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ABSTRACT
Since 2010, we have built and maintained LensKit, an open-source
toolkit for building, researching, and learning about recommender
systems. We have successfully used the software in a wide range of
recommender systems experiments, to support education in tradi-
tional classroom and online settings, and as the algorithmic backend
for user-facing recommendation services in movies and books. This
experience, along with community feedback, has surfaced a num-
ber of challenges with LensKit’s design and environmental choices.
In response to these challenges, we are developing a new set of
tools that leverage the PyData stack to enable the kinds of research
experiments and educational experiences that we have been able
to deliver with LensKit, along with new experimental structures
that the existing code makes difficult. The result is a set of research
tools that should significantly increase research velocity and pro-
vide much smoother integration with other software such as Keras
while maintaining the same level of reproducibility as a LensKit
experiment. In this paper, we reflect on the LensKit project, particu-
larly on our experience using it for offline evaluation experiments,
and describe the next-generation LKPY tools for enabling new of-
fline evaluations and experiments with flexible, open-ended designs
and well-tested evaluation primitives.
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1 INTRODUCTION
LensKit [6] is an open-source toolkit that provides a variety of
features in support of research, education, and deployment of rec-
ommender systems. It provides tools and infrastructure support for
managing data and algorithm configurations, implementations of
several collaborative filtering algorithms, and an evaluation suite
for conducting offline experiments.

Based on our experience researching and teaching with LensKit,
and the experience reports we hear directly and indirectly from
others, we have come to believe that LensKit’s current design and
technology choices are not a good match for the current and future
needs of the recommender systems research community. Further,
in our examination of the software landscape to determine what
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existing tools might support the kinds of offline evaluation exper-
iments we have been running with LensKit and plan to run in
coming years, we came to the conclusion that there is a need for
high-quality, well-tested support code for recommender systems
experiments in the PyData environment.

Tomeet that need, we are developing LKPY, a “spiritual successor”
to LensKit written in Python. This project brings the LensKit’s focus
on reproducible research supported by well-tested code to a more
widely-used and easier-to-learn computational environment.

In this paper, we reflect on some of the successes and failures of
the LensKit project and present the goals and design of the LKPY
software. We invite the community to provide feedback on how
this software does or does not meet their needs.

2 LENSKIT IN USE
In its 8 years of development, we and others have successfully used
LensKit across all its intended application contexts.

2.1 Research
LensKit has supported a good number of research projects spanning
a range of research questions and methodologies; a complete list of
known published papers, theses, and dissertations using LensKit is
available from the project web site1.

We have used LensKit ourselves both for offline evaluations
exploring various aspects of algorithm and user behavior [8, 9, 15]
and studying the evaluation process itself [7]. It has also been used
to study specialized recommendation problems, including cold start
[13] and reversible machine learning [3]. Its algorithms have been
used to recommend books [21], tourist destinations [22], videos
[24], and a number of other item types.

One of LensKit’s primary objectives is to promote reproducible,
reliable research. To that end we have been modestly successful; in
our own work, it has enabled us to publish complete reproducer
code for recent papers [7, 9], and most recently to provide repro-
ducer code during the review process [10].

2.2 Education
We have used LensKit to support recommender systems education
in multiple settings. At the University of Minnesota, Boise State
University, and Texas State University, we and our collaborators
have used it as the basis for assignments in graduate classes on
recommender systems. It also forms the basis for the assignments
in the Recommender Systems MOOC [16].

1http://lenskit.org/research
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Response to the software in this setting has been mixed. Its
standardized APIs and integration with the Java ecosystem have
made things such as automated grading in the MOOC environment
relatively easy to implement, but students have complained about
needing to work in Java and about the system’s complexity.

2.3 Production
LensKit powers the MovieLens movie recommender system [11],
the BookLens book recommender [14], and the Confer conference
session recommender [25]. This work, particularly in MovieLens,
has enabled new user-centered research on recommender system
capabilities and user response.

3 REFLECTIONS ON LENSKIT
Our direct experience using LensKit in this range of applications,
and what we hear from other users and prospective users, has given
us a somewhat different perspective on the software than we had
when we developed the early versions of LensKit. We think some
of our decisions and goals hit the mark and we were successful in
achieving them; some other design decisions have not held up well
in the light of experience.

3.1 What We Got Right
There are several things that we think we did well in the origi-
nal LensKit software; some of these we carry forward into LKPY,
while others were good ideas in LensKit’s contexts but are not as
important today.

3.1.1 Testing. In the LensKit development process, we have a
strong focus on code testing [4]. This has served us well, and helped
ensure the reliability of the LensKit code. It is by no means perfect,
and there have been bugs that slipped through, but the effort we
spent on testing was a wise investment.

3.1.2 The Java Platform. When we began work on LensKit, there
were three possible platforms we seriously considered: Java, Python,
and C++. At that time, the Python data science ecosystem was not
what it is today; NumPy and SciPy existed, but Pandas did not.
Pure Python does not have the performance needed for efficient
recommender experiments. Java enabled us to achieve strong com-
putational performance in a widely-taught programming language
with well-established standard practices, making it significantly
easier for new users (particularly students) to adapt and contribute
to it than we likely would have seen with a corresponding C++
code base.

3.1.3 Modular Algorithms. LensKit was built around the idea of
modular algorithms where individual components can be replaced
and reconfigured. In the item-item collaborative filter, for exam-
ple, users can change the similarity function, the neighborhood
weighting function, input rating vector normalizations, item neigh-
borhood normalizations, and the strategy for mapping input data
to rating vectors. This configurability has been useful for exploring
a range of configuration options for algorithms, at the expense of
larger hyperparameter search spaces.

3.2 What Doesn’t Work
Other aspects of LensKit’s design and development do not seem to
have met our needs or those of the community as well.

3.2.1 Opinionated Evaluation. While LensKit’s algorithms were
highly configurable, its offline evaluation tools are much more
opinionated. You can specify a few types of data splitting strategies,
and recommendation candidate strategies, and it has a range of
evaluation metrics, but the overall evaluation process and methods
for aggregating metric results are fixed. Metrics are also limited in
their interface.

As we expanded our research into the recommender evaluation
process itself, we repeatedly ran in to limits of this evaluation
strategy and had to write new evaluation code in a fairly heavy
framework, or just have the evaluator dump intermediate files
that we would reprocess in R or Python, in order to carry out our
research. Too often the answer we would have to give to questions
on the mailing list or StackOverflow is “we’re sorry, LesnKit can’t
do that yet”.

One of our goals was to make it difficult to do an evaluation
wrong: we wanted the defaults to embody best practices for of-
fline evaluation. However, best practices have been sufficiently
unknown and fast-moving that we now believe this approach has
held our research back more than it has helped the field. It is par-
ticularly apparent that a different approach is necessary to support
next-generation offline evaluation strategies, such as counterfac-
tual evaluation [2], and carry out the evaluation research needed
to advance our understanding of effective, robust, and externally
valid offline evaluations.

3.2.2 Indirect Configuration. LensKit is built on the dependency
injection principle, using a dependency injection container [5] to
instantiate and connect recommender components. This method
gave us quite a few useful capabilities, such as the automatically
detecting components that could be shared between multiple ex-
periment runs in a parameter tuning experiment, but resulted in a
system where it is difficult to configure an algorithm, and difficult
to understand an algorithm’s configuration. It was also difficult to
document how to use the system.

We believe this largely stems from the role of inversion of control
in working with LensKit code — users never write code that assem-
bles a LensKit algorithm, they simply ask LensKit to instantiate one
and LensKit calls their custom components.

3.2.3 Implicit Features. Beyond indirect configuration, LensKit has
a lot of implicit behavior in its algorithms and evaluator. This has
at least two downsides: first, it is less clear from reading a config-
uration precisely what LensKit will do, making it more difficult
to review code and experiment scripts; second, if documentation
slipped behind the code, understanding the behavior of LensKit
experiment scripts required reading the LensKit source code itself.

3.2.4 Living in an Island. LensKit has its own data structures and
data access paradigms. Part of this is due to lack of standardized,
high-quality scientific data tooling that is not connected to a larger
framework such as Spark (while Spark does seem to expose data
structures as a separate library, documentation is nonexistent).
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This makes it difficult, however, to make LensKit interoperate
with other software and data sets. While LensKit is flexible in the
data it accepts, users must write data adapters. Using other tools
such as Spark is difficult. It’s unclear what, given the Java com-
mitment, we could have done differently here, but it is definitely a
liability for the future of recommender systems research.

4 TOOLKIT DESIDERATA
To address these weaknesses and power the next generation of
recommender systems research, both in our own research group
and elsewhere, there are several things that we desire from our
recommender systems research software:

Build on Standard Tools There are now standard tools, such
as Pandas and the surrounding PyData ecosystem [17], that
are widely adopted for data science and machine learning
research. Building on these packages maximizes interop-
erability with other software packages and enables code
reuse across different types of research. We also find Jupyter
notebooks to be a valuable means of promoting reproducibil-
ity, and would like an experiment workflow where the fi-
nal analysis consists of loading the recommender results
into a Jupyter notebook and computing desired metrics over
them. Small experiments could even be driven entirely from
Jupyter.

Leverage Existing Software Modern recommender systems
are usually machine learning systems; a recommender re-
search toolkit should not try to reinvent that wheel. Scikit-
Learn provides many machine learning algorithms suitable
for recommender systems research, and Keras, PyTorch,
and TensorFlow all provide neural network functionality to
Python. Recommender research tooling should work seam-
lessly with algorithms implemented in these kinds of toolkits.

Expose the Data Pipeline LensKit hides the data pipeline: it
controls data splitting, algorithm training, recommendation,
and evaluation. Outputs of each stage can be examined, but
not manipulated, and the pipeline itself cannot be easily
changed. Putting the user in control of the pipeline, and
providing functions to implement standard versions of each
of its stages, will have two benefits: the actual pipeline used is
clearly documented in the experiment code, and the pipeline
can be modified as research needs demand.

Explicit is Better than Implicit Related to exposing the data
pipeline, we wish for our new tools to follow the Python phi-
losophy of favoring explicit denotations of desired operation.
This will make it easier to review experiment designs and
improve the reliability and rigor of reproducible research.
We hope that this will also make the LKPY code itself easier
to read and understand.

Simple Interfaces Interfaces to individual software compo-
nents should be as simple as possible, so that it is easy to
document, test, and reimplement them.

Easy-to-Use Development Environment In order for prospec-
tive users and contributors, particularly students, to use
LKPY and participate in its development, we want the devel-
opment tools to be as standard and easy-to-use as possible.

Notably absent from this list is LensKit’s (in)famous algorithm
configurability. That configurability was useful for exploring the
space of algorithm configurations, but its particular design is more
suitable to heuristic techniques such as k-NN; machine learning
approaches seem better served by a different design. Connecting
with existing flexible optimization software will provide a great deal
of configurability for new algorithms. We think it is more important
for the recommender-specific software to focus on flexibility in the
experiment design.

5 THE LKPY SOFTWARE PACKAGE
To that end, we are developing a successor to LensKit, LKPY. LKPY
is a new Python package for recommender systems experiments,
particularly offline evaluations and similar studies, that we hope
will also be useful in educational settings. The first version of LKPY
is now available2, and is capable of running many of the kinds
of experiments we have run with LensKit in a more flexible and
forward-looking fashion.

LKPY is available under the MIT license.

5.1 LKPY Facilities
LKPY provides several modules for aiding recommender experi-
ments:

Data Preparation The crossfoldmodule provides functions
for splitting data for cross-validation. It supports rating-
based, user-based, and item-based splitting strategies, with
configurable data holdout settings.

Algorithm APIs The algorithms module defines Python in-
terfaces for training models, generating predictions, and
generating recommendations. These interfaces are minimal,
defined in terms of Pandas data structures, and can be readily
implemented on top of any desired machine learning toolkit
such as Scikit-Learn or Pandas.

Evaluation Metrics The metrics package provides classical
top-N and prediction accuracy metrics. Metrics are functions
that operate directly over Pandas series objects, and thus can
be applied to any data of an appropriate shape. There is there-
fore no limit to how the user reprocesses recommendations
and predictions before computing metrics.

Classical CF Algorithms LKPY provides implementations of
nonpersonalized, k-NN, and biased matrix factorization col-
laborative filters. We expect to expand the set of algorithms
provided, but being a source of algorithms is not LKPY’s
primary objective. These algorithms are provided in part to
give LensKit users a migration path to LKPY that keeps the
algorithms as consistent as possible; LKPY’s algorithm im-
plementations are based on LensKit’s and should generally
be the same. They are less configurable, however, selecting
configuration options such as item-item similarity functions
that we have found to work well across a range of data sets.
We use Cython to accelerate inner algorithm computations
when NumPy, SciPy, or Pandas operations are inadequate.

Batch Utilities To ease writing evaluation scripts, LKPY pro-
vides utility functions for computing predictions or recom-
mendations for many users in batch.

2https://lkpy.lenskit.org

https://lkpy.lenskit.org
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import pandas as pd
from lenskit import batch, topn
from lenskit import crossfold as xf
from lenskit.algorithms import knn

ratings = pd.read_csv('ml-100k/u.data', sep='\t',
names=['user', 'item', 'rating', 'timestamp'])

algo = knn.ItemItem(30)

def eval(train, test):
model = algo.train(train)
users = test.user.unique()
recs = batch.recommend(algo, model, users, 100,

topn.UnratedCandidates(train))
# combine with test ratings for relevance data
res = pd.merge(recs, test, how='left',

on=('user', 'item'))
# fill in missing 0s
res.loc[res.rating.isna(), 'rating'] = 0
return res

# compute evaluation
splits = xf.partition_users(ratings, 5,

xf.SampleFrac(0.2)
recs = pd.concat((eval(train, test)

for (train, test) in splits))

# compile results
ndcg = recs.groupby('user').rating.apply(topn.ndcg)

Figure 1: Example Simple Evaluation

Since components connect with standard Pandas data structures,
they can be used together or individually. It is trivial to use alter-
native algorithms with LKPY’s data splitting and metrics, or to
use an entirely different data preparation strategy with LensKit’s
algorithms and batch functions.

One way in which our desire to favor explicit code over implicit
behavior is in data processing: instead of telling LensKit how to
transform data, in LKPY, the user just directly writes their data
transformations using standard Pandas operations.

5.2 LKPY Example Code
Figure 1 shows an example of using LKPY to compute the nDCG

of a k-NN algorithm with 5-fold cross-validation on the MovieLens
100K data set. It is somewhat verbose, but ever step of the evaluation
process is clear in the code, so the experiment structure can be
checked and it is self-documenting when the evaluation code is
published.

5.3 Dependencies and Environment
LKPY leverages Pandas [18], numpy [19], scipy [20], and PyTa-
bles/HDF5, alongwith several other Pythonmodules.We use Cython
[1] for native-code acceleration, as it integrates with numpy and
OpenMP with a minimum of boilerplate.

We regularly test LKPYwith recent Python versions onWindows,
Linux, and macOS. Our ongoing criteria are to support the three
major operating systems, and the version of Python 3 available in
the most most recent release of major Linux distributions (Ubuntu
LTS, RHEL/CentOS with EPEL, and Debian). We focus primarily on
Anaconda-based Python installations, but also test the code with
vanilla Python on all supported platforms. We provide binaries
via Anaconda Cloud for supported Python versions and operating
systems3, along with source distributions on the Python Package
Index4. We are evaluating providing precompiled binaries through
the Python Package Index as well.

5.4 Future Directions
We intend to fill out some more algorithms in LKPY’s capabilities,
such as out-of-the-box integrations for SLIM, BPR, and Poisson
factorization, and add facilities for alternative algorithm evaluation
strategies. We also plan to build bridges to enable the algorithm
implementations provided by other packages such as surprise [12]
and PyRecLab [23]. LKPY provides a clean, minimal core that can be
extended however our needs and those of the research community
require.

6 COMPARISON TO EXISTING PACKAGES
Before embarking on this project, we re-examined the landscape
of existing software to determine if the needs we saw would be
met by one of the other software packages. We were unable to find
existing tooling that supports our goals of flexible recommender
systems experiments that leverage the PyData ecosystem.

Two of the most obvious contenders for current Python rec-
ommender systems are surprise [12] and PyRecLab [23]. While
Surprise uses numpy and scipy, neither of these packages leverage
the PyData ecosystem; instead, each has its own classes for rep-
resenting data sets. PyRecLab’s evaluation facilities are also more
automatic; we want to write out the evaluation steps in our own
code so that we can experiment with themmore readily. Further, we
do not want to require students to learn C++ to be able to particpate
in research that requires extending LKPY.

Our approach is perhaps most similar to that of mrec5, in that
we focus on discrete steps enabled by separate tools. Again, though,
mrec does not leverage contemporary Python data science tools,
and does not seem to be under active maintenance. We also focus
on Python as the scripting language for experiment control instead
of mrec’s command-line orientation.

It is our sense that many Python-based recommender systems
research projects roll their own evaluation procedure directly in
Python tools while building the recommender in scikit-learn or one
of the deep learning frameworks. It is our goal to integrate with
such workflows, enabling them to leverage common, well-tested
implementations of metrics and other experimental support code
while continuing to use their existing data flows for the recommen-
dation process.

3https://anaconda.org/lenskit/lenskit
4https://pypi.org/project/lenskit/
5https://github.com/Mendeley/mrec
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7 CONCLUSION
We have learned many lessons developing, maintaining, and re-
searching with the LensKit software. Based on these lessons, we
came to the conclusion that, in its current form, it is not meeting
our needs or the needs of the recommender systems community
well, and that resources would be better spent on tools that improve
research being done with the widely-used Python packages that
drive much of modern data science.

Where LensKit focused on providing building blocks for rec-
ommender algorithms, LKPY provides building blocks for recom-
mender experiments. Built on the PyData stack and oragnized around
clear, explicit data processing pipelines with a minimum of custom
concepts, LKPY provides a solid foundation for new experimenta-
tion and concepts at all stages of the offline recommender system
evaluation lifecycle. We expect it to meet our own research needs
in offline evaluation and simulation of recommender systems much
better than the current LensKit code going forward, and hope that
others in the research community find it useful as well. We welcome
contributions on GitHub, and invite feedback from the community
to guide future development.
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