, the PF variables, also known as order parameters, are responsible for 

describing the smooth transition from 𝑡 → 𝑚 in microstructural domain. PF variables in MT are the possible martensite 

phase variants, which is monoclinic in this study. 

Order parameter 𝜂𝑝(𝑟,𝑡) is applied to describe the 𝑝𝑡ℎ monoclinic variant, where 𝑡 represents the time and 𝑟 is the 

position vector. The value of 𝜂𝑝 varies from 0 to 1 during the MT. The 𝑝𝑡ℎ monoclinic phase exists when 𝜂𝑝 = 1, and 

when 𝜂𝑝 = 0, the domain is either the parent tetragonal phase or one of the other monoclinic variants. Below we 

briefly describe these variants and refer the interested readers to Ref. [70] for more details. 

2.1.1.  Crystallography of Tetragonal to Monoclinic Transformation in Zirconia 

Monoclinic variants, that are derived from tetragonal, are categorized into three main correspondences, namely 

correspondence A, B, and C. These correspondences are defined based on the monoclinic axis that is derived from the 
𝑐𝑡 (axis c in tetragonal). For example, correspondence A indicates that 𝑐𝑡 becomes 𝑎𝑚 (axis a in monoclinic). However, 

we need a more comprehensive notation as in the case of correspondence A, 𝑎𝑡 and 𝑏𝑡 have this chance to become 
either 𝑏𝑚 or 𝑐𝑚. Therefore, in this paper, we use the Hayakawa et al. [13,71,72] notation system to identify all 

monoclinic variants. This notation technique uses a three-letter-sign for each monoclinic variant. If we consider 𝑎𝑡, 
𝑏𝑡 and 𝑐𝑡 as the tetragonal axes and 𝑎𝑚, 𝑏𝑚 and 𝑐𝑚as the monoclinic axes, the three letters in Hayakawa’s notation, 

from left to right, show which monoclinic axes are derived from 𝑎𝑡, 𝑏𝑡, and 𝑐𝑡. For instance, BCA variant indicates 
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that 𝑏𝑚 is derived from 𝑎𝑡, 𝑐𝑚 is derived from 𝑏𝑡, and 𝑎𝑚 is derived from 𝑐𝑡. The angles between 𝑎𝑚 and 𝑐𝑚 in 

monoclinic phase is about 99°  [23]. Therefore, there are two possible orientations for each monoclinic variant, OR1, 
and OR2. OR1 (OR2) indicates that 𝑎𝑚 (𝑐𝑚) is aligned with its correspondent axis in tetragonal and 𝑐𝑚 (𝑎𝑚) is tilted. 

Figure 1 demonstrates four possible monoclinic variants of the correspondence C. 

 

Figure 1. Schematic representation of possible monoclinic variants derived from the correspondence C, i.e., ct 

become cm [70]. 

In the 𝑡 → 𝑚 transformation, the incorporation of orientations, variants, and correspondences leads to 12 feasible 
monoclinic crystals for each tetragonal crystal. Figure 2 shows the monoclinic correspondences, orientations, variants, 

and their self-accommodating variants in 𝑡 → 𝑚 transformation. 
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Figure 2. The feasible monoclinic variants and their self-accommodating variants in 𝑡 → 𝑚 transformation [70]. 

2.1.2.  Phase Field Modeling of Tetragonal to Monoclinic Transformation 

As mentioned above, in the PF modeling of MT the order parameters are martensite, here monoclinic, variants. Since 

these variants are not conserved quantities, the Ginzburg–Landau [73] formalism is appropriate for the PF framework. 

The Ginzburg–Landau equation is used for the evolution of PF variables in MT in the form of the following equation: 

𝜕𝜂𝑝(𝑟, 𝑡)

𝜕𝑡
= −𝐿

𝛿𝐹

𝛿𝜂𝑝(𝑟, 𝑡)
+ 𝜍𝑝(𝑟, 𝑡)       𝑝 = 1, … , 𝑛 , (1) 

where 𝐿 is the kinetic coefficient, 
𝛿𝐹

𝛿𝜂𝑝(𝑟,𝑡)
 is the driving force for MT, and 𝜍𝑝(𝑟, 𝑡) is the Langevin noise characterizing 

the thermal fluctuation [53,74]. 

Chemical free energy and elastic strain energy are the components of the total free energy in the MT. 

𝐹 = 𝐹𝑐ℎ +𝐹𝑒𝑙  .   (2) 
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2.1.2.1.  Chemical Free Energy 

Following the Cahn and Hilliard’s [75] approach for free energy definition for non-uniform systems, we can define 

the total chemical free energy for a medium containing both tetragonal and monoclinic phases as [53]: 

𝐹𝑐ℎ =∫[𝑓(𝜂1 , 𝜂2, … , 𝜂𝑛) +
1

2
∑ 𝛽𝑖𝑗(𝑝)𝛻𝑖𝜂𝑝𝛻𝑗𝜂𝑝

𝑛

𝑝=1
] 𝑑𝑉

𝑉

          𝑛 = 1, … , 𝑝 ,  (3) 

where 𝛽𝑖𝑗(𝑝) is gradient energy coefficient tensor and 𝑓(𝜂1 ,𝜂2…,𝜂𝑛) is the bulk chemical free energy and described 

as the following fourth-order Landau polynomial 

𝑓(𝜂1, 𝜂2 , … , 𝜂𝑛) = 𝐴(∑ 𝜂𝑝
2𝑛

𝑝=1
) + (4𝛥𝐺 − 2𝐴)(∑ 𝜂𝑝

3𝑛

𝑝=1
) + (𝐴 − 3𝛥𝐺)(∑ 𝜂𝑝

2𝑛

𝑝=1
)2,  (4) 

where A is a material property, and ∆𝐺 is the chemical driving force. A can be defined as 𝐴0(𝑇− 𝑇𝑐),𝐴0  >  0, where 
Tc is austenite, here tetragonal, critical temperature. The gradient energy coefficient is assumed to be isotropic (𝛽𝑖𝑗 =

𝛽𝛿𝑖𝑗); So, we can simplify the chemical free energy: 

𝐹𝑐ℎ = ∫ [𝑓(𝜂1, 𝜂2, … , 𝜂𝑛) +
1

2
∑ 𝛽(𝛻𝑖𝜂𝑝

𝑛

𝑝=1
)2] 𝑑𝑉

𝑉

.  (5) 

2.1.2.2.  Elastic Strain Energy 

The strain energy can be described following Khachaturyan [76] and using the transformation-induced stress free 

strain 𝜀𝑖𝑗
0 (𝑟⃗). Stress free strain quantifies the amount of lattice mismatch between the parent and product phases. The 

local stress free strain could be defined through [53]: 

𝜀𝑖𝑗
0 (𝑟⃗) =∑ 𝜀𝑖𝑗

00(𝑝)𝜂𝑝
2(𝑟)

𝑛

𝑝=1

 , (6) 

where 𝜀𝑖𝑗
00(𝑝) is the transformation strain of 𝑝𝑡ℎ variant and can be calculated from the parent and product phases' 

crystallography and lattice parameters. Transformation strains of different monoclinic variants for 𝑡 → 𝑚 
transformation in zirconia are listed in Table 1; we refer the interested readers to Ref. [70] for the detailed procedure 
on how these transformation strains are calculated. The following equation calculates the elastic strain energy of the 

system: 

𝐹𝑒𝑙 =
1

2
∫ 𝜎𝑖𝑗𝜀𝑖𝑗

𝑒𝑙𝑑𝑉 =

𝑉

1

2
∫ 𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑘𝑙
𝑒𝑙𝜀𝑖𝑗

𝑒𝑙𝑑𝑉

𝑉

 , (7) 

where the elastic strain, 𝜀𝑖𝑗
𝑒𝑙(𝑟), is defined as 

𝜀𝑖𝑗
𝑒𝑙(𝑟) = 𝜀𝑖𝑗

𝑡𝑜𝑡(𝑟) − 𝜀𝑖𝑗
0 (𝑟).  (8) 

So the total free energy for the MT is: 

𝐹 = ∫ [𝑓(𝜂1, 𝜂2 , … , 𝜂𝑛) +
1

2
∑𝛽(Δ𝜂𝑝)

2
𝑛

𝑝=1

] 𝑑𝑉 +
1

2
∫𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑖𝑗
𝑒𝑙𝜀𝑘𝑙

𝑒𝑙𝑑𝑉
𝑉𝑉

 . (9) 
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Table 1. The transformation strain tensors for different monoclinic variants during tetragonal to monoclinic 

transformation in zirconia [70]. 

Variant Self-accommodating variant 

Order 

parameter 

Vari

ant 

Transformation strain  

(𝜀𝑖𝑗
00) 

Order 

paramete

r 

Vari

ant 

Transformation strain 

(𝜀𝑖𝑗
00) 

𝜂1  𝐴𝐵𝐶 [
0.0049 0 −0.0760
0 0.0117 0

−0.0760 0 0.0180
] 𝜂2  𝐴𝐵𝐶 [

0.0049 0 0.0760
0 0.0117 0

0.0760 0 0.0180
] 

𝜂3  𝐵𝐴𝐶 [
0.0117 0 0
0 0.0049 −0.0760
0 −0.0760 0.0180

] 𝜂4  𝐵𝐴𝐶 [
0.0117 0 0
0 0.0049 0.0760
0 0.0760 0.0180

] 

𝜂5  𝐴𝐶𝐵 [
0.0048 −0.0769 0
−0.0769 0.0418 0

0 0 −0.0114
] 𝜂6  𝐴𝐶𝐵 [

0.0048 0.0769 0
0.0769 0.0418 0
0 0 −0.0114

] 

𝜂7  𝐶𝐴𝐵 [
0.0418 −0.0769 0
−0.0769 0.0048 0

0 0 −0.0114
] 𝜂8  𝐶𝐴𝐵 [

0.0418 0.0769 0
0.0769 0.0048 0
0 0 −0.0114

] 

𝜂9  𝐵𝐶𝐴 [
0.0117 0 0
0 0.0419 −0.0760
0 −0.0760 −0.0181

] 𝜂10 𝐵𝐶𝐴 [
0.0117 0 0
0 0.0419 0.0760
0 0.0760 −0.0181

] 

𝜂11 𝐶𝐵𝐴 [
0.0419 0 −0.0760
0 0.0117 0

−0.0760 0 −0.0181
] 𝜂12 𝐶𝐵𝐴 [

0.0419 0 0.0760
0 0.0117 0

0.0760 0 −0.0181
] 

For having a smooth transition in the elastic constants between the tetragonal and monoclinic phases, we use the 

following equation, 

𝐶𝑖𝑗𝑘𝑙
0 = 𝐶𝑖𝑗𝑘𝑙

𝑇 [1 − (∑ 𝜂𝑝
𝑛

𝑝=1
)] + 𝐶𝑖𝑗𝑘𝑙

𝑀   (10) 

where 𝐶𝑖𝑗𝑘𝑙
𝑇  and  𝐶𝑖𝑗𝑘𝑙

𝑀 are tetragonal and monoclinic elastic constants. 

The monoclinic elastic constant tensor has to be calculated for each monoclinic variant separately. The elastic 

constants of variant ABC are provided in Table 2, and we rotate the tensor properly to obtain different variants’ elastic 

constants. We refer the interested readers to Mamivand et al. [70] for more details. 

Table 2. The monoclinic zirconia elastic constants (Gpa). 

C11 C22 C33 C44 C55 C66 C12 C13 C16 C23 C26 C36 C45 

361 408 258 100 81 126 142 55 -21 196 31 -18 -23 
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Table 3. The tetragonal zirconia elastic constants (Gpa). 

C11 C33 C44 C66 C12 C13 

327 264 59 64 100 62 

2.2.  Phase Field Modeling of Crack Growth 

Francfort and Marigo [77] were the first who developed a variational framework for crack growth based on Griffith’s 

theory [78]. In this formulation, the total potential energy, 𝛹𝑝𝑜𝑡(𝑢, 𝛤), is calculated by adding the elastic energy 𝜓𝜀(𝜀), 
fracture energy, and energy due to the external forces: 

Ψ𝑝𝑜𝑡(𝑢⃗⃗, Γ) = ∫𝜓𝜀(𝜀𝑖𝑗)
Ω

𝑑Ω+ ∫𝐺𝑐
Γ

𝑑𝑆 − ∫ 𝑏⃗⃗. 𝑢⃗⃗
Ω

𝑑Ω −∫ 𝑓. 𝑢⃗⃗
∂Ωh𝑖

𝑑S , (11) 

where the linear strain tensor is described by, 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑟𝑗

+
𝜕𝑢𝑗

𝜕𝑟𝑖
) . (12) 

To describe the transition between the crack and uncracked domains, we need to define a PF variable 𝜙(𝑟, 𝑡) ∈ [0, 1], 
with 𝜙 = 1 indicates the crack, and 𝜙 = 0 indicates the uncracked body, see Figure 3. 

 

Figure 3. The crack surface approximation in phase field modeling for a smooth transition from crack to the 

uncracked domain. 

The crack surface density per unit volume of the domain is defined as [65], 

𝛾(𝜙, ∇𝜙) = [
𝜙2

2𝑙0
+
𝑙0
2

𝜕𝜙

𝜕𝑟𝑖

𝜕𝜙

𝜕𝑟𝑖
]𝑑Ω , (13) 

where the length scale parameter 𝑙0 regulates the transition zone between the crack and intact body. 
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From the crack surface density, the fracture energy can be calculated as, 

∫𝐺𝑐𝑑𝑆
Γ

= ∫ 𝐺𝑐 [
𝜙2

2𝑙0
+
𝑙0
2

𝜕𝜙

𝜕𝑟𝑖

𝜕𝜙

𝜕𝑟𝑖
]𝑑Ω

Ω

 . (14) 

To prevent the crack growth under compression, which was an issue in the early PF models, the elastic strain is 

decomposed into spherical 𝜀𝑠𝑝ℎ and deviatoric 𝜀𝑑𝑒𝑣  parts [79]. 

𝜓𝜀(𝜀𝑖𝑗 , 𝜙) =

{
 
 

 
 1

2
𝑔(𝜙)[𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙

0 𝜀𝑘𝑙]                                                                 𝑖𝑓 𝑡𝑟(𝜀𝑖𝑗) ≥ 0
 

1

2
[𝜀𝑖𝑗
𝑠𝑝ℎ𝐶𝑖𝑗𝑘𝑙

0 ε𝑘𝑙
𝑠𝑝ℎ ] + 𝑔(𝜙)[𝜀𝑖𝑗

𝑑𝑒𝑣𝐶𝑖𝑗𝑘𝑙
0 ε𝑘𝑙

𝑑𝑒𝑣]                  𝑖𝑓 𝑡𝑟(𝜀𝑖𝑗) < 0

, (15) 

where 𝐶𝑖𝑗𝑘𝑙
0  is the elastic tensor given in Eq. (10) and the degradation function 𝑔(𝜙) is defined in the following form, 

𝑔(𝜙) = (1 − 𝑘)(1 − 𝜙)2 + 𝑘 . (16) 

where k is a small number and helps in problem well-posedness. 

Therefore, the elastic tensor can be described by, 

𝐶𝑖𝑗𝑘𝑙(𝜙) = 𝑔(𝜙)𝐶𝑖𝑗𝑘𝑙
0 + 𝑘01⨂1[1 − 𝑔(𝜙)]𝑠𝑖𝑔𝑛

− (𝑡𝑟(𝜀𝑖𝑗)) . (17) 

Regarding the sign function if 𝑥 < 0 then 𝑠𝑖𝑔𝑛−(𝑥) = 1 and if 𝑥 ≥ 0 then 𝑠𝑖𝑔𝑛−(𝑥) = 0. Therefore, it is now possible 

to reformat the strain energy density as, 

𝜓𝜀(𝜀,𝜙) =
1

2
[𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑘𝑙] . (18) 

2.3.  Coupling the Variational Formulation of Crack Growth to MT 

The process of coupling the variational formalism of fracture with the PF framework of the MT is provided in the 

following. 

The total free energy can be obtained by adding up the Eq. (9) and Eq. (11). 

Ψ𝑝𝑜𝑡(𝑢⃗⃗, Γ) = ∫ 𝜓𝜀(𝜀𝑖𝑗)Ω
𝑑Ω + ∫ 𝐺𝑐Γ

𝑑𝑆 + ∫ 𝑓(𝜂1, 𝜂2 , … , 𝜂𝑛) +Ω
1

2
∑ 𝛽𝑖𝑗(𝑝)∇𝑖𝜂𝑝∇𝑗𝜂𝑝
𝑛
𝑝=1 𝑑Ω − ∫ 𝑏⃗⃗. 𝑢⃗⃗

Ω
𝑑Ω− ∫ 𝑓. 𝑢⃗⃗

∂Ωh𝑖
𝑑S . 

(19) 

By substituting 𝑓(𝜂1 ,𝜂2 , … , 𝜂𝑛)  from Eq. (4) and 𝐺𝑐 from Eq. (14) and 𝜓𝜀(𝜀) from Eq. (18) we have: 

Ψ𝑝𝑜𝑡(𝑢⃗⃗, Γ) = ∫
1

2
[𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑘𝑙]Ω

𝑑Ω+ ∫ 𝐺𝑐 [
𝜙2

2𝑙0
+
𝑙0

2

𝜕𝜙

𝜕𝑟𝑖

𝜕𝜙

𝜕𝑟𝑖
]𝑑Ω

Ω
+ ∫ [𝐴(∑ 𝜂𝑝

2𝑛

𝑝=1
) +

Ω

(4𝛥𝐺 − 2𝐴)(∑ 𝜂𝑝
3𝑛

𝑝=1
) + (𝐴 − 3𝛥𝐺)(∑ 𝜂𝑝

2𝑛

𝑝=1
)2]𝑑Ω +

1

2
∑ 𝛽𝑖𝑗(𝑝)∇𝑖𝜂𝑝∇𝑗𝜂𝑝
𝑛
𝑝=1 𝑑Ω − ∫ 𝑏⃗⃗. 𝑢⃗⃗

Ω
𝑑Ω− ∫ 𝑓. 𝑢⃗⃗

∂Ωh𝑖
𝑑S .  

(20) 
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By minimizing the variation of the free energy functional, we can obtain the following governing equation: 

2(1 − 𝑘)(1 − 𝜙)[𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙
ℎ 𝜀𝑘𝑙] − 2Ψ𝑐(𝜙 − 𝑙0

2∇2𝜙) = 0 ,  (21) 

where Ψ𝑐 =
𝐺𝑐

2𝑙0
 and 𝐶𝑖𝑗𝑘𝑙

ℎ =
1

2
(𝐶𝑖𝑗𝑘𝑙

0 − 𝑘01⨂1𝑠𝑖𝑔𝑛
− (𝑡𝑟(𝜀𝑖𝑗))). 

To consider loading and unloading histories, we follow the Miehe et al. [65] and define the strain history functional 

as: 

ℋ(𝑟, 𝑡) =  {(1 − 𝑘)[𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙
ℎ 𝜀𝑘𝑙] }𝜏∈[0,𝑡]

𝑚𝑎𝑥    .  (22) 

By substituting Eq. (22) into the Eq. (21), we get: 

(1 − 𝜙)ℋ− Ψ𝑐(𝜙 − 𝑙0
2∇2𝜙) = 0 . (23) 

Subsequently, after some mathematical operation, we have: 

(1 +
ℋ

Ψ𝑐
)𝜙 − 𝑙0

2
∇2𝜙 =

ℋ

Ψ𝑐
 . (24) 

Considering the coupled energy functional, the Ginzburg-Landau equation, Eq. (1), would have the following format: 

𝜕𝜂𝑝(𝑟, 𝑡)

𝜕𝑡
= −𝐿(−𝛽 𝛻2𝜂𝑝(𝑟, 𝑡) +

𝜕𝑓

𝜕𝜂𝑝(𝑟, 𝑡)
+

𝛿𝐹𝑒𝑙
𝛿𝜂𝑝(𝑟, 𝑡)

)+𝜍𝑝(𝑟, 𝑡)   𝑝 = 1, … , 𝑛 (25) 

where 𝑓 was described in Eq. (4), and 

𝛿𝐹𝑒𝑙

𝛿𝜂𝑝(𝑟,𝑡)
= −

1

2
𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑘𝑙

00(𝑝)𝜂𝑝(𝑟, 𝑡) (𝑢𝑖,𝑗(𝑟) + 𝑢𝑗 ,𝑖(𝑟⃗)) +

𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑘𝑙
00(𝑝)𝜂𝑝(𝑟, 𝑡)∑ 𝜀𝑖𝑗

00(𝑧)𝜂𝑧
2(𝑟, 𝑡)

𝑛

𝑧=1
−

1

2
𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑖𝑗

00(𝑝)𝜂𝑝(𝑟, 𝑡) (𝑢𝑘,𝑙(𝑟) +

𝑢𝑙,𝑘(𝑟)) + 𝐶𝑖𝑗𝑘𝑙(𝜙)𝜀𝑖𝑗
00(𝑝)𝜂𝑝(𝑟, 𝑡)∑ 𝜀𝑘𝑙

00(𝑧)𝜂𝑧
2(𝑟, 𝑡)

𝑛

𝑧=1
  

(26) 

Regarding the mechanical equilibrium equations, we have: 

𝜕𝜎𝑖𝑗

𝜕𝑟𝑗
= 0 ⇒ 𝐶𝑖𝑗𝑘𝑙(𝜙) [

1

2
(𝑢𝑘,𝑙𝑗(𝑟⃗) + 𝑢𝑙,𝑘𝑗(𝑟)) −∑𝜀𝑘𝑙

00(𝑝)
𝜕

𝜕𝑟𝑗
(𝜂𝑝

2(𝑟))

𝑝

] = 0 (27) 

Finally, the governing equations for the crack propagation in the transformable domains would be Eqs. (24), (25), 
and (27) which are solved in a finite element package COMSOL with proper load and boundary conditions. 
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3.  Results 

In this section, we model the 3D single crystal zirconia fracture in a cube with a length of 2 𝜇𝑚. The cube has an 

initial crack and a monotonic increasing displacement load, 𝛥𝑢 = 1
𝑛𝑚

𝑠
, has been applied at the upper surface, and the 

bottom boundary is clamped. A fine mesh has been applied. The geometry and boundary conditions are depicted in 

Figure 4. 

The numerical parameters that are used in this model are provided in Table 4. 

Table 4. Parameters applied in the model. 

Temperature (K) 1170 

A (N/m2) [70] 2.5 ×  106 

Chemical driving force, (𝐽.𝑚𝑜𝑙−1) [70] 800 (36.8 × 106 𝐽.𝑚−3) 

Gradient energy coefficient, 𝛽 (𝐽. 𝑚−1) [70] 2.5 ×  10−9 
Kinetic coefficient, 𝐿 (𝑚3. 𝐽−1. 𝑠−1) 2 × 10−9 

Critical energy release rate, 𝐺𝑐(𝐽.𝑚
−2) [29] 4.33 

Crack elasticity modification parameter, 𝑘 1 × 10−9 
The length parameter, 𝑙0 (𝑛𝑚) 20 

 

Figure 4. The boundary conditions and geometry of a cube with an initial crack. 

3.1.  Model Verification 

We validate the proposed model by comparing the results with the experiments. Figure 5 shows a comparison between 

the PF model results and an Atomic Force Microscopy (AFM) micrograph of the surface relief obtained from the 
martensitic 𝑡 → 𝑚 transformation in ceria-stabilized zirconia [15]. The high resolution AFM experiments of Deville 
et al. [15] make it feasible to follow and capture the transition-induced relief at the surface precisely. AFM 
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observations at the crack zone in Figure 5 show self-accommodated martensite pairs development in the vicinity of 
crack areas with arrows indicating such pairs' junction planes. As in Deville et al. [15] experimental observations, 

transformed variants are distinctly visible when 𝑐𝑡 axis of the grain is almost perpendicular to the surface. We adopt 
the same orientation for the single crystal in this simulation and the results depict similar morphologies for the 
monoclinic variants. Figure 5-a shows the crack pattern and the microstructure of the transformed domain from the 

simulation. Four different martensitic variants emerged from the simulation, namely 𝐴𝐵𝐶, 𝐴𝐵𝐶̅, 𝐵𝐴𝐶 and 𝐵𝐴𝐶̅. 
Figure 5-b shows the surrounding of a propagated crack in ceria-stabilized zirconia, which depicts the martensitic 
variants in the transformed zone. A magnified frame of the crack zone, illustrated in Figure 5-c, shows the primary 

and secondary junction planes of the martensitic variants. 

 
(a)                                                (b)                                          (c) 

Figure 5. PF model simulation result for martensitic transformation and crack propagation in a 3D single crystal 
zirconia (a) and comparison with the experiment (b) (c) [15]. Figure (a) shows the crack pattern and the 

microstructure of the transformed domain from the simulation. Figure (b) shows Atomic Force Microscopy 

observations at the surrounding of a propagated crack in ceria-stabilized zirconia, which depicts the martensitic 
variants in the transformed zone. A magnified frame of the crack zone, illustrated in Figure (c), shows the primary 

and secondary junction planes of the martensitic variants. 

The detailed investigation of Deville et al. [15] on transformation-induced relief leads to brand-new knowledge 
regarding the toughening mechanism order. Deville et al. [15] reported the fragmentation of the transformed zones 
caused by the crack growth. This observation indicates to the domain phase transition before the crack arrival. Phase 
field simulation also shows a similar observation, Figure 6. The reason behind this phenomenon is the fact that the 
stress state around the crack tip is increasing due to loading, and this stress can trigger the phase transformation, which 

absorbs some of the stress that otherwise would be available for crack growth. In the case of increasing the stress 
further, it leads to crack propagation in the transformed areas. Figure 6-c shows a propagated crack in ceria-stabilized 
zirconia. The crack propagated throughout the transformed grain and fragmented it. In this particular case, i.e. 𝑐𝑡 is 
perpendicular to the top surface, we have a transformation strain that is accommodated vertically, so there is no 

residual stress in the domain, and it is possible for the crack to run through the transformed grain rather than passing 
alongside. Figure 6-a shows that the crack has started to grow while there are martensitic transformed variants in the 
domain, and the crack is passing through them. Figure 6-b shows that the crack propagated more and break the 

transformed plane. 
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         (a)                                                (b)                                                 (c) 

Figure 6. Observation of the fragmented transformed plane in both simulation (a)-(b) and experiment, AFM (c) 
[15]. Figure (a) shows that the crack has started to grow while there are martensitic transformed variants in the 
domain, and the crack is passing through them. Figure (b) shows that the crack propagated more and break the 
transformed plane. Figure (c) shows Atomic Force Microscopy observations of a propagated crack in zirconia 

showing that the crack propagated throughout the transformed grain and fragmented it. 

3.2.  Temporal and Spatial Evolution of Crack Propagation in Transformable Domains 

In this section, we have considered the coupled PF model to investigate the crack growth, mode I, in a 3D tetragonal 

single crystal zirconia. In this part, we picked zero degrees, i.e., 𝜃 = 0°,  in Figure 4 for the lattice orientation angle. 

The results show the importance of the phase transformation on the crack growth as well as toughening. 

Figure 7 depicts the co-evolution of 𝑡 → 𝑚 transformation and crack propagation in a 3D domain. The domain is fully 
tetragonal in the beginning. As the external loading is applied on the upper surface, the stress escalates at the crack tip 

and promotes the 𝑡 → 𝑚 transformation. As predicted from our simulation results and observed in the experimental 
studies, the phase transformation originates from the crack tip. The transition process proceeds by raising the 

displacement loading until the monoclinic phase dominants the crystal body. 

Although there are 12 possible monoclinic variants in 3D, experimental studies have observed some of them more 
frequently. According to empirical and theoretical studies [80–82], correspondence C is the predominant direction for 
the transformation because of its relatively smaller strain energy than the other correspondences, i.e., A and B. The 
equations and model parameters are set in a way to consider all 12 monoclinic variants without any preferences or 
differences in their emergence chance and development. Nevertheless, only a few of them will show up in the final 

microstructure, which will be chosen by innate minimum formation energy principles. 

For the current simulation set, i.e., the lattice orientation angle is zero degrees, 𝜃 = 0°, only the monoclinic variants 

of 𝐴𝐵𝐶 and 𝐴𝐵𝐶̅ from the correspondence C show up in the microstructure, and the other variants do not appear while 
they have similar initial chances. After nucleation of favorable variants in the early stages of the phase transition, the 
variants rearrange and grow in a way to accommodate the highest possible amount of strain. When the monoclinic 
phase becomes dominant in the crystal, the crack propagates in its straight expected direction, as it is a mode I crack 
growth model. Since the model has the displacement loading normal to the upper boundary, which is the direction of 

𝑐𝑡 in this simulation, the correspondence C is expected to form and eventually change the microstructure until the 
whole upper crack part alters to the single monoclinic variant. This phenomenon agrees with the experimental and 
theoretical studies that observed the development of different martensitic variants in favor of the loading conditions 
[32,83]. 
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Figure 7. The concurrent evolution of 𝑡 → 𝑚 transformation and monoclinic variants reorientation with crack 

propagation in 3D single crystal zirconia in isosurface (𝜂 =  0.5). (Vacant domain is tetragonal, yellow is 

monoclinic variant 𝐴𝐵𝐶, cyan is monoclinic variant 𝐴𝐵𝐶̅, and brown is crack) 

  

Monoclinic Vari. 𝐴𝐵𝐶 Monoclinic Vari. 𝐴𝐵𝐶̅ Tetragonal Crack 
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To demonstrate the process of transformation toughening we have compared, in Figure 8, the stress-strain curves for 
the edge notched 3D single crystal for transformable and untransformable zirconia. Figure 8 shows that the fracture 
happens at the higher stresses for the transformable zirconia compared to the untransformable one, which indicates to 
the transformation toughening effect. We also note that the crack grows much further in untransformable zirconia due 

to the lack of transformation toughening effects. The difference between the stress-strain curves in Figure 8 at the 
early stages of loading is due to the t→m transformation which leads to a flat stress-strain curve for the transformable 

case. 

 

Figure 8. The stress-strain curve for transformable and untransformable 3D single crystal tetragonal zirconia. 

3.1.  The Effects of Crystal Lattice Orientation 

To gain more profound knowledge on how the lattice orientation would affect the monoclinic variants formation and 

crack growth pattern and toughening, we have studied a set of simulations for crack growth in a 3D single crystal 

zirconia for different lattice orientations (LORs) in the at-ct plane, i.e., the rotation angle is around the bt-axis. 

Figure 9 depicts the microstructure at t = 200 s and 2000 s and the crack pattern at t = 2000 s for the lattice orientations 
of 0, 15, 30, 45, 60, 75, and 90 degrees. The results show that the initial emerging and final monoclinic variants are 
different for different lattice orientations. For instance, in the models with LOR 0º and 15º, only monoclinic variants 

of 𝐴𝐵𝐶 and 𝐴𝐵𝐶̅ form. However, the arrangement of these variants are different in LOR 0º and 15º; the dominant 
twin plane for LOR 0º is (100)m plane, while for LOR 15º, we see both (100)m and (001)m planes. For LOR 0º, the 
crack grows evenly through the thickness while it is not even for LOR 15º. For 30º, 45º, and 60º we observe the 

formation of four monoclinic variants, i.e., 𝐴𝐵𝐶, 𝐴𝐵𝐶̅, 𝐵𝐴𝐶 and 𝐵𝐴𝐶̅. The presence of 𝐴𝐵𝐶 and 𝐴𝐵𝐶̅ variants are 

more dominant for LOR 30º while the dominancy changes to 𝐵𝐴𝐶 and 𝐵𝐴𝐶̅ variants for LOR 60º. For LOR 75º and 

90º only variants 𝐵𝐴𝐶 and 𝐵𝐴𝐶̅ form. The results reveal the profound influence of the lattice orientation on both 
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microstructure and crack growth. As the lattice orientation changes, the configuration and the type of the monoclinic 
variants alter, affecting the crack pattern and crack propagation amount or toughness. For instance, in the model with 
LOR 0º, the crack grows in a straight path and even throughout the thickness, because the displacement loading is in 

the ct direction and the 𝐴𝐵𝐶 and 𝐴𝐵𝐶̅ monoclinic variants emerge symmetrically, whereas, in the model with LOR 

15º, the crack is not even within the thickness because of the uneven microstructure formation that leads to the different 
stress states at various spots. Regarding the emerged microstructures, we note that in all simulations only the variants 

of the correspondence C, i.e. 𝐴𝐵𝐶, 𝐴𝐵𝐶̅, 𝐵𝐴𝐶, and 𝐵𝐴𝐶̅, form. It is primarily because the volumetric strain associate 
with these variants, i.e. 0.0346, is smaller than the volumetric strain associate with the variants of correspondence A, 

i.e. 0.0355, and correspondence B, i.e. 0.0352, see Table 1. 

 

 

𝜃 Microstructure   t = 200 s Microstructure   t = 2000 s Crack t = 2000 s 

0 ̊ 

   

15 ̊  

   

Monoclinic Vari. 𝐴𝐵𝐶 Monoclinic Vari. 𝐴𝐵𝐶̅ 
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90 ̊ 

   
Figure 9. Microstructure and crack pattern in 3D single crystal zirconia with different lattice orientations. The 

first column shows the microstructure at t = 200 s, the second column shows the microstructure at t = 2000 s, and the 

last column shows the crack pattern at t = 2000 s. 

To elaborate the concurrent evolution of crack and 𝑡 → 𝑚 transformation for the cases that the crack propagation 
deviates from the even growth through the thickness and gets deflected from the initial crack plane, we present the 
temporal and spatial concurrent evolution of MT and crack for LOR 30º in Figure 10. Originally, the entire crystal 

body is tetragonal. In the early stages of the loading, among all 12 possible variants of monoclinic, only four 

monoclinic variants, i.e., 𝐴𝐵𝐶, 𝐴𝐵𝐶̅, 𝐵𝐴𝐶 and 𝐵𝐴𝐶̅, form at the crack tip because of the high stress concentration. 
The monoclinic variants rearrange to accommodate the maximum strain. The crack starts to grow when most of the 
crystal body has converted to monoclinic. 
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t = 100 s 

 
 

t = 140 s 

 

t = 600 s 

 

t = 1500 s 

 

t = 2500 s 

 

t = 3500 s 

 

Figure 10. The temporal and spatial co-evolution of MT and crack for lattice orientation of 30 degrees in 3D single 

crystal zirconia. 

To show the crack pattern clearly, we have removed the microstructure in Figure 11. Figure 11 (a)-(b) show that the 

crack starts growing at the t = 1100 s at (01̅0)𝑡  plane and then gradually propagates through the thickness. The 
difference in the crack growth amount is because of the phase transformation's local toughening effects, which vary 
at different locations, and consequently, these local monoclinic variants determine the stress states and crack growth 
driving force. This observation shows the impact of the local microstructure on the transformation toughening in shape 
memory ceramics. When monoclinic variants arrangement is in a way that produces more toughening, it is difficult 

for the crack to grow in some spots and vice versa. Figure 11(d) shows the crack pattern at t = 3500 s. At this stage, 

the crack has deflected upward in the (01̅0)𝑡 plane, while it is deflected slightly downward in the (010)𝑡 plane. 
Interestingly the uneven crack tip pattern through the thickness is not uniform; it is parabolic initially and then gets 
linear, Figure 11(e). This behavior is because of the evolving microstructural patterns constructed from different 
monoclinic variants in each spot; they create different local stresses through the thickness. Therefore, the crack tip 
pattern is not uniform and grows more in areas with more favorable stress states. Looking more closely at the 

microstructures, it turns out that the crack tip at (01̅0)𝑡 plane is more surrounded by monoclinic variant 𝐴𝐵𝐶  and 

have the monoclinic variant 𝐴𝐵𝐶̅ at the bottom. The configuration of monoclinic variants and the accommodated 

stress state in (01̅0)𝑡 plane leads to the upward deflection of the crack, whereas crack tip in the (010)𝑡  plane is 

surrounded almost evenly by variants 𝐴𝐵𝐶 and 𝐴𝐵𝐶̅ which leads to slight downward deflection. The presence of 

monoclinic variants 𝐵𝐴𝐶̅ in the (010)𝑡 plane is the reason that the crack in this plane started very late compare to the 

other areas. Additionally, the middle part of the crack is surrounded by monoclinic variants 𝐶̅ , which made it difficult 
for this part of the crack to grow at the same pace as the other sections and eventually leading to the parabolic pattern 

of the crack tip in this area. 
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Since in this simulation we have lattice orientation of 30 degrees, the loading direction is not aligned with the 𝑐𝑡-axis 
and this leads to an unbalanced and un-symmetrical microstructural domain. This would result in uneven stress state 
at crack tip in different areas, resulting in an uneven crack growth throughout the thickness. The non-uniform growth 
of the crack tip through the thickness, which the 3D simulation enables us to observe, indicates to the local behavior 

of transformation toughening within a single crystal zirconia. 

t = 1100 s 

 

t = 1500 s 

 

t = 2200 s 

 
(a) (b) (c) 

   

t = 3500 s 

 

t = 3500 s 
TOP VIEW 

 

(d) (e) 

Figure 11. The Isosurface plots of the crack propagation in a single crystal zirconia for lattice orientation of 30 

degrees around bt-axis. 

4.  Conclusion 

This work presented a three-dimensional phase field model to study the concurrent evolution of martensitic 

transformation and crack growth in the shape memory ceramics. Zirconia is used as the model material with emphasis 
on the tetragonal to monoclinic transformation. The three-dimensional modeling empowers us to acquire all the twelve 
variants of the monoclinic phase. By implementing all twelve monoclinic variants in the martensitic transformation 
model's equations and coupling them with the variational formulation of fracture, the developed model predicts the 
experimentally observed results, such as the surface uplifting and self-accommodated martensite formation in the 
crack vicinity. The model also agrees with the experimentally observed fragmented transformed zones resulting from 

the crack propagation throughout the transformed planes. Investigating the lattice orientation effects on zirconia 
fracture reveals the “local” nature of transformation toughening within a single crystal. Results also show that the 



 

21 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 

International Journal of Mechanical Sciences, published by Elsevier. Copyright restrictions may apply. 

https://doi.org/10.1016/j.ijmecsci.2021.106550 

angles that the tetragonal axes make with the loading direction profoundly impact the selection of the monoclinic 
variants that nucleate at the crack tip and their further growth and eventual morphology and consequently on the crack 

growth path and toughening. 

Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time as the 

data also forms part of an ongoing study. 

Acknowledgments: The authors appreciate the support of Boise State University. 
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