4-15-2019

Probing the Nanomechanical Behavior of Cells and Cell Nuclei

Jesse Schimpf
Boise State University

Josh Newberg
Boise State University

Gunes Uzer
Boise State University

Paul H. Davis
Boise State University
Cells vs. Isolated Nuclei
Nanoindentation was performed on MSCs and isolated MSC nuclei. Noticeable structural differences were observed between whole cells and isolated nuclei, including a decrease in nuclear area.

Nanomechanical Properties of MSC Nuclei
Mesenchymal stem cells (MSCs) are multipotent, capable of differentiating into bone, cartilage, muscle, or fat cells. A combination of mechanical and chemical signals guide this transformation; the goal of this study is to understand how mechanical signals affect MSCs.

One measurable response seen in MSCs is a change in the elastic or Young's modulus (i.e., the “stiffness”) of the nucleus, which can be calculated from the slope of a force-displacement curve.

Rather than a sharp AFM tip, a 10 μm diameter glass bead is used to indent on nuclei because it has an ~5,000x larger radius of curvature. This disperses the applied force, preventing the probe from puncturing the cell membrane. It also allows a more holistic measurement of the nucleus’s mechanical properties.

Conclusions
• Removing the cytoskeleton causes the nucleus to shrink and significantly reduces nuclear stiffness.
• Extended LIV treatment introduces a stressful mechanical environment for the nucleus, triggering an increase in nuclear stiffness.
• Lamin A/C and Sun-1&2 provide structural support for the cell. When removed, nuclear stiffness decreases significantly. This suggests that these components also impart structure to the nucleus.

Author:
Jesse Schimpf
Undergraduate Research Assistant
Surface Science Laboratory
Micron School of Materials Science & Engineering
jesseschimpf@u.boisestate.edu

Co-Authors:
Josh Newberg, joshnewberg@u.boisestate.edu
Gunes Uzer, gunesuzer@boisestate.edu
Paul H. Davis (mentor), pauldavis2@boisestate.edu

References:
1. Bruker.

Funding:
COBRE Matrix Biology, NIH NIGMS P20GM109095
AR3T Technology Development Grant, NIH 5P2CHD086843-03 (Sub-Award 126873-13)